1
|
Loh KM, Zheng SL, Liu KJ, Yin Q, Amir-Ugokwe ZA, Jha SK, Qi Y, Wazny VK, Nguyen AT, Chen A, Njunkeng FM, Cheung C, Spiekerkoetter E, Red-Horse K, Ang LT. Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells. STAR Protoc 2025; 6:103494. [PMID: 39705146 PMCID: PMC11728883 DOI: 10.1016/j.xpro.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs. We differentiate stem cells in defined, serum-free culture media in monolayers, without feeder cells or genetic manipulations. For complete details on the use and execution of this protocol, please refer to Ang et al. 1.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Kevin J Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qingqing Yin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Zhainib A Amir-Ugokwe
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K Jha
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yue Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Vanessa K Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Faith-Masong Njunkeng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore; Institute of Molecular and Cell Biology, A∗STAR, 138673, Singapore, Singapore
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Brumm AS, McCarthy A, Gerri C, Fallesen T, Woods L, McMahon R, Papathanasiou A, Elder K, Snell P, Christie L, Garcia P, Shaikly V, Taranissi M, Serhal P, Odia RA, Vasilic M, Osnato A, Rugg-Gunn PJ, Vallier L, Hill CS, Niakan KK. Initiation and maintenance of the pluripotent epiblast in pre-implantation human development is independent of NODAL signaling. Dev Cell 2025; 60:174-185.e5. [PMID: 39561779 DOI: 10.1016/j.devcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
The human blastocyst contains the pluripotent epiblast from which human embryonic stem cells (hESCs) can be derived. ACTIVIN/NODAL signaling maintains expression of the transcription factor NANOG and in vitro propagation of hESCs. It is unknown whether this reflects a functional requirement for epiblast development in human embryos. Here, we characterized NODAL signaling activity during pre-implantation human development. We showed that NANOG is an early molecular marker restricted to the nascent human pluripotent epiblast and was initiated prior to the onset of NODAL signaling. We further demonstrated that expression of pluripotency-associated transcription factors NANOG, SOX2, OCT4, and KLF17 were maintained in the epiblast in the absence of NODAL signaling activity. Genome-wide transcriptional analysis showed that NODAL signaling inhibition did not decrease NANOG transcription or impact the wider pluripotency-associated gene regulatory network. These data suggest differences in the signaling requirements regulating pluripotency in the pre-implantation human epiblast compared with existing hESC culture.
Collapse
Affiliation(s)
- A Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, London NW1 1AT, UK
| | - Laura Woods
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Riley McMahon
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Patricia Garcia
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Paul Serhal
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Rabi A Odia
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Mina Vasilic
- Centre for Reproductive and Genetic Health, London W1W 5QS, UK
| | - Anna Osnato
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Peter J Rugg-Gunn
- Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Loke Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
3
|
Uptegrove A, Chen C, Sahagun-Bisson M, Kulkarni AK, Louie KW, Ueharu H, Mishina Y, Omi-Sugihara M. Influence of bone morphogenetic protein (BMP) signaling and masticatory load on morphological alterations of the mouse mandible during postnatal development. Arch Oral Biol 2025; 169:106096. [PMID: 39341045 PMCID: PMC11609011 DOI: 10.1016/j.archoralbio.2024.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Bone homeostasis relies on several contributing factors, encompassing growth factors and mechanical stimuli. While bone morphogenetic protein (BMP) signaling is acknowledged for its essential role in skeletal development, its specific impact on mandibular morphogenesis remains unexplored. Here, we investigated the involvement of BMP signaling and mechanical loading through mastication in postnatal mandibular morphogenesis. DESIGN We employed conditional deletion of Bmpr1a in osteoblasts and chondrocytes via Osterix-Cre. Cre activity was induced at birth for the 3-week group and at three weeks for the 9-week and 12-week groups, respectively. The conditional knockout (cKO) and control mice were given either a regular diet (hard diet, HD) or a powdered diet (soft diet, SD) from 3 weeks until sample collection, followed by micro-CT and histological analysis. RESULTS The cKO mice exhibited shorter anterior lengths and a posteriorly inclined ramus across all age groups compared to the control mice. The cKO mice displayed an enlarged hypertrophic cartilage area along with fewer osteoclast numbers in the subchondral bone of the condyle compared to the control group at three weeks, followed by a reduction in the cartilage area in the posterior region at twelve weeks. Superimposed imaging and histomorphometrical analysis of the condyle revealed that BMP signaling primarily affects the posterior part of the condyle, while mastication affects the anterior part. CONCLUSIONS Using 3D landmark-based geometric morphometrics and histological assessments of the mandible, we demonstrated that BMP signaling and mechanical loading reciprocally contribute to the morphological alterations of the mandible and condyle during postnatal development.
Collapse
Affiliation(s)
- Amber Uptegrove
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Coral Chen
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Madison Sahagun-Bisson
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA.
| | - Maiko Omi-Sugihara
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA; Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Hirono M, Kudo M, Yamada M, Yanagawa Y. The modulatory role of bone morphogenetic protein signaling in cerebellar synaptic plasticity. J Neurochem 2025; 169:e16290. [PMID: 39680498 DOI: 10.1111/jnc.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
Bone morphogenetic proteins (BMPs), regulators of bone formation, have been implicated in embryogenesis and morphogenesis of various tissues and organs. BMP signaling plays a role in the formation of appropriate synaptic connections and development of normal neural circuits in the brain. However, physiological roles of BMP signaling in postnatal neural functions, including synaptic plasticity, remain largely unknown. Long-term depression (LTD) of synaptic transmission at parallel fiber (PF)-Purkinje cell (PC) synapses in the cerebellum has been suggested one neuronal mechanism underlying cerebellar functions. Here, we explored the contribution of BMP signaling to the induction of mouse cerebellar LTD. We first demonstrated that BMP2 and/or 4 were expressed in GABAergic neurons in mature networks of the cerebellar cortex. mRNA encoding BMP receptor type 1B (Bmpr1b) was expressed in the PC layer. Exogenous application of noggin, a BMP ligand inhibitor, suppressed the induction of cerebellar LTD by conjunctive stimulation, which caused normal LTD under control condition. Furthermore, mice deficient in BMPR1B exhibited attenuation of the extent of LTD induction, whereas they showed normal excitatory synaptic transmission at PF-PC synapses. These results suggest that after postnatal development, BMP signaling activated by BMPR1B, expressed in the PC layer, plays a crucial role in the facilitation of cerebellar LTD, leading to the modulation of cerebellar functions and behaviors.
Collapse
Affiliation(s)
| | - Moeko Kudo
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
5
|
Jarayseh T, Debaenst S, De Saffel H, Rosseel T, Milazzo M, Bek JW, Hudson DM, Van Nieuwerburgh F, Gansemans Y, Josipovic I, Boone MN, Witten PE, Willaert A, Coucke PJ. Bmpr1aa modulates the severity of the skeletal phenotype in an fkbp10-deficient Bruck syndrome zebrafish model. J Bone Miner Res 2024; 40:154-166. [PMID: 39566080 DOI: 10.1093/jbmr/zjae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Rare monogenic disorders often exhibit significant phenotypic variability among individuals sharing identical genetic mutations. Bruck syndrome (BS), a prime example, is characterized by bone fragility and congenital contractures, although with a pronounced variability among family members. BS arises from recessive biallelic mutations in FKBP10 or PLOD2. FKBP65, the protein encoded by FKBP10, collaborates with the LH2 enzyme (PLOD2) in type I collagen telopeptide lysine hydroxylation, crucial for collagen cross-linking. To identify potential modifier genes and to investigate the mechanistic role of FKBP10 in BS pathogenesis, we established an fkbp10a knockout zebrafish model. Mass-spectrometry analysis in fkbp10a-/- mutants revealed a generally decreased type I collagen lysyl hydroxylation, paralleled by a wide skeletal variability similar to human patients. Ultrastructural examination of the skeleton in severely affected mutants showed enlarged type I collagen fibrils and disturbed elastin layers. Whole-exome sequencing of 7 mildly and 7 severely affected mutant zebrafish siblings, followed by single nucleotide polymorphism-based linkage analysis, indicated a linked region on chromosome 13, which segregates with phenotypic severity. Transcriptome analysis identified 6 differentially expressed genes (DEGs) between mildly and severely affected mutants. The convergence of genes within the linked region and DEGs highlighted bmpr1aa as a potential modifier gene, as its reduced expression correlates with increased skeletal severity. In summary, our study provides deeper insights into the role of FKBP10 in BS pathogenesis. Additionally, we identified a pivotal gene that influences phenotypic severity in a zebrafish model of BS. These findings hold promise for novel treatments in the field of bone diseases.
Collapse
Affiliation(s)
- Tamara Jarayseh
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Sophie Debaenst
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Toon Rosseel
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Mauro Milazzo
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - David M Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington, WA 98195, Seattle, United States
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, 9000, Ghent, Belgium
| | - Iván Josipovic
- Radiation Physics Research GroupCentre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium
| | - Matthieu N Boone
- Radiation Physics Research GroupCentre for X-ray Tomography (UGCT), Ghent University, 9000, Ghent, Belgium
| | | | - Andy Willaert
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
6
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Gordeev MN, Zinovyeva AS, Petrenko EE, Lomert EV, Aksenov ND, Tomilin AN, Bakhmet EI. Embryonic Stem Cell Differentiation to Definitive Endoderm As a Model of Heterogeneity Onset During Germ Layer Specification. Acta Naturae 2024; 16:62-72. [PMID: 39877013 PMCID: PMC11771848 DOI: 10.32607/actanaturae.27510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 01/31/2025] Open
Abstract
Embryonic stem cells (ESCs) hold great promise for regenerative medicine thanks to their ability to self-renew and differentiate into somatic cells and the germline. ESCs correspond to pluripotent epiblast - the tissue from which the following three germ layers originate during embryonic gastrulation: the ectoderm, mesoderm, and endoderm. Importantly, ESCs can be induced to differentiate toward various cell types by varying culture conditions, which can be exploited for in vitro modeling of developmental processes such as gastrulation. The classical model of gastrulation postulates that mesoderm and endoderm specification is made possible through the FGF-, BMP-, Wnt-, and Nodal-signaling gradients. Hence, it can be expected that one of these signals should direct ESC differentiation towards specific germ layers. However, ESC specification appears to be more complicated, and the same signal can be interpreted differently depending on the readout. In this research, using chemically defined culture conditions, homogeneous naïve ESCs as a starting cell population, and the Foxa2 gene-driven EGFP reporter tool, we established a robust model of definitive endoderm (DE) specification. This in vitro model features formative pluripotency as an intermediate state acquired by the epiblast in vivo shortly after implantation. Despite the initially homogeneous state of the cells in the model and high Activin concentration during endodermal specification, there remains a cell subpopulation that does not reach the endodermal state. This simple model developed by us can be used to study the origins of cellular heterogeneity during germ layer specification.
Collapse
Affiliation(s)
- M. N. Gordeev
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Institute of Evolution, University of Haifa, Haifa, 3498838 Israel
| | - A. S. Zinovyeva
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - E. E. Petrenko
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa, 3200003 Israel
| | - E. V. Lomert
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - N. D. Aksenov
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - A. N. Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| | - E. I. Bakhmet
- Pluripotency Dynamics Group, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russian Federation
| |
Collapse
|
9
|
Hernández-Martínez R, Nowotschin S, Harland LT, Kuo YY, Theeuwes B, Göttgens B, Lacy E, Hadjantonakis AK, Anderson KV. Axin1 and Axin2 regulate the WNT-signaling landscape to promote distinct mesoderm programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612342. [PMID: 39314295 PMCID: PMC11419046 DOI: 10.1101/2024.09.11.612342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
How distinct mesodermal lineages - extraembryonic, lateral, intermediate, paraxial and axial - are specified from pluripotent epiblast during gastrulation is a longstanding open question. By investigating AXIN, a negative regulator of the WNT/β-catenin pathway, we have uncovered new roles for WNT signaling in the determination of mesodermal fates. We undertook complementary approaches to dissect the role of WNT signaling that augmented a detailed analysis of Axin1;Axin2 mutant mouse embryos, including single-cell and single-embryo transcriptomics, with in vitro pluripotent Epiblast-Like Cell differentiation assays. This strategy allowed us to reveal two layers of regulation. First, WNT initiates differentiation of primitive streak cells into mesoderm progenitors, and thereafter, WNT amplifies and cooperates with BMP/pSMAD1/5/9 or NODAL/pSMAD2/3 to propel differentiating mesoderm progenitors into either posterior streak derivatives or anterior streak derivatives, respectively. We propose that Axin1 and Axin2 prevent aberrant differentiation of pluripotent epiblast cells into mesoderm by spatially and temporally regulating WNT signaling levels.
Collapse
Affiliation(s)
- Rocío Hernández-Martínez
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luke T.G. Harland
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bart Theeuwes
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Pushpan CK, Kumar SR. iPSC-Derived Cardiomyocytes as a Disease Model to Understand the Biology of Congenital Heart Defects. Cells 2024; 13:1430. [PMID: 39273002 PMCID: PMC11393881 DOI: 10.3390/cells13171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The discovery of human pluripotent stem cells (hiPSCs) and advances in DNA editing techniques have opened opportunities for personalized cell-based therapies for a wide spectrum of diseases. It has gained importance as a valuable tool to investigate genetic and functional variations in congenital heart defects (CHDs), enabling the customization of treatment strategies. The ability to understand the disease process specific to the individual patient of interest provides this technology with a significant advantage over generic animal models. However, its utility as a disease-in-a-dish model requires identifying effective and efficient differentiation protocols that accurately reproduce disease traits. Currently, iPSC-related research relies heavily on the quality of cells and the properties of the differentiation technique In this review, we discuss the utility of iPSCs in bench CHD research, the molecular pathways involved in the differentiation of cardiomyocytes, and their applications in CHD disease modeling, therapeutics, and drug application.
Collapse
Affiliation(s)
- Chithra K. Pushpan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
| | - Subramanyan Ram Kumar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
- Dr. C.C. and Mabel, L. Criss Heart Center, Children’s Nebraska, 8200 Dodge St, Omaha, NE 68114, USA
| |
Collapse
|
11
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. eLife 2024; 12:RP91876. [PMID: 38856718 PMCID: PMC11164533 DOI: 10.7554/elife.91876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Martin Kolb
- Department of Medicine, McMaster UniversityHamiltonCanada
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
12
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential before implantation. Development 2024; 151:dev202377. [PMID: 38752427 PMCID: PMC11190579 DOI: 10.1242/dev.202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells. Dev Cell 2024; 59:1110-1131.e22. [PMID: 38569552 PMCID: PMC11072092 DOI: 10.1016/j.devcel.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Collapse
Affiliation(s)
- Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Alana Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison M Banuelos
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kouta Niizuma
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kensuke Kayamori
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte Mason
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Leyla Yilmaz
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Luo Y, Cao K, Chiu J, Chen H, Wang HJ, Thornton ME, Grubbs BH, Kolb M, Parmacek MS, Mishina Y, Shi W. Defective mesenchymal Bmpr1a-mediated BMP signaling causes congenital pulmonary cysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559527. [PMID: 37808788 PMCID: PMC10557633 DOI: 10.1101/2023.09.26.559527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.
Collapse
Affiliation(s)
- Yongfeng Luo
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Ke Cao
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Joanne Chiu
- Department of Surgery, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027
| | - Hui Chen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Hong-Jun Wang
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, ON, Canada L8N 4A6
| | - Michael S. Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuji Mishina
- Department of Biologic and Material Sciences, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109
| | - Wei Shi
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Loh KM, Ang LT. Building human artery and vein endothelial cells from pluripotent stem cells, and enduring mysteries surrounding arteriovenous development. Semin Cell Dev Biol 2024; 155:62-75. [PMID: 37393122 DOI: 10.1016/j.semcdb.2023.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Owing to their manifold roles in health and disease, there have been intense efforts to synthetically generate blood vessels in vitro from human pluripotent stem cells (hPSCs). However, there are multiple types of blood vessel, including arteries and veins, which are molecularly and functionally different. How can we specifically generate either arterial or venous endothelial cells (ECs) from hPSCs in vitro? Here, we summarize how arterial or venous ECs arise during embryonic development. VEGF and NOTCH arbitrate the bifurcation of arterial vs. venous ECs in vivo. While manipulating these two signaling pathways biases hPSC differentiation towards arterial and venous identities, efficiently generating these two subtypes of ECs has remained challenging until recently. Numerous questions remain to be fully addressed. What is the complete identity, timing and combination of extracellular signals that specify arterial vs. venous identities? How do these extracellular signals intersect with fluid flow to modulate arteriovenous fate? What is a unified definition for endothelial progenitors or angioblasts, and when do arterial vs. venous potentials segregate? How can we regulate hPSC-derived arterial and venous ECs in vitro, and generate organ-specific ECs? In turn, answers to these questions could avail the production of arterial and venous ECs from hPSCs, accelerating vascular research, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential prior to implantation in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576717. [PMID: 38328075 PMCID: PMC10849569 DOI: 10.1101/2024.01.23.576717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm - an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygotic Smad4, an essential effector of BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Current address: Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
17
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
18
|
Ciller I, Palanisamy S, Ciller U, Al-Ali I, Coumans J, McFarlane J. Steroidogenic enzyme gene expression and testosterone production are developmentally modulated by bone morphogenetic protein receptor-1B in mouse testis. Physiol Res 2023; 72:359-369. [PMID: 37455641 PMCID: PMC10668998 DOI: 10.33549/physiolres.935014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 08/26/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) and receptors (BMPR-1A, BMPR-1B, BMPR-2) have been shown to be vital for female reproduction, while their roles in males are poorly described. Our study was undertaken to specify the function of BMPR-1B in steroidogenic enzyme gene expression, testosterone production and reproductive development in male mice, given that Bmpr1b mRNA is expressed in mouse testis and Bmpr1b knockout results in compromised fertility. Male mice were passively immunized for 6 days with anti-BMPR-1B in the presence or absence of exogenous gonadotrophins. We then measured the effects of anti-BMPR-1B on testicular hydroxysteroid dehydrogenase isoforms (Hsd3b1, Hsd3b6, and Hsd17b3) and aromatase (Cyp19) mRNA expression, testicular and serum testosterone levels, and testis and seminal vesicle weight. In vitro testosterone production in response to anti-BMPR-1B was determined using testicular culture, and Leydig cell culture in the presence or absence of gonadotrophins. In Leydig cell culture the contribution of seminiferous tubules and Leydig cells were examined by preconditioning the media with these testicular constituents. In adult mice, anti-BMPR-1B increased testosterone and Hsd3b1 but decreased Hsd3b6 and Cyp19 mRNA. In adult testicular culture and seminiferous tubule conditioned Leydig cell culture, anti-BMPR-1B reduced testosterone, while in normal and Leydig cell conditioned Leydig cell culture it increased testosterone levels. In pubertal mice, anti-BMPR-1B reduced gonadotrophin stimulated seminal vesicle growth. In conclusion, BMPR-1B has specific developmental functions in the autocrine and paracrine regulation of testicular steroidogenic enzyme gene expression and testosterone production in adults and in the development of seminal vesicles during puberty.
Collapse
Affiliation(s)
- I Ciller
- School of Rural Medicine, University of New England, Armidale, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Ruan X, Gu J, Chen M, Zhao F, Aili M, Zhang D. Multiple roles of ALK3 in osteoarthritis. Bone Joint Res 2023; 12:397-411. [PMID: 37394235 PMCID: PMC10315222 DOI: 10.1302/2046-3758.127.bjr-2022-0310.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.
Collapse
Affiliation(s)
- Xianchun Ruan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinning Gu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fulin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Tsutsumi R, Eiraku M. How might we build limbs in vitro informed by the modular aspects and tissue-dependency in limb development? Front Cell Dev Biol 2023; 11:1135784. [PMID: 37283945 PMCID: PMC10241304 DOI: 10.3389/fcell.2023.1135784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Building limb morphogenesis in vitro would substantially open up avenues for research and applications of appendage development. Recently, advances in stem cell engineering to differentiate desired cell types and produce multicellular structures in vitro have enabled the derivation of limb-like tissues from pluripotent stem cells. However, in vitro recapitulation of limb morphogenesis is yet to be achieved. To formulate a method of building limbs in vitro, it is critically important to understand developmental mechanisms, especially the modularity and the dependency of limb development on the external tissues, as those would help us to postulate what can be self-organized and what needs to be externally manipulated when reconstructing limb development in vitro. Although limbs are formed on the designated limb field on the flank of embryo in the normal developmental context, limbs can also be regenerated on the amputated stump in some animals and experimentally induced at ectopic locations, which highlights the modular aspects of limb morphogenesis. The forelimb-hindlimb identity and the dorsal-ventral, proximal-distal, and anterior-posterior axes are initially instructed by the body axis of the embryo, and maintained in the limb domain once established. In contrast, the aspects of dependency on the external tissues are especially underscored by the contribution of incoming tissues, such as muscles, blood vessels, and peripheral nerves, to developing limbs. Together, those developmental mechanisms explain how limb-like tissues could be derived from pluripotent stem cells. Prospectively, the higher complexity of limb morphologies is expected to be recapitulated by introducing the morphogen gradient and the incoming tissues in the culture environment. Those technological developments would dramatically enhance experimental accessibility and manipulability for elucidating the mechanisms of limb morphogenesis and interspecies differences. Furthermore, if human limb development can be modeled, drug development would be benefited by in vitro assessment of prenatal toxicity on congenital limb deficiencies. Ultimately, we might even create a future in which the lost appendage would be recovered by transplanting artificially grown human limbs.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mototsugu Eiraku
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Laboratory of Developmental Systems, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Ueharu H, Mishina Y. BMP signaling during craniofacial development: new insights into pathological mechanisms leading to craniofacial anomalies. Front Physiol 2023; 14:1170511. [PMID: 37275223 PMCID: PMC10232782 DOI: 10.3389/fphys.2023.1170511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Cranial neural crest cells (NCCs) are the origin of the anterior part of the face and the head. Cranial NCCs are multipotent cells giving rise to bones, cartilage, adipose-tissues in the face, and neural cells, melanocytes, and others. The behavior of cranial NCCs (proliferation, cell death, migration, differentiation, and cell fate specification) are well regulated by several signaling pathways; abnormalities in their behavior are often reported as causative reasons for craniofacial anomalies (CFAs), which occur in 1 in 100 newborns in the United States. Understanding the pathological mechanisms of CFAs would facilitate strategies for identifying, preventing, and treating CFAs. Bone morphogenetic protein (BMP) signaling plays a pleiotropic role in many cellular processes during embryonic development. We and others have reported that abnormalities in BMP signaling in cranial NCCs develop CFAs in mice. Abnormal levels of BMP signaling cause miscorrelation with other signaling pathways such as Wnt signaling and FGF signaling, which mutations in the signaling pathways are known to develop CFAs in mice and humans. Recent Genome-Wide Association Studies and exome sequencing demonstrated that some patients with CFAs presented single nucleotide polymorphisms (SNPs), missense mutations, and duplication of genes related to BMP signaling activities, suggesting that defects in abnormal BMP signaling in human embryos develop CFAs. There are still a few cases of BMP-related patients with CFAs. One speculation is that human embryos with mutations in coding regions of BMP-related genes undergo embryonic lethality before developing the craniofacial region as well as mice development; however, no reports are available that show embryonic lethality caused by BMP mutations in humans. In this review, we will summarize the recent advances in the understanding of BMP signaling during craniofacial development in mice and describe how we can translate the knowledge from the transgenic mice to CFAs in humans.
Collapse
|
22
|
Lee HW, Adachi T, Pak B, Park S, Hu X, Choi W, Kowalski PS, Chang CH, Clapham KR, Lee A, Papangeli I, Kim J, Han O, Park J, Anderson DG, Simons M, Jin SW, Chun HJ. BMPR1A promotes ID2-ZEB1 interaction to suppress excessive endothelial to mesenchymal transition. Cardiovasc Res 2023; 119:813-825. [PMID: 36166408 PMCID: PMC10409893 DOI: 10.1093/cvr/cvac159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Components of bone morphogenetic protein (BMP) signalling have been implicated in both pathogenesis of pulmonary arterial hypertension (PAH) and endothelial-mesenchymal transition (EndoMT). In particular, the importance of BMP type 2 receptor in these processes has been extensively analysed. However, the contribution of BMP type 1 receptors (BMPR1s) to the onset of PAH and EndoMT remains poorly understood. BMPR1A, one of BMPR1s, was recently implicated in the pathogenesis of PAH, and was found to be down-regulated in the lungs of PAH patients, neither the downstream mechanism nor its contribution to EndoMT has been described. Therefore, we aim to delineate the role of endothelial BMPR1A in modulating EndoMT and pathogenesis of PAH. METHODS AND RESULTS We find that BMPR1A knockdown in endothelial cells (ECs) induces hallmarks of EndoMT, and deletion of endothelial Bmpr1a in adult mice (Bmpr1aiECKO) leads to development of PAH-like symptoms due to excessive EndoMT. By lineage tracing, we show that endothelial-derived smooth muscle cells are increased in endothelial Bmpr1a-deleted mice. Mechanistically, we identify ZEB1 as a primary target for BMPR1A in this setting; upon BMPR1A activation, ID2 physically interacts and sequesters ZEB1 to attenuate transcription of Tgfbr2, which in turn lowers the responses of ECs towards transforming growth factor beta (TGFβ) stimulation and prevents excessive EndoMT. In Bmpr1aiECKO mice, administering endothelial targeting lipid nanoparticles containing siRNA against Tgfbr2 effectively ameliorate PAH, reiterating the importance of BMPR1A-ID2/ZEB1-TGFBR2 axis in modulating progression of EndoMT and pathogenesis of PAH. CONCLUSIONS We demonstrate that BMPR1A is key to maintain endothelial identity and to prevent excessive EndoMT. We identify BMPR1A-induced interaction between ID2 and ZEB1 is the key regulatory step for onset of EndoMT and pathogenesis of PAH. Our findings indicate that BMPR1A-ID2/ZEB1-TGFBR2 signalling axis could serve as a potential novel therapeutic target for PAH and other EndoMT-related vascular disorders.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Takaomi Adachi
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Saejeong Park
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Xiaoyue Hu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - C Hong Chang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Katharine R Clapham
- Division of Pulmonary and Critical Care, Brigham and Women’s Hospital, Boston, MA 02127, USA
| | - Aram Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jongmin Kim
- Division of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jihwan Park
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suk-Won Jin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Ave, 111B, West Haven, CT 06516, USA
| |
Collapse
|
23
|
Bauer M, Aguilar G, Wharton KA, Matsuda S, Affolter M. Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila. Dev Cell 2023; 58:645-659.e4. [PMID: 37054707 PMCID: PMC10303954 DOI: 10.1016/j.devcel.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/15/2023]
Abstract
Combinatorial signaling is key to instruct context-dependent cell behaviors. During embryonic development, adult homeostasis, and disease, bone morphogenetic proteins (BMPs) act as dimers to instruct specific cellular responses. BMP ligands can form both homodimers or heterodimers; however, obtaining direct evidence of the endogenous localization and function of each form has proven challenging. Here, we make use of precise genome editing and direct protein manipulation via protein binders to dissect the existence and functional relevance of BMP homodimers and heterodimers in the Drosophila wing imaginal disc. This approach identified in situ the existence of Dpp (BMP2/4)/Gbb (BMP5/6/7/8) heterodimers. We found that Gbb is secreted in a Dpp-dependent manner in the wing imaginal disc. Dpp and Gbb form a gradient of heterodimers, whereas neither Dpp nor Gbb homodimers are evident under endogenous physiological conditions. We find that the formation of heterodimers is critical for obtaining optimal signaling and long-range BMP distribution.
Collapse
Affiliation(s)
- Milena Bauer
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Gustavo Aguilar
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | | | - Shinya Matsuda
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| | - Markus Affolter
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
24
|
Ishan M, Wang Z, Zhao P, Yao Y, Stice S, Wells L, Mishina Y, Liu HX. Taste papilla cell differentiation requires tongue mesenchyme via ALK3-BMP signaling to regulate the production of secretory proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535414. [PMID: 37066397 PMCID: PMC10103976 DOI: 10.1101/2023.04.03.535414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Taste papillae are specialized organs each of which is comprised of an epithelial wall hosting taste buds and a core of mesenchymal tissue. In the present study, we report that during the early stages of embryonic development, bone morphogenetic protein (BMP) signaling mediated by type 1 receptor ALK3 in the tongue mesenchyme is required for the epithelial Wnt/β-catenin activity and taste papilla cell differentiation. Mesenchyme-specific knockout ( cKO ) of Alk3 using Wnt1-Cre and Sox10-Cre resulted in an absence of taste papillae at E12.0. Biochemical and cell differentiation analyses demonstrated that mesenchymal ALK3-BMP signaling governs the production of previously unappreciated secretory proteins, i.e., suppresses those that inhibiting and facilitates those promoting taste cell differentiation. Bulk RNA-Sequencing analysis revealed many more differentially expressed genes (DEGs) in the tongue epithelium than in the mesenchyme in Alk3 cKO vs control. Moreover, we detected a down-regulated epithelial Wnt/β-catenin signaling, and taste papilla development in the Alk3 cKO was rescued by GSK3β inhibitor LiCl, but not Wnt3a. Our findings demonstrate for the first time the requirement of tongue mesenchyme in taste papilla cell differentiation. Summary statement This is the first set of data to implicate the requirement of tongue mesenchyme in taste papilla cell differentiation.
Collapse
|
25
|
Omi M, Koneru T, Lyu Y, Haraguchi A, Kamiya N, Mishina Y. Increased BMP-Smad signaling does not affect net bone mass in long bones. Front Physiol 2023; 14:1145763. [PMID: 37064883 PMCID: PMC10101206 DOI: 10.3389/fphys.2023.1145763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) have been used for orthopedic and dental application due to their osteoinductive properties; however, substantial numbers of adverse reactions such as heterotopic bone formation, increased bone resorption and greater cancer risk have been reported. Since bone morphogenetic proteins signaling exerts pleiotropic effects on various tissues, it is crucial to understand tissue-specific and context-dependent functions of bone morphogenetic proteins. We previously reported that loss-of-function of bone morphogenetic proteins receptor type IA (BMPR1A) in osteoblasts leads to more bone mass in mice partly due to inhibition of bone resorption, indicating that bone morphogenetic protein signaling in osteoblasts promotes osteoclast function. On the other hand, hemizygous constitutively active (ca) mutations for BMPR1A (caBmpr1awt/+) in osteoblasts result in higher bone morphogenetic protein signaling activity and no overt skeletal changes in adult mice. Here, we further bred mice for heterozygous null for Bmpr1a (Bmpr1a+/−) and homozygous mutations of caBmpr1a (caBmpr1a+/+) crossed with Osterix-Cre transgenic mice to understand how differences in the levels of bone morphogenetic protein signaling activity specifically in osteoblasts contribute to bone phenotype. We found that Bmpr1a+/−, caBmpr1awt/+ and caBmpr1a+/+ mice at 3 months of age showed no overt bone phenotypes in tibiae compared to controls by micro-CT and histological analysis although BMP-Smad signaling is increased in both caBmpr1awt/+ and caBmpr1a+/+ tibiae and decreased in the Bmpr1a+/− mice compared to controls. Gene expression analysis demonstrated that slightly higher levels of bone formation markers and resorption markers along with levels of bone morphogenetic protein-Smad signaling, however, there was no significant changes in TRAP positive cells in tibiae. These findings suggest that changes in bone morphogenetic protein signaling activity within differentiating osteoblasts does not affect net bone mass in the adult stage, providing insights into the concerns in the clinical setting such as high-dose and unexpected side effects of bone morphogenetic protein application.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Tejaswi Koneru
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Yishan Lyu
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ai Haraguchi
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Nobuhiro Kamiya
- Department of Budo and Sport Studies, Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- *Correspondence: Yuji Mishina,
| |
Collapse
|
26
|
Ueharu H, Pan H, Hayano S, Zapien-Guerra K, Yang J, Mishina Y. Augmentation of bone morphogenetic protein signaling in cranial neural crest cells in mice deforms skull base due to premature fusion of intersphenoidal synchondrosis. Genesis 2023; 61:e23509. [PMID: 36622051 PMCID: PMC10757424 DOI: 10.1002/dvg.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/10/2023]
Abstract
Craniofacial anomalies (CFAs) are a diverse group of disorders affecting the shapes of the face and the head. Malformation of the cranial base in humans leads CFAs, such as midfacial hypoplasia and craniosynostosis. These patients have significant burdens associated with breathing, speaking, and chewing. Invasive surgical intervention is the current primary option to correct these structural deficiencies. Understanding molecular cellular mechanism for craniofacial development would provide novel therapeutic options for CFAs. In this study, we found that enhanced bone morphogenetic protein (BMP) signaling in cranial neural crest cells (NCCs) (P0-Cre;caBmpr1a mice) causes premature fusion of intersphenoid synchondrosis (ISS) resulting in leading to short snouts and hypertelorism. Histological analyses revealed reduction of proliferation and higher cell death in ISS at postnatal day 3. We demonstrated to prevent the premature fusion of ISS in P0-Cre;caBmpr1a mice by injecting a p53 inhibitor Pifithrin-α to the pregnant mother from E15.5 to E18.5, resulting in rescue from short snouts and hypertelorism. We further demonstrated to prevent premature fusion of cranial sutures in P0-Cre;caBmpr1a mice by injecting Pifithrin-α through E8.5 to E18.5. These results suggested that enhanced BMP-p53-induced cell death in cranial NCCs causes premature fusion of ISS and sutures in time-dependent manner.
Collapse
Affiliation(s)
- Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Satoru Hayano
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Karen Zapien-Guerra
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Wesley CC, Levy DL. Differentiation-dependent changes in lamin B1 dynamics and lamin B receptor localization. Mol Biol Cell 2023; 34:ar10. [PMID: 36598800 PMCID: PMC9930530 DOI: 10.1091/mbc.e22-04-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nuclear lamina serves important roles in chromatin organization and structural support, and lamina mutations can result in laminopathies. Less is known about how nuclear lamina structure changes during cellular differentiation-changes that may influence gene regulation. We examined the structure and dynamics of the nuclear lamina in human-induced pluripotent stem cells (iPSCs) and differentiated germ layer cells, focusing on lamin B1. We report that lamin B1 dynamics generally increase as iPSCs differentiate, especially in mesoderm and ectoderm, and that lamin B receptor (LBR) partially redistributes from the nucleus to cytoplasm in mesoderm. Knocking down LBR in iPSCs led to an increase in lamin B1 dynamics, a change that was not observed for ELYS, emerin, or lamin B2 knockdown. LBR knockdown also affected expression of differentiation markers. These data suggest that differentiation-dependent tethering of lamin B1 either directly by LBR or indirectly via LBR-chromatin associations impacts gene expression.
Collapse
Affiliation(s)
- Chase C. Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071,*Address correspondence to: Daniel L. Levy ()
| |
Collapse
|
28
|
Yvernogeau L, Dainese G, Jaffredo T. Dorsal aorta polarization and haematopoietic stem cell emergence. Development 2023; 150:286251. [PMID: 36602140 DOI: 10.1242/dev.201173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies have highlighted the crucial role of the aorta microenvironment in the generation of the first haematopoietic stem cells (HSCs) from specialized haemogenic endothelial cells (HECs). Despite more than two decades of investigations, we require a better understanding of the cellular and molecular events driving aorta formation and polarization, which will be pivotal to establish the mechanisms that operate during HEC specification and HSC competency. Here, we outline the early mechanisms involved in vertebrate aorta formation by comparing four different species: zebrafish, chicken, mouse and human. We highlight how this process, which is tightly controlled in time and space, requires a coordinated specification of several cell types, in particular endothelial cells originating from distinct mesodermal tissues. We also discuss how molecular signals originating from the aorta environment result in its polarization, creating a unique entity for HSC generation.
Collapse
Affiliation(s)
- Laurent Yvernogeau
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Giovanna Dainese
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| | - Thierry Jaffredo
- Sorbonne Université, IBPS, CNRS UMR7622, Inserm U1156, Laboratoire de Biologie du Développement, 75005 Paris, France
| |
Collapse
|
29
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
30
|
Chi C, He J, Du Z, Zheng Y, D’Alessandro E, Chen C, Moawad AS, Asare E, Song C, Wang X. Two Retrotransposon Elements in Intron of Porcine BMPR1B Is Associated with Phenotypic Variation. Life (Basel) 2022; 12:life12101650. [PMID: 36295085 PMCID: PMC9604734 DOI: 10.3390/life12101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
It has been established that through binding to bone morphogenetic proteins (BMPs), bone morphogenetic protein receptor I B (BMPR1B) can mediate transforming growth factor β (TGF-β) signal transduction, and is involved in the regulation of several biological processes, such as bone and muscle formation and homeostasis, as well as folliculogenesis. Also known as FecB, BMPR1B has been reported as the major gene for sheep prolificacy. A number of previous studies have analyzed the relationship between single nucleotide polymorphisms (SNPs) in this gene and its related performance. In recent years, with the illustration of the effect of retrotransposon insertion on the expression of the proximal genes or phenotypic variation, retrotransposon insertion polymorphisms (RIPs) have been used as a novel type of molecular marker in the evaluation of evolution, population structure and breeding of plant and domestic animals. In this study, the RIPs in porcine BMPR1B gene were excavated, and thereafter verified using a comparative genome and polymerase chain reaction (PCR). The potential effects of phenotype, gene expression and functions related to RIPs were also explored. The results showed that 13 distinct RIPs were identified in introns of porcine BMPR1B. Among these, only BMPR1B-SINE-RIP9 and BMPR1B-LINE-RIP13 displayed a close relationship with the growth traits of Large White pigs. Moreover, the total number of BMPR1B-SINE+/+-RIP9 individuals born was found to be significantly higher than that of SINE−/− (p < 0.05). These two RIPs showed an obvious distribution pattern among Chinese indigenous breeds and Western commercial breeds. The expression of BMPR1B in ovaries of adult BMPR1B-SINE+/+-RIP9 Sushan pigs was found to be significantly higher in comparison to those of BMPR1B-SINE−/−-RIP9 (p < 0.05). SINE insertion of BMPR1B-SINE-RIP9 and LINE insertion of BMPR1B-LINE-RIP13 were observed to significantly increase the activity of Octamer binding transcription factor 4 (OCT4) minipromoter in CHO and C2C12 cells (p < 0.01). Therefore, these two RIPs could serve as useful molecular markers for modulating the growth or reproductive traits in assisted selection of pig breeding, while the mechanisms of the insertion function should be studied further.
Collapse
Affiliation(s)
- Chenglin Chi
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Jia He
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhanyu Du
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Yao Zheng
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Enrico D’Alessandro
- Department of Veterinary Science, Division of Animal Production, University of Messina, 98168 Messina, Italy
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Ali Shoaib Moawad
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Emmanuel Asare
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel./Fax: +86-013511768881
| |
Collapse
|
31
|
Yang D, Gomez-Garcia J, Funakoshi S, Tran T, Fernandes I, Bader GD, Laflamme MA, Keller GM. Modeling human multi-lineage heart field development with pluripotent stem cells. Cell Stem Cell 2022; 29:1382-1401.e8. [PMID: 36055193 DOI: 10.1016/j.stem.2022.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 12/27/2022]
Abstract
The cardiomyocyte (CM) subtypes in the mammalian heart derive from distinct lineages known as the first heart field (FHF), the anterior second heart field (aSHF), and the posterior second heart field (pSHF) lineages that are specified during gastrulation. We modeled human heart field development from human pluripotent stem cells (hPSCs) by using single-cell RNA-sequencing to delineate lineage specification and progression. Analyses of hPSC-derived and mouse mesoderm transcriptomes enabled the identification of distinct human FHF, aSHF, and pSHF mesoderm subpopulations. Through staged manipulation of signaling pathways identified from transcriptomics, we generated myocyte populations that display molecular characteristics of key CM subtypes. The developmental trajectory of the human cardiac lineages recapitulated that of the mouse, demonstrating conserved cardiovascular programs. These findings establish a comprehensive landscape of human embryonic cardiogenesis that provides access to a broad spectrum of cardiomyocytes for modeling congenital heart diseases and chamber-specific cardiomyopathies as well as for developing new therapies to treat them.
Collapse
Affiliation(s)
- Donghe Yang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Juliana Gomez-Garcia
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shunsuke Funakoshi
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ian Fernandes
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
32
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
33
|
Nagar G, Mittal P, Gupta SRR, Pahuja M, Sanger M, Mishra R, Singh A, Singh IK. Multi-omics therapeutic perspective on ACVR1 gene: from genetic alterations to potential targeting. Brief Funct Genomics 2022; 22:123-142. [PMID: 36003055 DOI: 10.1093/bfgp/elac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A receptor type I (ACVR1), a transmembrane serine/threonine kinase, belongs to the transforming growth factor-β superfamily, which signals via phosphorylating the downstream effectors and SMAD transcription factors. Its central role in several biological processes and intracellular signaling is well known. Genetic variation in ACVR1 has been associated with a rare disease, fibrodysplasia ossificans progressive, and its somatic alteration is reported in rare cancer diffuse intrinsic pontine glioma. Furthermore, altered expression or variation of ACVR1 is associated with multiple pathologies such as polycystic ovary syndrome, congenital heart defects, diffuse idiopathic skeletal hyperostosis, posterior fossa ependymoma and other malignancies. Recent advancements have witnessed ACVR1 as a potential pharmacological target, and divergent promising approaches for its therapeutic targeting have been explored. This review highlights the structural and functional characteristics of receptor ACVR1, associated signaling pathways, genetic variants in several diseases and cancers, protein-protein interaction, gene expression, regulatory miRNA prediction and potential therapeutic targeting approaches. The comprehensive knowledge will offer new horizons and insights into future strategies harnessing its therapeutic potential.
Collapse
|
34
|
Chen T, Alcorn H, Devbhandari S, Remus D, Lacy E, Huangfu D, Anderson KV. A hypomorphic mutation in Pold1 disrupts the coordination of embryo size expansion and morphogenesis during gastrulation. Biol Open 2022; 11:bio059307. [PMID: 35876795 PMCID: PMC9382117 DOI: 10.1242/bio.059307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Formation of a properly sized and patterned embryo during gastrulation requires a well-coordinated interplay between cell proliferation, lineage specification and tissue morphogenesis. Following transient physical or pharmacological manipulations of embryo size, pre-gastrulation mouse embryos show remarkable plasticity to recover and resume normal development. However, it remains unclear how mechanisms driving lineage specification and morphogenesis respond to defects in cell proliferation during and after gastrulation. Null mutations in DNA replication or cell-cycle-related genes frequently lead to cell-cycle arrest and reduced cell proliferation, resulting in developmental arrest before the onset of gastrulation; such early lethality precludes studies aiming to determine the impact of cell proliferation on lineage specification and morphogenesis during gastrulation. From an unbiased ENU mutagenesis screen, we discovered a mouse mutant, tiny siren (tyrn), that carries a hypomorphic mutation producing an aspartate to tyrosine (D939Y) substitution in Pold1, the catalytic subunit of DNA polymerase δ. Impaired cell proliferation in the tyrn mutant leaves anterior-posterior patterning unperturbed during gastrulation but results in reduced embryo size and severe morphogenetic defects. Our analyses show that the successful execution of morphogenetic events during gastrulation requires that lineage specification and the ordered production of differentiated cell types occur in concordance with embryonic growth.
Collapse
Affiliation(s)
- Tingxu Chen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Heather Alcorn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sujan Devbhandari
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
35
|
Julien A, Perrin S, Martínez-Sarrà E, Kanagalingam A, Carvalho C, Luka M, Ménager M, Colnot C. Skeletal Stem/Progenitor Cells in Periosteum and Skeletal Muscle Share a Common Molecular Response to Bone Injury. J Bone Miner Res 2022; 37:1545-1561. [PMID: 35652423 PMCID: PMC9543664 DOI: 10.1002/jbmr.4616] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022]
Abstract
Bone regeneration involves skeletal stem/progenitor cells (SSPCs) recruited from bone marrow, periosteum, and adjacent skeletal muscle. To achieve bone reconstitution after injury, a coordinated cellular and molecular response is required from these cell populations. Here, we show that SSPCs from periosteum and skeletal muscle are enriched in osteochondral progenitors, and more efficiently contribute to endochondral ossification during fracture repair as compared to bone-marrow stromal cells. Single-cell RNA sequencing (RNAseq) analyses of periosteal cells reveal the cellular heterogeneity of periosteum at steady state and in response to bone fracture. Upon fracture, both periosteal and skeletal muscle SSPCs transition from a stem/progenitor to a fibrogenic state prior to chondrogenesis. This common activation pattern in periosteum and skeletal muscle SSPCs is mediated by bone morphogenetic protein (BMP) signaling. Functionally, Bmpr1a gene inactivation in platelet-derived growth factor receptor alpha (Pdgfra)-derived SSPCs impairs bone healing and decreases SSPC proliferation, migration, and osteochondral differentiation. These results uncover a coordinated molecular program driving SSPC activation in periosteum and skeletal muscle toward endochondral ossification during bone regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Anais Julien
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | | | | | - Marine Luka
- Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Université de Paris, Paris, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Mickaël Ménager
- Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, Université de Paris, Paris, France.,Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
36
|
Abstract
Formation of the vasculature is a critical step within the developing embryo and its disruption causes early embryonic lethality. This complex process is driven by a cascade of signaling events that controls differentiation of mesodermal progenitors into primordial endothelial cells and their further specification into distinct subtypes (arterial, venous, hemogenic) that are needed to generate a blood circulatory network. Hemogenic endothelial cells give rise to hematopoietic stem and progenitor cells that generate all blood cells in the body during embryogenesis and postnatally. We focus our discussion on the regulation of endothelial cell differentiation, and subsequent hemogenic specification, and highlight many of the signaling pathways involved in these processes, which are conserved across vertebrates. Gaining a better understanding of the regulation of these processes will yield insights needed to optimize the treatment of vascular and hematopoietic disease and generate human stem cell-derived vascular and hematopoietic cells for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jordon W Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
- Departments of Medicine and Genetics, Yale University School of Medicine, Yale Cardiovascular Research Center, New Haven, Connecticut 06520, USA
| |
Collapse
|
37
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
38
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
39
|
Niu Z, Su G, Li T, Yu H, Shen Y, Zhang D, Liu X. Vascular Calcification: New Insights Into BMP Type I Receptor A. Front Pharmacol 2022; 13:887253. [PMID: 35462911 PMCID: PMC9019578 DOI: 10.3389/fphar.2022.887253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a complex ectopic calcification process and an important indicator of increased risk for diabetes, atherosclerosis, chronic kidney disease, and other diseases. Therefore, clarifying the pathogenesis of VC is of great clinical significance. Numerous studies have shown that the onset and progression of VC are similar to bone formation. Members of the bone morphogenetic protein (BMP) family of proteins are considered key molecules in the progression of vascular calcification. BMP type I receptor A (BMPR1A) is a key receptor of BMP factors acting on the cell membrane, is widely expressed in various tissues and cells, and is an important “portal” for BMP to enter cells and exert their biological effect. In recent years, many discoveries have been made regarding the occurrence and treatment of ectopic ossification-related diseases involving BMP signaling targets. Studies have confirmed that BMPR1A is involved in osteogenic differentiation and that its high expression in vascular endothelial cells and smooth muscle cells can lead to vascular calcification. This article reviews the role of BMPR1A in vascular calcification and the possible underlying molecular mechanisms to provide clues for the clinical treatment of such diseases.
Collapse
Affiliation(s)
- Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guanyue Su
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tiantian Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongchi Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Demao Zhang, ; Xiaoheng Liu,
| |
Collapse
|
40
|
Han H, Wang Y, Curto J, Gurrapu S, Laudato S, Rumandla A, Chakraborty G, Wang X, Chen H, Jiang Y, Kumar D, Caggiano EG, Capogiri M, Zhang B, Ji Y, Maity SN, Hu M, Bai S, Aparicio AM, Efstathiou E, Logothetis CJ, Navin N, Navone NM, Chen Y, Giancotti FG. Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep 2022; 39:110595. [PMID: 35385726 PMCID: PMC9414743 DOI: 10.1016/j.celrep.2022.110595] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/18/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Bioinformatic analysis of 94 patient-derived xenografts (PDXs), cell lines, and organoids (PCOs) identifies three intrinsic transcriptional subtypes of metastatic castration-resistant prostate cancer: androgen receptor (AR) pathway + prostate cancer (PC) (ARPC), mesenchymal and stem-like PC (MSPC), and neuroendocrine PC (NEPC). A sizable proportion of castration-resistant and metastatic stage PC (M-CRPC) cases are admixtures of ARPC and MSPC. Analysis of clinical datasets and mechanistic studies indicates that MSPC arises from ARPC as a consequence of therapy-induced lineage plasticity. AR blockade with enzalutamide induces (1) transcriptional silencing of TP53 and hence dedifferentiation to a hybrid epithelial and mesenchymal and stem-like state and (2) inhibition of BMP signaling, which promotes resistance to AR inhibition. Enzalutamide-tolerant LNCaP cells re-enter the cell cycle in response to neuregulin and generate metastasis in mice. Combined inhibition of HER2/3 and AR or mTORC1 exhibits efficacy in models of ARPC and MSPC or MSPC, respectively. These results define MSPC, trace its origin to therapy-induced lineage plasticity, and reveal its sensitivity to HER2/3 inhibition.
Collapse
Affiliation(s)
- Hyunho Han
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yan Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Josue Curto
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sreeharsha Gurrapu
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sara Laudato
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Alekya Rumandla
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Xiaobo Wang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hong Chen
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Jiang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily G Caggiano
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; UT MDACC UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Monica Capogiri
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Boyu Zhang
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Yan Ji
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA
| | - Sankar N Maity
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Min Hu
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Shanshan Bai
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Ana M Aparicio
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | | | | | - Nicholas Navin
- Department of Genetics, UT MDACC, Houston, TX 77054, USA
| | - Nora M Navone
- Department of GU Oncology, UT MDACC, Houston, TX 77054, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program and Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, UT MDACC, Houston, TX 77054, USA; Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
41
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
42
|
Towler OW, Shore EM. BMP signaling and skeletal development in fibrodysplasia ossificans progressiva (FOP). Dev Dyn 2022; 251:164-177. [PMID: 34133058 PMCID: PMC9068236 DOI: 10.1002/dvdy.387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/03/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare genetic disease caused by increased BMP pathway signaling due to mutation of ACVR1, a bone morphogenetic protein (BMP) type 1 receptor. The primary clinical manifestation of FOP is extra-skeletal bone formation (heterotopic ossification) within soft connective tissues. However, the underlying ACVR1 mutation additionally alters skeletal bone development and nearly all people born with FOP have bilateral malformation of the great toes as well as other skeletal malformations at diverse anatomic sites. The specific mechanisms through which ACVR1 mutations and altered BMP pathway signaling in FOP influence skeletal bone formation during development remain to be elucidated; however, recent investigations are providing a clearer understanding of the molecular and developmental processes associated with ACVR1-regulated skeletal formation.
Collapse
Affiliation(s)
- Oscar Will Towler
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eileen M. Shore
- The Center for Research in FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Trofka A, Huang BL, Zhu J, Heinz WF, Magidson V, Shibata Y, Shi YB, Tarchini B, Stadler HS, Kabangu M, Al Haj Baddar NW, Voss SR, Mackem S. Genetic basis for an evolutionary shift from ancestral preaxial to postaxial limb polarity in non-urodele vertebrates. Curr Biol 2021; 31:4923-4934.e5. [PMID: 34610275 DOI: 10.1016/j.cub.2021.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/30/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
In most tetrapod vertebrates, limb skeletal progenitors condense with postaxial dominance. Posterior elements (such as ulna and fibula) appear prior to their anterior counterparts (radius and tibia), followed by digit-appearance order with continuing postaxial polarity. The only exceptions are urodele amphibians (salamanders), whose limb elements develop with preaxial polarity and who are also notable for their unique ability to regenerate complete limbs as adults. The mechanistic basis for this preaxial dominance has remained an enigma and has even been proposed to relate to the acquisition of novel genes involved in regeneration. However, recent fossil evidence suggests that preaxial polarity represents an ancestral rather than derived state. Here, we report that 5'Hoxd (Hoxd11-d13) gene deletion in mouse is atavistic and uncovers an underlying preaxial polarity in mammalian limb formation. We demonstrate this shift from postaxial to preaxial dominance in mouse results from excess Gli3 repressor (Gli3R) activity due to the loss of 5'Hoxd-Gli3 antagonism and is associated with cell-cycle changes promoting precocious cell-cycle exit in the anterior limb bud. We further show that Gli3 knockdown in axolotl results in a shift to postaxial dominant limb skeleton formation, as well as expanded paddle-shaped limb-bud morphology and ensuing polydactyly. Evolutionary changes in Gli3R activity level, which also played a key role in the fin-to-limb transition, appear to be fundamental to the shift from preaxial to postaxial polarity in formation of the tetrapod limb skeleton.
Collapse
Affiliation(s)
- Anna Trofka
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yuki Shibata
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver NICHD, Bethesda, MD, USA
| | - Yun-Bo Shi
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver NICHD, Bethesda, MD, USA
| | | | - H Scott Stadler
- Division of Skeletal Biology, Shriners Hospitals for Children, Portland, OR, USA; Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, USA
| | - Mirindi Kabangu
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, USA
| | - Nour W Al Haj Baddar
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, USA
| | - S Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, USA.
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI, Frederick, MD, USA.
| |
Collapse
|
44
|
Au J, Requena DF, Rishik H, Kallol S, Tekkatte C, Farah OA, Kittle R, Meads M, Wakeland A, Soncin F. Role of autocrine bone morphogenetic protein Signaling in trophoblast stem cells. Biol Reprod 2021; 106:540-550. [PMID: 34791028 PMCID: PMC8934699 DOI: 10.1093/biolre/ioab213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is involved in numerous developmental processes, including cell growth, apoptosis, and differentiation. In mouse embryogenesis, BMP signaling is a well-known morphogen for both mesoderm induction and germ cell development. Recent evidence points to a potential role in development of the extra-embryonic compartment, including trophectoderm-derived tissues. In this study, we investigated the effect of BMP signaling in both mouse and human trophoblast stem cells (TSC) in vitro, evaluating the expression and activation of the BMP signaling response machinery, and the effect of BMP signaling manipulation during TSC maintenance and differentiation. Both mTSC and hTSC expressed various BMP ligands and the receptors BMPR1A and BMPR2, necessary for BMP response, and displayed maximal active BMP signaling when undifferentiated. We also observed a conserved modulatory role of BMP signaling during trophoblast differentiation, whereby maintenance of active BMP signaling blunted differentiation of TSC in both species. Conversely, the effect of BMP signaling on the undifferentiated state of TSC appeared to be species-specific, with SMAD-independent signaling important in maintenance of mTSC, and a more subtle role for both SMAD-dependent and -independent BMP signaling in hTSC. Altogether, these data establish an autocrine role for the BMP pathway in the trophoblast compartment. As specification and correct differentiation of the extra-embryonic compartment are fundamental for implantation and early placental development, insights on the role of the BMP signaling in early development might prove useful in the setting of in vitro fertilization as well as targeting trophoblast-associated placental dysfunction.
Collapse
Affiliation(s)
- Jennie Au
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniela F Requena
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hannah Rishik
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sampada Kallol
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chandana Tekkatte
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, University of San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Omar A Farah
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Kittle
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Morgan Meads
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anna Wakeland
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Directed Differentiation of Mouse Embryonic Stem Cells to Mesoderm, Endoderm, and Neuroectoderm Lineages. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2520:295-307. [PMID: 34611822 DOI: 10.1007/7651_2021_439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The self-renewal and pluripotency features of mouse embryonic stem cells (mESCs) make them a great tool to study early mammalian development. Various signaling pathways that shape early mammalian development can be mimicked for in vitro mESC differentiation toward primitive lineages first and more specialized cell types later. Since the precise nature of the molecular mechanisms and the crosstalk between these signaling pathways is yet to be fully understood, there is a high level of variability in the efficiency and synchronicity among available differentiation protocols. Commitment of mESCs toward mesoderm, endoderm, or neuroectoderm lineages happens over only a few days and is highly efficient. Here, we provide protocols for the directed differentiation of mESCs toward these lineages in vitro.
Collapse
|
46
|
Browning LM, Miller C, Kuczma M, Pietrzak M, Jing Y, Rempala G, Muranski P, Ignatowicz L, Kraj P. Bone Morphogenic Proteins Are Immunoregulatory Cytokines Controlling FOXP3 + T reg Cells. Cell Rep 2021; 33:108219. [PMID: 33027660 DOI: 10.1016/j.celrep.2020.108219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenic proteins (BMPs) are members of the transforming growth factor β (TGF-β) cytokine family promoting differentiation, homeostasis, and self-renewal of multiple tissues. We show that signaling through the bone morphogenic protein receptor 1α (BMPR1α) sustains expression of FOXP3 in Treg cells in peripheral lymphoid tissues. BMPR1α signaling promotes molecular circuits supporting acquisition and preservation of Treg cell phenotype and inhibiting differentiation of pro-inflammatory effector Th1/Th17 CD4+ T cell. Mechanistically, increased expression of KDM6B (JMJD3) histone demethylase, an antagonist of the polycomb repressive complex 2, underlies lineage-specific changes of T cell phenotypes associated with abrogation of BMPR1α signaling. These results reveal that BMPs are immunoregulatory cytokines mediating maturation and stability of peripheral FOXP3+ regulatory T cells (Treg cells) and controlling generation of iTreg cells. Thus, we establish that BMPs, a large cytokine family, are an essential link between stromal tissues and the adaptive immune system involved in sustaining tissue homeostasis by promoting immunological tolerance.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Caroline Miller
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA
| | - Grzegorz Rempala
- College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Pawel Muranski
- Columbia University Medical Center, New York, NY 10032, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
47
|
Tsuruda M, Morino-Koga S, Ogawa M. Bone morphogenetic protein 4 differently promotes distinct VE-cadherin + precursor stages during the definitive hematopoietic development from embryonic stem cell-derived mesodermal cells. Exp Hematol 2021; 103:40-51.e7. [PMID: 34464660 DOI: 10.1016/j.exphem.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Definitive hematopoietic cells develop from fetal liver kinase 1 (Flk1)+ mesodermal cells during the in vitro differentiation of mouse embryonic stem cells (ESCs). VE-cadherin+CD41-CD45-(V+41-45-) hemogenic endothelial cells (HECs) and VE-cadherin+CD41+CD45- (V+41+45-) cells mediate the definitive hematopoietic development from Flk1+ cells. Bone morphogenetic protein 4 (BMP4) is known to be essential for the formation of mesoderm. However, the role of BMP4 in differentiation of the VE-cadherin+ definitive hematopoietic precursors from the mesoderm has been elusive. We addressed this issue using a co-aggregation culture of ESC-derived Flk1+ cells with OP9 stromal cells. This culture method induced V+41-45- cells, V+41+45- cells, and CD45+ cells from Flk1+ cells. V+41+45- cells possessed potential for erythromyeloid and T-lymphoid differentiation. When Flk1+ cells were cultured in the presence of a high concentration of BMP4, the generation of V+41-45- cells was enhanced. The increase in V+41-45- cells led to the subsequent increase in V+41+45- and CD45+ cells. The addition of BMP4 also increased hematopoietic colony-forming cells of various lineages. Furthermore, BMP4 promoted the expansion of V+41+45- cells independently of the preceding V+41-45- cell stage. These results suggest that BMP4 has promotive effects on the differentiation of V+41-45- HECs from Flk1+ mesodermal cells and the subsequent proliferation of V+41+45- hematopoietic precursors. These findings may provide insights for establishing a culture system to induce definitive hematopoietic stem cells from ESCs.
Collapse
Affiliation(s)
- Mariko Tsuruda
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
48
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
49
|
Warsi S, Blank U, Dahl M, Hooi Min Grahn T, Schmiderer L, Andradottir S, Karlsson S. BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica 2021; 106:2203-2214. [PMID: 32675226 PMCID: PMC8327730 DOI: 10.3324/haematol.2019.236125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Life-long production of blood from hematopoietic stem cells (HSC) is a process of strict modulation. Intrinsic and extrinsic signals govern fate options like self-renewal – a cardinal feature of HSC. Bone morphogenetic proteins (BMP) have an established role in embryonic hematopoiesis, but less is known about its functions in adulthood. Previously, SMAD-mediated BMP signaling has been proven dispensable for HSC. However, the BMP type-II receptor (BMPR-II) is highly expressed in HSC, leaving the possibility that BMP function via alternative pathways. Here, we establish that BMP signaling is required for selfrenewal of adult HSC. Through conditional knockout we show that BMPR-II deficient HSC have impaired self-renewal and regenerative capacity. BMPR-II deficient cells have reduced p38 activation, implying that non-SMAD pathways operate downstream of BMP in HSC. Indeed, a majority of primitive hematopoietic cells do not engage in SMADmediated responses downstream of BMP in vivo. Furthermore, deficiency of BMPR-II results in increased expression of TJP1, a known regulator of self-renewal in other stem cells, and knockdown of TJP1 in primitive hematopoietic cells partly rescues the BMPR-II null phenotype. This suggests TJP1 may be a universal stem cell regulator. In conclusion, BMP signaling, in part mediated through TJP1, is required endogenously by adult HSC to maintain self-renewal capacity and proper resilience of the hematopoietic system during regeneration.
Collapse
Affiliation(s)
- Sarah Warsi
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ulrika Blank
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maria Dahl
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tan Hooi Min Grahn
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ludwig Schmiderer
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Shao C, Lou P, Liu R, Bi X, Li G, Yang X, Sheng X, Xu J, Lv C, Yu Z. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol 2021; 9:691050. [PMID: 34336839 PMCID: PMC8320003 DOI: 10.3389/fcell.2021.691050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Myoepithelial and luminal cells synergistically expand in the mammary gland during pregnancy, and this process is precisely governed by hormone-related signaling pathways. The bone morphogenetic protein (BMP) signaling pathway is now known to play crucial roles in all organ systems. However, the functions of BMP signaling in the mammary gland remain unclear. Here, we found that BMPR1a is upregulated by hormone-induced Sp1 at pregnancy. Using a doxycycline (Dox)-inducible BMPR1a conditional knockout mouse model, we demonstrated that loss of BMPR1a in myoepithelium results in compromised myoepithelial integrity, reduced mammary stem cells and precocious alveolar differentiation during pregnancy. Mechanistically, BMPR1a regulates the expression of p63 and Slug, two key regulators of myoepithelial maintenance, through pSmad1/5-Smad4 complexes, and consequently activate P-cadherin during pregnancy. Furthermore, we observed that loss of BMPR1a in myoepithelium results in the upregulation of a secreted protein Spp1 that could account for the precocious alveolar differentiation in luminal layer, suggesting a defective basal-to-luminal paracrine signaling mechanism. Collectively, these findings identify a novel role of BMP signaling in maintaining the identity of myoepithelial cells and suppressing precocious alveolar formation.
Collapse
Affiliation(s)
- Chunlei Shao
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengbo Lou
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guilin Li
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xu Yang
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|