1
|
Zhou Q, Luo J, Chai X, Yang J, Zhong S, Zhang Z, Chang X, Wang H. Therapeutic targeting the cGAS-STING pathway associated with protein and gene: An emerging and promising novel strategy for aging-related neurodegenerative disease. Int Immunopharmacol 2025; 156:114679. [PMID: 40252469 DOI: 10.1016/j.intimp.2025.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Neurodegenerative diseases (NDDs) represent a rapidly escalating global health challenge, contributing significantly to the worldwide disease burden and posing substantial threats to public health systems across nations. Among the many risk factors for neurodegeneration, aging is the major risk factor. In the context of aging, multiple factors lead to the release of endogenous DNA (especially mitochondrial DNA, mtDNA), which is an important trigger for the activation of the cGAS-STING innate immune pathway. Recent studies have identified an increasing role for activation of the cGAS-STING signaling pathway as a driver of senescence-associated secretory phenotypes (SASPs) in aging and NDDs. The cGAS-STING pathway mediates the immune sensing of DNA and is a key driver of chronic inflammation and functional decline during the aging process. Blocking cGAS-STING signaling may reduce the inflammatory response by preventing mtDNA release and enhancing mitophagy. Targeted inhibition of the cGAS-STING pathway by biological macromolecules such as natural products shows promise in therapeutic strategies for age-related NDDs. This review aims to systematically and comprehensively introduces the role of the cGAS-STING pathway in age-related NDDs in the context of aging while revealing the molecular mechanisms of the cGAS-STING pathway and its downstream signaling pathways and to develop more targeted and effective therapeutic strategies for NDDs.
Collapse
Affiliation(s)
- Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jinghao Luo
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xueting Chai
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
2
|
Wu S, Luo Y, Wei F, Li Y, Fan J, Chen Y, Zhang W, Li X, Xu Y, Chen Z, Xia C, Hu M, Li P, Gu Q. Lactic acid bacteria target NF-κB signaling to alleviate gastric inflammation. Food Funct 2025; 16:3101-3119. [PMID: 40152095 DOI: 10.1039/d4fo06308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Helicobacter pylori (H. pylori) infection and the resulting gastric inflammation are major contributors to gastric cancer development. Probiotics, particularly Lactobacillus, are promising for their anti-inflammatory potential, yet their exact mechanisms in inhibiting H. pylori-induced inflammation are unclear. In our previous study, Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) demonstrated strong anti-inflammatory effects against H. pylori infection in vivo, but its precise mechanisms were not fully understood. Here, we aimed to investigate how L. plantarum ZJ316 inhibits the inflammatory response to H. pylori infection. Our results demonstrated that L. plantarum ZJ316 effectively reduced the expression of pro-inflammatory cytokines in H. pylori-infected AGS cells. Mechanistically, L. plantarum ZJ316 inhibited the NF-κB signaling pathway by preventing the degradation of IκBα, suppressing p65 phosphorylation, and blocking the nuclear translocation of phosphorylated p65. Treatment with the NF-κB inhibitor BAY 11-7082 further decreased tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-1β (IL-1β) levels, confirming the inhibitory effect of L. plantarum ZJ316 on the NF-κB pathway. In H. pylori-infected mice, oral administration of L. plantarum ZJ316 significantly alleviated inflammatory cell infiltration, reduced TNF-α and pepsinogen II (PGII) levels, and increased interleukin-10 (IL-10) levels in serum. A comparative metagenomic analysis of the gastric microbiota revealed a decrease in Prevotella and Desulfovibrio, alongside an increase in Ligilactobacillus and Akkermansia, supporting the protective effects of L. plantarum ZJ316 and correlating with their decreased inflammatory response. In summary, administration of L. plantarum ZJ316 demonstrated robust anti-inflammatory effects against H. pylori infection by suppressing NF-κB signaling and promoting favorable changes in the gastric microbiota composition. Therefore, L. plantarum ZJ316 holds promise as a novel functional food for protecting the body against H. pylori infection.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yuenuo Luo
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jiayi Fan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Wenjie Zhang
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Xuelong Li
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Yang Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Mingyang Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
3
|
Shen CY, Cheng D, Hsueh CH, Ruan JW, Wang JR. Infection of Neuronal Cells by Severe Case Enterovirus A71 Enhances NF-κB Activity and Increases NF-κB Related Pro-Inflammatory Cytokines. J Med Virol 2025; 97:e70308. [PMID: 40109089 DOI: 10.1002/jmv.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Enterovirus A71 (EV-A71) is the main pathogen of hand-foot-and-mouth disease and sometimes causes neurological disease complications in severe cases. The most recent large EV-A71 outbreak in Taiwan occurred in 2012. We aimed to investigate the gene expression profile of human neuroblastoma cells infected with mild and severe case EV-A71 isolates. EV-A71-infected SK-N-SH cells were sent for RNA sequencing using Illumina Hiseq. Functional gene analysis, qRT-PCR, and luciferase reporter assay were used to investigate the findings obtained from RNA-seq analysis. Expression profile analysis identified 59 significant differentially expressed genes (DEGs) between mild and severe case EV-A71 infection. Gene ontology analysis showed that most of the genes were involved in the regulation of transcription. KEGG pathway enrichment analysis also showed that the DEGs were mainly enriched in the tumor necrosis factor and nuclear factor kappa B (NF-κB) signaling. We found that EV-A71 may affect neurons to enhance the disease severity by mediating pro-inflammatory cytokines through NF-κB signaling. Additionally, infection with severe case EV-A71 enhances NF-κB activity, increases pro-inflammatory cytokines, and reduces cell survival. These results indicate that possible pathogenic mechanisms that were linked to the neuropathogenesis of EV-A71 infection and the above genes might be potential biomarkers or antiviral targets for the prevention of neuronal complications in severe EV-A71 infections in the future.
Collapse
Affiliation(s)
- Chun-Yu Shen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dayna Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Han Hsueh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Jhen-Wei Ruan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Lee R, Lee WY, Kim DW, Park HJ. Artemisinin alleviates cisplatin-induced damage in GC-1 spermatogonia through ER stress mechanisms. Heliyon 2025; 11:e42579. [PMID: 40034267 PMCID: PMC11874544 DOI: 10.1016/j.heliyon.2025.e42579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Artemisinin, a compound derived from Artemisia annua, is primarily utilized for malaria treatment. Its mechanism of action involves the rapid and effective inhibition of protein synthesis in malarial parasites. Recently, artemisinin has garnered extensive research attention for its anticancer, antioxidant, and anti-inflammatory properties, as well as its potential role as an adjuvant in cancer treatment. Cisplatin is a commonly used anticancer agent; however, its therapeutic benefits are accompanied by side effects that negatively impact male reproductive function. In this study, the mechanism of the protective effect of artemisinin against cisplatin-induced cytotoxicity was investigated. Type B mouse spermatogonia (GC-1 spg cells), derived from mouse testes, were treated with various concentrations of artemisinin (10-200 μM) to identify the optimal concentration for promoting cell proliferation. Cisplatin induced antiproliferative effects and apoptotic cell death in GC-1 spg cells, whereas the combination of cisplatin and artemisinin restored cell proliferation and reduced apoptosis. Treatment with cisplatin resulted in elevated levels of endoplasmic reticulum (ER) stress-related factors, such as Bip/GRP78, PDI, and Ero1-la, in GC-1 spg cells, while the combination with artemisinin effectively inhibited and reduced these levels. Additionally, cisplatin increased inflammatory markers, including COX2, iNOS, and NF-κB, which were subsequently decreased by artemisinin. This study evaluates artemisinin, a naturally derived compound, as a potential mitigator of side effects on male germ cells during cisplatin-based anticancer treatment. In conclusion, these findings suggest that artemisinin may serve as a supplement or functional agent in cancer therapy.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, 54874, Republic of Korea
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea
| | - Won-Yong Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, 54874, Republic of Korea
| | - Dong-Wook Kim
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, 54874, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea
| |
Collapse
|
5
|
Zhang X, Wang G, Li M, Li Y, Luo X, Liu Y, Zhang X, Hocher JG, Krämer BK, Hocher B, Yang X. Both partial inactivation as well as activation of NF-κB signaling lead to hypertension and chronic kidney disease. Nephrol Dial Transplant 2024; 39:1993-2004. [PMID: 38614958 DOI: 10.1093/ndt/gfae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Activation of nuclear factor-kappa B (NF-κB) signalling is key in the pathogenesis of chronic kidney disease (CKD). However, a certain level of NF-κB activity is necessary to enable tissue repair. METHODS The relationship between activated and inactivated NF-κB signaling and the pathogenesis of CKD was investigated using mouse models of NF-κB partial inactivation (mutating cysteine at position 59 of the sixth exon on the NF-κB gene into alanine) and activation (mutating cysteine at position 59 of the sixth exon on the NF-κB gene into serine). RESULTS The density of CD3, CD8, CD68 positive cells, as well as the expression of interleukin 6, Tumor necrosis factor receptor associated factor 1 and Nef-associated factor 1 in the kidney tissues of NF-κBC59A mice were reduced, whereas an opposing pattern was observed in the NF-κBC59S mice. Blood pressure, kidney fibrosis (analyzed by periodic acid-Schiff, Masson trichrome and Sirius Red staining, as well as α-SMA immunofluorescence), serum creatinine and urinary albumin-to-creatinine ratio are markedly increased in NF-κB-activated and -inactivated mice compared with controls. Transmission electron microscopy indicated that the glomerular basement membrane was thicker in both NF-κBC59A and NF-κBC59S mice compared with wild-type mice. CONCLUSIONS Using mice models with partially activated and inactivated NF-κB pathways suggests that there is an apparently U-shaped relationship between blood pressure, kidney function as well as morphology and the activation of the NF-κB pathway. A certain optimal activity of the NF-κB pathway seems to be important to maintain optimal kidney function and morphology.
Collapse
Affiliation(s)
- Xiaotan Zhang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
- Department of Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Ming Li
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yunjin Li
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Xin Luo
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology, Pneumology), University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
- Medical Faculty of Charité University Berlin, Berlin, Germany
| | - Xiaoli Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology, Pneumology), University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johann-Georg Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology, Pneumology), University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
- Second Medical Faculty, Charles University Prague, Prague, Czech Republic
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology, Pneumology), University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology, Pneumology), University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
- Reproductive, Genetic Hospital of CITIC-Xiangya, Changsha, China, Institute of Medical Diagnostics, IMD, Berlin, Germany
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Clinical Research Center, Clifford Hospital, Guangzhou, China
| |
Collapse
|
6
|
Watany MM, Elhosary MM, El-Horany HE, El-Horany ME. Methylation of Interleukin-1 receptor-associated kinase-3 and the risk of multiple sclerosis relapse/activity. Clin Immunol 2024; 266:110327. [PMID: 39053866 DOI: 10.1016/j.clim.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study retrospectively investigated the impact of interleukin-1 receptor-associated kinase-3 (IRAK-3/IRAK-M) silencing by methylation on the likelihood of multiple sclerosis (MS) activity. This cross-sectional study included 90 patients with MS: 45 with active disease (Group 1), 45 in remission (Group 2), and 45 healthy controls. The study included quantitation of IRAK-3 methylation index (MI%), IRAK-3 mRNA, and myeloid differentiation factor88 (MyD88) and assessment of NF-κB activity. IRAK-3 MI% was significantly higher in group 1 compared to group 2, accompanied by lower IRAK-3 mRNA expression, elevated circulating MyD88, and increased NF-κB activity. IRAK-3 MI% correlated negatively with its transcript and positively with MyD88 and NF-κB activity. A logistic regression model was created to predict active demyelination. The C-index was 0.924, which indicates a very strong prediction model. Within the limitations of current work, IRAK-3 methylation level seems to be a promising candidate biomarker for identifying MS patients at risk of relapse.
Collapse
Affiliation(s)
- Mona M Watany
- Clinical pathology department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Marwa M Elhosary
- Msc Immunology from Tanta university, Faculty of Science, Tanta 31527, Egypt
| | - Hemat E El-Horany
- Medical biochemistry department, Faculty of Medicine. Tanta University, Tanta 31527, Egypt; Biochemistry Department, College of Medicine, Ha'il University, Ha'il 55211, Saudi Arabia
| | - Mahmoud E El-Horany
- Neurology department, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| |
Collapse
|
7
|
Ma Q, Hao S, Hong W, Tergaonkar V, Sethi G, Tian Y, Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp Hematol Oncol 2024; 13:68. [PMID: 39014491 PMCID: PMC11251119 DOI: 10.1186/s40164-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024] Open
Abstract
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230022, P.R. China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, P.R. China
| | - Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, 60532, USA.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
8
|
Ma M, Li Y, He Y, Li D, Niu H, Sun M, Miao X, Su Y, Zhang H, Hua M, Wang J. The Combination of Bacillus natto JLCC513 and Ginseng Soluble Dietary Fiber Attenuates Ulcerative Colitis by Modulating the LPS/TLR4/NF-κB Pathway and Gut Microbiota. J Microbiol Biotechnol 2024; 34:1287-1298. [PMID: 38783703 PMCID: PMC11239422 DOI: 10.4014/jmb.2402.02027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that is currently difficult to treat effectively. Both Bacillus natto (BN) and ginseng-soluble dietary fiber (GSDF) are anti-inflammatory and helps sustain the intestinal barrier. In this study, the protective effects and mechanism of the combination of B. natto JLCC513 and ginseng-soluble dietary fiber (BG) in DSS-induced UC mice were investigated. Intervention with BG worked better than taking BN or GSDF separately, as evidenced by improved disease activity index, colon length, and colon injury and significantly reduced the levels of oxidative and inflammatory factors (LPS, ILs, and TNF-α) in UC mice. Further mechanistic study revealed that BG protected the intestinal barrier integrity by maintaining the tight junction proteins (Occludin and Claudin1) and inhibited the LPS/TLR4/NF-κB pathway in UC mice. In addition, BG increased the abundance of beneficial bacteria such as Bacteroides and Turicibacter and reduced the abundance of harmful bacteria such as Allobaculum in the gut microbiota of UC mice. BG also significantly upregulated genes related to linoleic acid metabolism in the gut microbiota. These BG-induced changes in the gut microbiota of mice with UC were significantly correlated with changes in pathological indices. In conclusion, this study demonstrated that BG exerts protective effect against UC by regulating the LPS/TLR4/NF-κB pathway and the structure and metabolic function of gut microbiota. Thus, BG can be potentially used in intestinal health foods to treat UC.
Collapse
Affiliation(s)
- Mingyue Ma
- Agronomy of Food Science and Technology, Yanbian University, Yanji 133002, Jilin, P.R. China
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Yueqiao Li
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Yuguang He
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Da Li
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Honghong Niu
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Mubai Sun
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Xinyu Miao
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Ying Su
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Hua Zhang
- Agronomy of Food Science and Technology, Yanbian University, Yanji 133002, Jilin, P.R. China
| | - Mei Hua
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| | - Jinghui Wang
- Institute of Agro-product Process, Jilin Academy of Agricultural Science (Northeast Agricultural Research Center of China), Changchun 130033, Jilin, P.R. China
| |
Collapse
|
9
|
Li SZ, Shu QP, Zhou HM, Liu YY, Fan MQ, Liang XY, Qi LZ, He YN, Liu XY, Du XH, Huang XC, Chen YZ, Du RL, Liang YX, Zhang XD. CLK2 mediates IκBα-independent early termination of NF-κB activation by inducing cytoplasmic redistribution and degradation. Nat Commun 2024; 15:3901. [PMID: 38724505 PMCID: PMC11082251 DOI: 10.1038/s41467-024-48288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.
Collapse
Affiliation(s)
- Shang-Ze Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Qi-Peng Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Hai-Meng Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yu-Ying Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Meng-Qi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xin-Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lin-Zhi Qi
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Ya-Nan He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xue-Yi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xue-Hua Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xi-Chen Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yu-Zhen Chen
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Run-Lei Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Yue-Xiu Liang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Xiao-Dong Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions & Department of Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & MOE Key Lab of Rare Pediatric Diseases, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
10
|
Rashidiani S, Mamo G, Farkas B, Szabadi A, Farkas B, Uszkai V, Császár A, Brandt B, Kovács K, Pap M, Rauch TA. Integrative Epigenetic and Molecular Analysis Reveals a Novel Promoter for a New Isoform of the Transcription Factor TEAD4. Int J Mol Sci 2024; 25:2223. [PMID: 38396900 PMCID: PMC10888684 DOI: 10.3390/ijms25042223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
TEAD4 is a transcription factor that plays a crucial role in the Hippo pathway by regulating the expression of genes related to proliferation and apoptosis. It is also involved in the maintenance and differentiation of the trophectoderm during pre- and post-implantation embryonic development. An alternative promoter for the TEAD4 gene was identified through epigenetic profile analysis, and a new transcript from the intronic region of TEAD4 was discovered using the 5'RACE method. The transcript of the novel promoter encodes a TEAD4 isoform (TEAD4-ΔN) that lacks the DNA-binding domain but retains the C-terminal protein-protein interaction domain. Gene expression studies, including end-point PCR and Western blotting, showed that full-length TEAD4 was present in all investigated tissues. However, TEAD4-ΔN was only detectable in certain cell types. The TEAD4-ΔN promoter is conserved throughout evolution and demonstrates transcriptional activity in transient-expression experiments. Our study reveals that TEAD4 interacts with the alternative promoter and increases the expression of the truncated isoform. DNA methylation plays a crucial function in the restricted expression of the TEAD4-ΔN isoform in specific tissues, including the umbilical cord and the placenta. The data presented indicate that the DNA-methylation status of the TEAD4-ΔN promoter plays a critical role in regulating organ size, cancer development, and placenta differentiation.
Collapse
Affiliation(s)
- Shima Rashidiani
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| | - Gizaw Mamo
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| | - Benjámin Farkas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| | - András Szabadi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Bálint Farkas
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Veronika Uszkai
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
| | - András Császár
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
| | - Barbara Brandt
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary (M.P.)
| | - Kálmán Kovács
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary (M.P.)
| | - Tibor A. Rauch
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| |
Collapse
|
11
|
Son M, Wang AG, Keisham B, Tay S. Processing stimulus dynamics by the NF-κB network in single cells. Exp Mol Med 2023; 55:2531-2540. [PMID: 38040923 PMCID: PMC10766959 DOI: 10.1038/s12276-023-01133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 12/03/2023] Open
Abstract
Cells at the site of an infection experience numerous biochemical signals that vary in amplitude, space, and time. Despite the diversity of dynamic signals produced by pathogens and sentinel cells, information-processing pathways converge on a limited number of central signaling nodes to ultimately control cellular responses. In particular, the NF-κB pathway responds to dozens of signals from pathogens and self, and plays a vital role in processing proinflammatory inputs. Studies addressing the influence of stimulus dynamics on NF-κB signaling are rare due to technical limitations with live-cell measurements. However, recent advances in microfluidics, automation, and image analysis have enabled investigations that yield high temporal resolution at the single-cell level. Here, we summarize the recent research which measures and models the NF-κB response to pulsatile and fluctuating stimulus concentrations, as well as different combinations and sequences of signaling molecules. Collectively, these studies show that the NF-κB network integrates external inflammatory signals and translates these into downstream transcriptional responses.
Collapse
Affiliation(s)
- Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Andrew G Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, 60637, USA
| | - Bijentimala Keisham
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Xiang L, Li F, Xiang Y, Zhang W, Shi D, Zhang X, Chen L, Ran Q, Li Z. CR6-Interacting Factor-1 Promotes Osteoclastogenesis Through the NF-κB Signaling Pathway after Irradiation. Radiat Res 2023; 200:489-502. [PMID: 37815199 DOI: 10.1667/rade-22-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
Radiation exposure arising from radiotherapy may induce rapid bone loss and an increase in the extent of bone resorption. Reactive oxygen species (ROS) caused by radiation exposure play a crucial role during the process of osteoclastogenesis. However, the pathological mechanisms underlying radiation-induced osteoclastogenesis have yet to be fully elucidated. CR6-interacting factor-1 (Crif1) as a multifunctional protein is involved in regulating multiple biological functions in cells. Here, we investigated the role of Crif1 in radiation-induced osteoclastogenesis and found that radiation exposure induced an increase in the expression level of Crif1 and enhanced osteoclastogenesis in osteoclast progenitors. Crif1 and NF-κB p65 co-localized in the cytoplasm after radiation exposure. Crif1 knockdown did not affect the phosphorylation and total protein levels of extracellular signal-regulated kinases (ERK), c-Jun amino (N)-terminal kinases (JNK), p38, and IκB-α before and after irradiation. However, Crif1 knockdown did lead to the reduced phosphorylation and nuclear translocation of NF-κB p65 after irradiation and resulted in a reduced level of osteoclastogenesis in RAW264.7 cells after irradiation. In vivo studies involving Lyz2Cre;Crif1fl/fl mice possessing the myeloid-specific deletion of Crif1 demonstrated the alleviation of bone loss after irradiation when compared with Crif1fl/fl mice. Our findings demonstrate that Crif1 mediated the phosphorylation and nuclear translocation of NF-κB p65 and promoted osteoclastogenesis via the NF-κB signaling pathway after radiation exposure. Thus, our analysis revealed a specific role for Crif1 in the mediation of radiation-induced bone loss and may provide new insight into potential therapeutic strategies for radiation-induced bone loss.
Collapse
Affiliation(s)
- Lixin Xiang
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Fengjie Li
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yang Xiang
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Weiwei Zhang
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Dongling Shi
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xiaomei Zhang
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Li Chen
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Qian Ran
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhongjun Li
- Basic Research Innovation Center for Acute Radiation Syndrome, Laboratory Medicine Center, Department of Blood Transfusion, Lab of Radiation Biology, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| |
Collapse
|
13
|
Zhang L, Ludden CM, Cullen AJ, Tew KD, Branco de Barros AL, Townsend DM. Nuclear factor kappa B expression in non-small cell lung cancer. Biomed Pharmacother 2023; 167:115459. [PMID: 37716117 PMCID: PMC10591792 DOI: 10.1016/j.biopha.2023.115459] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
In this mini-review, we discuss the role of NF-κB, a proinflammatory transcription factor, in the expression of genes involved in inflammation, proliferation, and apoptosis pathways, and link it with prognosis of various human cancers, particularly non-small cell lung cancer (NSCLC). We and others have shown that NF-κB activity can be impacted by post-translational S-glutathionylation through reversible formation of a mixed disulfide bond between its cysteine residues and glutathione (GSH). Clinical data analysis showed that high expression of NF-κB correlated with shorter overall survival (OS) in NSCLC patients, suggesting a tumor promotion function for NF-κB. Moreover, NF-κB expression was associated with tumor stage, lymph node metastasis, and 5-year OS in these patients. NF-κB was over-expressed in the cytoplasm of tumor tissue compared to adjacent normal tissues. S-glutathionylation of NF-κB caused negative regulation by interfering with DNA binding activities of NF-κB subunits. In response to oxidants, S-glutathionylation of NF-κB also correlated with enhanced lung inflammation. Thus, S-glutathionylation is an important contributor to NF-κB regulation and clinical results highlight the importance of NF-κB in NSCLC, where NF-κB levels are associated with unfavorable prognosis.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Claudia M Ludden
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander J Cullen
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
14
|
Begolli R, Chatziangelou M, Samiotaki M, Goutas A, Barda S, Goutzourelas N, Kevrekidis DP, Malea P, Trachana V, Liu M, Lin X, Kollatos N, Stagos D, Giakountis A. Transcriptome and proteome analysis reveals the anti-cancer properties of Hypnea musciformis marine macroalga extract in liver and intestinal cancer cells. Hum Genomics 2023; 17:71. [PMID: 37525271 PMCID: PMC10388463 DOI: 10.1186/s40246-023-00517-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Marine seaweeds are considered as a rich source of health-promoting compounds by the food and pharmaceutical industry. Hypnea musciformis is a marine red macroalga (seaweed) that is widely distributed throughout the world, including the Mediterranean Sea. It is known to contain various bioactive compounds, including sulfated polysaccharides, flavonoids, and phlorotannins. Recent studies have investigated the potential anticancer effects of extracts from H. musciformis demonstrating their cytotoxic effects on various cancer cell lines. The anticancer effects of these extracts are thought to be due to the presence of bioactive compounds, particularly sulfated polysaccharides, which have been shown to have anticancer and immunomodulatory effects. However, further studies are needed to fully understand the molecular mechanisms that underlie their anticancer effects and to determine their potential as therapeutic agents for cancer treatment. METHODS H. musciformis was collected from the Aegean Sea (Greece) and used for extract preparation. Transcriptome and proteome analysis was performed in liver and colon cancer human cell lines following treatment with H. musciformis seaweed extracts to characterize its anticancer effect in detail at the molecular level and to link transcriptome and proteome responses to the observed phenotypes in cancer cells. RESULTS We have identified that treatment with the seaweed extract triggers a p53-mediated response at the transcriptional and protein level in liver cancer cells, in contrast to colon cancer cells in which the effects are more associated with metabolic changes. Furthermore, we show that in treated HepG2 liver cancer cells, p53 interacts with the chromatin of several target genes and facilitates their upregulation possibly through the recruitment of the p300 co-activator. CONCLUSIONS Overall, the available evidence suggests that extracts from H. musciformis have the potential to serve as a source of anticancer agents in liver cancer cells mainly through activation of a p53-mediated anti-tumor response that is linked to inhibition of cellular proliferation and induction of cell death.
Collapse
Affiliation(s)
- Rodiola Begolli
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Myrto Chatziangelou
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | | | - Andreas Goutas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
- Department of Biology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Sofia Barda
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, 12 Binhai Rd, Qinzhou, 535011, Guangxi, China
| | - Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500, Biopolis, Larissa, Greece.
| |
Collapse
|
15
|
Chiang MC, Liu YC, Chen BY, Wu DL, Wu CL, Cheng CW, Chang WL, Lee HJ. Purple Sweet Potato Powder Containing Anthocyanin Mitigates High-Fat-Diet-Induced Dry Eye Disease. Int J Mol Sci 2023; 24:ijms24086983. [PMID: 37108146 PMCID: PMC10138706 DOI: 10.3390/ijms24086983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Purple sweet potato (PSP) powder with anthocyanins possesses the ability to reduce oxidative stress and inflammation. Studies have presumed a positive correlation between body fat and dry eye disease (DED) in adults. The regulation of oxidative stress and inflammation has been proposed as the mechanism underlying DED. This study developed an animal model of high fat diet (HFD)-induced DED. We added 5% PSP powder to the HFD to evaluate the effects and underlying mechanisms in mitigating HFD-induced DED. A statin drug, atorvastatin, was also added to the diet separately to assess its effect. The HFD altered the structure of lacrimal gland (LG) tissue, reduced LG secretory function, and eliminated the expression of proteins related to DED development, including α-smooth muscle actin and aquaporin-5. Although PSP treatment could not significantly reduce body weight or body fat, it ameliorated the effects of DED by preserving LG secretory function, preventing ocular surface erosion, and preserving LG structure. PSP treatment increased superoxide dismutase levels but reduced hypoxia-inducible factor 1-α levels, indicating that PSP treatment reduced oxidative stress. PSP treatment increased ATP-binding cassette transporter 1 and acetyl-CoA carboxylase 1 levels in LG tissue, signifying that PSP treatment regulated lipid homeostasis maintenance to reduce the effects of DED. In conclusion, PSP treatment ameliorated the effects of HFD-induced DED through the regulation of oxidative stress and lipid homeostasis in the LG.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- School of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
- Department of Ophthalmology, Cathay General Hospital, Taipei 10687, Taiwan
| | - Ying-Chung Liu
- Department of Ophthalmology, Cathay General Hospital, Taipei 10687, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Bo-Yi Chen
- Department of Optometry, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Dai-Lin Wu
- School of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Chia-Lian Wu
- Department of Optometry, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| | - Wen-Lung Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
- Yi-Yeh Biotechnology Co., Taichung 40221, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
16
|
Yu B, Li B, Chen T, Yang J, Wang X, Peng B, Hu Q. A NF-κB-Based High-Throughput Screening for Immune Adjuvants and Inhibitors. Inflammation 2023; 46:598-611. [PMID: 36306023 DOI: 10.1007/s10753-022-01758-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
The nuclear factor-κB (NF-κB) family is crucial for regulating immune and inflammatory responses. The activation of the immune cell signaling pathway usually activates NF-κB, causing a protective immune response. NF-κB can also cause excessive inflammatory responses by activating a cascade reaction of pro-inflammatory mediators such as cytokines. In this study, we used an NF-κB luciferase reporter gene system. Out of more than 800 compounds screened, four NF-κB agonists were identified with strong activity at nontoxic concentrations. Subsequently, the adjuvant effect was verified on mouse bone marrow-derived dendritic cells (BMDCs) and macrophages RAW264.7. It was found that fostamatinib (R788) disodium increased the production of IL-6, IL-12p40, and TNF-α, indicating that R788 disodium could induce the maturation of antigen-presenting cells (APCs). In addition, three compounds were screened to significantly inhibit NF-κB at nontoxic doses, including dehydrocostus lactone (DHL)-a known NF-κB inhibitor. The results showed that DHL significantly reduced the release of LPS-induced inflammatory cytokines (including TNF-α, IL-6, and IL-12). Our findings indicate that the NF-κB-based high-throughput screening can be used to discover potential immune adjuvants and anti-inflammatory molecules.
Collapse
Affiliation(s)
- Boyang Yu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Boye Li
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing, 100123, China
| | - Tian Chen
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Jinning Yang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoli Wang
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qin Hu
- The Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
17
|
Arkat S, Poovitha S, Vijayakumar A, Dhat R, Sitasawad SL, Mahapatra NR. Regulation of peroxiredoxin-3 gene expression under basal and hyperglycemic conditions: Key roles for transcription factors Sp1, CREB and NF-κB. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166691. [PMID: 36933848 DOI: 10.1016/j.bbadis.2023.166691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Peroxiredoxin-3 (Prx-3), a thioredoxin-dependent peroxidase located exclusively in the mitochondrial matrix, catalyses peroxides/peroxinitrites. Altered levels of Prx-3 is associated with diabetic cardiomyopathy (DCM). However, molecular mechanisms of Prx-3 gene regulation remain partially understood. We undertook a systemic analysis of the Prx-3 gene to identify the key motifs and transcriptional regulatory molecules. Transfection of promoter-reporter constructs in the cultured cells identified -191/+20 bp domain as the core promoter region. Stringent in silico analysis of this core promoter revealed putative binding sites for specificity protein 1 (Sp1), cAMP response element-binding protein (CREB) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Interestingly, while co-transfection of the -191/+20 bp construct with Sp1/CREB plasmid diminished Prx3 promoter-reporter activity, mRNA and protein levels, co-transfection with NF-κB expression plasmid augmented the same. Consistently, inhibition of Sp1/CREB/NF-κB expression reversed the promoter-reporter activity, mRNA and protein levels of Prx-3, thereby confirming their regulatory effects. ChIP assays provided evidence for interactions of Sp1/CREB/NF-κB with the Prx-3 promoter. H9c2 cells treated with high glucose as well as streptozotocin (STZ)-treated diabetic rats showed time-dependent reduction in promoter activity, endogenous transcript and protein levels of Prx-3. Augmentation of Sp1/CREB protein levels and their strong binding with Prx-3 promoter are responsible for diminished Prx-3 levels under hyperglycemia. The activation/increase in the NF-κB expression under hyperglycemia was not sufficient to restore the reduction of endogenous Prx-3 levels owing to its weak binding affinity. Taken together, this study elucidates the previously unknown roles of Sp1/CREB/NF-κB in regulating Prx-3 gene expression under hyperglycemic condition.
Collapse
Affiliation(s)
- Silpa Arkat
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sundar Poovitha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anupama Vijayakumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Rohini Dhat
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Sandhya L Sitasawad
- National Centre for Cell Science, NCCS Complex, S.P. Pune University, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
18
|
Zhao C, Zhi C, Zhou J. Mechanism of Jiawei Zhengqi Powder in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8397111. [PMID: 36860812 PMCID: PMC9970719 DOI: 10.1155/2023/8397111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
Objective Ulcerative colitis is an intestinal condition that severely affects the life quality of a patient. Jiawei Zhengqi powder (JWZQS) has some therapeutic benefits for ulcerative colitis. The current study investigated the therapeutic mechanism of JWZQS for ulcerative colitis using a network pharmacology analytical approach. Methods In this study, network pharmacology was used to investigate the potential mechanism of JWZQS in treating ulcerative colitis. The common targets between the two were identified, and a network map was created with the Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses of JWZQS was performed using the Metascape database. Protein-protein interaction networks (PPI) was created to screen core targets and main components, and molecular docking was conducted between the main components and core targets. The expression levels of IL-1β, IL-6, and TNF-α were detected in animal experiments. Their effect on the NF-κB signaling pathway and the protective mechanism of JWZQS on the colon by tight junction protein were investigated. Results There were 2127 potential ulcerative colitis targets and 35 components identified, including 201 non-reproducible targets and 123 targets shared by drugs and diseases. Following the analysis, we discovered 13 significant active components and 10 core targets. The first 5 active ingredients and their corresponding targets were molecularly docked, and the results showed a high level of affinity. GO analysis showed that JWZQS participate in multiple biological processes to treat UC. KEGG analysis showed that JWZQS may be involved in regulating multiple pathways, and the NF-κB signaling pathway was selected for analysis and verification. JWZQS has been shown in animal studies to effectively inhibit the NF-κB pathway; reduce the expression of IL-1β, TNF-α, and IL-6 in colon tissue; and increase the expression of ZO-1, Occludin, and Claudin-1. Conclusion The network pharmacological study provides preliminary evidence that JWZQS can treat UC through multiple components and targets. JWZQS has been shown in animal studies to effectively reduce the expression levels of IL-1β, TNF-α, and IL-6, inhibit the phosphorylation of the NF-κB pathway, and alleviate colon injury. JWZQS can be used in clinical, but the precise mechanism of UC treatment requires further investigation.
Collapse
Affiliation(s)
- Chao Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - ChenYang Zhi
- Anorectal Diagnosis and Treatment Center, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| | - JianHua Zhou
- Anorectal Diagnosis and Treatment Center, Affiliated Hospital of the Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
19
|
Chen Y, Liu Y, Li H, Huna R, Tan X, Li N, Zhang Y, Jiao X, Liu M. C5aR antagonist inhibits LPS-induced inflammation in human gingival fibroblasts via NF-κB and MAPK signaling pathways. J Appl Oral Sci 2023; 31:e20220404. [PMID: 36753088 DOI: 10.1590/1678-7757-2022-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Abnormal complement activation is associated with periodontitis. W54011 is a novel non-peptide C5aR antagonist (C5aRA) that exhibits favorable anti-inflammatory effects in various inflammatory models. However, whether W54011 inhibits periodontitis has not yet been fully elucidated. To address this, we have investigated the probable anti-inflammatory mechanism of W54011 in LPS-treated inflammation in human gingival fibroblasts (HGFs). METHODOLOGY HGFs were isolated from healthy gingival tissue samples using the tissue block method and were identified with immunofluorescence staining. The CCK8 assay and reverse transcription-PCR (RT-PCR) were used to select the optimal induction conditions for Lipopolysaccharide (LPS) and C5aRA (according to supplementary data S1, S2 and S3). The levels of inflammatory cytokines, C5aR, and the activation of NF-κB/MAPK signaling pathways were determined by RT-quantitative PCR (RT-qPCR) and Western blotting. RESULTS Immunofluorescence results showed that vimentin and FSP-1 were positive in HGFs and Keratin was negative in HGFs. Immunofluorescence staining demonstrated that C5aRA inhibited LPS-stimulated nuclear translocation of p-p65. RT-qPCR and Western blotting showed that C5aRA reduced the expression of IL-1β, IL-6, TNF-α, C5aR, p-p65, p-IκBα, p-JNK, p-c-JUN, and TLR4 in LPS-induced HGFs. CONCLUSION These findings suggested that C5aRA attenuated the release of inflammatory cytokines in LPS-induced HGFs by blocking the activation of the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yan Chen
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China.,The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Yang Liu
- Heilongjiang Provincial Hospital, Department of Stomatology, Harbin, Heilongjiang, China
| | - Hao Li
- The Fourth Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Department of Stomatology, Harbin, Heilongjiang, China
| | - Risu Huna
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohan Tan
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| | - Ning Li
- The Second Affiliated Hospital of Harbin Medical University, Department of Cardiology, Harbin, Heilongjiang, China
| | - Yiying Zhang
- The Second Affiliated Hospital of Harbin Medical University, Oral Implant Center, Harbin, Heilongjiang, China
| | - Xiaohui Jiao
- The First Affiliated Hospital of Harbin Medical University, Department of Oral Maxillofacial Surgery, Harbin, Heilongjiang, China
| | - Mingyue Liu
- The Second Affiliated Hospital of Harbin Medical University, Department of Prosthodontics, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
21
|
Zhao S, Zhang D, Liu S, Huang J. The roles of NOP56 in cancer and SCA36. Pathol Oncol Res 2023; 29:1610884. [PMID: 36741964 PMCID: PMC9892063 DOI: 10.3389/pore.2023.1610884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
NOP56 is a highly conserved nucleolar protein. Amplification of the intron GGCCTG hexanucleotide repeat sequence of the NOP56 gene results in spinal cerebellar ataxia type 36 (SCA36). NOP56 contains an N-terminal domain, a coiled-coil domain, and a C-terminal domain. Nucleolar protein NOP56 is significantly abnormally expressed in a number of malignant tumors, and its mechanism is different in different tumors, but its regulatory mechanism in most tumors has not been fully explored. NOP56 promotes tumorigenesis in some cancers and inhibits tumorigenesis in others. In addition, NOP56 is associated with methylation in some tumors, suggesting that NOP56 has the potential to become a tumor-specific marker. This review focuses on the structure, function, related signaling pathways, and role of NOP56 in the progression of various malignancies, and discusses the progression of NOP56 in neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Shimin Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dongdong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Jun Huang,
| |
Collapse
|
22
|
Zhao T, Zou Y, Yan H, Chang Y, Zhan Y. Non-coding RNAs targeting NF-κB pathways in aquatic animals: A review. Front Immunol 2023; 14:1091607. [PMID: 36825023 PMCID: PMC9941745 DOI: 10.3389/fimmu.2023.1091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) pathways have a close relationship with many diseases, especially in terms of the regulation of inflammation and the immune response. Non-coding RNAs (ncRNAs) are a heterogeneous subset of endogenous RNAs that directly affect cellular function in the absence of proteins or peptide products; these include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), etc. Studies on the roles of ncRNAs in targeting the NF-κB pathways in aquatic animals are scarce. A few research studies have confirmed detailed regulatory mechanisms among ncRNAs and the NF-κB pathways in aquatic animals. This comprehensive review is presented concerning ncRNAs targeting the NF-κB pathway in aquatic animals and provides new insights into NF-κB pathways regulatory mechanisms of aquatic animals. The review discusses new possibilities for developing non-coding-RNA-based antiviral applications in fisheries.
Collapse
Affiliation(s)
- Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
23
|
GJD Modulates Cardiac/Vascular Inflammation and Decreases Blood Pressure in Hypertensive Rats. Mediators Inflamm 2022; 2022:7345116. [PMID: 36164390 PMCID: PMC9509256 DOI: 10.1155/2022/7345116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.
Collapse
|
24
|
The RING finger protein family in health and disease. Signal Transduct Target Ther 2022; 7:300. [PMID: 36042206 PMCID: PMC9424811 DOI: 10.1038/s41392-022-01152-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.
Collapse
|
25
|
Zemskov EA, Gross CM, Aggarwal S, Zemskova MA, Wu X, Gu C, Wang T, Tang H, Black SM. NF-κB-dependent repression of Sox18 transcription factor requires the epigenetic regulators histone deacetylases 1 and 2 in acute lung injury. Front Physiol 2022; 13:947537. [PMID: 35991176 PMCID: PMC9386230 DOI: 10.3389/fphys.2022.947537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
In acute lung injury (ALI), the NF-κB-mediated downregulation of Sox18 gene expression leads to the disruption of the pulmonary endothelial barrier. Previous studies have suggested that the action of NF-κB as a transcriptional repressor also requires the action of class I histone deacetylases (HDACs). Thus, the purpose of this study was to investigate and further delineate the mechanism of Sox18 repression during lipopolysaccharide (LPS) induced ALI. Using selective inhibitors and specific siRNA-driven depletion of HDACs 1-3 in human lung microvascular endothelial cells (HLMVEC) we were able to demonstrate a critical role for HDACs 1 and 2 in the LPS-mediated repression of Sox18 gene expression and the loss of endothelial monolayer integrity. Moreover, our data demonstrate that HDAC1 associates with a transcription-repressive complex within the NF-κB-binding site of Sox18 promoter. Further, we were able to show that the selective inhibitor of HDAC1, tacedinaline, significantly reduced the endothelial permeability and injury associated with LPS challenge in the mouse lung. Taken together, our data demonstrate, for the first time, that transcription repressors HDACs 1 and 2 are involved in pathological mechanism of ALI and can be considered as therapeutic targets.
Collapse
Affiliation(s)
- Evgeny A. Zemskov
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Christine M. Gross
- Department of Medicine at Broward Health Medical Center, Fort Lauderdale, FL, United States
| | - Saurabh Aggarwal
- Department of Anesthesiology, The University of Alabama, Birmingham, AL, United States
| | - Marina A. Zemskova
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, United States
| | - Chenxin Gu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Haiyang Tang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| | - Stephen M. Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
| |
Collapse
|
26
|
Posont RJ, Most MS, Cadaret CN, Marks-Nelson ES, Beede KA, Limesand SW, Schmidt TB, Petersen JL, Yates DT. Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways. J Anim Sci 2022; 100:6652330. [PMID: 35908792 PMCID: PMC9339287 DOI: 10.1093/jas/skac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P < 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P < 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P < 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P < 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P < 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P < 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P < 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P < 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P < 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P < 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P < 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P < 0.05) TNFR1 and IL6 gene expression, greater (P < 0.05) c-Fos protein, and less (P < 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P < 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P < 0.05) β-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S Most
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S Marks-Nelson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 65721, USA
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
27
|
Dai J, Zhang X, Zhang J, Yang W, Yang X, Bian H, Chen Z. Blockade of mIL‐6R alleviated lipopolysaccharide‐induced systemic inflammatory response syndrome by suppressing NF‐κB‐mediated Ccl2 expression and inflammasome activation. MedComm (Beijing) 2022; 3:e132. [PMID: 35548710 PMCID: PMC9075038 DOI: 10.1002/mco2.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is characterized by dysregulated cytokine release, immune responses and is associated with organ dysfunction. IL‐6R blockade indicates promising therapeutic effects in cytokine release storm but still remains unknown in SIRS. To address the issue, we generated the human il‐6r knock‐in mice and a defined epitope murine anti‐human membrane‐bound IL‐6R (mIL‐6R) mAb named h‐mIL‐6R mAb. We found that the h‐mIL‐6R and the commercial IL‐6R mAb Tocilizumab significantly improved the survival rate, reduced the levels of TNF‐α, IL‐6, IL‐1β, IFN‐γ, transaminases and blood urea nitrogen of LPS‐induced SIRS mice. Besides, the h‐mIL‐6R mAb could also dramatically reduce the levels of inflammatory cytokines in LPS‐treated THP‐1 cells in vitro. RNA‐seq analysis indicated that the h‐mIL‐6R mAb could regulate LPS‐induced activation of NF‐κB/Ccl2 and NOD‐like receptor signaling pathways. Furthermore, we found that the h‐mIL‐6R mAb could forwardly inhibit Ccl2 expression and NLRP3‐mediated pyroptosis by suppressing NF‐κB in combination with the NF‐κB inhibitor. Collectively, mIL‐6R mAbs suppressed NF‐κB/Ccl2 signaling and inflammasome activation. IL‐6R mAbs are potential alternative therapeutics for suppressing excessive cytokine release, over‐activated inflammatory responses and alleviating organ injuries in SIRS.
Collapse
Affiliation(s)
- Ji‐Min Dai
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
- Faculty of Hepato‐Biliary‐Pancreatic Surgery The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital Beijing P.R. China
| | - Xue‐Qin Zhang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Wei‐Jie Yang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine&Department of Cell Biology State Key Laboratory of Cancer Biology the Fourth Military Medical University Xi'an P.R. China
| |
Collapse
|
28
|
Yang L, Zheng W, Lv X, Xin S, Sun Y, Xu T. microRNA-144 modulates the NF-κB pathway in miiuy croaker (Miichthys miiuy) by targeting IκBα gene. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104359. [PMID: 35092745 DOI: 10.1016/j.dci.2022.104359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNA) are non-coding RNAs that regulate many biochemical processes, such as cell growth, proliferation and immune responses. In this study, we investigated miR-144 as a regulator of IκBα that promotes the activation of NF-κB signaling pathway. And IκBα interact with p65 blocks nuclear translocation of NF-κB and anchors NF-κB in cytoplasmic quiescent cells in an inactive form. The seed region of miR-144 can regulate gene expression by binding to the 3' UTR of IκBα and repress IκBα expression at the post-transcriptional level. More importantly, miR-144 can promote the activation of p65 by inhibiting IκBα, thus affecting the NF-κB signaling pathway. Thus, preventing excessive inflammatory responses from causing autoimmune diseases will help to further understand the immunoregulatory mechanisms of miRNAs in fish after invasion by pathogens.
Collapse
Affiliation(s)
- Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
29
|
Timani KA, Rezaei S, Whitmill A, Liu Y, He JJ. Tip110/SART3-Mediated Regulation of NF-κB Activity by Targeting IκBα Stability Through USP15. Front Oncol 2022; 12:843157. [PMID: 35530338 PMCID: PMC9070983 DOI: 10.3389/fonc.2022.843157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
To date, there are a small number of nuclear-restricted proteins that have been reported to play a role in NF-κB signaling. However, the exact molecular mechanisms are not fully understood. Tip110 is a nuclear protein that has been implicated in multiple biological processes. In a previous study, we have shown that Tip110 interacts with oncogenic ubiquitin specific peptidase 15 (USP15) and that ectopic expression of Tip110 leads to re-distribution of USP15 from the cytoplasm to the nucleus. USP15 is known to regulate NF-κB activity through several mechanisms including modulation of IκBα ubiquitination. These findings prompted us to investigate the role of Tip110 in the NF-κB signaling pathway. We showed that Tip110 regulates NF-κB activity. The expression of Tip110 potentiated TNF-α-induced NF-κB activity and deletion of the nuclear localization domain in Tip110 abrogated this potentiation activity. We then demonstrated that Tip110 altered IκBα phosphorylation and stability in the presence of TNF-α. Moreover, we found that Tip110 and USP15 opposingly regulated NF-κB activity by targeting IκBα protein stability. We further showed that Tip110 altered the expression of NF-κB-dependent proinflammatory cytokines. Lastly, by using whole-transcriptome analysis of Tip110 knockout mouse embryonic stem cells, we found several NF-κB and NF-κB-related pathways were dysregulated. Taken together, these findings add to the nuclear regulation of NF-κB activity by Tip110 through IκBα stabilization and provide new evidence to support the role of Tip110 in controlling cellular processes such as cancers that involve proinflammatory responses.
Collapse
Affiliation(s)
- Khalid Amine Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
- *Correspondence: Khalid Amine Timani,
| | - Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Amanda Whitmill
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ying Liu
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| | - Johnny J. He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL, United States
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL, United States
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL, United States
| |
Collapse
|
30
|
Tejera-Hernández B, Goodman DE, Nevarez JM, Spindler KR. Mouse Adenovirus Type 1 E4orf6 Induces PKR Degradation. J Virol 2022; 96:e0206321. [PMID: 35285681 PMCID: PMC9006929 DOI: 10.1128/jvi.02063-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/12/2022] [Indexed: 11/20/2022] Open
Abstract
Protein kinase R (PKR) is a cellular kinase involved in the antiviral response. The inactivation or inhibition of this protein is a conserved activity in DNA and RNA virus infections. In contrast to human adenovirus type 5, mouse adenovirus type 1 (MAV-1) inhibits PKR activity through proteasome-dependent degradation. However, the molecular mechanism by which this process takes place is not fully understood. We investigated whether ubiquitination, MAV-1 early region 1B 55k (E1B 55k), and early region 4 orf6 (E4orf6) play a role in PKR degradation in MAV-1 infection, because the enzyme 3 (E3) ubiquitin ligase activity with these viral proteins is conserved among the Adenoviridae family. We provide evidence that E4orf6 is sufficient to induce mouse PKR degradation and that proteasome pathway inhibition blocks PKR degradation. Inhibition of neddylation of cullin, a component of E3 ubiquitin ligase complex, blocked efficient PKR degradation in MAV-1-infected cells. Finally, we demonstrated that MAV-1 degradation of PKR is specific for mouse PKR. These results indicate that counteracting PKR is mechanistically different in two species of adenoviruses. IMPORTANCE Viruses have evolved to counteract the immune system to successfully replicate in the host. Downregulation of several antiviral proteins is important for productive viral infection. Protein kinase R (PKR) is an antiviral protein that belongs to the first line of defense of the host. Because PKR senses dsRNA and blocks the cellular translation process during viral infections, it is not surprising that many viruses counteract this antiviral activity. We previously reported PKR degradation during mouse adenovirus type 1 (MAV-1) infection; however, the molecular mechanism of this activity was not fully known. This work provides evidence about the MAV-1 protein that induces PKR degradation and expands knowledge about involvement of the proteasome pathway.
Collapse
Affiliation(s)
- Berto Tejera-Hernández
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Danielle E. Goodman
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Juan M. Nevarez
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine R. Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Pomiferin Exerts Antineuroinflammatory Effects through Activating Akt/Nrf2 Pathway and Inhibiting NF-κB Pathway. Mediators Inflamm 2022; 2022:5824657. [PMID: 35418806 PMCID: PMC9001093 DOI: 10.1155/2022/5824657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/19/2022] [Indexed: 12/29/2022] Open
Abstract
Background Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, are mainly characterized by progressive motor, sensory, or cognitive dysfunction in patients. Such diseases mostly occur in middle-aged and elderly people, and there is no effective cure. Studies have shown that neurodegenerative diseases are accompanied by neuroinflammation. The proinflammatory mediators produced neuroinflammation further damage neurons and aggravate the process of neurodegenerative diseases. Therefore, inhibiting neuroinflammation might be an effective way to alleviate neurodegenerative diseases. Pomiferin extracted from the fruit of the orange mulberry has a wide range of antioxidation and anti-inflammatory effects in peripheral tissues. However, it is not clear whether it plays a role on neuroinflammation. Methods In our experiment, we studied the effect of Pomiferin on BV2 cell inflammation and its mechanism with cck-8, LDH, quantitative PCR, and ELISA and methods. We then investigated the effect of Pomiferin on the classical inflammatory pathway by Western blot methods. Results The results showed that Pomiferin inhibited the production of ROS, NO, and proinflammatory mediators (IL-6, TNF-α, iNOS, and COX2) in BV2 cells. Further mechanism studies showed that Pomiferin activated the Akt/Nrf2 pathway and inhibited the NF-κB pathway. Conclusion Our study demonstrated that Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway.
Collapse
|
32
|
Luo Z, Huang J, Li E, He X, Meng Q, Huang X, Shen X, Yan C. An Integrated Pharmacology-Based Strategy to Investigate the Potential Mechanism of Xiebai San in Treating Pediatric Pneumonia. Front Pharmacol 2022; 13:784729. [PMID: 35237157 PMCID: PMC8885115 DOI: 10.3389/fphar.2022.784729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
Xiebai San (XBS) is a traditional Chinese medicine (TCM) prescription that has been widely used to treat pediatric pneumonia since the Song dynasty. To reveal its underlying working mechanism, a network pharmacology approach was used to predict the active ingredients and potential targets of XBS in treating pediatric pneumonia. As a result, 120 active ingredients of XBS and 128 potential targets were screened out. Among them, quercetin, kaempferol, naringenin, licochalcone A and isorhamnetin showed to be the most potential ingredients, while AKT1, MAPK3, VEGFA, TP53, JUN, PTGS2, CASP3, MAPK8 and NF-κB p65 showed to be the most potential targets. IL-17 signaling pathway, TNF signaling pathway and PI3K-Akt signaling pathway, which are involved in anti-inflammation processes, immune responses and apoptosis, showed to be the most probable pathways regulated by XBS. UPLC-Q/Orbitrap HRMS analysis was then performed to explore the main components of XBS, and liquiritin, quercetin, kaempferol, licochalcone A and glycyrrhetinic acid were identified. Molecular docking analysis of the compounds to inflammation-associated targets revealed good binding abilities of quercetin, kaempferol, licochalcone A and liquiritin to NF-κB p65 and of quercetin and kaempferol to Akt1 or Caspase-3. Moreover, molecular dynamics (MD) simulation for binding of quercetin or kaempferol to NF-κB p65 revealed dynamic properties of high stability, high flexibility and lowbinding free energy. In the experiment with macrophages, XBS markedly suppressed the (Lipopolysaccharides) LPS-induced expression of NF-κB p65 and the production of pro-inflammatory cytokines IL-6 and IL-1β, supporting XBS to achieve an anti-inflammatory effect through regulating NF-κB p65. XBS also down-regulated the expression of p-Akt (Ser473)/Akt, Bax and Caspase-3 and up-regulated the expression of Bcl-2, indicating that regulating Akt1 and Caspase-3 to achieve anti-apoptotic effect is also the mechanism of XBS for treating pediatric pneumonia. Our study helped to reveal the pharmacodynamics material basis as well as the mechanism of XBS in treating pediatric pneumonia.
Collapse
Affiliation(s)
- Zhuohui Luo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Honz Pharmaceutical Co., Ltd., Haikou, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ennian Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinqian He
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqi Meng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | |
Collapse
|
33
|
Guo JJ, Wang H, Liu JC, Chang XY, Li JN, Liu XL. Interleukin-1β enhances the expression of two antimicrobial peptides in grass carp (Ctenopharyngodon idella) against Vibrio mimicus via activating NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 122:334-344. [PMID: 34922017 DOI: 10.1016/j.fsi.2021.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Vibrio mimicus (V. mimicus) is a pathogen causing serious vibriosis in aquatic animals. Hepcidin and β-Defensin1 are two important antibacterial peptides (AMPs) with broad-spectrum antibacterial activity in fish. In mammals, some evidences demonstrated that interleukin-1β (IL-1β) primarily promote AMPs expression via activating classical NF-κB pathway, but it still remains unclear in fish. Here, the temporal and spatial expression patterns of grass carp IL-1β (gcIL-1β) gene and two AMPs genes (gchepcidin and gcβ-defensin1) in tissues post-V. mimicus infection and anti-V. mimicus activity of these two AMPs in vitro were detected, showing that V. mimicus infection significantly elevated the mRNA levels of these three genes in the immune-related tissues although their expression patterns were not entirely consistent, and both gcHepcidin and gcβ-Defensin1 possessed anti-V. mimicus activity in vitro. Subsequently, the recombinant gcIL-1β (rgcIL-1β) was expressed prokaryotically in an inclusion body, which could promote proliferation of grass carp head kidney leukocytes (gcHKLs) and enhance respiratory burst activity and phagocytic activity of head kidney macrophages. Stimulation with rgcIL-1β was able to significantly regulate the mRNA expression of key regulatory genes (il-1RI, traf6, tak1, ikkβ, iκBα and p65) involved in the activation of classical NF-κB pathway, and then induce gcTAK1 phosphorylation, promote gcp65 nuclear translocation and enhance endogenous gcIL-1β expression at both mRNA and protein levels, implying NF-κB pathway was activated. More importantly, exogenous rgcIL-1β stimulation also significantly up-regulated both gcHepcidin and gcβ-Defensin1 mRNA levels against V. mimicus, and the regulatory effect was blocked or inhibited by NF-κB inhibitor PDTC. Taken together, our results demonstrated for the first time that grass carp IL-1β stimulation could significantly enhance the expression of these two anti-V.mimicus AMPs via activating classical NF-κB pathway.
Collapse
Affiliation(s)
- Jia-Jing Guo
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Hong Wang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jun-Cai Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xin-Yue Chang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jin-Nian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| | - Xue-Lan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
34
|
Yang L, Zheng W, Xin S, Lv X, Sun Y, Xu T. microRNA-122 regulates NF-κB signaling pathway by targeting IκBα in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 122:345-351. [PMID: 35182723 DOI: 10.1016/j.fsi.2022.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The inhibitory protein IκBα plays a key role in the inflammatory process and immune response by regulating the activity of the transcription factor NF-κB. microRNA (miR) is a small non-coding RNA that can regulate many biochemical processes, such as cell growth, proliferation, and immune response. In this study, it was first predicted that IκBα is the target of miR-122 through bioinformatics, and it was confirmed by dual fluorescence experiments. Then we found that miR-122 can inhibit the expression of IκBα at the mRNA and protein levels, thereby promoting the p65-activated NF-κB pathway. It is speculated that miR-122 plays an important role in the innate immunity of teleost fish. This study will help to further understand miRNAs regulatory mechanism in teleost fish.
Collapse
Affiliation(s)
- Liyuan Yang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
35
|
Nord JA, Wynia-Smith SL, Gehant AL, Jones Lipinski RA, Naatz A, Rioja I, Prinjha RK, Corbett JA, Smith BC. N-terminal BET bromodomain inhibitors disrupt a BRD4-p65 interaction and reduce inducible nitric oxide synthase transcription in pancreatic β-cells. Front Endocrinol (Lausanne) 2022; 13:923925. [PMID: 36176467 PMCID: PMC9513428 DOI: 10.3389/fendo.2022.923925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/19/2022] [Indexed: 02/02/2023] Open
Abstract
Chronic inflammation of pancreatic islets is a key driver of β-cell damage that can lead to autoreactivity and the eventual onset of autoimmune diabetes (T1D). In the islet, elevated levels of proinflammatory cytokines induce the transcription of the inducible nitric oxide synthase (iNOS) gene, NOS2, ultimately resulting in increased nitric oxide (NO). Excessive or prolonged exposure to NO causes β-cell dysfunction and failure associated with defects in mitochondrial respiration. Recent studies showed that inhibition of the bromodomain and extraterminal domain (BET) family of proteins, a druggable class of epigenetic reader proteins, prevents the onset and progression of T1D in the non-obese diabetic mouse model. We hypothesized that BET proteins co-activate transcription of cytokine-induced inflammatory gene targets in β-cells and that selective, chemotherapeutic inhibition of BET bromodomains could reduce such transcription. Here, we investigated the ability of BET bromodomain small molecule inhibitors to reduce the β-cell response to the proinflammatory cytokine interleukin 1 beta (IL-1β). BET bromodomain inhibition attenuated IL-1β-induced transcription of the inflammatory mediator NOS2 and consequent iNOS protein and NO production. Reduced NOS2 transcription is consistent with inhibition of NF-κB facilitated by disrupting the interaction of a single BET family member, BRD4, with the NF-κB subunit, p65. Using recently reported selective inhibitors of the first and second BET bromodomains, inhibition of only the first bromodomain was necessary to reduce the interaction of BRD4 with p65 in β-cells. Moreover, inhibition of the first bromodomain was sufficient to mitigate IL-1β-driven decreases in mitochondrial oxygen consumption rates and β-cell viability. By identifying a role for the interaction between BRD4 and p65 in controlling the response of β-cells to proinflammatory cytokines, we provide mechanistic information on how BET bromodomain inhibition can decrease inflammation. These studies also support the potential therapeutic application of more selective BET bromodomain inhibitors in attenuating β-cell inflammation.
Collapse
Affiliation(s)
- Joshua A. Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alyssa L. Gehant
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Inmaculada Rioja
- Immuno-Epigenetics, Immunology Research Unit, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Immuno-Epigenetics, Immunology Research Unit, GlaxoSmithKline Medicines Research Centre, Stevenage, United Kingdom
| | - John A. Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Brian C. Smith,
| |
Collapse
|
36
|
Abd El-Ghafar OAM, Hassanein EHM, Ali FEM, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Sayed AM. Hepatoprotective effect of acetovanillone against methotrexate hepatotoxicity: Role of Keap-1/Nrf2/ARE, IL6/STAT-3, and NF-κB/AP-1 signaling pathways. Phytother Res 2022; 36:488-505. [PMID: 34939704 DOI: 10.1002/ptr.7355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 11/09/2022]
Abstract
This study targeted to examine the protective effects of acetovanillone (AV) against methotrexate (MTX)-induced hepatotoxicity. Thirty-two rats were allocated into four groups of eight animals; Group 1: Normal; Group 2: administered AV (100 ml/kg; P.O.) for 10 days; Group 3: challenged with MTX (20 mg/kg, i.p; single dose); Group 4: administered AV 5 days before and 5 days after MTX. For the first time, this study affords evidence for AV's hepatoprotective effects on MTX-induced hepatotoxicity. The underlined mechanisms behind its hepatic protection include counteracting MTX-induced oxidative injury via down-regulation of NADPH oxidase and up-regulation of Nrf2/ARE, SIRT1, PPARγ, and cytoglobin signals. Additionally, AV attenuated hepatic inflammation through down-regulation of IL-6/STAT-3 and NF-κB/AP-1 signaling. Network pharmacology analysis exhibited a high enrichment score between the interacting proteins and strongly suggested the intricate and essential role of the target proteins regulating MTX-induced oxidative damage and inflammatory perturbation. Besides, AV increased the in vitro cytotoxic activity of MTX toward PC-3, HeLa, and K562 cancer cell lines. On the whole, our investigation suggested that AV might be regarded as a promising adjuvant for the amelioration of MTX hepatotoxicity and/or increased its in vitro antitumor efficacy, and it could be used in patients receiving MTX.
Collapse
Affiliation(s)
- Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, Assiut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
37
|
Ren X, Zhang H, Yan X, Sun Y, Xu T. NOP56 negatively regulates MyD88-mediated NF-κB signaling in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2022; 120:75-81. [PMID: 34774735 DOI: 10.1016/j.fsi.2021.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
MyD88 is a critical adaptor in the TLRs signaling pathway, which can activate NF-κB signaling pathway and promote proinflammatory cytokines production. However, the molecular mechanisms that modulate MyD88 expression, especially in teleost, remain largely unknown. In this study, we showed that NOP56 serve as a negative regulator of the MyD88-mediated NF-κB signaling pathway. NOP56 overexpression inhibited the protein expression of MyD88. Whereas, siRNA knockdown of NOP56 had opposite effect. Furthermore, we found that the NOSIC domain is responsible for the suppressive effect of NOP56 in MyD88 expression at protein level. Therefore, we identified NOP56 as a negative regulator of MyD88-mediated NF-κB signaling by inhibiting MyD88 expression and provided new insight into the regulation mechanism in teleost fish.
Collapse
Affiliation(s)
- Xiaomeng Ren
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Han Zhang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China.
| |
Collapse
|
38
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
39
|
Kashfi K, Kannikal J, Nath N. Macrophage Reprogramming and Cancer Therapeutics: Role of iNOS-Derived NO. Cells 2021; 10:3194. [PMID: 34831416 PMCID: PMC8624911 DOI: 10.3390/cells10113194] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide and its production by iNOS is an established mechanism critical to tumor promotion or suppression. Macrophages have important roles in immunity, development, and progression of cancer and have a controversial role in pro- and antitumoral effects. The tumor microenvironment consists of tumor-associated macrophages (TAM), among other cell types that influence the fate of the growing tumor. Depending on the microenvironment and various cues, macrophages polarize into a continuum represented by the M1-like pro-inflammatory phenotype or the anti-inflammatory M2-like phenotype; these two are predominant, while there are subsets and intermediates. Manipulating their plasticity through programming or reprogramming of M2-like to M1-like phenotypes presents the opportunity to maximize tumoricidal defenses. The dual role of iNOS-derived NO also influences TAM activity by repolarization to tumoricidal M1-type phenotype. Regulatory pathways and immunomodulation achieve this through miRNA that may inhibit the immunosuppressive tumor microenvironment. This review summarizes the classical physiology of macrophages and polarization, iNOS activities, and evidence towards TAM reprogramming with current information in glioblastoma and melanoma models, and the immunomodulatory and therapeutic options using iNOS or NO-dependent strategies.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Jasmine Kannikal
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, New York, NY 10023, USA;
| | - Niharika Nath
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, New York, NY 10023, USA;
| |
Collapse
|
40
|
Chadha A, Chadee K. The NF-κB Pathway: Modulation by Entamoeba histolytica and Other Protozoan Parasites. Front Cell Infect Microbiol 2021; 11:748404. [PMID: 34595137 PMCID: PMC8476871 DOI: 10.3389/fcimb.2021.748404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Protozoan parasites have led to worldwide devastation because of their ability to cause infectious diseases. They have evolved as successful pathogens in part because of their remarkable and sophisticated ways to evade innate host defenses. This holds true for both intracellular and extracellular parasites that deploy multiple strategies to circumvent innate host defenses for their survival. The different strategies protozoan parasites use include hijacking the host cellular signaling pathways and transcription factors. In particular, the nuclear factor-κB (NF-κB) pathway seems to be an attractive target for different pathogens owing to their central role in regulating prompt innate immune responses in host defense. NF-κB is a ubiquitous transcription factor that plays an indispensable role not only in regulating immediate immune responses against invading pathogens but is also a critical regulator of cell proliferation and survival. The major immunomodulatory components include parasite surface and secreted proteins/enzymes and stimulation of host cells intracellular pathways and inflammatory caspases that directly or indirectly interfere with the NF-κB pathway to thwart immune responses that are directed for containment and/or elimination of the pathogen. To showcase how protozoan parasites exploits the NF-κB signaling pathway, this review highlights recent advances from Entamoeba histolytica and other protozoan parasites in contact with host cells that induce outside-in and inside-out signaling to modulate NF-κB in disease pathogenesis and survival in the host.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
41
|
Aboussahoud WS, Smith H, Stevens A, Wangsaputra I, Hunter HR, Kimber SJ, Seif MW, Brison DR. The expression and activity of Toll-like receptors in the preimplantation human embryo suggest a new role for innate immunity. Hum Reprod 2021; 36:2661-2675. [PMID: 34517414 PMCID: PMC8450873 DOI: 10.1093/humrep/deab188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
STUDY QUESTION Is the innate immunity system active in early human embryo development? SUMMARY ANSWER The pattern recognition receptors and innate immunity Toll-like receptor (TLR) genes are widely expressed in preimplantation human embryos and the pathway appears to be active in response to TLR ligands. WHAT IS KNOWN ALREADY Early human embryos are highly sensitive to their local environment, however relatively little is known about how embryos detect and respond to specific environmental cues. While the maternal immune response is known to be key to the establishment of pregnancy at implantation, the ability of human embryos to detect and signal the presence of pathogens is unknown. STUDY DESIGN, SIZE, DURATION Expression of TLR family and related genes in human embryos was assessed by analysis of published transcriptome data (n = 40). Day 5 (D-5) human embryos (n = 25) were cultured in the presence of known TLR ligands and gene expression and cytokine production measured compared to controls. PARTICIPANTS/MATERIALS, SETTING, METHODS Human embryos surplus to treatment requirements were donated with informed consent from several ART centres. Embryos were cultured to Day 6 (D-6) in the presence of the TLR3 and TLR5 ligands Poly (I: C) and flagellin, with gene expression measured by quantitative PCR and cytokine release into medium measured using cytometric bead arrays. MAIN RESULTS AND THE ROLE OF CHANCE TLR and related genes, including downstream signalling molecules, were expressed variably at all human embryo developmental stages. Results showed the strongest expression in the blastocyst for TLRs 9 and 5, and throughout development for TLRs 9, 5, 2, 6 and 7. Stimulation of Day 5 blastocysts with TLR3 and TLR5 ligands Poly (I: C) and flagellin produced changes in mRNA expression levels of TLR genes, including the hyaluronan-mediated motility receptor (HMMR), TLR5, TLR7, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and monocyte chemoattractant Protein-1 (MCP-1) (P < 0.05, P < 0.001 compared to unstimulated controls), and release into culture medium of cytokines and chemokines, notably IL8 (P = 0.00005 and 0.01277 for flagellin and Poly (I: C), respectively). LIMITATIONS, REASONS FOR CAUTION This was a descriptive and experimental study which suggests that the TLR system is active in human embryos and capable of function, but does not confirm any particular role. Although we identified embryonic transcripts for a range of TLR genes, the expression patterns were not always consistent across published studies and expression levels of some genes were low, leaving open the possibility that these were expressed from the maternal rather than embryonic genome. WIDER IMPLICATIONS OF THE FINDINGS This is the first report of the expression and activity of a number of components of the innate immunity TLR system in human embryos. Understanding the role of TLRs during preimplantation human development may be important to reveal immunological mechanisms and potential clinical markers of embryo quality and pregnancy initiation during natural conception and in ART. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the Ministry of Higher Education, The State of Libya, the UK Medical Research Council, and the NIHR Local Comprehensive Research Network and NIHR Manchester Clinical Research Facility and the European Union's Horizon 2020 Research and Innovation Programmes under the Marie Skłodowska-Curie Grant Agreement No. 812660 (DohART-NET). In accordance with H2020 rules, no new human embryos were sacrificed for research activities performed from the EU funding, which concerned only in silico analyses of recorded time-lapse and transcriptomics datasets. None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER n/a.
Collapse
Affiliation(s)
- Wedad S Aboussahoud
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Smith
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Ivan Wangsaputra
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen R Hunter
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Mourad W Seif
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, Old St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
42
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
43
|
Role of Nrf2 in Synaptic Plasticity and Memory in Alzheimer's Disease. Cells 2021; 10:cells10081884. [PMID: 34440653 PMCID: PMC8391447 DOI: 10.3390/cells10081884] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor that reduces oxidative stress. When reactive oxygen species (ROS) or reactive nitrogen species (RNS) are detected, Nrf2 translocates from the cytoplasm into the nucleus and binds to the antioxidant response element (ARE), which regulates the expression of antioxidant and anti-inflammatory genes. Nrf2 impairments are observed in the majority of neurodegenerative disorders, including Alzheimer’s disease (AD). The classic hallmarks of AD include β-amyloid (Aβ) plaques, and neurofibrillary tangles (NFTs). Oxidative stress is observed early in AD and is a novel therapeutic target for the treatment of AD. The nuclear translocation of Nrf2 is impaired in AD compared to controls. Increased oxidative stress is associated with impaired memory and synaptic plasticity. The administration of Nrf2 activators reverses memory and synaptic plasticity impairments in rodent models of AD. Therefore, Nrf2 activators are a potential novel therapeutic for neurodegenerative disorders including AD.
Collapse
|
44
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|
45
|
Luo X, Zhang R, Lu M, Liu S, Baba HA, Gerken G, Wedemeyer H, Broering R. Hippo Pathway Counter-Regulates Innate Immunity in Hepatitis B Virus Infection. Front Immunol 2021; 12:684424. [PMID: 34113355 PMCID: PMC8185339 DOI: 10.3389/fimmu.2021.684424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 01/17/2023] Open
Abstract
Whether hepatitis B virus (HBV) activates or represses innate immunity continues to be debated. Toll-like receptor (TLR) 2 has been identified to recognize HBV particles in human hepatocytes. The Hippo pathway, known for growth control, is suggested to play a vital role in immune regulation. Here, molecular interactions between HBV-triggered TLR signaling and the Hippo pathway were comprehensively investigated. Reanalysis of GSE69590 data, in which human hepatocytes have been treated with cell culture-derived HBV particles, identified changes in Hippo and NF-κB signaling. Immunocytochemical staining and western blotting revealed time-dependent nuclear translocation of YAP and NF-κB in HBV-exposed primary human and murine hepatocytes (PMH). Analysis of PMH isolated from MyD88- or IRAK4-deficient mice and the inhibition of TLR2 and MST1/2 in vitro confirmed the relation between TLR2 and Hippo signaling in HBV-induced immunity. Loss and gain of function experiments implied that Hippo-downstream effector YAP directly regulated IκBα expression. Functional investigations confirmed the regulation of Nfkbia promoter activity by the YAP/TEAD4 transcription factor complex. Administration of TLR ligands to mice highlighted the relevance of the TLR2-MyD88-IRAK4-Hippo axis in hepatic immunity. Interestingly, reanalysis of gene expression pattern in liver biopsies of patients chronically infected with HBV (GSE83148, GSE65359) indicated an activation of TLR2 and however, an MST1-dominated Hippo control in the immune clearance phase of patients with chronic HBV infection. We demonstrated that MyD88-dependent TLR signaling activates NF-κB and Hippo signaling, with YAP prompting the IκBα-mediated negative feedback, alongside NF-κB. Imbalance between immune induction and Hippo activation may have implications for the safety of novel HBV cure strategies interfering with pathogen recognition receptors.
Collapse
Affiliation(s)
- Xufeng Luo
- Institute for Lymphoma Research, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rui Zhang
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life sciences, Wuhan University, Wuhan, China
| | - Hideo A Baba
- Institute for Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
46
|
Choi SH, Yoon HS, Yoo SA, Yun SH, Park JH, Han EH, Chi SG, Chung YH. Co-relation with novel phosphorylation sites of IκBα and necroptosis in breast cancer cells. BMC Cancer 2021; 21:596. [PMID: 34030642 PMCID: PMC8147041 DOI: 10.1186/s12885-021-08304-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Phosphorylation of NF-kappaB inhibitor alpha (IκBα) is key to regulation of NF-κB transcription factor activity in the cell. Several sites of IκBα phosphorylation by members of the IκB kinase family have been identified, but phosphorylation of the protein by other kinases remains poorly understood. We investigated a new phosphorylation site on IκBα and identified its biological function in breast cancer cells. Methods Previously, we observed that aurora kinase (AURK) binds IκBα in the cell. To identify the domains of IκBα essential for phosphorylation by AURK, we performed kinase assays with a series of IκBα truncation mutants. AURK significantly promoted activation of IκBα at serine 32 but not serine 36; by contrast, IκB kinase (IKK) family proteins activated both of these residues. We also confirmed phosphorylation of IκBα by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and nano-liquid chromatography hybrid quadrupole orbitrap mass spectrometer (nanoLC-MS/MS; Q-Exactive). Results We identified two novel sites of serine phosphorylation, S63 and S262. Alanine substitution of S63 and S262 (S63A and S262A) of IκBα inhibited proliferation and suppressed p65 transcription activity. In addition, S63A and/or S262A of IκBα regulated apoptotic and necroptotic effects in breast cancer cells. Conclusions Phosphorylation of IκBα by AURK at novel sites is related to the apoptosis and necroptosis pathways in breast cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08304-7.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea.,Yonsei Liver Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee-Sub Yoon
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Shin-Ae Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea
| | - Sung Ho Yun
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea
| | - Joo-Hee Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea.,GRAST, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| | - Young-Ho Chung
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, 28119, Cheongju-si, Republic of Korea. .,Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea. .,GRAST, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
47
|
Gómez-Chávez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodríguez-Martínez S. NF-κB and Its Regulators During Pregnancy. Front Immunol 2021; 12:679106. [PMID: 34025678 PMCID: PMC8131829 DOI: 10.3389/fimmu.2021.679106] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptional factor NF-κB is a nuclear factor involved in both physiological and pathological processes. This factor can control the transcription of more than 400 genes, including cytokines, chemokines, and their modulators, immune and non-immune receptors, proteins involved in antigen presentation and cell adhesion, acute phase and stress response proteins, regulators of apoptosis, growth factors, other transcription factors and their regulators, as well as different enzymes; all these molecules control several biological processes. NF-κB is a tightly regulated molecule that has also been related to apoptosis, cell proliferation, inflammation, and the control of innate and adaptive immune responses during onset of labor, in which it has a crucial role; thus, early activation of this factor may have an adverse effect, by inducing premature termination of pregnancy, with bad outcomes for the mother and the fetus, including product loss. Reviews compiling the different activities of NF-κB have been reported. However, an update regarding NF-κB regulation during pregnancy is lacking. In this work, we aimed to describe the state of the art around NF-κB activity, its regulatory role in pregnancy, and the effect of its dysregulation due to invasion by pathogens like Trichomonas vaginalis and Toxoplasma gondii as examples.
Collapse
Affiliation(s)
- Fernando Gómez-Chávez
- Secretaría de Salud, Cátedras CONACyT-Instituto Nacional de Pediatría, Mexico City, Mexico
- Secretaría de Salud, Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, Mexico City, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Correa
- Dirección de Investigación, Universidad Anáhuac, Huixquilucan, Mexico
| | - Pilar Navarrete-Meneses
- Laboratorio de Genética y Cáncer, Instituto Nacional de Pediatría, Secretaría de Salud Mexico City, Mexico City, Mexico
| | - Juan Carlos Cancino-Diaz
- Laboratorio de Inmunomicrobiología, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario Eugenio Cancino-Diaz
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Laboratorio de Inmunidad Innata, Departamento de Inmunología, ENCB-Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
48
|
FGF23 ameliorates ischemia-reperfusion induced acute kidney injury via modulation of endothelial progenitor cells: targeting SDF-1/CXCR4 signaling. Cell Death Dis 2021; 12:409. [PMID: 33866326 PMCID: PMC8053200 DOI: 10.1038/s41419-021-03693-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
The levels of fibroblast growth factor 23 (FGF23) rapidly increases after acute kidney injury (AKI). However, the role of FGF23 in AKI is still unclear. Here, we observe that pretreatment with FGF23 protein into ischemia-reperfusion induced AKI mice ameliorates kidney injury by promoting renal tubular regeneration, proliferation, vascular repair, and attenuating tubular damage. In vitro assays demonstrate that SDF-1 induces upregulation of its receptor CXCR4 in endothelial progenitor cells (EPCs) via a non-canonical NF-κB signaling pathway. FGF23 crosstalks with the SDF-1/CXCR4 signaling and abrogates SDF-1-induced EPC senescence and migration, but not angiogenesis, in a Klotho-independent manner. The downregulated pro-angiogenic IL-6, IL-8, and VEGF-A expressions after SDF-1 infusion are rescued after adding FGF23. Diminished therapeutic ability of SDF-1-treated EPCs is counteracted by FGF23 in a SCID mouse in vivo AKI model. Together, these data highlight a revolutionary and important role that FGF23 plays in the nephroprotection of IR-AKI.
Collapse
|
49
|
Curcumin analogue C66 attenuates obesity-induced renal injury by inhibiting chronic inflammation. Biomed Pharmacother 2021; 137:111418. [PMID: 33761621 DOI: 10.1016/j.biopha.2021.111418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity has been recognized as a major risk factor for the development of chronic kidney disease, which is accompanied by increased renal inflammation, fibrosis, and apoptosis. C66 is a curcumin derivative that exerts anti-inflammatory effects by inhibiting the JNK pathway and prevents diabetic nephropathy. The present study investigates the possible protective effect of C66 on high-fat diet (HFD)-induced obesity-related glomerulopathy. Mice were fed with HFD for 8 weeks while some were treated with C66 every 2 days for 11 weeks. The HFD-fed mice developed renal dysfunction, as well as elevated triglyceride and cholesterol. Kidneys of the HFD-fed mice showed marked glomerular injuries, apoptosis, and inflammation with markedly increased cytokine production. Interestingly, treating HFD-fed mice with C66 remarkably reversed these pathological changes via inhibiting inflammation and NF-κB/JNK activation. In cultured mesangial cells, Palmitic Acid was able to activate the pro-fibrotic mechanisms, apoptosis, inflammatory response, and NF-κB and JNK signaling pathways, all of which could be attenuated by C66 treatment. In all, we demonstrated that curcumin analogue C66 attenuates obesity-induced renal injury by inhibiting chronic inflammation and apoptosis via targeting NF-κB and JNK. Our data suggest that C66 can be potentially used to prevent obesity-associated renal diseases warranting future investigations.
Collapse
|
50
|
Anti-atherosclerotic activity of Betulinic acid loaded polyvinyl alcohol/methylacrylate grafted Lignin polymer in high fat diet induced atherosclerosis model rats. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|