1
|
Wendegatz EC, Engelhardt M, Schüller HJ. Transcriptional activation domains interact with ATPase subunits of yeast chromatin remodelling complexes SWI/SNF, RSC and INO80. Curr Genet 2024; 70:15. [PMID: 39235627 PMCID: PMC11377671 DOI: 10.1007/s00294-024-01300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Chromatin remodelling complexes (CRC) are ATP-dependent molecular machines important for the dynamic organization of nucleosomes along eukaryotic DNA. CRCs SWI/SNF, RSC and INO80 can move positioned nucleosomes in promoter DNA, leading to nucleosome-depleted regions which facilitate access of general transcription factors. This function is strongly supported by transcriptional activators being able to interact with subunits of various CRCs. In this work we show that SWI/SNF subunits Swi1, Swi2, Snf5 and Snf6 can bind to activation domains of Ino2 required for expression of phospholipid biosynthetic genes in yeast. We identify an activator binding domain (ABD) of ATPase Swi2 and show that this ABD is functionally dispensable, presumably because ABDs of other SWI/SNF subunits can compensate for the loss. In contrast, mutational characterization of the ABD of the Swi2-related ATPase Sth1 revealed that some conserved basic and hydrophobic amino acids within this domain are essential for the function of Sth1. While ABDs of Swi2 and Sth1 define separate functional protein domains, mapping of an ABD within ATPase Ino80 showed co-localization with its HSA domain also required for binding actin-related proteins. Comparative interaction studies finally demonstrated that several unrelated activators each exhibit a specific binding pattern with ABDs of Swi2, Sth1 and Ino80.
Collapse
Affiliation(s)
- Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Maike Engelhardt
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cheplapharm, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Church MC, Workman JL. The SWI/SNF chromatin remodeling complex: a critical regulator of metabolism. Biochem Soc Trans 2024; 52:1327-1337. [PMID: 38666605 PMCID: PMC11346436 DOI: 10.1042/bst20231141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
The close relationship between chromatin and metabolism has been well-studied in recent years. Many metabolites have been found to be cofactors used to modify chromatin, and these modifications can in turn affect gene transcription. One chromatin-associated factor responsible for regulating transcription is the SWI/SNF complex, an ATP-dependent chromatin remodeler conserved throughout eukaryotes. SWI/SNF was originally described in yeast as regulating genes involved in carbon source metabolism and mating type switching, and its mammalian counterpart has been extensively studied for its role in diseases such as cancer. The yeast SWI/SNF complex is closely associated with activation of stress response genes, many of which have metabolic functions. It is now recognized that this is a conserved function of the complex, and recent work has shown that mammalian SWI/SNF is also a key regulator of metabolic transcription. Emerging evidence suggests that loss of SWI/SNF introduces vulnerabilities to cells due to this metabolic influence, and that this may present opportunities for treatment of SWI/SNF-deficient cancers.
Collapse
Affiliation(s)
- Michael C. Church
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| | - Jerry L. Workman
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| |
Collapse
|
3
|
Saha D, Animireddy S, Bartholomew B. The SWI/SNF ATP-dependent chromatin remodeling complex in cell lineage priming and early development. Biochem Soc Trans 2024; 52:603-616. [PMID: 38572912 PMCID: PMC11088921 DOI: 10.1042/bst20230416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
ATP dependent chromatin remodelers have pivotal roles in transcription, DNA replication and repair, and maintaining genome integrity. SWI/SNF remodelers were first discovered in yeast genetic screens for factors involved in mating type switching or for using alternative energy sources therefore termed SWI/SNF complex (short for SWItch/Sucrose NonFermentable). The SWI/SNF complexes utilize energy from ATP hydrolysis to disrupt histone-DNA interactions and shift, eject, or reposition nucleosomes making the underlying DNA more accessible to specific transcription factors and other regulatory proteins. In development, SWI/SNF orchestrates the precise activation and repression of genes at different stages, safe guards the formation of specific cell lineages and tissues. Dysregulation of SWI/SNF have been implicated in diseases such as cancer, where they can drive uncontrolled cell proliferation and tumor metastasis. Additionally, SWI/SNF defects are associated with neurodevelopmental disorders, leading to disruption of neural development and function. This review offers insights into recent developments regarding the roles of the SWI/SNF complex in pluripotency and cell lineage primining and the approaches that have helped delineate its importance. Understanding these molecular mechanisms is crucial for unraveling the intricate processes governing embryonic stem cell biology and developmental transitions and may potentially apply to human diseases linked to mutations in the SWI/SNF complex.
Collapse
Affiliation(s)
- Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Srinivas Animireddy
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| | - Blaine Bartholomew
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77054, U.S.A
| |
Collapse
|
4
|
Li J, Cao Y, Yang Y, Ma H, Zhao J, Zhang Y, Liu N. Quantitative Acetylomics Reveals Substrates of Lysine Acetyltransferase GCN5 in Adult and Aging Drosophila. J Proteome Res 2023; 22:2909-2924. [PMID: 37545086 DOI: 10.1021/acs.jproteome.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Protein lysine acetylation is a dynamic post-translational modification (PTM) that regulates a wide spectrum of cellular events including aging. General control nonderepressible 5 (GCN5) is a highly conserved lysine acetyltransferase (KAT). However, the acetylation substrates of GCN5 in vivo remain poorly studied, and moreover, how lysine acetylation changes with age and the contribution of KATs to aging remain to be addressed. Here, using Drosophila, we perform label-free quantitative acetylomic analysis, identifying new substrates of GCN5 in the adult and aging process. We further characterize the dynamics of protein acetylation with age, which exhibits a trend of increase. Since the expression of endogenous fly Gcn5 progressively increases during aging, we reason that, by combining the substrate analysis, the increase in acetylation with age is triggered, at least in part, by GCN5. Collectively, our study substantially expands the atlas of GCN5 substrates in vivo, provides a resource of protein acetylation that naturally occurs with age, and demonstrates how individual KAT contributes to the aging acetylome.
Collapse
Affiliation(s)
- Jingshu Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanhuan Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Rd., Pudong, Shanghai 201210, China
| |
Collapse
|
5
|
Lin CJ, Yang SY, Hsu LH, Yu SJ, Chen YL. The Gcn5-Ada2-Ada3 histone acetyltransferase module has divergent roles in pathogenesis of Candida glabrata. Med Mycol 2023; 61:myad004. [PMID: 36715154 DOI: 10.1093/mmy/myad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/04/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Candida glabrata is an opportunistic fungal pathogen and the second most prevalent species isolated from candidiasis patients. C. glabrata has intrinsic tolerance to antifungal drugs and oxidative stresses and the ability to adhere to mucocutaneous surfaces. However, knowledge about the regulation of its virulence traits is limited. The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex modulates gene transcription by histone acetylation through the histone acetyltransferase (HAT) module comprised of Gcn5-Ada2-Ada3. Previously, we showed that the ada2 mutant was hypervirulent but displayed decreased tolerance to antifungal drugs and cell wall perturbing agents. In this study, we further characterized the functions of Ada3 and Gcn5 in C. glabrata. We found that single, double, or triple deletions of the HAT module, as expected, resulted in a decreased level of acetylation on histone H3 lysine 9 (H3K9) and defective growth. These mutants were more susceptible to antifungal drugs, oxidative stresses, and cell wall perturbing agents compared with the wild-type. In addition, HAT module mutants exhibited enhanced agar invasion and upregulation of adhesin and proteases encoding genes, whereas the biofilm formation of those mutants was impaired. Interestingly, HAT module mutants exhibited enhanced induction of catalases (CTA1) expression upon treatment with H2O2 compared with the wild-type. Lastly, although ada3 and gcn5 exhibited marginal hypervirulence, the HAT double and triple mutants were hypervirulent in a murine model of candidiasis. In conclusion, the HAT module of the SAGA complex plays unique roles in H3K9 acetylation, drug tolerance, oxidative stress response, adherence, and virulence in C. glabrata.
Collapse
Affiliation(s)
- Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, 40227 Taichung, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Sheng-Yung Yang
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Li-Hang Hsu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Shang-Jie Yu
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
6
|
Princová J, Salat-Canela C, Daněk P, Marešová A, de Cubas L, Bähler J, Ayté J, Hidalgo E, Převorovský M. Perturbed fatty-acid metabolism is linked to localized chromatin hyperacetylation, increased stress-response gene expression and resistance to oxidative stress. PLoS Genet 2023; 19:e1010582. [PMID: 36626368 PMCID: PMC9870116 DOI: 10.1371/journal.pgen.1010582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.
Collapse
Affiliation(s)
- Jarmila Princová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Petr Daněk
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Marešová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Martin Převorovský
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
7
|
Kabir F, Atkinson R, Cook AL, Phipps AJ, King AE. The role of altered protein acetylation in neurodegenerative disease. Front Aging Neurosci 2023; 14:1025473. [PMID: 36688174 PMCID: PMC9845957 DOI: 10.3389/fnagi.2022.1025473] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Acetylation is a key post-translational modification (PTM) involved in the regulation of both histone and non-histone proteins. It controls cellular processes such as DNA transcription, RNA modifications, proteostasis, aging, autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation is essential to maintain neuronal plasticity and therefore essential for memory and learning. Homeostasis of acetylation is maintained through the activities of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, with alterations to these tightly regulated processes reported in several neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Both hyperacetylation and hypoacetylation can impair neuronal physiological homeostasis and increase the accumulation of pathophysiological proteins such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, respectively. Additionally, dysregulation of acetylation is linked to impaired axonal transport, a key pathological mechanism in ALS. This review article will discuss the physiological roles of protein acetylation and examine the current literature that describes altered protein acetylation in neurodegenerative disorders.
Collapse
|
8
|
HAT- and HDAC-Targeted Protein Acetylation in the Occurrence and Treatment of Epilepsy. Biomedicines 2022; 11:biomedicines11010088. [PMID: 36672596 PMCID: PMC9856006 DOI: 10.3390/biomedicines11010088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a common and severe chronic neurological disorder. Recently, post-translational modification (PTM) mechanisms, especially protein acetylation modifications, have been widely studied in various epilepsy models or patients. Acetylation is regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs catalyze the transfer of the acetyl group to a lysine residue, while HDACs catalyze acetyl group removal. The expression of many genes related to epilepsy is regulated by histone acetylation and deacetylation. Moreover, the acetylation modification of some non-histone substrates is also associated with epilepsy. Various molecules have been developed as HDAC inhibitors (HDACi), which have become potential antiepileptic drugs for epilepsy treatment. In this review, we summarize the changes in acetylation modification in epileptogenesis and the applications of HDACi in the treatment of epilepsy as well as the mechanisms involved. As most of the published research has focused on the differential expression of proteins that are known to be acetylated and the knowledge of whole acetylome changes in epilepsy is still minimal, a further understanding of acetylation regulation will help us explore the pathological mechanism of epilepsy and provide novel ideas for treating epilepsy.
Collapse
|
9
|
Greenstein RA, Ng H, Barrales RR, Tan C, Braun S, Al-Sady B. Local chromatin context regulates the genetic requirements of the heterochromatin spreading reaction. PLoS Genet 2022; 18:e1010201. [PMID: 35584134 PMCID: PMC9154106 DOI: 10.1371/journal.pgen.1010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin spreading, the expansion of repressive chromatin structure from sequence-specific nucleation sites, is critical for stable gene silencing. Spreading re-establishes gene-poor constitutive heterochromatin across cell cycles but can also invade gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context (i.e. euchromatic, heterochromatic) or different nucleation pathways influence heterochromatin spreading remains poorly understood. Previously, we developed a single-cell sensor in fission yeast that can separately record heterochromatic gene silencing at nucleation sequences and distal sites. Here we couple our quantitative assay to a genetic screen to identify genes encoding nuclear factors linked to the regulation of heterochromatin nucleation and the distal spreading of gene silencing. We find that mechanisms underlying gene silencing distal to a nucleation site differ by chromatin context. For example, Clr6 histone deacetylase complexes containing the Fkh2 transcription factor are specifically required for heterochromatin spreading at constitutive sites. Fkh2 recruits Clr6 to nucleation-distal chromatin sites in such contexts. In addition, we find that a number of chromatin remodeling complexes antagonize nucleation-distal gene silencing. Our results separate the regulation of heterochromatic gene silencing at nucleation versus distal sites and show that it is controlled by context-dependent mechanisms. The results of our genetic analysis constitute a broad community resource that will support further analysis of the mechanisms underlying the spread of epigenetic silencing along chromatin. Repressive structures, or heterochromatin, are seeded at specific genome sequences and then “spread” to silence nearby chromosomal regions. While much is known about the factors that seed heterochromatin, the genetic requirements for spreading are less clear. We devised a fission yeast single-cell method to examine how gene silencing is propagated by the heterochromatin spreading process specifically. Here we use this platform to ask if specific genes are required for the spreading process and whether the same or different genes direct spreading from different chromosomal seeding sites. We find a significant number of genes that specifically promote or antagonize the heterochromatin spreading process. However, different genes are required to enact spreading from different seeding sites. These results have potential implications for cell fate specification, where genes are newly silenced by heterochromatin spreading from diverse chromosomal sites. In a central finding, we show that the Clr6 protein complex, which removes chromatin marks linked to active genes, associates with the Forkhead 2 transcription factor to promote spreading of silencing structures from seeding sites at numerous chromosomal loci. In contrast, we show that proteins that remodel chromatin antagonize the spreading of gene silencing.
Collapse
Affiliation(s)
- R. A. Greenstein
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Henry Ng
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Ramon R. Barrales
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
| | - Catherine Tan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Sigurd Braun
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Bassem Al-Sady
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 313] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
11
|
The GCN5: its biological functions and therapeutic potentials. Clin Sci (Lond) 2021; 135:231-257. [PMID: 33443284 DOI: 10.1042/cs20200986] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
General control non-depressible 5 (GCN5) or lysine acetyltransferase 2A (KAT2A) is one of the most highly studied histone acetyltransferases. It acts as both histone acetyltransferase (HAT) and lysine acetyltransferase (KAT). As an HAT it plays a pivotal role in the epigenetic landscape and chromatin modification. Besides, GCN5 regulates a wide range of biological events such as gene regulation, cellular proliferation, metabolism and inflammation. Imbalance in the GCN5 activity has been reported in many disorders such as cancer, metabolic disorders, autoimmune disorders and neurological disorders. Therefore, unravelling the role of GCN5 in different diseases progression is a prerequisite for both understanding and developing novel therapeutic agents of these diseases. In this review, we have discussed the structural features, the biological function of GCN5 and the mechanical link with the diseases associated with its imbalance. Moreover, the present GCN5 modulators and their limitations will be presented in a medicinal chemistry perspective.
Collapse
|
12
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Soffers JHM, Workman JL. The SAGA chromatin-modifying complex: the sum of its parts is greater than the whole. Genes Dev 2021; 34:1287-1303. [PMID: 33004486 PMCID: PMC7528701 DOI: 10.1101/gad.341156.120] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, Soffers and Workman discuss the initial discovery of the canonical SAGA complex, the subsequent studies that have shaped our view on the internal organization of its subunits into modules, and the latest structural work that visualizes the modules and provides insights into their function. There are many large protein complexes involved in transcription in a chromatin context. However, recent studies on the SAGA coactivator complex are generating new paradigms for how the components of these complexes function, both independently and in concert. This review highlights the initial discovery of the canonical SAGA complex 23 years ago, our evolving understanding of its modular structure and the relevance of its modular nature for its coactivator function in gene regulation.
Collapse
Affiliation(s)
- Jelly H M Soffers
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| |
Collapse
|
14
|
Mazina MY, Vorobyeva NE. Chromatin Modifiers in Transcriptional Regulation: New Findings and Prospects. Acta Naturae 2021; 13:16-30. [PMID: 33959384 PMCID: PMC8084290 DOI: 10.32607/actanaturae.11101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023] Open
Abstract
Histone-modifying and remodeling complexes are considered the main coregulators that affect transcription by changing the chromatin structure. Coordinated action by these complexes is essential for the transcriptional activation of any eukaryotic gene. In this review, we discuss current trends in the study of histone modifiers and chromatin remodelers, including the functional impact of transcriptional proteins/ complexes i.e., "pioneers"; remodeling and modification of non-histone proteins by transcriptional complexes; the supplementary functions of the non-catalytic subunits of remodelers, and the participation of histone modifiers in the "pause" of RNA polymerase II. The review also includes a scheme illustrating the mechanisms of recruitment of the main classes of remodelers and chromatin modifiers to various sites in the genome and their functional activities.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| | - N. E. Vorobyeva
- Institute of Gene Biology RAS, Group of transcriptional complexes dynamics, Moscow, 119334 Russia
| |
Collapse
|
15
|
Sauty SM, Shaban K, Yankulov K. Gene repression in S. cerevisiae-looking beyond Sir-dependent gene silencing. Curr Genet 2020; 67:3-17. [PMID: 33037902 DOI: 10.1007/s00294-020-01114-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
Abstract
Gene silencing by the SIR (Silent Information Region) family of proteins in S. cerevisiae has been extensively studied and has served as a founding paradigm for our general understanding of gene repression and its links to histone deacetylation and chromatin structure. In recent years, our understanding of other mechanisms of gene repression in S.cerevisiae was significantly advanced. In this review, we focus on such Sir-independent mechanisms of gene repression executed by various Histone Deacetylases (HDACs) and Histone Methyl Transferases (HMTs). We focus on the genes regulated by these enzymes and their known mechanisms of action. We describe the cooperation and redundancy between HDACs and HMTs, and their involvement in gene repression by non-coding RNAs or by their non-histone substrates. We also propose models of epigenetic transmission of the chromatin structures produced by these enzymes and discuss these in the context of gene repression phenomena in other organisms. These include the recycling of the epigenetic marks imposed by HMTs or the recycling of the complexes harboring HDACs.
Collapse
Affiliation(s)
- Safia Mahabub Sauty
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Kholoud Shaban
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
16
|
The mechanisms of action of chromatin remodelers and implications in development and disease. Biochem Pharmacol 2020; 180:114200. [DOI: 10.1016/j.bcp.2020.114200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
|
17
|
The Role of BRG1 in Antioxidant and Redox Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6095673. [PMID: 33014273 PMCID: PMC7512085 DOI: 10.1155/2020/6095673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Redox homeostasis is regulated by critical molecules that modulate antioxidant and redox signaling (ARS) within the cell. Imbalances among these molecules can lead to oxidative stress and damage to cell functions, causing a variety of diseases. Brahma-related gene 1 (BRG1), also known as SMARCA4, is the central ATPase catalytic subunit of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, which plays a core role in DNA replication, repair, recombination, and transcriptional regulation. Numerous recent studies show that BRG1 is involved in the regulation of various cellular processes associated with ARS. BRG1, as a major factor in chromatin remodeling, is essential for the repair of oxidative stress-induced DNA damage and the activation of antioxidant genes under oxidative stress. Consequently, a comprehensive understanding of the roles of BRG1 in redox homeostasis is crucial to understand the normal functioning as well as pathological mechanisms. In this review, we summarized and discussed the role of BRG1 in the regulation of ARS.
Collapse
|
18
|
Non-histone protein acetylation by the evolutionarily conserved GCN5 and PCAF acetyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194608. [PMID: 32711095 DOI: 10.1016/j.bbagrm.2020.194608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
GCN5, conserved from yeast to humans, and the vertebrate specific PCAF, are lysine acetyltransferase enzymes found in large protein complexes. Both enzymes have well documented roles in the histone acetylation and the concomitant regulation of transcription. However, these enzymes also acetylate non-histone substrates to impact diverse aspects of cell physiology. Here, I review our current understanding of non-histone acetylation by GCN5 and PCAF across eukaryotes, from target identification to molecular mechanism and regulation. I focus mainly on budding yeast, where Gcn5 was first discovered, and mammalian systems, where the bulk of non-histone substrates have been characterized. I end the review by defining critical caveats and open questions that apply to all models.
Collapse
|
19
|
Strahl BD, Briggs SD. The SAGA continues: The rise of cis- and trans-histone crosstalk pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194600. [PMID: 32645359 DOI: 10.1016/j.bbagrm.2020.194600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/30/2023]
Abstract
Fueled by key technological innovations during the last several decades, chromatin-based research has greatly advanced our mechanistic understanding of how genes are regulated by epigenetic factors and their associated histone-modifying activities. Most notably, the landmark finding that linked histone acetylation by Gcn5 of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex to gene activation ushered in a new area of chromatin research and a realization that histone-modifying activities have integral genome functions. This review will discuss past and recent studies that have shaped our understanding of how the histone-modifying activities of SAGA are regulated by, and modulate the outcomes of, other histone modifications during gene transcription. Because much of our understanding of SAGA was established with budding yeast, we will focus on yeast as a model. We discuss the actions of cis- and trans-histone crosstalk pathways that involve the histone acetyltransferase, deubiquitylase, and reader domains of SAGA. We conclude by considering unanswered questions about SAGA and related complexes.
Collapse
Affiliation(s)
- Brian D Strahl
- Department of Biochemistry and Biophysics, 120 Mason Farm Rd, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Scott D Briggs
- Department of Biochemistry and Purdue University Center for Cancer Research, Purdue University, Hansen Life Science Research Building, 201S, University Street, West Lafayette, IN 47907; USA.
| |
Collapse
|
20
|
Yarrington RM, Yu Y, Yan C, Bai L, Stillman DJ. A Role for Mediator Core in Limiting Coactivator Recruitment in Saccharomyces cerevisiae. Genetics 2020; 215:407-420. [PMID: 32327563 PMCID: PMC7268993 DOI: 10.1534/genetics.120.303254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
Mediator is an essential, multisubunit complex that functions as a transcriptional coactivator in yeast and other eukaryotic organisms. Mediator has four conserved modules, Head, Middle, Tail, and Kinase, and has been implicated in nearly all aspects of gene regulation. The Tail module has been shown to recruit the Mediator complex to the enhancer or upstream activating sequence (UAS) regions of genes via interactions with transcription factors, and the Kinase module facilitates the transition of Mediator from the UAS/enhancer to the preinitiation complex via protein phosphorylation. Here, we analyze expression of the Saccharomyces cerevisiaeHO gene using a sin4 Mediator Tail mutation that separates the Tail module from the rest of the complex; the sin4 mutation permits independent recruitment of the Tail module to promoters without the rest of Mediator. Significant increases in recruitment of the SWI/SNF and SAGA coactivators to the HO promoter UAS were observed in a sin4 mutant, along with increased gene activation. These results are consistent with recent studies that have suggested that the Kinase module functions negatively to inhibit activation by the Tail. However, we found that Kinase module mutations did not mimic the effect of a sin4 mutation on HO expression. This suggests that at HO the core Mediator complex (Middle and Head modules) must play a role in limiting Tail binding to the promoter UAS and gene activation. We propose that the core Mediator complex helps modulate Mediator binding to the UAS regions of genes to limit coactivator recruitment and ensure proper regulation of gene transcription.
Collapse
Affiliation(s)
- Robert M Yarrington
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Yaxin Yu
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Chao Yan
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
21
|
Accumulation of unacetylatable Snf2p at the INO1 promoter is detrimental to remodeler recycling supply for CUP1 induction. PLoS One 2020; 15:e0230572. [PMID: 32210477 PMCID: PMC7094851 DOI: 10.1371/journal.pone.0230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/03/2020] [Indexed: 11/19/2022] Open
Abstract
Chromatin structure plays a decisive role in gene regulation through the actions of transcriptional activators, coactivators, and epigenetic machinery. These trans-acting factors contribute to gene expression through their interactions with chromatin structure. In yeast INO1 activation, transcriptional activators and coactivators have been defined through intense study but the mechanistic links within these trans-acting factors and their functional implications are not yet fully understood. In this study, we examined the crosstalk within transcriptional coactivators with regard to the implications of Snf2p acetylation during INO1 activation. Through various biochemical analysis, we demonstrated that both Snf2p and Ino80p chromatin remodelers accumulate at the INO1 promoter in the absence of Snf2p acetylation during induction. Furthermore, nucleosome density and histone acetylation patterns remained unaffected by Snf2p acetylation status. We also showed that cells experience increased sensitivity to copper toxicity when remodelers accumulate at the INO1 promoter due to the decreased CUP1 expression. Therefore, our data provide evidence for crosstalk within transcriptional co-activators during INO1 activation. In light of these findings, we propose a model in which acetylation-driven chromatin remodeler recycling allows for efficient regulation of genes that are dependent upon limited co-activators.
Collapse
|
22
|
Delamarre A, Barthe A, de la Roche Saint-André C, Luciano P, Forey R, Padioleau I, Skrzypczak M, Ginalski K, Géli V, Pasero P, Lengronne A. MRX Increases Chromatin Accessibility at Stalled Replication Forks to Promote Nascent DNA Resection and Cohesin Loading. Mol Cell 2020; 77:395-410.e3. [PMID: 31759824 DOI: 10.1016/j.molcel.2019.10.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/09/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
The recovery of stalled replication forks depends on the controlled resection of nascent DNA and on the loading of cohesin. These processes operate in the context of nascent chromatin, but the impact of nucleosome structure on a fork restart remains poorly understood. Here, we show that the Mre11-Rad50-Xrs2 (MRX) complex acts together with the chromatin modifiers Gcn5 and Set1 and the histone remodelers RSC, Chd1, and Isw1 to promote chromatin remodeling at stalled forks. Increased chromatin accessibility facilitates the resection of nascent DNA by the Exo1 nuclease and the Sgs1 and Chl1 DNA helicases. Importantly, increased ssDNA promotes the recruitment of cohesin to arrested forks in a Scc2-Scc4-dependent manner. Altogether, these results indicate that MRX cooperates with chromatin modifiers to orchestrate the action of remodelers, nucleases, and DNA helicases, promoting the resection of nascent DNA and the loading of cohesin, two key processes involved in the recovery of arrested forks.
Collapse
Affiliation(s)
- Axel Delamarre
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Christophe de la Roche Saint-André
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue contre le Cancer, 13273 Marseille, France
| | - Pierre Luciano
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue contre le Cancer, 13273 Marseille, France
| | - Romain Forey
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Ismaël Padioleau
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), CNRS, INSERM, Aix Marseille University, Institut Paoli-Calmettes, Equipe Labélisée Ligue contre le Cancer, 13273 Marseille, France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
23
|
Jiao M, Xia L, Chen J, Cui Z. WITHDRAWN: Demethylation of Di-Methylation of Lysine 4 on Histone 3 Is Inhibited by General Control Nondepressible 5-Induced Acetylation of Lysine-Specific Demethylase 1. Am J Med Sci 2020:S0002-9629(20)30003-3. [PMID: 31982102 DOI: 10.1016/j.amjms.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Mingwen Jiao
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Lijian Xia
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingbo Chen
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhonghui Cui
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
24
|
Lin J, Zhao Y, Ferraro AR, Yang E, Lewis ZA, Lin X. Transcription factor Znf2 coordinates with the chromatin remodeling SWI/SNF complex to regulate cryptococcal cellular differentiation. Commun Biol 2019; 2:412. [PMID: 31754642 PMCID: PMC6856107 DOI: 10.1038/s42003-019-0665-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cellular differentiation is instructed by developmental regulators in coordination with chromatin remodeling complexes. Much information about their coordination comes from studies in the model ascomycetous yeasts. It is not clear, however, what kind of information that can be extrapolated to species of other phyla in Kingdom Fungi. In the basidiomycete Cryptococcus neoformans, the transcription factor Znf2 controls yeast-to-hypha differentiation. Through a forward genetic screen, we identified the basidiomycete-specific factor Brf1. We discovered Brf1 works together with Snf5 in the SWI/SNF chromatin remodeling complex in concert with existent Znf2 to execute cellular differentiation. We demonstrated that SWI/SNF assists Znf2 in opening the promoter regions of hyphal specific genes, including the ZNF2 gene itself. This complex also supports Znf2 to fully associate with its target regions. Importantly, our findings revealed key differences in composition and biological function of the SWI/SNF complex in the two major phyla of Kingdom Fungi.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Youbao Zhao
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Aileen R. Ferraro
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Zachary A. Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602 USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
25
|
Sheikh BN, Akhtar A. The many lives of KATs - detectors, integrators and modulators of the cellular environment. Nat Rev Genet 2019; 20:7-23. [PMID: 30390049 DOI: 10.1038/s41576-018-0072-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research over the past three decades has firmly established lysine acetyltransferases (KATs) as central players in regulating transcription. Recent advances in genomic sequencing, metabolomics, animal models and mass spectrometry technologies have uncovered unexpected new roles for KATs at the nexus between the environment and transcriptional regulation. Thousands of reversible acetylation sites have been mapped in the proteome that respond dynamically to the cellular milieu and maintain major processes such as metabolism, autophagy and stress response. Concurrently, researchers are continuously uncovering how deregulation of KAT activity drives disease, including cancer and developmental syndromes characterized by severe intellectual disability. These novel findings are reshaping our view of KATs away from mere modulators of chromatin to detectors of the cellular environment and integrators of diverse signalling pathways with the ability to modify cellular phenotype.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
26
|
Abstract
Chromatin is a mighty consumer of cellular energy generated by metabolism. Metabolic status is efficiently coordinated with transcription and translation, which also feed back to regulate metabolism. Conversely, suppression of energy utilization by chromatin processes may serve to preserve energy resources for cell survival. Most of the reactions involved in chromatin modification require metabolites as their cofactors or coenzymes. Therefore, the metabolic status of the cell can influence the spectra of posttranslational histone modifications and the structure, density and location of nucleosomes, impacting epigenetic processes. Thus, transcription, translation, and DNA/RNA biogenesis adapt to cellular metabolism. In addition to dysfunctions of metabolic enzymes, imbalances between metabolism and chromatin activities trigger metabolic disease and life span alteration. Here, we review the synthesis of the metabolites and the relationships between metabolism and chromatin function. Furthermore, we discuss how the chromatin response feeds back to metabolic regulation in biological processes.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;,
| | - Jerry L. Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;,
| |
Collapse
|
27
|
Wu WS, Tu HP, Chu YH, Nordling TEM, Tseng YY, Liaw HJ. YHMI: a web tool to identify histone modifications and histone/chromatin regulators from a gene list in yeast. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5145122. [PMID: 30371756 PMCID: PMC6204766 DOI: 10.1093/database/bay116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
Post-translational modifications of histones (e.g. acetylation, methylation, phosphorylation and ubiquitination) play crucial roles in regulating gene expression by altering chromatin structures and creating docking sites for histone/chromatin regulators. However, the combination patterns of histone modifications, regulatory proteins and their corresponding target genes remain incompletely understood. Therefore, it is advantageous to have a tool for the enrichment/depletion analysis of histone modifications and histone/chromatin regulators from a gene list. Many ChIP-chip/ChIP-seq datasets of histone modifications and histone/chromatin regulators in yeast can be found in the literature. Knowing the needs and having the data motivate us to develop a web tool, called Yeast Histone Modifications Identifier (YHMI), which can identify the enriched/depleted histone modifications and the enriched histone/chromatin regulators from a list of yeast genes. Both tables and figures are provided to visualize the identification results. Finally, the high-quality and biological insight of the identification results are demonstrated by two case studies. We believe that YHMI is a valuable tool for yeast biologists to do epigenetics research.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ping Tu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Han Chu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Hung-Jiun Liaw
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Venkataramanan S, Douglass S, Galivanche AR, Johnson TL. The chromatin remodeling complex Swi/Snf regulates splicing of meiotic transcripts in Saccharomyces cerevisiae. Nucleic Acids Res 2017; 45:7708-7721. [PMID: 28637241 PMCID: PMC5570110 DOI: 10.1093/nar/gkx373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 01/28/2023] Open
Abstract
Despite its relatively streamlined genome, there are important examples of regulated RNA splicing in Saccharomyces cerevisiae, such as splicing of meiotic transcripts. Like other eukaryotes, S. cerevisiae undergoes a dramatic reprogramming of gene expression during meiosis, including regulated splicing of a number of crucial meiosis-specific RNAs. Splicing of a subset of these is dependent upon the splicing activator Mer1. Here we show a crucial role for the chromatin remodeler Swi/Snf in regulation of splicing of meiotic genes and find that the complex affects meiotic splicing in two ways. First, we show that Swi/Snf regulates nutrient-dependent downregulation of ribosomal protein encoding RNAs, leading to the redistribution of spliceosomes from this abundant class of intron-containing RNAs (the ribosomal protein genes) to Mer1-regulated transcripts. We also demonstrate that Mer1 expression is dependent on Snf2, its acetylation state and histone H3 lysine 9 acetylation at the MER1 locus. Hence, Snf2 exerts systems level control of meiotic gene expression through two temporally distinct mechanisms, demonstrating that it is a key regulator of meiotic splicing in S. cerevisiae. We also reveal an evolutionarily conserved mechanism whereby the cell redirects its energy from maintaining its translational capacity to the process of meiosis.
Collapse
Affiliation(s)
- Srivats Venkataramanan
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Stephen Douglass
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Anoop R. Galivanche
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Tracy L. Johnson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Morrison EA, Sanchez JC, Ronan JL, Farrell DP, Varzavand K, Johnson JK, Gu BX, Crabtree GR, Musselman CA. DNA binding drives the association of BRG1/hBRM bromodomains with nucleosomes. Nat Commun 2017; 8:16080. [PMID: 28706277 PMCID: PMC5519978 DOI: 10.1038/ncomms16080] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/26/2017] [Indexed: 01/04/2023] Open
Abstract
BRG1 and BRM, central components of the BAF (mSWI/SNF) chromatin remodelling complex, are critical in chromatin structure regulation. Here, we show that the human BRM (hBRM) bromodomain (BRD) has moderate specificity for H3K14ac. Surprisingly, we also find that both BRG1 and hBRM BRDs have DNA-binding activity. We demonstrate that the BRDs associate with DNA through a surface basic patch and that the BRD and an adjacent AT-hook make multivalent contacts with DNA, leading to robust affinity and moderate specificity for AT-rich elements. Although we show that the BRDs can bind to both DNA and H3K14ac simultaneously, the histone-binding activity does not contribute substantially to nucleosome targeting in vitro. In addition, we find that neither BRD histone nor DNA binding contribute to the global chromatin affinity of BRG1 in mouse embryonic stem cells. Together, our results suggest that association of the BRG1/hBRM BRD with nucleosomes plays a regulatory rather than targeting role in BAF activity.
Collapse
Affiliation(s)
- Emma A. Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Julio C. Sanchez
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jehnna L. Ronan
- Program in Cancer Biology, and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel P. Farrell
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Katayoun Varzavand
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jenna K. Johnson
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Brian X. Gu
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Gerald R. Crabtree
- Program in Cancer Biology, and Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Catherine A. Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
30
|
Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 2017; 18:407-422. [PMID: 28512350 DOI: 10.1038/nrm.2017.26] [Citation(s) in RCA: 735] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize diverse ATP-dependent nucleosome-remodelling complexes to carry out histone sliding, ejection or the incorporation of histone variants, suggesting that different mechanisms of action are used by the various chromatin-remodelling complex subfamilies. However, all chromatin-remodelling complex subfamilies contain an ATPase-translocase 'motor' that translocates DNA from a common location within the nucleosome. In this Review, we discuss (and illustrate with animations) an alternative, unifying mechanism of chromatin remodelling, which is based on the regulation of DNA translocation. We propose the 'hourglass' model of remodeller function, in which each remodeller subfamily utilizes diverse specialized proteins and protein domains to assist in nucleosome targeting or to differentially detect nucleosome epitopes. These modules converge to regulate a common DNA translocation mechanism, to inform the conserved ATPase 'motor' on whether and how to apply DNA translocation, which together achieve the various outcomes of chromatin remodelling: nucleosome assembly, chromatin access and nucleosome editing.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Janet Iwasa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
31
|
Mellor J. The molecular basis of metabolic cycles and their relationship to circadian rhythms. Nat Struct Mol Biol 2017; 23:1035-1044. [PMID: 27922609 DOI: 10.1038/nsmb.3311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
Abstract
Metabolic cycles result from the partitioning of oxidative and reductive metabolism into rhythmic phases of gene expression and oscillating post-translational protein modifications. Relatively little is known about how these switches in gene expression are controlled, although recent studies have suggested that transcription itself may play a central role. This review explores the molecular basis of the metabolic and gene-expression oscillations in the yeast Saccharomyces cerevisiae, as well as how they relate to other biological time-keeping mechanisms, such as circadian rhythms.
Collapse
Affiliation(s)
- Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Sharabi K, Lin H, Tavares CDJ, Dominy JE, Camporez JP, Perry RJ, Schilling R, Rines AK, Lee J, Hickey M, Bennion M, Palmer M, Nag PP, Bittker JA, Perez J, Jedrychowski MP, Ozcan U, Gygi SP, Kamenecka TM, Shulman GI, Schreiber SL, Griffin PR, Puigserver P. Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell 2017; 169:148-160.e15. [PMID: 28340340 PMCID: PMC5398763 DOI: 10.1016/j.cell.2017.03.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/22/2016] [Accepted: 02/27/2017] [Indexed: 01/27/2023]
Abstract
Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.
Collapse
Affiliation(s)
- Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Lin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John E Dominy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Roger Schilling
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jaemin Lee
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Marc Hickey
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa Bennion
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michelle Palmer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Partha P Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - José Perez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Theodore M Kamenecka
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Ludwigsen J, Pfennig S, Singh AK, Schindler C, Harrer N, Forné I, Zacharias M, Mueller-Planitz F. Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail. eLife 2017; 6. [PMID: 28109157 PMCID: PMC5305211 DOI: 10.7554/elife.21477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1. DOI:http://dx.doi.org/10.7554/eLife.21477.001 In the cells of animals, plants and other eukaryotes, DNA wraps tightly around proteins called histones to form structures known as nucleosomes that resemble beads on a string. When nucleosomes are sufficiently close to each other they interact and clump together, which compacts the DNA and prevents the genes in that stretch of DNA being activated. But how do cells mobilize their nucleosomes? A nucleosome remodeling enzyme called ISWI can slide nucleosomes along DNA. ISWI becomes active when it interacts with a ‘tail’ region of a histone protein called H4. However, the H4 tail prefers to interact with neighboring nucleosomes instead of with ISWI. Therefore when ISWI slides a nucleosome close to another one, the H4 tail of the nucleosome binds instead to its new neighbor so that ISWI cannot continue to slide. By this mechanism, ISWI is proposed to pile up nucleosomes, which subsequently compact, leading to the inactivation of this part of the genome. To investigate how ISWI recognizes the H4 tail, Ludwigsen et al. mapped where the H4 tail binds to ISWI by combining the biochemical methods of cross-linking and mass spectrometry. In addition, mutagenesis experiments identified a new motif in the enzyme that is essential for recognizing the H4 tail. In the absence of the nucleosome, this motif – called AcidicN – works with a neighboring motif called AutoN to keep ISWI in an inactive state. The two motifs also work together to enable ISWI to distinguish between nucleosomes and DNA. Further evidence suggests that other remodeling enzymes have similar regulation mechanisms; therefore this method of controlling nucleosome remodeling may have been conserved throughout evolution. Further studies are now needed to detect the shape changes that occur in ISWI as it recognizes the histone tail and work out how this leads to nucleosome remodeling. Inside cells, ISWI is usually found within large complexes that consist of many proteins. It therefore also remains to be discovered whether the proteins in these complexes impose additional layers of regulation and complexity on the activity of ISWI. DOI:http://dx.doi.org/10.7554/eLife.21477.002
Collapse
Affiliation(s)
- Johanna Ludwigsen
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabrina Pfennig
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ashish K Singh
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christina Schindler
- Physics Department (T38), Technische Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Munich, Germany
| | - Nadine Harrer
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ignasi Forné
- Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Zacharias
- Physics Department (T38), Technische Universität München, Munich, Germany.,Center for Integrated Protein Science Munich, Munich, Germany
| | | |
Collapse
|
34
|
Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development. Microbiol Mol Biol Rev 2017; 81:81/1/e00047-16. [PMID: 28077462 DOI: 10.1128/mmbr.00047-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parasitic infections remain one of the most pressing global health concerns of our day, affecting billions of people and producing unsustainable economic burdens. The rise of drug-resistant parasites has created an urgent need to study their biology in hopes of uncovering new potential drug targets. It has been established that disrupting gene expression by interfering with lysine acetylation is detrimental to survival of apicomplexan (Toxoplasma gondii and Plasmodium spp.) and kinetoplastid (Leishmania spp. and Trypanosoma spp.) parasites. As "readers" of lysine acetylation, bromodomain proteins have emerged as key gene expression regulators and a promising new class of drug target. Here we review recent studies that demonstrate the essential roles played by bromodomain-containing proteins in parasite viability, invasion, and stage switching and present work showing the efficacy of bromodomain inhibitors as novel antiparasitic agents. In addition, we performed a phylogenetic analysis of bromodomain proteins in representative pathogens, some of which possess unique features that may be specific to parasite processes and useful in future drug development.
Collapse
|
35
|
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation. Genetics 2016; 204:177-90. [PMID: 27489001 DOI: 10.1534/genetics.116.190835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022] Open
Abstract
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Collapse
|
36
|
Nocetti N, Whitehouse I. Nucleosome repositioning underlies dynamic gene expression. Genes Dev 2016; 30:660-72. [PMID: 26966245 PMCID: PMC4803052 DOI: 10.1101/gad.274910.115] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022]
Abstract
Nocetti and Whitehouse report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.
Collapse
Affiliation(s)
- Nicolas Nocetti
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; BCMB Graduate Program, Weill Cornell Medical College, New York, New York 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
37
|
Zhang P, Liu Y, Jin C, Zhang M, Tang F, Zhou Y. Histone Acetyltransferase GCN5 Regulates Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting NF-κB. J Bone Miner Res 2016; 31:391-402. [PMID: 26420353 DOI: 10.1002/jbmr.2704] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 02/02/2023]
Abstract
As the most well-studied histone acetyltransferase (HAT) in yeast and mammals, general control nonderepressible 5 (GCN5) was documented to play essential roles in various developmental processes. However, little is known about its role in osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we detected the critical function of GCN5 in osteogenic commitment of MSCs. In this role, the HAT activity of GCN5 was not required. Mechanistically, GCN5 repressed nuclear factor kappa B (NF-κB)-dependent transcription and inhibited the NF-κB signaling pathway. The impaired osteogenic differentiation by GCN5 knockdown was blocked by inhibition of NF-κB. Most importantly, the expression of GCN5 was decreased significantly in the bone tissue sections of ovariectomized mice or aged mice. Collectively, these results may point to the GCN5-NF-κB pathway as a novel potential molecular target for stem cell mediated regenerative medicine and the treatment of metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
38
|
Lew QJ, Chu KL, Chia YL, Soo B, Ho JP, Ng CH, Kwok HS, Chiang CM, Chang Y, Chao SH. GCN5 inhibits XBP-1S-mediated transcription by antagonizing PCAF action. Oncotarget 2016; 6:271-87. [PMID: 25426559 PMCID: PMC4381594 DOI: 10.18632/oncotarget.2773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/15/2014] [Indexed: 01/12/2023] Open
Abstract
Cellular unfolded protein response (UPR) is induced when endoplasmic reticulum (ER) is under stress. XBP-1S, the active isoform of X-box binding protein 1 (XBP-1), is a key regulator of UPR. Previously, we showed that a histone acetyltransferase (HAT), p300/CBP-associated factor (PCAF), binds to XBP-1S and functions as an activator of XBP-1S. Here, we identify general control nonderepressible 5 (GCN5), a HAT with 73% identity to PCAF, as a novel XBP-1S regulator. Both PCAF and GCN5 bind to the same domain of XBP-1S. Surprisingly, GCN5 potently blocks the XBP-1S-mediated transcription, including cellular UPR genes and latent membrane protein 1 of Epstein-Barr virus. Unlike PCAF, GCN5 acetylates XBP-1S and enhances nuclear retention and protein stability of XBP-1S. However, such GCN5-mediated acetylation of XBP-1S shows no effects on XBP-1S activity. In addition, the HAT activity of GCN5 is not required for repression of XBP-1S target genes. We further demonstrate that GCN5 inhibits XBP-1S-mediated transcription by disrupting the PCAF-XBP-1S interaction and preventing the recruitment of XBP-1S to its target genes. Taken together, our results represent the first work demonstrating that GCN5 and PCAF exhibit different functions and antagonistically regulate the XBP-1S-mediated transcription.
Collapse
Affiliation(s)
- Qiao Jing Lew
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kai Ling Chu
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yi Ling Chia
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Benjamin Soo
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jia Pei Ho
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chew Har Ng
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hui Si Kwok
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Harry Hines Boulevard, Dallas, TX, USA
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Sheng-Hao Chao
- Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore. Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
39
|
Abstract
Acetylation is a dynamic post-translational modification that is attached to protein substrates by lysine acetyltransferases (KATs) and removed by lysine deacetylases (KDACs). While these enzymes are best characterized as histone modifiers and regulators of gene transcription, work in a number of systems highlights that acetylation is a pervasive modification and suggests a broad scope for KAT and KDAC functions in the cell. As we move beyond generating lists of acetylated proteins, the acetylation field is in dire need of robust tools to connect acetylation and deacetylation machineries to their respective substrates and to dissect the function of individual sites. The Saccharomyces cerevisiae model system provides such a toolkit in the context of both tried and true genetic techniques and cutting-edge proteomic and cell imaging methods. Here, we review these methods in the context of their contributions to acetylation research thus far and suggest strategies for addressing lingering questions in the field.
Collapse
|
40
|
Skulte KA, Phan L, Clark SJ, Taberlay PC. Chromatin remodeler mutations in human cancers: epigenetic implications. Epigenomics 2015; 6:397-414. [PMID: 25333849 DOI: 10.2217/epi.14.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chromatin remodeler complexes exhibit the ability to alter nucleosome composition and positions, with seemingly divergent roles in the regulation of chromatin architecture and gene expression. The outcome is directed by subunit variation and interactions with accessory factors. Recent studies have revealed that subunits of chromatin remodelers display an unexpectedly high mutation rate and/or are inactivated in a number of cancers. Consequently, a repertoire of epigenetic processes are likely to be affected, including interactions with histone modifying factors, as well as the ability to precisely modulate nucleosome positions, DNA methylation patterns and potentially, higher-order genome structure. However, the true significance of chromatin remodeler genetic aberrations in promoting a cascade of epigenetic changes, particularly during initiation and progression of cancer, remains largely unknown.
Collapse
Affiliation(s)
- Katherine A Skulte
- Chromatin Dynamics Group, Cancer Division, Garvan Institute of Medical Research, 394 Victoria Rd, Darlinghurst 2010, New South Wales, Australia
| | | | | | | |
Collapse
|
41
|
Protein acetylation as a means to regulate protein function in tune with metabolic state. Biochem Soc Trans 2015; 42:1037-42. [PMID: 25109999 DOI: 10.1042/bst20140135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein acetylation has emerged as a prominent post-translational modification that can occur on a wide variety of proteins. The metabolite acetyl-CoA is a key intermediate in energy metabolism that also serves as the acetyl group donor in protein acetylation modifications. Therefore such acetylation modifications might be coupled to the intracellular availability of acetyl-CoA. In the present article, we summarize recent evidence suggesting that the particular protein acetylation modifications enable the regulation of protein function in tune with acetyl-CoA availability and thus the metabolic state of the cell.
Collapse
|
42
|
Dutta A, Gogol M, Kim JH, Smolle M, Venkatesh S, Gilmore J, Florens L, Washburn MP, Workman JL. Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions. Genes Dev 2014; 28:2314-30. [PMID: 25319830 PMCID: PMC4201291 DOI: 10.1101/gad.243584.114] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Swi/Snf chromatin remodeling complex functions to alter nucleosome positions by either sliding nucleosomes on DNA or the eviction of histones. Dutta et al. find that acetylation of Snf2 regulates both recruitment and release of Swi/Snf from stress-responsive genes. The intramolecular interaction of the Snf2 bromodomain with the acetylated lysine residues on Snf2 negatively regulates binding and remodeling of acetylated nucleosomes by Swi/Snf. Activator-bound genes regulating metabolic processes showed greater retention of the Swi/Snf complex even when Snf2 was acetylated. The Swi/Snf chromatin remodeling complex functions to alter nucleosome positions by either sliding nucleosomes on DNA or the eviction of histones. The presence of histone acetylation and activator-dependent recruitment and retention of Swi/Snf is important for its efficient function. It is not understood, however, why such mechanisms are required to enhance Swi/Snf activity on nucleosomes. Snf2, the catalytic subunit of the Swi/Snf remodeling complex, has been shown to be a target of the Gcn5 acetyltransferase. Our study found that acetylation of Snf2 regulates both recruitment and release of Swi/Snf from stress-responsive genes. Also, the intramolecular interaction of the Snf2 bromodomain with the acetylated lysine residues on Snf2 negatively regulates binding and remodeling of acetylated nucleosomes by Swi/Snf. Interestingly, the presence of transcription activators mitigates the effects of the reduced affinity of acetylated Snf2 for acetylated nucleosomes. Supporting our in vitro results, we found that activator-bound genes regulating metabolic processes showed greater retention of the Swi/Snf complex even when Snf2 was acetylated. Our studies demonstrate that competing effects of (1) Swi/Snf retention by activators or high levels of histone acetylation and (2) Snf2 acetylation-mediated release regulate dynamics of Swi/Snf occupancy at target genes.
Collapse
Affiliation(s)
- Arnob Dutta
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jeong-Hoon Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 305-806, Korea
| | - Michaela Smolle
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Joshua Gilmore
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| |
Collapse
|
43
|
Dual tagging as an approach to isolate endogenous chromatin remodeling complexes from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:198-208. [PMID: 25486077 DOI: 10.1016/j.bbapap.2014.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/11/2014] [Accepted: 11/25/2014] [Indexed: 11/23/2022]
Abstract
Affinity isolation has been an essential technique for molecular studies of cellular assemblies, such as the switch/sucrose non-fermentable (SWI/SNF) family of ATP-dependent chromatin remodeling complexes. However, even biochemically pure isolates can contain heterogeneous mixtures of complexes and their components. In particular, purification strategies that rely on affinity tags fused to only one component of a complex may be susceptible to this phenomenon. This study demonstrates that fusing purification tags to two different proteins enables the isolation of intact complexes of remodels the structure of chromatin (RSC). A Protein A tag was fused to one of the RSC proteins and a Twin-Strep tag to another protein of the complex. By mass spectrometry, we demonstrate the enrichment of the RSC complexes. The complexes had an apparent Svedberg value of about 20S, as shown by glycerol gradient ultracentrifugation. Additionally, purified complexes were demonstrated to be functional. Electron microscopy and single-particle analyses revealed a conformational rearrangement of RSC upon interaction with acetylated histone H3 peptides. This purification method is useful to purify functionally active, structurally well-defined macromolecular assemblies.
Collapse
|
44
|
Downey M, Johnson JR, Davey NE, Newton BW, Johnson TL, Galaang S, Seller CA, Krogan N, Toczyski DP. Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1. Mol Cell Proteomics 2014; 14:162-76. [PMID: 25381059 DOI: 10.1074/mcp.m114.043141] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although histone acetylation and deacetylation machineries (HATs and HDACs) regulate important aspects of cell function by targeting histone tails, recent work highlights that non-histone protein acetylation is also pervasive in eukaryotes. Here, we use quantitative mass-spectrometry to define acetylations targeted by the sirtuin family, previously implicated in the regulation of non-histone protein acetylation. To identify HATs that promote acetylation of these sites, we also performed this analysis in gcn5 (SAGA) and esa1 (NuA4) mutants. We observed strong sequence specificity for the sirtuins and for each of these HATs. Although the Gcn5 and Esa1 consensus sequences are entirely distinct, the sirtuin consensus overlaps almost entirely with that of Gcn5, suggesting a strong coordination between these two regulatory enzymes. Furthermore, by examining global acetylation in an ada2 mutant, which dissociates Gcn5 from the SAGA complex, we found that a subset of Gcn5 targets did not depend on an intact SAGA complex for targeting. Our work provides a framework for understanding how HAT and HDAC enzymes collaborate to regulate critical cellular processes related to growth and division.
Collapse
Affiliation(s)
- Michael Downey
- From the ‡Department of Biochemistry and Biophysics, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158;
| | - Jeffrey R Johnson
- §Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, QB3, San Francisco, CA, 94158
| | - Norman E Davey
- ¶Department of Physiology and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Billy W Newton
- §Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, QB3, San Francisco, CA, 94158
| | - Tasha L Johnson
- §Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, QB3, San Francisco, CA, 94158
| | - Shastyn Galaang
- From the ‡Department of Biochemistry and Biophysics, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158
| | - Charles A Seller
- From the ‡Department of Biochemistry and Biophysics, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158
| | - Nevan Krogan
- §Cellular and Molecular Pharmacology, University of California, San Francisco, 1700 4th Street, QB3, San Francisco, CA, 94158
| | - David P Toczyski
- From the ‡Department of Biochemistry and Biophysics, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, 94158
| |
Collapse
|
45
|
Protein acetylation and acetyl coenzyme a metabolism in budding yeast. EUKARYOTIC CELL 2014; 13:1472-83. [PMID: 25326522 DOI: 10.1128/ec.00189-14] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell. Acetyl coenzyme A (CoA) is a key metabolite that links metabolism with signaling, chromatin structure, and transcription. Acetyl-CoA is produced by glycolysis as well as other catabolic pathways and used as a substrate for the citric acid cycle and as a precursor in synthesis of fatty acids and steroids and in other anabolic pathways. This central position in metabolism endows acetyl-CoA with an important regulatory role. Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the transfer of acetyl groups to the epsilon-amino groups of lysines in histones and many other proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the cell, are translated into dynamic protein acetylations that regulate a variety of cell functions, including transcription, replication, DNA repair, cell cycle progression, and aging. This review highlights the synthesis and homeostasis of acetyl-CoA and the regulation of transcriptional and signaling machineries in yeast by acetylation.
Collapse
|
46
|
Lee J, Yun N, Kim C, Song MY, Park KS, Oh YJ. Acetylation of cyclin-dependent kinase 5 is mediated by GCN5. Biochem Biophys Res Commun 2014; 447:121-7. [PMID: 24704205 DOI: 10.1016/j.bbrc.2014.03.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5), a member of atypical serine/threonine cyclin-dependent kinase family, plays a crucial role in pathophysiology of neurodegenerative disorders. Its kinase activity and substrate specificity are regulated by several independent pathways including binding with its activator, phosphorylation and S-nitrosylation. In the present study, we report that acetylation of CDK5 comprises an additional posttranslational modification within the cells. Among many candidates, we confirmed that its acetylation is enhanced by GCN5, a member of the GCN5-related N-acetyl-transferase family of histone acetyltransferase. Co-immunoprecipitation assay and fluorescent localization study indicated that GCN5 physically interacts with CDK5 and they are co-localized at the specific nuclear foci. Furthermore, liquid chromatography in conjunction with a mass spectrometry indicated that CDK5 is acetylated at Lys33 residue of ATP binding domain. Considering this lysine site is conserved among a wide range of species and other related cyclin-dependent kinases, therefore, we speculate that acetylation may alter the kinase activity of CDK5 via affecting efficacy of ATP coordination.
Collapse
Affiliation(s)
- Juhyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Nuri Yun
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Chiho Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea
| | - Min-Young Song
- Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701, Republic of Korea
| | - Kang-Sik Park
- Department of Physiology and Biomedical Science Institute, Kyung Hee University School of Medicine, Seoul 130-701, Republic of Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Republic of Korea.
| |
Collapse
|
47
|
Abstract
A large family of chromatin remodelers that noncovalently modify chromatin is crucial in cell development and differentiation. They are often the targets of cancer, neurological disorders, and other human diseases. These complexes alter nucleosome positioning, higher-order chromatin structure, and nuclear organization. They also assemble chromatin, exchange out histone variants, and disassemble chromatin at defined locations. We review aspects of the structural organization of these complexes, the functional properties of their protein domains, and variation between complexes. We also address the mechanistic details of these complexes in mobilizing nucleosomes and altering chromatin structure. A better understanding of these issues will be vital for further analyses of subunits of these chromatin remodelers, which are being identified as targets in human diseases by NGS (next-generation sequencing).
Collapse
Affiliation(s)
- Blaine Bartholomew
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Smithville, Texas 78957;
| |
Collapse
|
48
|
Wimalarathna RN, Pan PY, Shen CH. Co-dependent recruitment of Ino80p and Snf2p is required for yeast CUP1 activation. Biochem Cell Biol 2014; 92:69-75. [DOI: 10.1139/bcb-2013-0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In yeast, Ace1p-dependent induction of CUP1 is responsible for protecting cells from copper toxicity. Although the mechanism of yeast CUP1 induction has been studied intensively, it is still uncertain which chromatin remodelers are involved in CUP1 transcriptional activation. Here, we show that yeast cells are inviable in the presence of copper when either chromatin remodeler, Ino80p or Snf2p, is not present. This inviability is due to the lack of CUP1 expression in ino80Δ and snf2Δ cells. Subsequently, we observe that both Ino80p and Snf2p are present at the promoter and they are responsible for recruiting chromatin remodeling activity to the CUP1 promoter under induced conditions. These results suggest that they directly participate in CUP1 transcriptional activation. Furthermore, the codependent recruitment of both INO80 and SWI/SNF depends on the presence of the transcriptional activator, Ace1p. We also demonstrate that both remodelers are required to recruit RNA polymerase II and targeted histone acetylation, indicating that remodelers are recruited to the CUP1 promoter before RNA polymerase II and histone acetylases. These observations provide evidence for the mechanism of CUP1 induction. As such, we propose a model that describes novel insight into the order of events in CUP1 activation.
Collapse
Affiliation(s)
- Roshini N. Wimalarathna
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, NY 10016, USA
| | - Po Yun Pan
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA
| | - Chang-Hui Shen
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd., Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, NY 10016, USA
- Institute for Macromolecular Assemblies, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, USA
| |
Collapse
|
49
|
Weinert BT, Iesmantavicius V, Moustafa T, Schölz C, Wagner SA, Magnes C, Zechner R, Choudhary C. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol Syst Biol 2014; 10:716. [PMID: 24489116 PMCID: PMC4023402 DOI: 10.1002/msb.134766] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lysine acetylation is a frequently occurring posttranslational modification; however, little is known about the origin and regulation of most sites. Here we used quantitative mass spectrometry to analyze acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. We found that acetylation accumulated in growth‐arrested cells in a manner that depended on acetyl‐CoA generation in distinct subcellular compartments. Mitochondrial acetylation levels correlated with acetyl‐CoA concentration in vivo and acetyl‐CoA acetylated lysine residues nonenzymatically in vitro. We developed a method to estimate acetylation stoichiometry and found that the vast majority of mitochondrial and cytoplasmic acetylation had a very low stoichiometry. However, mitochondrial acetylation occurred at a significantly higher basal level than cytoplasmic acetylation, consistent with the distinct acetylation dynamics and higher acetyl‐CoA concentration in mitochondria. High stoichiometry acetylation occurred mostly on histones, proteins present in histone acetyltransferase and deacetylase complexes, and on transcription factors. These data show that a majority of acetylation occurs at very low levels in exponentially growing yeast and is uniformly affected by exposure to acetyl‐CoA.
Collapse
Affiliation(s)
- Brian T Weinert
- The NNF Center for Protein Research Faculty of Health Sciences University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast. Mol Cell Biol 2013; 34:631-42. [PMID: 24298021 DOI: 10.1128/mcb.00256-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Differentiation programs require strict spatial and temporal control of gene transcription. Genes expressed during meiotic development in Saccharomyces cerevisiae display transient induction and repression. Early meiotic gene (EMG) repression during mitosis is achieved by recruiting both histone deacetylase and chromatin remodeling complexes to their promoters by the zinc cluster DNA binding protein Ume6p. Ume6p repression is relieved by ubiquitin-mediated destruction that is stimulated by Gcn5p-induced acetylation. In this report, we demonstrate that Gcn5p acetylation of separate lysines within the zinc cluster domain negatively impacts Ume6p DNA binding. Mimicking lysine acetylation using glutamine substitution mutations decreased Ume6p binding efficiency and resulted in partial derepression of Ume6p-regulated genes. Consistent with this result, molecular modeling predicted that these lysine side chains are adjacent to the DNA phosphate backbone, suggesting that acetylation inhibits Ume6p binding by electrostatic repulsion. Preventing acetylation did not impact final EMG induction levels during meiosis. However, a delay in EMG induction was observed, which became more severe in later expression classes, ultimately resulting in delayed and reduced execution of the meiotic nuclear divisions. These results indicate that Ume6p acetylation ensures the proper timing of the transient transcription program during meiotic development.
Collapse
|