1
|
Duijvesteijn N, van der Werf JHJ, Kinghorn BP. Segregation GWAS to linearize a non-additive locus with incomplete penetrance: an example of horn status in sheep. Genet Sel Evol 2024; 56:61. [PMID: 39227755 PMCID: PMC11373182 DOI: 10.1186/s12711-024-00928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The objective of this study was to introduce a genome-wide association study (GWAS) in conjunction with segregation analysis on monogenic categorical traits. Genotype probabilities calculated from phenotypes, mode of inheritance and pedigree information, are expressed as the expected allele count (EAC) (range 0 to 2), and are inherited additively, by definition, unlike the original phenotypes, which are non-additive and could be of incomplete penetrance. The EAC are regressed on the single nucleotide polymorphism (SNP) genotypes, similar to an additive GWAS. In this study, horn phenotypes in Merino sheep are used to illustrate the advantages of using the segregation GWAS, a trait believed to be monogenic, affected by dominance, sex-dependent expression and likely affected by incomplete penetrance. We also used simulation to investigate whether incomplete penetrance can cause prediction errors in Merino sheep for horn status. RESULTS Estimated penetrance values differed between the sexes, where males showed almost complete penetrance, especially for horned and polled phenotypes, while females had low penetrance values for the horned status. This suggests that females homozygous for the 'horned allele' have a horned phenotype in only 22% of the cases while 78% will be knobbed or have scurs. The GWAS using EAC on 4001 animals and 510,174 SNP genotypes from the Illumina Ovine high-density (600k) chip gave a stronger association compared to using actual phenotypes. The correlation between the EAC and the allele count of the SNP with the highest -log10(p-value) was 0.73 in males and 0.67 in females. Simulations using penetrance values found by the segregation analyses resulted in higher correlations between the EAC and the causative mutation (0.95 for males and 0.89 for females, respectively), suggesting that the most predictive SNP is not in full LD with the causative mutation. CONCLUSIONS Our results show clear differences in penetrance values between males and female Merino sheep for horn status. Segregation analysis for a trait with mutually exclusive phenotypes, non-additive inheritance, and/or incomplete penetrance can lead to considerably more power in a GWAS because the linearized genotype probabilities are additive and can accommodate incomplete penetrance. This method can be extended to any monogenic controlled categorical trait of which the phenotypes are mutually exclusive.
Collapse
Affiliation(s)
- Naomi Duijvesteijn
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
- Hendrix Genetics Research, Technology & Services B.V., P.O. Box 114, 5830 AC, Boxmeer, The Netherlands
| | - Julius H J van der Werf
- Cooperative Research Centre for Sheep Industry Innovation, Armidale, NSW, 2351, Australia.
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia.
| | - Brian P Kinghorn
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
2
|
Retallick-Townsley KG, Lee S, Cartwright S, Cohen S, Sen A, Jia M, Young H, Dobbyn L, Deans M, Fernandez-Garcia M, Huckins LM, Brennand KJ. Dynamic stress- and inflammatory-based regulation of psychiatric risk loci in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602755. [PMID: 39026810 PMCID: PMC11257632 DOI: 10.1101/2024.07.09.602755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The prenatal environment can alter neurodevelopmental and clinical trajectories, markedly increasing risk for psychiatric disorders in childhood and adolescence. To understand if and how fetal exposures to stress and inflammation exacerbate manifestation of genetic risk for complex brain disorders, we report a large-scale context-dependent massively parallel reporter assay (MPRA) in human neurons designed to catalogue genotype x environment (GxE) interactions. Across 240 genome-wide association study (GWAS) loci linked to ten brain traits/disorders, the impact of hydrocortisone, interleukin 6, and interferon alpha on transcriptional activity is empirically evaluated in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons. Of ~3,500 candidate regulatory risk elements (CREs), 11% of variants are active at baseline, whereas cue-specific CRE regulatory activity range from a high of 23% (hydrocortisone) to a low of 6% (IL-6). Cue-specific regulatory activity is driven, at least in part, by differences in transcription factor binding activity, the gene targets of which show unique enrichments for brain disorders as well as co-morbid metabolic and immune syndromes. The dynamic nature of genetic regulation informs the influence of environmental factors, reveals a mechanism underlying pleiotropy and variable penetrance, and identifies specific risk variants that confer greater disorder susceptibility after exposure to stress or inflammation. Understanding neurodevelopmental GxE interactions will inform mental health trajectories and uncover novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G. Retallick-Townsley
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Seoyeon Lee
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sam Cartwright
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sophie Cohen
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Annabel Sen
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meng Jia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Hannah Young
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee Dobbyn
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Deans
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meilin Fernandez-Garcia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Laura M. Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen J. Brennand
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
3
|
Reynolds AZ, Niedbalski SD. Sex-biased gene regulation varies across human populations as a result of adaptive evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24888. [PMID: 38100225 PMCID: PMC11279473 DOI: 10.1002/ajpa.24888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Studies of human sexual dimorphism and gender disparities in health focus on ostensibly universal molecular sex differences, such as sex chromosomes and circulating hormone levels, while ignoring the extraordinary diversity in biology, behavior, and culture acquired by different human populations over their unique evolutionary histories. MATERIALS AND METHODS Using RNA-Seq data and whole genome sequences from 1000G and HGDP, we investigate variation in sex-biased gene expression across 11 human populations and test whether population-level variation in sex-biased expression may have resulted from adaptive evolution in regions containing sex-specific regulatory variants. RESULTS We find that sex-biased gene expression in humans is highly variable, mostly population-specific, and demonstrates between population reversals. Expression quantitative trait locus mapping reveals sex-specific regulatory regions with evidence of recent positive natural selection, suggesting that variation in sex-biased expression may have evolved as an adaptive response to ancestral environments experienced by human populations. DISCUSSION These results indicate that sex-biased gene expression is more flexible than previously thought and is not generally shared among human populations. Instead, molecular phenotypes associated with sex depend on complex interactions between population-specific molecular evolution and physiological responses to contemporary socioecologies.
Collapse
Affiliation(s)
- Adam Z. Reynolds
- Department of Anthropology, University of New Mexico, Albuquerque, NM
| | | |
Collapse
|
4
|
Kosmara D, Papanikolaou S, Nikolaou C, Bertsias G. Extensive Alternative Splicing Patterns in Systemic Lupus Erythematosus Highlight Sexual Differences. Cells 2023; 12:2678. [PMID: 38067106 PMCID: PMC10705143 DOI: 10.3390/cells12232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Substantial evidence highlights divergences in immune responses between men and women. Women are more susceptible to autoimmunity, whereas men suffer from the more severe presentation of autoimmune disorders. The molecular mechanism of this sexual dimorphism remains elusive. Herein, we conducted a comprehensive analysis of sex differences in whole-blood gene expression focusing on alternative splicing (AS) events in systemic lupus erythematosus (SLE), which is a prototype sex-biased disease. This study included 79 SLE patients with active disease and 58 matched healthy controls who underwent whole-blood RNA sequencing. Sex differences in splicing events were widespread, existent in both SLE and a healthy state. However, we observed distinct gene sets and molecular pathways targeted by sex-dependent AS in SLE patients as compared to healthy subjects, as well as a notable sex dissimilarity in intron retention events. Sexually differential spliced genes specific to SLE patients were enriched for dynamic cellular processes including chromatin remodeling, stress and inflammatory responses. Remarkably, the extent of sexual differences in AS in the SLE patients and healthy individuals exceeded those in gene expression. Overall, this study reveals an unprecedent variation in sex-dependent splicing events in SLE and the healthy state, with potential implications for understanding the molecular basis of sexual dimorphism in autoimmunity.
Collapse
Affiliation(s)
- Despoina Kosmara
- Rheumatology and Clinical Immunology, University Hospital of Heraklion and University of Crete Medical School, 71500 Heraklion, Greece
- Foundation for Research and Technology-Hellas (FORTH), Infections and Immunity, Institute of Molecular Biology and Biotechnology, 71110 Heraklion, Greece
| | - Sofia Papanikolaou
- Rheumatology and Clinical Immunology, University Hospital of Heraklion and University of Crete Medical School, 71500 Heraklion, Greece
- Biomedical Sciences Research Center “Alexander Fleming”, Institute of Bioinnovation, 16672 Athens, Greece
| | - Christoforos Nikolaou
- Biomedical Sciences Research Center “Alexander Fleming”, Institute of Bioinnovation, 16672 Athens, Greece
| | - George Bertsias
- Rheumatology and Clinical Immunology, University Hospital of Heraklion and University of Crete Medical School, 71500 Heraklion, Greece
- Foundation for Research and Technology-Hellas (FORTH), Infections and Immunity, Institute of Molecular Biology and Biotechnology, 71110 Heraklion, Greece
| |
Collapse
|
5
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Conlon FL, Arnold AP. Sex chromosome mechanisms in cardiac development and disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:340-350. [PMID: 37808586 PMCID: PMC10558115 DOI: 10.1038/s44161-023-00256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/13/2023] [Indexed: 10/10/2023]
Abstract
Many human diseases, including cardiovascular disease, show differences between men and women in pathology and treatment outcomes. In the case of cardiac disease, sex differences are exemplified by differences in the frequency of specific types of congenital and adult-onset heart disease. Clinical studies have suggested that gonadal hormones are a factor in sex bias. However, recent research has shown that gene and protein networks under non-hormonal control also account for cardiac sex differences. In this review, we describe the sex chromosome pathways that lead to sex differences in the development and function of the heart and highlight how these findings affect future care and treatment of cardiac disease.
Collapse
Affiliation(s)
- Frank L Conlon
- Departments of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Porcu E, Claringbould A, Weihs A, Lepik K, Richardson TG, Völker U, Santoni FA, Teumer A, Franke L, Reymond A, Kutalik Z. Limited evidence for blood eQTLs in human sexual dimorphism. Genome Med 2022; 14:89. [PMID: 35953856 PMCID: PMC9373355 DOI: 10.1186/s13073-022-01088-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The genetic underpinning of sexual dimorphism is very poorly understood. The prevalence of many diseases differs between men and women, which could be in part caused by sex-specific genetic effects. Nevertheless, only a few published genome-wide association studies (GWAS) were performed separately in each sex. The reported enrichment of expression quantitative trait loci (eQTLs) among GWAS-associated SNPs suggests a potential role of sex-specific eQTLs in the sex-specific genetic mechanism underlying complex traits. METHODS To explore this scenario, we combined sex-specific whole blood RNA-seq eQTL data from 3447 European individuals included in BIOS Consortium and GWAS data from UK Biobank. Next, to test the presence of sex-biased causal effect of gene expression on complex traits, we performed sex-specific transcriptome-wide Mendelian randomization (TWMR) analyses on the two most sexually dimorphic traits, waist-to-hip ratio (WHR) and testosterone levels. Finally, we performed power analysis to calculate the GWAS sample size needed to observe sex-specific trait associations driven by sex-biased eQTLs. RESULTS Among 9 million SNP-gene pairs showing sex-combined associations, we found 18 genes with significant sex-biased cis-eQTLs (FDR 5%). Our phenome-wide association study of the 18 top sex-biased eQTLs on >700 traits unraveled that these eQTLs do not systematically translate into detectable sex-biased trait-associations. In addition, we observed that sex-specific causal effects of gene expression on complex traits are not driven by sex-specific eQTLs. Power analyses using real eQTL- and causal-effect sizes showed that millions of samples would be necessary to observe sex-biased trait associations that are fully driven by sex-biased cis-eQTLs. Compensatory effects may further hamper their detection. CONCLUSIONS Our results suggest that sex-specific eQTLs in whole blood do not translate to detectable sex-specific trait associations of complex diseases, and vice versa that the observed sex-specific trait associations cannot be explained by sex-specific eQTLs.
Collapse
Affiliation(s)
- Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,University Center for Primary Care and Public Health, Lausanne, Switzerland.
| | - Annique Claringbould
- University Medical Centre Groningen, Groningen, the Netherlands.,Structural and Computational Biology Unit, European Molecular Biology Laboratories (EMBL), Heidelberg, Germany
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Kaido Lepik
- Institute of Computer Science, University of Tartu, Tartu, Estonia.,Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, OX3 7DQ, UK
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Federico A Santoni
- Endocrine, Diabetes, and Metabolism Service, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.,Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Lude Franke
- University Medical Centre Groningen, Groningen, the Netherlands
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland. .,University Center for Primary Care and Public Health, Lausanne, Switzerland. .,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Keur N, Ricaño-Ponce I, Kumar V, Matzaraki V. A systematic review of analytical methods used in genetic association analysis of the X-chromosome. Brief Bioinform 2022; 23:6651325. [PMID: 35901513 DOI: 10.1093/bib/bbac287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic association studies have been very successful at elucidating the genetic background of many complex diseases/traits. However, the X-chromosome is often neglected in these studies because of technical difficulties and the fact that most tools only utilize genetic data from autosomes. In this review, we aim to provide an overview of different practical approaches that are followed to incorporate the X-chromosome in association analysis, such as Genome-Wide Association Studies and Expression Quantitative Trait Loci Analysis. In general, the choice of which test statistics is most appropriate will depend on three main criteria: (1) the underlying X-inactivation model, (2) if Hardy-Weinberg equilibrium holds and sex-specific allele frequencies are expected and (3) whether adjustment for confounding variables is required. All in all, it is recommended that a combination of different association tests should be used for the analysis of X-chromosome.
Collapse
Affiliation(s)
- Nick Keur
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700RB, Groningen, The Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 HP, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics 2022; 14:62. [PMID: 35568878 PMCID: PMC9107695 DOI: 10.1186/s13148-022-01279-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis. RESULTS We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP's are enriched in CpG islands and CpG shores and located preferentially at 5'UTRs, 3'UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1. CONCLUSION Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood.
Collapse
Affiliation(s)
- Olivia A Grant
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yucheng Wang
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Leonard Schalkwyk
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
10
|
Kawano-Dourado L, Glassberg MK, Assayag D, Borie R, Johannson KA. Sex and gender in interstitial lung diseases. Eur Respir Rev 2021; 30:210105. [PMID: 34789464 PMCID: PMC9489177 DOI: 10.1183/16000617.0105-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Sex and gender differences influence key domains of research, lung health, healthcare access and healthcare delivery. In interstitial lung diseases (ILDs), mouse models of pulmonary fibrosis are clearly influenced by sex hormones. Additionally, short telomeres, a biomarker of telomere regulation gene mutations, are impacted by sex, while heritability unexplained by genetic variation may be attributable to gendered environmental factors that drive epigenetic control. Diseases like idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, occupational ILDs, connective tissue-associated ILDs and lymphangioleiomyomatosis have different prevalence and prognosis between men and women. These differences arise from a complex interplay between biological sex and sociocultural gender influencing genetics, epigenomic modifiers, hormones, immune function, response to treatment and interaction with healthcare systems. Much work remains to be done to systematically integrate sex and gender analysis into relevant domains of science and clinical care in ILD, from strategic considerations for establishing research priorities to guidelines for establishing best clinical practices. Accounting for sex and gender in ILD is essential to the practice of individualised, patient-centred medicine.
Collapse
Affiliation(s)
- Leticia Kawano-Dourado
- HCor Research Institute, Hospital do Coracao, Sao Paulo, Brazil
- Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, Sao Paulo, Brazil
- INSERM 1152, University of Paris, Paris, France
| | - Marilyn K Glassberg
- Pulmonary, Critical Care, and Sleep Medicine Division, Dept of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | - Raphaël Borie
- Pulmonary Division, Hospital Bichat, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Kerri A Johannson
- Depts of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Sex differences in the genetic regulation of the blood transcriptome response to glucocorticoid receptor activation. Transl Psychiatry 2021; 11:632. [PMID: 34903727 PMCID: PMC8669026 DOI: 10.1038/s41398-021-01756-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.
Collapse
|
12
|
Espuela-Ortiz A, Herrera-Luis E, Lorenzo-Díaz F, Hu D, Eng C, Villar J, Rodriguez-Santana JR, Burchard EG, Pino-Yanes M. Role of Sex on the Genetic Susceptibility to Childhood Asthma in Latinos and African Americans. J Pers Med 2021; 11:1140. [PMID: 34834492 PMCID: PMC8625344 DOI: 10.3390/jpm11111140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 01/08/2023] Open
Abstract
Asthma is a respiratory disease whose prevalence changes throughout the lifespan and differs by sex, being more prevalent in males during childhood and in females after puberty. In this study, we assessed the influence of sex on the genetic susceptibility to childhood asthma in admixed populations. Sex-interaction and sex-stratified genome-wide association studies (GWAS) were performed in 4291 Latinos and 1730 African Americans separately, and results were meta-analyzed. Genome-wide (p ≤ 9.35 × 10-8) and suggestive (p ≤ 1.87 × 10-6) population-specific significance thresholds were calculated based on 1000 Genomes Project data. Additionally, protein quantitative trait locus (pQTL) information was gathered for the suggestively associated variants, and enrichment analyses of the proteins identified were carried out. Four independent loci showed interaction with sex at a suggestive level. The stratified GWAS highlighted the 17q12-21 asthma locus as a contributor to asthma susceptibility in both sexes but reached genome-wide significance only in females (p-females < 9.2 × 10-8; p-males < 1.25 × 10-2). Conversely, genetic variants upstream of ligand-dependent nuclear receptor corepressor-like gene (LCORL), previously involved in height determination and spermatogenesis, were associated with asthma only in males (minimum p = 5.31 × 10-8 for rs4593128). Enrichment analyses revealed an overrepresentation of processes related to the immune system and highlighted differences between sexes. In conclusion, we identified sex-specific polymorphisms that could contribute to the differences in the prevalence of childhood asthma between males and females.
Collapse
Grants
- SAF2017-83417R European Regional Development Fund from the European Union
- P60MD006902, R01MD010443, and R56MD013312 NIMHD NIH HHS
- SAF2017-83417R State Research Agency
- M-ULL MICIU/ULL
- Amos Medical Faculty Development Program Robert Wood Johnson Foundation
- R01ES015794 NIEHS NIH HHS
- R21ES24844 NIEHS NIH HHS
- R01HL128439, R01HL135156, R01HL141992, and R01HL141845 National Heart Lung and Blood Institute
- RL5 GM118984 NIGMS NIH HHS
- RYC-2015-17205 Spanish Ministry of Science, Innovation, and Universities
- American Asthma Foundation
- R01HL117004 and X01HL134589 National Heart Lung and Blood Institute
- SAF2017-83417R Spanish Ministry of Science, Innovation, and Universities
- Distinguished Professorship in Pharmaceutical Sciences II Harry Wm. and Diana V. Hind
- U01HG009080 NHGRI NIH HHS
- 24RT-0025 and 27IR-0030 Tobacco-Related Disease Research Program
- PRE2018-083837 Spanish Ministry of Science, Innovation, and Universities
- UL1 TR001872 NCATS NIH HHS
- RL5GM118984 NIGMS NIH HHS
- Sandler Foundation
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
| | - Fabián Lorenzo-Díaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | | | - Esteban G. Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (D.H.); (C.E.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain; (A.E.-O.); (E.H.-L.); (F.L.-D.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
13
|
Isshiki M, Naka I, Kimura R, Nishida N, Furusawa T, Natsuhara K, Yamauchi T, Nakazawa M, Ishida T, Inaoka T, Matsumura Y, Ohtsuka R, Ohashi J. Admixture with indigenous people helps local adaptation: admixture-enabled selection in Polynesians. BMC Ecol Evol 2021; 21:179. [PMID: 34551727 PMCID: PMC8456657 DOI: 10.1186/s12862-021-01900-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Homo sapiens have experienced admixture many times in the last few thousand years. To examine how admixture affects local adaptation, we investigated genomes of modern Polynesians, who are shaped through admixture between Austronesian-speaking people from Southeast Asia (Asian-related ancestors) and indigenous people in Near Oceania (Papuan-related ancestors). Methods In this study local ancestry was estimated across the genome in Polynesians (23 Tongan subjects) to find the candidate regions of admixture-enabled selection contributed by Papuan-related ancestors. Results The mean proportion of Papuan-related ancestry across the Polynesian genome was estimated as 24.6% (SD = 8.63%), and two genomic regions, the extended major histocompatibility complex (xMHC) region on chromosome 6 and the ATP-binding cassette transporter sub-family C member 11 (ABCC11) gene on chromosome 16, showed proportions of Papuan-related ancestry more than 5 SD greater than the mean (> 67.8%). The coalescent simulation under the assumption of selective neutrality suggested that such signals of Papuan-related ancestry enrichment were caused by positive selection after admixture (false discovery rate = 0.045). The ABCC11 harbors a nonsynonymous SNP, rs17822931, which affects apocrine secretory cell function. The approximate Bayesian computation indicated that, in Polynesian ancestors, a strong positive selection (s = 0.0217) acted on the ancestral allele of rs17822931 derived from Papuan-related ancestors. Conclusions Our results suggest that admixture with Papuan-related ancestors contributed to the rapid local adaptation of Polynesian ancestors. Considering frequent admixture events in human evolution history, the acceleration of local adaptation through admixture should be a common event in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01900-y.
Collapse
Affiliation(s)
- Mariko Isshiki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Izumi Naka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Nao Nishida
- Genome Medical Science Project, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, 272-8516, Japan
| | - Takuro Furusawa
- Graduate School of Asian and African Area Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kazumi Natsuhara
- Department of International Health and Nursing, Faculty of Nursing, Toho University, Tokyo, 143-0015, Japan
| | - Taro Yamauchi
- Faculty of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Minato Nakazawa
- Graduate School of Health Sciences, Kobe University, Kobe, 654-0142, Japan
| | - Takafumi Ishida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tsukasa Inaoka
- Department of Human Ecology, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Yasuhiro Matsumura
- Faculty of Health and Nutrition, Bunkyo University, Chigasaki, 253-8550, Japan
| | | | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
14
|
Bernabeu E, Canela-Xandri O, Rawlik K, Talenti A, Prendergast J, Tenesa A. Sex differences in genetic architecture in the UK Biobank. Nat Genet 2021; 53:1283-1289. [PMID: 34493869 DOI: 10.1038/s41588-021-00912-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/12/2021] [Indexed: 01/05/2023]
Abstract
Males and females present differences in complex traits and in the risk of a wide array of diseases. Genotype by sex (GxS) interactions are thought to account for some of these differences. However, the extent and basis of GxS are poorly understood. In the present study, we provide insights into both the scope and the mechanism of GxS across the genome of about 450,000 individuals of European ancestry and 530 complex traits in the UK Biobank. We found small yet widespread differences in genetic architecture across traits. We also found that, in some cases, sex-agnostic analyses may be missing trait-associated loci and looked into possible improvements in the prediction of high-level phenotypes. Finally, we studied the potential functional role of the differences observed through sex-biased gene expression and gene-level analyses. Our results suggest the need to consider sex-aware analyses for future studies to shed light onto possible sex-specific molecular mechanisms.
Collapse
Affiliation(s)
- Elena Bernabeu
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Oriol Canela-Xandri
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Konrad Rawlik
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Andrea Talenti
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - James Prendergast
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Albert Tenesa
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, Midlothian, UK.
- Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| |
Collapse
|
15
|
Laskar RS, Li P, Ecsedi S, Abedi-Ardekani B, Durand G, Robinot N, Hubert JN, Janout V, Zaridze D, Mukeria A, Mates D, Holcatova I, Foretova L, Swiatkowska B, Dzamic Z, Milosavljevic S, Olaso R, Boland A, Deleuze JF, Muller DC, McKay JD, Brennan P, Le Calvez-Kelm F, Scelo G, Chanudet E. Sexual dimorphism in cancer: insights from transcriptional signatures in kidney tissue and renal cell carcinoma. Hum Mol Genet 2021; 30:343-355. [PMID: 33527138 PMCID: PMC8098110 DOI: 10.1093/hmg/ddab031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Sexual dimorphism in cancer incidence and outcome is widespread. Understanding the underlying mechanisms is fundamental to improve cancer prevention and clinical management. Sex disparities are particularly striking in kidney cancer: across diverse populations, men consistently show unexplained 2-fold increased incidence and worse prognosis. We have characterized genome-wide expression and regulatory networks of 609 renal tumors and 256 non-tumor renal tissues. Normal kidney displayed sex-specific transcriptional signatures, including higher expression of X-linked tumor suppressor genes in women. Sex-dependent genotype-phenotype associations unraveled women-specific immune regulation. Sex differences were markedly expanded in tumors, with male-biased expression of key genes implicated in metabolism, non-malignant diseases with male predominance and carcinogenesis, including markers of tumor infiltrating leukocytes. Analysis of sex-dependent RCC progression and survival uncovered prognostic markers involved in immune response and oxygen homeostasis. In summary, human kidney tissues display remarkable sexual dimorphism at the molecular level. Sex-specific transcriptional signatures further shape renal cancer, with relevance for clinical management.
Collapse
Affiliation(s)
- Ruhina S Laskar
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Peng Li
- Laboratory of Population Health, Max Planck Institute for Demographic Research, 18057 Rostock, Germany
| | - Szilvia Ecsedi
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Behnoush Abedi-Ardekani
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Geoffroy Durand
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Nivonirina Robinot
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Jean-Noël Hubert
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Vladimir Janout
- Science and Research Center, Faculty of Health Sciences, Palacky University, 77900 Olomouc, Czech Republic
| | - David Zaridze
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, 115478 Moscow, Russian Federation
| | - Anush Mukeria
- Department of Epidemiology and Prevention, Russian N.N. Blokhin Cancer Research Centre, 115478 Moscow, Russian Federation
| | - Dana Mates
- Department of Environmental Health, National Institute of Public Health, 050463 Bucharest, Romania
| | - Ivana Holcatova
- Department of Public Health and Preventive Medicine, Charles University, Second Faculty of Medicine, 15006 Prague, Czech Republic
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 60200 Brno, Czech Republic
| | - Beata Swiatkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Zoran Dzamic
- Clinic of Urology, Clinical Center of Serbia (KCS), University of Belgrade - Faculty of Medicine, 11000 Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organisation for Cancer Prevention and Research, 11070 Belgrade, Serbia
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - David C Muller
- Faculty of Medicine, School of Public Health, Imperial College London, W21NY London, UK
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Florence Le Calvez-Kelm
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Ghislaine Scelo
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
- Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, 8-10124 Turin, Italy
| | - Estelle Chanudet
- Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| |
Collapse
|
16
|
DeMeo DL. Sex and Gender Omic Biomarkers in Men and Women With COPD: Considerations for Precision Medicine. Chest 2021; 160:104-113. [PMID: 33745988 DOI: 10.1016/j.chest.2021.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Sex and gender differences in lung health and disease are imperative to consider and study if precision pulmonary medicine is to be achieved. The development of reliable COPD biomarkers has been elusive, and the translation of biomarkers to clinical care has been limited. Useful and effective biomarkers must be developed with attention to clinical heterogeneity of COPD; inherent heterogeneity exists related to grouping women and men together in the studies of COPD. Considering sex and gender differences and influences related to -omics may represent progress in susceptibility, diagnostic, prognostic, and therapeutic biomarker development and clinical innovation to improve the lung health of men and women.
Collapse
Affiliation(s)
- Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
17
|
Shieh M, Hayeck TJ, Dinh A, Duke JL, Chitnis N, Mosbruger T, Morlen RP, Ferriola D, Kneib C, Hu T, Huang Y, Monos DS. Complex Linkage Disequilibrium Effects in HLA-DPB1 Expression and Molecular Mismatch Analyses of Transplantation Outcomes. Transplantation 2021; 105:637-647. [PMID: 32301906 PMCID: PMC8628253 DOI: 10.1097/tp.0000000000003272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND HLA molecular mismatch (MM) is a risk factor for de novo donor-specific antibody (dnDSA) development in solid organ transplantation. HLA expression differences have also been associated with adverse outcomes in hematopoietic cell transplantation. We sought to study both MM and expression in assessing dnDSA risk. METHODS One hundred three HLA-DP-mismatched solid organ transplantation pairs were retrospectively analyzed. MM was computed using amino acids (aa), eplets, and, supplementarily, Grantham/Epstein scores. DPB1 alleles were classified as rs9277534-A (low-expression) or rs9277534-G (high-expression) linked. To determine the associations between risk factors and dnDSA, logistic regression, linkage disequilibrium (LD), and population-based analyses were performed. RESULTS A high-risk AA:GX (recipient:donor) expression combination (X = A or G) demonstrated strong association with HLA-DP dnDSA (P = 0.001). MM was also associated with HLA-DP dnDSA when evaluated by itself (eplet P = 0.007, aa P = 0.003, Grantham P = 0.005, Epstein P = 0.004). When attempting to determine the relative individual effects of the risk factors in multivariable analysis, only AA:GX expression status retained a strong association (relative risk = 18.6, P = 0.007 with eplet; relative risk = 15.8, P = 0.02 with aa), while MM was no longer significant (eplet P = 0.56, aa P = 0.51). Importantly, these risk factors are correlated, due to LD between the expression-tagging single-nucleotide polymorphism and polymorphisms along HLA-DPB1. CONCLUSIONS The MM and expression risk factors each appear to be strong predictors of HLA-DP dnDSA and to possess clinical utility; however, these two risk factors are closely correlated. These metrics may represent distinct ways of characterizing a common overlapping dnDSA risk profile, but they are not independent. Further, we demonstrate the importance and detailed implications of LD effects in dnDSA risk assessment and possibly transplantation overall.
Collapse
Affiliation(s)
- Mengkai Shieh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Tristan J. Hayeck
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anh Dinh
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jamie L. Duke
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nilesh Chitnis
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Timothy Mosbruger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Ryan P. Morlen
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah Ferriola
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Carolina Kneib
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Taishan Hu
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yanping Huang
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Dimitri S. Monos
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
18
|
Stein MM, Conery M, Magnaye KM, Clay SM, Billstrand C, Nicolae R, Naughton K, Ober C, Thompson EE. Sex-specific differences in peripheral blood leukocyte transcriptional response to LPS are enriched for HLA region and X chromosome genes. Sci Rep 2021; 11:1107. [PMID: 33441806 PMCID: PMC7806814 DOI: 10.1038/s41598-020-80145-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Sex-specific differences in prevalence are well documented for many common, complex diseases, especially for immune-mediated diseases, yet the precise mechanisms through which factors associated with biological sex exert their effects throughout life are not well understood. We interrogated sex-specific transcriptional responses of peripheral blood leukocytes (PBLs) to innate immune stimulation by lipopolysaccharide (LPS) in 46 male and 66 female members of the Hutterite community, who practice a communal lifestyle. We identified 1217 autosomal and 54 X-linked genes with sex-specific responses to LPS, as well as 71 autosomal and one X-linked sex-specific expression quantitative trait loci (eQTLs). Despite a similar proportion of the 15 HLA genes responding to LPS compared to all expressed autosomal genes, there was a significant over-representation of genes with sex by treatment interactions among HLA genes. We also observed an enrichment of sex-specific differentially expressed genes in response to LPS for X-linked genes compared to autosomal genes, suggesting that HLA and X-linked genes may disproportionately contribute to sex disparities in risk for immune-mediated diseases.
Collapse
Affiliation(s)
- Michelle M Stein
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Mitch Conery
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Kevin M Magnaye
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Selene M Clay
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | | | - Raluca Nicolae
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine Naughton
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Emma E Thompson
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Lagou V, Mägi R, Hottenga JJ, Grallert H, Perry JRB, Bouatia-Naji N, Marullo L, Rybin D, Jansen R, Min JL, Dimas AS, Ulrich A, Zudina L, Gådin JR, Jiang L, Faggian A, Bonnefond A, Fadista J, Stathopoulou MG, Isaacs A, Willems SM, Navarro P, Tanaka T, Jackson AU, Montasser ME, O'Connell JR, Bielak LF, Webster RJ, Saxena R, Stafford JM, Pourcain BS, Timpson NJ, Salo P, Shin SY, Amin N, Smith AV, Li G, Verweij N, Goel A, Ford I, Johnson PCD, Johnson T, Kapur K, Thorleifsson G, Strawbridge RJ, Rasmussen-Torvik LJ, Esko T, Mihailov E, Fall T, Fraser RM, Mahajan A, Kanoni S, Giedraitis V, Kleber ME, Silbernagel G, Meyer J, Müller-Nurasyid M, Ganna A, Sarin AP, Yengo L, Shungin D, Luan J, Horikoshi M, An P, Sanna S, Boettcher Y, Rayner NW, Nolte IM, Zemunik T, Iperen EV, Kovacs P, Hastie ND, Wild SH, McLachlan S, Campbell S, Polasek O, Carlson O, Egan J, Kiess W, Willemsen G, Kuusisto J, Laakso M, Dimitriou M, Hicks AA, Rauramaa R, Bandinelli S, Thorand B, Liu Y, Miljkovic I, Lind L, Doney A, Perola M, Hingorani A, Kivimaki M, Kumari M, Bennett AJ, Groves CJ, Herder C, Koistinen HA, Kinnunen L, Faire UD, Bakker SJL, Uusitupa M, Palmer CNA, Jukema JW, Sattar N, Pouta A, Snieder H, Boerwinkle E, Pankow JS, Magnusson PK, Krus U, Scapoli C, de Geus EJCN, Blüher M, Wolffenbuttel BHR, Province MA, Abecasis GR, Meigs JB, Hovingh GK, Lindström J, Wilson JF, Wright AF, Dedoussis GV, Bornstein SR, Schwarz PEH, Tönjes A, Winkelmann BR, Boehm BO, März W, Metspalu A, Price JF, Deloukas P, Körner A, Lakka TA, Keinanen-Kiukaanniemi SM, Saaristo TE, Bergman RN, Tuomilehto J, Wareham NJ, Langenberg C, Männistö S, Franks PW, Hayward C, Vitart V, Kaprio J, Visvikis-Siest S, Balkau B, Altshuler D, Rudan I, Stumvoll M, Campbell H, van Duijn CM, Gieger C, Illig T, Ferrucci L, Pedersen NL, Pramstaller PP, Boehnke M, Frayling TM, Shuldiner AR, Peyser PA, Kardia SLR, Palmer LJ, Penninx BW, Meneton P, Harris TB, Navis G, Harst PVD, Smith GD, Forouhi NG, Loos RJF, Salomaa V, Soranzo N, Boomsma DI, Groop L, Tuomi T, Hofman A, Munroe PB, Gudnason V, Siscovick DS, Watkins H, Lecoeur C, Vollenweider P, Franco-Cereceda A, Eriksson P, Jarvelin MR, Stefansson K, Hamsten A, Nicholson G, Karpe F, Dermitzakis ET, Lindgren CM, McCarthy MI, Froguel P, Kaakinen MA, Lyssenko V, Watanabe RM, Ingelsson E, Florez JC, Dupuis J, Barroso I, Morris AP, Prokopenko I. Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nat Commun 2021; 12:24. [PMID: 33402679 PMCID: PMC7785747 DOI: 10.1038/s41467-020-19366-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Differences between sexes contribute to variation in the levels of fasting glucose and insulin. Epidemiological studies established a higher prevalence of impaired fasting glucose in men and impaired glucose tolerance in women, however, the genetic component underlying this phenomenon is not established. We assess sex-dimorphic (73,089/50,404 women and 67,506/47,806 men) and sex-combined (151,188/105,056 individuals) fasting glucose/fasting insulin genetic effects via genome-wide association study meta-analyses in individuals of European descent without diabetes. Here we report sex dimorphism in allelic effects on fasting insulin at IRS1 and ZNF12 loci, the latter showing higher RNA expression in whole blood in women compared to men. We also observe sex-homogeneous effects on fasting glucose at seven novel loci. Fasting insulin in women shows stronger genetic correlations than in men with waist-to-hip ratio and anorexia nervosa. Furthermore, waist-to-hip ratio is causally related to insulin resistance in women, but not in men. These results position dissection of metabolic and glycemic health sex dimorphism as a steppingstone for understanding differences in genetic effects between women and men in related phenotypes.
Collapse
Affiliation(s)
- Vasiliki Lagou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jouke- Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU University medical center, Amsterdam, the Netherlands
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD, München-Neuherberg, Germany
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Nabila Bouatia-Naji
- University of Lille Nord de France, Lille, France
- CNRS UMR8199, Institut Pasteur de Lille, Lille, France
- INSERM U970, Paris Cardiovascular Research Center PARCC, 75006, Paris, France
| | - Letizia Marullo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Denis Rybin
- Boston University Data Coordinating Center, Boston, MA, USA
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Antigone S Dimas
- Institute for Bioinnovation, Biomedical Sciences Research Center Al. Fleming, Vari, Greece
| | - Anna Ulrich
- Department of Medicine, Imperial College London, London, UK
| | | | - Jesper R Gådin
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Longda Jiang
- Department of Medicine, Imperial College London, London, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Amélie Bonnefond
- University of Lille Nord de France, Lille, France
- CNRS UMR8199, Institut Pasteur de Lille, Lille, France
- Department of Medicine, Imperial College London, London, UK
| | - Joao Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- CARIM School for Cardiovascular Diseases and Maastricht Centre for Systems Biology (MaCSBio, Maastricht University, Maastricht, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Sara M Willems
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pau Navarro
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Toshiko Tanaka
- Translational Gerontology Branch, Longitudinal Study Section, National Institute on Aging, Baltimore, MD, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Jeff R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca J Webster
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Richa Saxena
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Departmentartment of Anesthesia, Critical Care and Pain Medicine, MGH, Boston, MA, USA
| | - Jeanette M Stafford
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Beate St Pourcain
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Perttu Salo
- Public Health Genomics Unit, Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - So-Youn Shin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Najaf Amin
- Department of Epidemiology Erasmus MC, Rotterdam, the Netherlands
| | - Albert V Smith
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Guo Li
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Paul C D Johnson
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Toby Johnson
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karen Kapur
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Evelin Mihailov
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ross M Fraser
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Synpromics Ltd, Roslin Innovation Centre, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Genentech, 340 Point San Bruno Boulevard, South San Francisco, CA, 94080, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Uppsala Universitet, Uppsala, Sweden
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Julia Meyer
- Institute of Genetic Epidemiology,Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology,Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology and Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI, University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
| | - Andrea Ganna
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Loic Yengo
- University of Lille Nord de France, Lille, France
- CNRS UMR8199, Institut Pasteur de Lille, Lille, France
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dmitry Shungin
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Momoko Horikoshi
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- RIKEN, Center for Integrative Medical Sciences, Laboratory for Endocrinology, Metabolism and Kidney Disease, Yokohama, Japan
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, CNR, Monserrato, Italy
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yvonne Boettcher
- Department of Medicine, University of Leipzig, Leipzig, Germany
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - N William Rayner
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Erik van Iperen
- Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Kovacs
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Nicholas D Hastie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Sarah H Wild
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | - Susan Campbell
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Olga Carlson
- Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, MD, USA
| | - Josephine Egan
- Laboratory of Clinical Investigation, National Institute of Aging, Baltimore, MD, USA
| | - Wieland Kiess
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
- Pediatric Research Center, Department of Women's & Child Health, University of Leipzig, Leipzig, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Maria Dimitriou
- Department of Dietetics-Nutrition, Harokopio University, Athens, Greece
| | - Andrew A Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC) (Affiliated Institute of the University of LübeckLübeckGermany), Bolzano, Italy
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Barbara Thorand
- German Center for Diabetes Research (DZD, München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Iva Miljkovic
- Department of Epidemiology, Center for Aging and Population Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Akademiska sjukhuset, Uppsala, Sweden
| | - Alex Doney
- Pat McPherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Markus Perola
- Public Health Genomics Unit, Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Aroon Hingorani
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Meena Kumari
- Department of Epidemiology and Public Health, University College London, London, UK
- University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Amanda J Bennett
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Christopher J Groves
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Christian Herder
- German Center for Diabetes Research (DZD, München-Neuherberg, Germany
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, P.O. Box 340, Haartmaninkatu 4, Helsinki, FI-00029, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, Helsinki, FI-00290, Finland
| | - Leena Kinnunen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Colin N A Palmer
- Pat McPherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - J Wouter Jukema
- Dept of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anneli Pouta
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eric Boerwinkle
- IMM Center for Human Genetics, University of Texas Health Science Center at Houston, Houston, TX, USA
- Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MiI, USA
| | - Patrik K Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Krus
- Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Eco J C N de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, VU University medical center, Amsterdam, the Netherlands
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael A Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Goncalo R Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
- Novo Nordisk A/S, Copenhagen, Denmark
| | - Jaana Lindström
- Finnish Institute for Health and Welfare, Diabetes Prevention Unit, Helsinki, Finland
| | - James F Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Alan F Wright
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | | | - Stefan R Bornstein
- Department of Medicine, Division for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter E H Schwarz
- Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | | | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore and Imperial College London, Singapore, Singapore
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Andres Metspalu
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Antje Körner
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
- Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Sirkka M Keinanen-Kiukaanniemi
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Timo E Saaristo
- Finnish Diabetes Association, Tampere, Finland
- Pirkanmaa Hospital District, Tampere, Finland
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jaakko Tuomilehto
- Department of Chronic Disease Prevention, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Satu Männistö
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, P.O. Box 30, Helsinki, FI-00271, Finland
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Units of Medicine and Nutritional Research, Umeå University, Umeå, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | | | - Beverley Balkau
- Inserm, CESP Center for Research in Epidemiology and Public Health, U1018, Villejuif, France
- Univ Paris-Saclay, Univ Paris Sud, UVSQ, UMRS 1018, UMRS 1018, Villejuif, France
| | - David Altshuler
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Igor Rudan
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, Germany
- IFB AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | | | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Centre for Medical Systems Biology, Leiden, the Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD, München-Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter P Pramstaller
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC) (Affiliated Institute of the University of LübeckLübeckGermany), Bolzano, Italy
- Department of Neurology, General Central Hospital, Bolzano, Italy
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, Peninsula Medical School, University of Exeter, Exeter, UK
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
- The Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lyle J Palmer
- School of Public Health, University of Adelaide, Adelaide, Australia
| | - Brenda W Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Pierre Meneton
- U872 Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, 75006, Paris, France
| | - Tamara B Harris
- Geriatric Epidemiology Section, Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD, USA
| | - Gerjan Navis
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Ruth J F Loos
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - Leif Groop
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund University, Malmö, Sweden
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund University, Malmö, Sweden
- Endocrinology, Abdominal Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki and Folkhälsan Research Center, Helsinki, Finland
| | - Albert Hofman
- Department of Epidemiology Erasmus MC, Rotterdam, the Netherlands
- Netherlands Consortium for healthy ageing, the Hague, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine University of Iceland, Reykjavik, Iceland
| | - David S Siscovick
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Cecile Lecoeur
- University of Lille Nord de France, Lille, France
- CNRS UMR8199, Institut Pasteur de Lille, Lille, France
| | - Peter Vollenweider
- Department of Medicine, University Hospital Lausanne, Lausanne, Switzerland
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Karolinska University Hospital, Solna, Sweden
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics and HPA-MRC Center, School of Public Health, Imperial College London, London, UK
- Institue of Health Sciences, University of Oulu, Oulu, Finland
| | - Kari Stefansson
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
- Department of Cardiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | | | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Cecilia M Lindgren
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, UK
- Genentech, 340 Point San Bruno Boulevard, South San Francisco, CA, 94080, USA
| | - Philippe Froguel
- University of Lille Nord de France, Lille, France
- CNRS UMR8199, Institut Pasteur de Lille, Lille, France
- Department of Medicine, Imperial College London, London, UK
| | - Marika A Kaakinen
- Department of Medicine, Imperial College London, London, UK
- School of Biosciences and Medicine, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology Research Unit, University Hospital Malmö, Lund University, Malmö, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Physiology & Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Diabetes and Obesity Research Institute, Los Angeles, CA, USA
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Jose C Florez
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Research Center, Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Exeter Centre of ExcEllence in Diabetes (ExCEED), University of Exeter Medical School, Exeter, UK
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Inga Prokopenko
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.
- Department of Medicine, Imperial College London, London, UK.
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- School of Biosciences and Medicine, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK.
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre Russian Academy of Sciences, Ufa, Russian Federation.
| |
Collapse
|
20
|
Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-Wide Sex and Gender Differences in Cancer. Front Oncol 2020; 10:597788. [PMID: 33330090 PMCID: PMC7719817 DOI: 10.3389/fonc.2020.597788] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Despite their known importance in clinical medicine, differences based on sex and gender are among the least studied factors affecting cancer susceptibility, progression, survival, and therapeutic response. In particular, the molecular mechanisms driving sex differences are poorly understood and so most approaches to precision medicine use mutational or other genomic data to assign therapy without considering how the sex of the individual might influence therapeutic efficacy. The mandate by the National Institutes of Health that research studies include sex as a biological variable has begun to expand our understanding on its importance. Sex differences in cancer may arise due to a combination of environmental, genetic, and epigenetic factors, as well as differences in gene regulation, and expression. Extensive sex differences occur genome-wide, and ultimately influence cancer biology and outcomes. In this review, we summarize the current state of knowledge about sex-specific genetic and genome-wide influences in cancer, describe how differences in response to environmental exposures and genetic and epigenetic alterations alter the trajectory of the disease, and provide insights into the importance of integrative analyses in understanding the interplay of sex and genomics in cancer. In particular, we will explore some of the emerging analytical approaches, such as the use of network methods, that are providing a deeper understanding of the drivers of differences based on sex and gender. Better understanding these complex factors and their interactions will improve cancer prevention, treatment, and outcomes for all individuals.
Collapse
Affiliation(s)
- Camila M Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Duffy D. Understanding immune variation for improved translational medicine. Curr Opin Immunol 2020; 65:83-88. [PMID: 32745736 DOI: 10.1016/j.coi.2020.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
The goal of translational medicine is to use an improved understanding of human biology to develop new clinical approaches. Immune responses are highly variable from one person to another, with this variability strongly impacting clinical outcome. Variable immunity can determine differential risks for infection, for development of autoimmunity, and for response to therapeutic interventions. Therefore, a better understanding of the causes of such differences has huge potential to improve patient management through precision medicine strategies. Variability in immunity is determined by intrinsic (e.g. age, sex), extrinsic (e.g. environment, diet), and genetic factors. There is a growing consensus that genetics factors account for 20-40% of immune variability between individuals. The remaining unexplained variability is likely due to direct environmental influences, as well as specific gene-environmental interactions, which are more challenging to quantify and study. However, population based cohort studies with systems immunology approaches are now providing new understanding into these associations.
Collapse
Affiliation(s)
- Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, Paris, France; INSERM U1223, Paris, France
| |
Collapse
|
22
|
Credendino SC, Neumayer C, Cantone I. Genetics and Epigenetics of Sex Bias: Insights from Human Cancer and Autoimmunity. Trends Genet 2020; 36:650-663. [PMID: 32736810 DOI: 10.1016/j.tig.2020.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
High-throughput sequencing and genome-wide association studies have revealed a sex bias in human diseases. The underlying molecular mechanisms remain, however, unknown. Here, we cover recent advances in cancer and autoimmunity focusing on intrinsic genetic and epigenetic differences underlying sex biases in human disease. These studies reveal a central role of genome regulatory mechanisms including genome repair, chromosome folding, and epigenetic regulation in dictating the sex bias. These highlight the importance of considering sex as a variable in both basic science and clinical investigations. Understanding the molecular mechanisms underlying sex bias in human diseases will be instrumental in making a first step forwards into the era of personalized medicine.
Collapse
Affiliation(s)
- Sara Carmela Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Christoph Neumayer
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Irene Cantone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
23
|
Bartz D, Chitnis T, Kaiser UB, Rich-Edwards JW, Rexrode KM, Pennell PB, Goldstein JM, O'Neal MA, LeBoff M, Behn M, Seely EW, Joffe H, Manson JE. Clinical Advances in Sex- and Gender-Informed Medicine to Improve the Health of All: A Review. JAMA Intern Med 2020; 180:574-583. [PMID: 32040165 DOI: 10.1001/jamainternmed.2019.7194] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Biological sex and sociocultural gender represent major sources of diversity among patients, and recent research has shown the association of sex and gender with health. A growing body of literature describes widespread associations of sex and gender with cells, organs, and the manner in which individual patients interact with health care systems. Sex- and gender-informed medicine is a young paradigm of clinical practice and medical research founded on this literature that considers the association of sex and gender with each element of the disease process from risk, to presentation, to response to therapy. OBSERVATIONS Characteristics that underlie sex and gender involve both endogenous and exogenous factors that change throughout the life course. This review details clinical examples with broad applicability that highlight sex and gender differences in the key domains of genetics, epigenomic modifiers, hormonal milieu, immune function, neurocognitive aging process, vascular health, response to therapeutics, and interaction with health care systems. These domains interact with one another in multidimensional associations, contributing to the diversity of the sex and gender spectra. Novel research has identified differences of clinical relevance with the potential to improve care for all patients. CONCLUSIONS AND RELEVANCE Clinicians should consider incorporating sex and gender in their decision-making to practice precision medicine that integrates fundamental components of patient individuality. Recognizing the biological and environmental factors that affect the disease course is imperative to optimizing care for each patient. Research highlights the myriad ways sex and gender play a role in health and disease. However, these clinically relevant insights have yet to be systematically incorporated into care. The framework described in this review serves as a guide to help clinicians consider sex and gender as they practice precision medicine.
Collapse
Affiliation(s)
- Deborah Bartz
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Tanuja Chitnis
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ursula B Kaiser
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Janet W Rich-Edwards
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kathryn M Rexrode
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Page B Pennell
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jill M Goldstein
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts.,Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mary Angela O'Neal
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Meryl LeBoff
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Maya Behn
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ellen W Seely
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Hadine Joffe
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - JoAnn E Manson
- Harvard Medical School, Boston, Massachusetts.,Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
24
|
Kassam I, Wu Y, Yang J, Visscher PM, McRae AF. Tissue-specific sex differences in human gene expression. Hum Mol Genet 2020; 28:2976-2986. [PMID: 31044242 DOI: 10.1093/hmg/ddz090] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Despite extensive sex differences in human complex traits and disease, the male and female genomes differ only in the sex chromosomes. This implies that most sex-differentiated traits are the result of differences in the expression of genes that are common to both sexes. While sex differences in gene expression have been observed in a range of different tissues, the biological mechanisms for tissue-specific sex differences (TSSDs) in gene expression are not well understood. A total of 30 640 autosomal and 1021 X-linked transcripts were tested for heterogeneity in sex difference effect sizes in n = 617 individuals across 40 tissue types in Genotype-Tissue Expression (GTEx). This identified 65 autosomal and 66 X-linked TSSD transcripts (corresponding to unique genes) at a stringent significance threshold. Results for X-linked TSSD transcripts showed mainly concordant direction of sex differences across tissues and replicate previous findings. Autosomal TSSD transcripts had mainly discordant direction of sex differences across tissues. The top cis-expression quantitative trait loci (eQTLs) across tissues for autosomal TSSD transcripts are located a similar distance away from the nearest androgen and estrogen binding motifs and the nearest enhancer, as compared to cis-eQTLs for transcripts with stable sex differences in gene expression across tissue types. Enhancer regions that overlap top cis-eQTLs for TSSD transcripts, however, were found to be more dispersed across tissues. These observations suggest that androgen and estrogen regulatory elements in a cis region may play a common role in sex differences in gene expression, but TSSD in gene expression may additionally be due to causal variants located in tissue-specific enhancer regions.
Collapse
Affiliation(s)
| | - Yang Wu
- Institute for Molecular Bioscience
| | - Jian Yang
- Institute for Molecular Bioscience.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
25
|
Etheridge AS, Gallins PJ, Jima D, Broadaway KA, Ratain MJ, Schuetz E, Schadt E, Schroder A, Molony C, Zhou Y, Mohlke KL, Wright FA, Innocenti F. A New Liver Expression Quantitative Trait Locus Map From 1,183 Individuals Provides Evidence for Novel Expression Quantitative Trait Loci of Drug Response, Metabolic, and Sex-Biased Phenotypes. Clin Pharmacol Ther 2020; 107:1383-1393. [PMID: 31868224 DOI: 10.1002/cpt.1751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Expression quantitative trait locus (eQTL) studies in human liver are crucial for elucidating how genetic variation influences variability in disease risk and therapeutic outcomes and may help guide strategies to obtain maximal efficacy and safety of clinical interventions. Associations between expression microarray and genome-wide genotype data from four human liver eQTL studies (n = 1,183) were analyzed. More than 2.3 million cis-eQTLs for 15,668 genes were identified. When eQTLs were filtered against a list of 1,496 drug response genes, 187,829 cis-eQTLs for 1,191 genes were identified. Additionally, 1,683 sex-biased cis-eQTLs were identified, as well as 49 and 73 cis-eQTLs that colocalized with genome-wide association study signals for blood metabolite or lipid levels, respectively. Translational relevance of these results is evidenced by linking DPYD eQTLs to differences in safety of chemotherapy, linking the sex-biased regulation of PCSK9 expression to anti-lipid therapy, and identifying the G-protein coupled receptor GPR180 as a novel drug target for hypertriglyceridemia.
Collapse
Affiliation(s)
- Amy S Etheridge
- Eshelman School of Pharmacy and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul J Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Ratain
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Erin Schuetz
- Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Schroder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany
| | - Cliona Molony
- Computation Biomedicine, Pfizer, Inc., Boston, Massachusetts, USA
| | - Yihui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Federico Innocenti
- Eshelman School of Pharmacy and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Natri HM, Wilson MA, Buetow KH. Distinct molecular etiologies of male and female hepatocellular carcinoma. BMC Cancer 2019; 19:951. [PMID: 31615477 PMCID: PMC6794913 DOI: 10.1186/s12885-019-6167-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sex-differences in cancer occurrence and mortality are evident across tumor types; men exhibit higher rates of incidence and often poorer responses to treatment. Targeted approaches to the treatment of tumors that account for these sex-differences require the characterization and understanding of the fundamental biological mechanisms that differentiate them. Hepatocellular Carcinoma (HCC) is the second leading cause of cancer death worldwide, with the incidence rapidly rising. HCC exhibits a male-bias in occurrence and mortality, but previous studies have failed to explore the sex-specific dysregulation of gene expression in HCC. METHODS Here, we characterize the sex-shared and sex-specific regulatory changes in HCC tumors in the TCGA LIHC cohort using combined and sex-stratified differential expression and eQTL analyses. RESULTS By using a sex-specific differential expression analysis of tumor and tumor-adjacent samples, we uncovered etiologically relevant genes and pathways differentiating male and female HCC. While both sexes exhibited activation of pathways related to apoptosis and cell cycle, males and females differed in the activation of several signaling pathways, with females showing PPAR pathway enrichment while males showed PI3K, PI3K/AKT, FGFR, EGFR, NGF, GF1R, Rap1, DAP12, and IL-2 signaling pathway enrichment. Using eQTL analyses, we discovered germline variants with differential effects on tumor gene expression between the sexes. 24.3% of the discovered eQTLs exhibit differential effects between the sexes, illustrating the substantial role of sex in modifying the effects of eQTLs in HCC. The genes that showed sex-specific dysregulation in tumors and those that harbored a sex-specific eQTL converge in clinically relevant pathways, suggesting that the molecular etiologies of male and female HCC are partially driven by differential genetic effects on gene expression. CONCLUSIONS Sex-stratified analyses detect sex-specific molecular etiologies of HCC. Overall, our results provide new insight into the role of inherited genetic regulation of transcription in modulating sex-differences in HCC etiology and provide a framework for future studies on sex-biased cancers.
Collapse
Affiliation(s)
- Heini M Natri
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Melissa A Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kenneth H Buetow
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
27
|
Tahira AC, Barbosa AR, Feltrin AS, Gastaldi VD, de Toledo VHC, de Carvalho Pereira JG, Lisboa BCG, de Souza Reis VN, dos Santos ACF, Maschietto M, Brentani H. Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2019; 180:390-414. [PMID: 30537354 PMCID: PMC6767407 DOI: 10.1002/ajmg.b.32704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR ≤ 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.
Collapse
Affiliation(s)
- Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - André Rocha Barbosa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
| | | | - Vinicius Daguano Gastaldi
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Victor Hugo Calegari de Toledo
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | | | - Bianca Cristina Garcia Lisboa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Viviane Neri de Souza Reis
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Ana Cecília Feio dos Santos
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Laboratório de Pesquisas Básicas em Malária – EntomologiaSeção de Parasitologia – Instituto Evandro Chagas/SVS/MSAnanindeuaPABrazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasSPBrazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
- Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSPBrazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD)Sao PauloSPBrazil
- Faculdade de Medicina FMUSPUniversidade de Sao PauloSao PauloSPBrazil
| |
Collapse
|
28
|
Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet 2019; 20:173-190. [PMID: 30581192 DOI: 10.1038/s41576-018-0083-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nearly all human complex traits and disease phenotypes exhibit some degree of sex differences, including differences in prevalence, age of onset, severity or disease progression. Until recently, the underlying genetic mechanisms of such sex differences have been largely unexplored. Advances in genomic technologies and analytical approaches are now enabling a deeper investigation into the effect of sex on human health traits. In this Review, we discuss recent insights into the genetic models and mechanisms that lead to sex differences in complex traits. This knowledge is critical for developing deeper insight into the fundamental biology of sex differences and disease processes, thus facilitating precision medicine.
Collapse
Affiliation(s)
- Ekaterina A Khramtsova
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Lea K Davis
- Division of Medical Genetics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA. .,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA. .,Center for Data Intensive Science, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Otto GW, Kaisaki PJ, Brial F, Le Lay A, Cazier JB, Mott R, Gauguier D. Conserved properties of genetic architecture of renal and fat transcriptomes in rat models of insulin resistance. Dis Model Mech 2019; 12:dmm.038539. [PMID: 31213483 PMCID: PMC6679378 DOI: 10.1242/dmm.038539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
To define renal molecular mechanisms that are affected by permanent hyperglycaemia and might promote phenotypes relevant to diabetic nephropathy, we carried out linkage analysis of genome-wide gene transcription in the kidneys of F2 offspring from the Goto-Kakizaki (GK) rat model of type 2 diabetes and normoglycaemic Brown Norway (BN) rats. We mapped 2526 statistically significant expression quantitative trait loci (eQTLs) in the cross. More than 40% of eQTLs mapped in the close vicinity of the linked transcripts, underlying possible cis-regulatory mechanisms of gene expression. We identified eQTL hotspots on chromosomes 5 and 9 regulating the expression of 80-165 genes, sex or cross direction effects, and enriched metabolic and immunological processes by segregating GK alleles. Comparative analysis with adipose tissue eQTLs in the same cross showed that 496 eQTLs, in addition to the top enriched biological pathways, are conserved in the two tissues. Extensive similarities in eQTLs mapped in the GK rat and in the spontaneously hypertensive rat (SHR) suggest a common aetiology of disease phenotypes common to the two strains, including insulin resistance, which is a prominent pathophysiological feature in both GK rats and SHRs. Our data shed light on shared and tissue-specific molecular mechanisms that might underlie aetiological aspects of insulin resistance in the context of spontaneously occurring hyperglycaemia and hypertension. Summary: Kidney and fat expression QTL mapping in rat models of spontaneously occurring insulin resistance associated with either diabetes or hypertension reveals conserved gene expression regulation, suggesting shared aetiology of disease phenotypes.
Collapse
Affiliation(s)
- Georg W Otto
- Genetics and Genomic Medicine, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom
| | - Francois Brial
- University Paris Descartes, INSERM UMR 1124, 45 rue des Saint-Pères, 75006 Paris, France
| | - Aurélie Le Lay
- University Paris Descartes, INSERM UMR 1124, 45 rue des Saint-Pères, 75006 Paris, France
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Richard Mott
- University College London Genetics Institute, Gower Street, London WC1E 6BT, United Kingdom
| | - Dominique Gauguier
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, United Kingdom .,University Paris Descartes, INSERM UMR 1124, 45 rue des Saint-Pères, 75006 Paris, France.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| |
Collapse
|
30
|
Shen JJ, Wang YF, Yang W. Sex-Interacting mRNA- and miRNA-eQTLs and Their Implications in Gene Expression Regulation and Disease. Front Genet 2019; 10:313. [PMID: 31024623 PMCID: PMC6465513 DOI: 10.3389/fgene.2019.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/21/2019] [Indexed: 12/26/2022] Open
Abstract
Despite sex being an important epidemiological and physiological factor, not much is known about how sex works to interact with genotypes to result in different phenotypes. Both messenger RNA (mRNA) and microRNA (miRNA) may be differentially expressed between the sexes in different physiological conditions, and both may be differentially regulated between males and females. Using whole transcriptome data on lymphoblastoid cell lines from 338 samples of European origin, we tried to uncover genes differentially expressed between the two sexes and sex-interacting expression quantitative trait loci (ss-eQTLs). Two miRNAs were found to be differentially expressed between the two sexes, both of which were found to be functionally implicated in breast cancer. Using two stage linear regression analysis, 21 mRNA ss-eQTL and 3 miRNA ss-eQTLs were discovered. We replicated two of the mRNA ss-eQTLs (p < 0.1) using a separate dataset of gene expression data derived from monocytes. Three mRNA ss-eQTLs are in high linkage disequilibrium with variants also found to be associated with sexually dimorphic traits. Taken together, we believe the ss-eQTLs presented will assist researchers in uncovering the basis of sex-biased gene expression regulation, and ultimately help us understand the genetic basis of differences in phenotypes between sexes.
Collapse
Affiliation(s)
- Jiangshan J Shen
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.,Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
31
|
Norheim F, Hasin-Brumshtein Y, Vergnes L, Chella Krishnan K, Pan C, Seldin MM, Hui ST, Mehrabian M, Zhou Z, Gupta S, Parks BW, Walch A, Reue K, Hofmann SM, Arnold AP, Lusis AJ. Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. Cell Metab 2019; 29:932-949.e4. [PMID: 30639359 PMCID: PMC6447452 DOI: 10.1016/j.cmet.2018.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
We studied sex differences in over 50 cardio-metabolic traits in a panel of 100 diverse inbred strains of mice. The results clearly showed that the effects of sex on both clinical phenotypes and gene expression depend on the genetic background. In support of this, genetic loci associated with the traits frequently showed sex specificity. For example, Lyplal1, a gene implicated in human obesity, was shown to underlie a sex-specific locus for diet-induced obesity. Global gene expression analyses of tissues across the panel implicated adipose tissue "beiging" and mitochondrial functions in the sex differences. Isolated mitochondria showed gene-by-sex interactions in oxidative functions, such that some strains (C57BL/6J) showed similar function between sexes, whereas others (DBA/2J and A/J) showed increased function in females. Reduced adipose mitochondrial function in males as compared to females was associated with increased susceptibility to obesity and insulin resistance. Gonadectomy studies indicated that gonadal hormones acting in a tissue-specific manner were responsible in part for the sex differences.
Collapse
Affiliation(s)
- Frode Norheim
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yehudit Hasin-Brumshtein
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karthickeyan Chella Krishnan
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus M Seldin
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Simon T Hui
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margarete Mehrabian
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sonul Gupta
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, München 80336, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilian Universität (LMU), Munich, Germany
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Guo S, Zhou Y, Zeng P, Xu G, Wang G, Cui Q. Identification and analysis of the human sex-biased genes. Brief Bioinform 2019; 19:188-198. [PMID: 28028006 DOI: 10.1093/bib/bbw125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/28/2023] Open
Abstract
Tremendous differences between human sexes are universally observed. Therefore, identifying and analyzing the sex-biased genes are becoming basically important for uncovering the mystery of sex differences and personalized medicine. Here, we presented a computational method to identify sex-biased genes from public gene expression databases. We obtained 1407 female-biased genes (FGs) and 1096 male-biased genes (MGs) across 14 different tissues. Bioinformatics analysis revealed that compared with MGs, FGs have higher evolutionary rate, higher single-nucleotide polymorphism density, less homologous gene numbers and smaller phyletic age. FGs have lower expression level, higher tissue specificity and later expressed stage in body development. Moreover, FGs are highly involved in immune-related functions, whereas MGs are more enriched in metabolic process. In addition, cellular network analysis revealed that MGs have higher degree, more cellular activating signaling and tend to be located in cellular inner space, whereas FGs have lower degree, more cellular repressing signaling and tend to be located in cellular outer space. Finally, the identified sex-biased genes and the discovered biological insights together can be a valuable resource helpful for investigating sex-biased physiology and medicine, for example sex-biased disease diagnosis and therapy, which represents one important aspect of personalized and precision medicine.
Collapse
Affiliation(s)
- Sisi Guo
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Pan Zeng
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Guoheng Xu
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| | - Guoqing Wang
- Department of Pathogenobiology, College of Basic Medicine, Jilin University, Changchun, Jilin, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing, China
| |
Collapse
|
33
|
Sexual dimorphism in the expression of GKN2 and FOXA2 genes in the human stomach. Mol Biol Rep 2019; 46:2355-2362. [DOI: 10.1007/s11033-019-04692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/09/2019] [Indexed: 01/04/2023]
|
34
|
Spence JP, Reiter JL, Qiu B, Gu H, Garcia DK, Zhang L, Graves T, Williams KE, Bice PJ, Zou Y, Lai Z, Yong W, Liang T. Estrogen-Dependent Upregulation of Adcyap1r1 Expression in Nucleus Accumbens Is Associated With Genetic Predisposition of Sex-Specific QTL for Alcohol Consumption on Rat Chromosome 4. Front Genet 2018; 9:513. [PMID: 30564267 PMCID: PMC6288178 DOI: 10.3389/fgene.2018.00513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
Humans show sex differences related to alcohol use disorders (AUD). Animal model research has the potential to provide important insight into how sex differences affect alcohol consumption, particularly because female animals frequently drink more than males. In previous work, inbred strains of the selectively bred alcohol-preferring (P) and non-preferring (NP) rat lines revealed a highly significant quantitative trait locus (QTL) on rat chromosome 4, with a logarithm of the odds score of 9.2 for alcohol consumption. Recently, interval-specific congenic strains (ISCS) were developed by backcrossing the congenic P.NP line to inbred P (iP) rats to further refine the chromosome 4 QTL region. Two ISCS sub-strains, ISCS-A and ISCS-B, were obtained with a narrowed QTL, where the smallest region of overlap consisted of 8.9 Mb in ISCS-B. Interestingly, we found that females from both ISCS lines consumed significantly less alcohol than female iP controls (p < 0.05), while no differences in alcohol consumption were observed between male ISCS and iP controls. RNA-sequencing was performed on the nucleus accumbens of alcohol-naïve female ISCS-B and iP rats, which revealed differentially expressed genes (DEG) with greater than 2-fold change and that were functionally relevant to behavior. These DEGs included down-regulation of Oxt, Asb4, Gabre, Gabrq, Chat, Slc5a7, Slc18a8, Slc10a4, and Ngfr, and up-regulation of Ttr, Msln, Mpzl2, Wnt6, Slc17a7, Aldh1a2, and Gstm2. Pathway analysis identified significant alterations in gene networks controlling nervous system development and function, as well as cell signaling, GABA and serotonin receptor signaling and G-protein coupled receptor signaling. In addition, β-estradiol was identified as the most significant upstream regulator. The expression levels of estrogen-responsive genes that mapped to the QTL interval and have been previously associated with alcohol consumption were measured using RT-qPCR. We found that expression of the Adcyap1r1 gene, encoding the pituitary adenylate cyclase-activating polypeptide type 1 (PAC1) receptor, was upregulated in female ISCS-B compared to female iP controls, while no differences were exhibited in males. In addition, sequence variants in the Adcyap1r1 promoter region showed a differential response to estrogen stimulation in vitro. These findings demonstrate that rat chromosome 4 QTL contains genetic variants that respond to estrogen and are associated with female alcohol consumption.
Collapse
Affiliation(s)
- John Paul Spence
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jill L Reiter
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Qiu
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Gu
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dawn K Garcia
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, United States
| | - Lingling Zhang
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tamara Graves
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paula J Bice
- Department of Psychology, Southeast Missouri State University, Cape Girardeau, MO, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, United States
| | - Zhao Lai
- Department of Psychology, Southeast Missouri State University, Cape Girardeau, MO, United States
| | - Weidong Yong
- Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
35
|
Arauz A, Argüelles N, Jara A, Guerrero J, Barboza MA. Thrombin-Activatable Fibrinolysis Inhibitor Polymorphisms and Cerebral Venous Thrombosis in Mexican Mestizo Patients. Clin Appl Thromb Hemost 2018; 24:1291-1296. [PMID: 29629564 PMCID: PMC6714780 DOI: 10.1177/1076029618766267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) gene polymorphisms have been proposed as a predisposing factor for cerebral venous thrombosis (CVT). We analyzed the association between CVT and TAFI single-nucleotide polymorphisms (rs3742264, rs2146881, and rs1926447) compared to healthy controls. Mexico Mestizo confirmed cases with CVT and age- and sex-matched controls with no history of venous thrombotic events were recruited from July 2006 to July 2015. Demographic, clinical, and imaging information was included in the analysis. Genotyping single-nucleotide polymorphisms were performed by allele-specific polymerase chain reaction. Allelic univariate analysis, haplotype association, and Hardy-Weinberg equilibrium were assessed. A total of 113 CVT cases (94 females [83.2%]; median age 35 years [interquartile range 27-43 years]) and 134 age- and sex-matched controls were included. The main risk factors for CVT were pregnancy/puerperium (30.9%), oral contraceptive use (19.5%), and hereditary thrombophilia (7.1%). We found no significant association for heterozygous and homozygous models for rs3742264 ( P = .30 and P = .69, respectively), rs2146881 ( P = .90 and P = .17, respectively), or rs1926447 ( P = .40 and P = .52, respectively) compared to controls; these findings were consistent in subgroup and haplotype analyses. In conclusion, TAFI rs3742264, rs2146881, and rs1926447 polymorphisms do not increase the risk of CVT in comparison to healthy controls.
Collapse
Affiliation(s)
- Antonio Arauz
- 1 Stroke Clinic, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México City, Mexico
| | - Nayelli Argüelles
- 1 Stroke Clinic, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México City, Mexico
| | - Aurelio Jara
- 2 Genetics Department, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México City, Mexico
| | - Jorge Guerrero
- 2 Genetics Department, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México City, Mexico
| | - Miguel A Barboza
- 1 Stroke Clinic, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, México City, Mexico.,3 School of Medicine, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
36
|
Scurrah KJ, Lamantia A, Ellis JA, Harrap SB. Familial Analysis of Epistatic and Sex-Dependent Association of Genes of the Renin-Angiotensin-Aldosterone System and Blood Pressure. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.116.001595. [PMID: 28506960 DOI: 10.1161/circgenetics.116.001595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/02/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Renin-angiotensin-aldosterone system genes have been inconsistently associated with blood pressure, possibly because of unrecognized influences of sex-dependent genetic effects or gene-gene interactions (epistasis). METHODS AND RESULTS We tested association of systolic blood pressure with single-nucleotide polymorphisms (SNPs) at renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE), angiotensin II type 1 receptor (AGTR1), and aldosterone synthase (CYP11B2), including sex-SNP or SNP-SNP interactions. Eighty-eight tagSNPs were tested in 2872 white individuals in 809 pedigrees from the Victorian Family Heart Study using variance components models. Three SNPs (rs8075924 and rs4277404 at ACE and rs12721297 at AGTR1) were individually associated with lower systolic blood pressure with significant (P<0.00076) effect sizes ≈1.7 to 2.5 mm Hg. Sex-specific associations were seen for 3 SNPs in men (rs2468523 and rs2478544 at AGT and rs11658531 at ACE) and 1 SNP in women (rs12451328 at ACE). SNP-SNP interaction was suggested (P<0.005) for 14 SNP pairs, none of which had shown individual association with systolic blood pressure. Four SNP pairs were at the same gene (2 for REN, 1 for AGT, and 1 for AGTR1). The SNP rs3097 at CYP11B2 was represented in 5 separate pairs. CONCLUSIONS SNPs at key renin-angiotensin-aldosterone system genes associate with systolic blood pressure individually in both sexes, individually in one sex only and only when combined with another SNP. Analyses that incorporate sex-dependent and epistatic effects could reconcile past inconsistencies and account for some of the missing heritability of blood pressure and are generally relevant to SNP association studies for any phenotype.
Collapse
Affiliation(s)
- Katrina J Scurrah
- From the Department of Physiology (K.J.S., A.L., S.B.H.), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health (K.J.S.), and Department of Paediatrics (J.A.E.), The University of Melbourne, Australia; Genes, Environment & Complex Disease Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia (J.A.E.); and Centre for Social and Early Emotional Development, Faculty of Health, Deakin University, Victoria, Australia (J.A.E.)
| | - Angela Lamantia
- From the Department of Physiology (K.J.S., A.L., S.B.H.), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health (K.J.S.), and Department of Paediatrics (J.A.E.), The University of Melbourne, Australia; Genes, Environment & Complex Disease Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia (J.A.E.); and Centre for Social and Early Emotional Development, Faculty of Health, Deakin University, Victoria, Australia (J.A.E.)
| | - Justine A Ellis
- From the Department of Physiology (K.J.S., A.L., S.B.H.), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health (K.J.S.), and Department of Paediatrics (J.A.E.), The University of Melbourne, Australia; Genes, Environment & Complex Disease Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia (J.A.E.); and Centre for Social and Early Emotional Development, Faculty of Health, Deakin University, Victoria, Australia (J.A.E.)
| | - Stephen B Harrap
- From the Department of Physiology (K.J.S., A.L., S.B.H.), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health (K.J.S.), and Department of Paediatrics (J.A.E.), The University of Melbourne, Australia; Genes, Environment & Complex Disease Unit, Murdoch Children's Research Institute, Parkville, Victoria, Australia (J.A.E.); and Centre for Social and Early Emotional Development, Faculty of Health, Deakin University, Victoria, Australia (J.A.E.).
| |
Collapse
|
37
|
Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges. Proc Natl Acad Sci U S A 2017; 115:E488-E497. [PMID: 29282317 PMCID: PMC5776984 DOI: 10.1073/pnas.1714765115] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Identifying the drivers of the interindividual diversity of the human immune system is crucial to understand their consequences on immune-mediated diseases. By examining the transcriptional responses of 1,000 individuals to various microbial challenges, we show that age and sex influence the expression of many immune-related genes, but their effects are overall moderate, whereas genetic factors affect a smaller gene set but with a stronger effect. We identify numerous genetic variants that affect transcriptional variation on infection, many of which are associated with autoimmune or inflammatory disorders. These results enable additional exploration of the role of regulatory variants in the pathogenesis of immune-related diseases and improve our understanding of the respective effects of age, sex, and genetics on immune response variation. The contribution of host genetic and nongenetic factors to immunological differences in humans remains largely undefined. Here, we generated bacterial-, fungal-, and viral-induced immune transcriptional profiles in an age- and sex-balanced cohort of 1,000 healthy individuals and searched for the determinants of immune response variation. We found that age and sex affected the transcriptional response of most immune-related genes, with age effects being more stimulus-specific relative to sex effects, which were largely shared across conditions. Although specific cell populations mediated the effects of age and sex on gene expression, including CD8+ T cells for age and CD4+ T cells and monocytes for sex, we detected a direct effect of these intrinsic factors for the majority of immune genes. The mapping of expression quantitative trait loci (eQTLs) revealed that genetic factors had a stronger effect on immune gene regulation than age and sex, yet they affected a smaller number of genes. Importantly, we identified numerous genetic variants that manifested their regulatory effects exclusively on immune stimulation, including a Candida albicans-specific master regulator at the CR1 locus. These response eQTLs were enriched in disease-associated variants, particularly for autoimmune and inflammatory disorders, indicating that differences in disease risk may result from regulatory variants exerting their effects only in the presence of immune stress. Together, this study quantifies the respective effects of age, sex, genetics, and cellular heterogeneity on the interindividual variability of immune responses and constitutes a valuable resource for further exploration in the context of different infection risks or disease outcomes.
Collapse
|
38
|
Shen JJ, Wang TY, Yang W. Regulatory and evolutionary signatures of sex-biased genes on both the X chromosome and the autosomes. Biol Sex Differ 2017; 8:35. [PMID: 29096703 PMCID: PMC5668987 DOI: 10.1186/s13293-017-0156-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
Background Sex is an important but understudied factor in the genetics of human diseases. Analyses using a combination of gene expression data, ENCODE data, and evolutionary data of sex-biased gene expression in human tissues can give insight into the regulatory and evolutionary forces acting on sex-biased genes. Methods In this study, we analyzed the differentially expressed genes between males and females. On the X chromosome, we used a novel method and investigated the status of genes that escape X-chromosome inactivation (escape genes), taking into account the clonality of lymphoblastoid cell lines (LCLs). To investigate the regulation of sex-biased differentially expressed genes (sDEG), we conducted pathway and transcription factor enrichment analyses on the sDEGs, as well as analyses on the genomic distribution of sDEGs. Evolutionary analyses were also conducted on both sDEGs and escape genes. Results Genome-wide, we characterized differential gene expression between sexes in 462 RNA-seq samples and identified 587 sex-biased genes, or 3.2% of the genes surveyed. On the X chromosome, sDEGs were distributed in evolutionary strata in a similar pattern as escape genes. We found a trend of negative correlation between the gene expression breadth and nonsynonymous over synonymous mutation (dN/dS) ratios, showing a possible pleiotropic constraint on evolution of genes. Genome-wide, nine transcription factors were found enriched in binding to the regions surrounding the transcription start sites of female-biased genes. Many pathways and protein domains were enriched in sex-biased genes, some of which hint at sex-biased physiological processes. Conclusions These findings lend insight into the regulatory and evolutionary forces shaping sex-biased gene expression and their involvement in the physiological and pathological processes in human health and diseases. Electronic supplementary material The online version of this article (10.1186/s13293-017-0156-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiangshan J Shen
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Ting-You Wang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
39
|
Tomar S, Sethi R, Sundar G, Quah TC, Quah BL, Lai PS. Mutation spectrum of RB1 mutations in retinoblastoma cases from Singapore with implications for genetic management and counselling. PLoS One 2017; 12:e0178776. [PMID: 28575107 PMCID: PMC5456385 DOI: 10.1371/journal.pone.0178776] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/18/2017] [Indexed: 12/21/2022] Open
Abstract
Retinoblastoma (RB) is a rare childhood malignant disorder caused by the biallelic inactivation of RB1 gene. Early diagnosis and identification of carriers of heritable RB1 mutations can improve disease outcome and management. In this study, mutational analysis was conducted on fifty-nine matched tumor and peripheral blood samples from 18 bilateral and 41 unilateral unrelated RB cases by a combinatorial approach of Multiplex Ligation-dependent Probe Amplification (MLPA) assay, deletion screening, direct sequencing, copy number gene dosage analysis and methylation assays. Screening of both blood and tumor samples yielded a mutation detection rate of 94.9% (56/59) while only 42.4% (25/59) of mutations were detected if blood samples alone were analyzed. Biallelic mutations were observed in 43/59 (72.9%) of tumors screened. There were 3 cases (5.1%) in which no mutations could be detected and germline mutations were detected in 19.5% (8/41) of unilateral cases. A total of 61 point mutations were identified, of which 10 were novel. There was a high incidence of previously reported recurrent mutations, occurring at 38.98% (23/59) of all cases. Of interest were three cases of mosaic RB1 mutations detected in the blood from patients with unilateral retinoblastoma. Additionally, two germline mutations previously reported to be associated with low-penetrance phenotypes: missense-c.1981C>T and splice variant-c.607+1G>T, were observed in a bilateral and a unilateral proband, respectively. These findings have implications for genetic counselling and risk prediction for the affected families. This is the first published report on the spectrum of mutations in RB patients from Singapore and shows that further improved mutation screening strategies are required in order to provide a definitive molecular diagnosis for every case of RB. Our findings also underscore the importance of genetic testing in supporting individualized disease management plans for patients and asymptomatic family members carrying low-penetrance, germline mosaicism or heritable unilateral mutational phenotypes.
Collapse
Affiliation(s)
- Swati Tomar
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raman Sethi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gangadhara Sundar
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
| | - Thuan Chong Quah
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Zwingerman N, Medina-Rivera A, Kassam I, Wilson MD, Morange PE, Trégouët DA, Gagnon F. Sex-specific effect of CPB2 Ala147Thr but not Thr325Ile variants on the risk of venous thrombosis: A comprehensive meta-analysis. PLoS One 2017; 12:e0177768. [PMID: 28552956 PMCID: PMC5446132 DOI: 10.1371/journal.pone.0177768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 05/03/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Thrombin activatable fibrinolysis inhibitor (TAFI), encoded by the Carboxypeptidase B2 gene (CPB2), is an inhibitor of fibrinolysis and plays a role in the pathogenesis of venous thrombosis. Experimental findings support a functional role of genetic variants in CPB2, while epidemiological studies have been unable to confirm associations with risk of venous thrombosis. Sex-specific effects could underlie the observed inconsistent associations between CPB2 genetic variants and venous thrombosis. METHODS A comprehensive literature search was conducted for associations between Ala147Thr and Thr325Ile variants with venous thrombosis. Authors were contacted to provide sex-specific genotype counts from their studies. Combined and sex-specific random effects meta-analyses were used to estimate a pooled effect estimate for primary and secondary genetic models. RESULTS A total of 17 studies met the inclusion criteria. A sex-specific meta-analysis applying a dominant model supported a protective effect of Ala147Thr on venous thrombosis in females (OR = 0.81, 95%CI: 0.68,0.97; p = 0.018), but not in males (OR = 1.06, 95%CI:0.96-1.16; p = 0.263). The Thr325Ile did not show a sex-specific effect but showed variation in allele frequencies by geographic region. A subgroup analysis of studies in European countries showed decreased risk, with a recessive model (OR = 0.83, 95%CI:0.71-0.97, p = 0.021) for venous thrombosis. CONCLUSIONS A comprehensive literature review, including unpublished data, provided greater statistical power for the analyses and decreased the likelihood of publication bias influencing the results. Sex-specific analyses explained apparent discrepancies across genetic studies of Ala147Thr and venous thrombosis. While, careful selection of genetic models based on population genetics, evolutionary and biological knowledge can increase power by decreasing the need to adjust for testing multiple models.
Collapse
Affiliation(s)
- Nora Zwingerman
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, Canada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, Querétaro, Mexico
| | - Irfahan Kassam
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Pierre-Emmanuel Morange
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) en Santé 1062, Nutrition Obesity and Risk of Thrombosis, Marseille, France
- Faculté de Médecine, Aix Marseille Université, Marseille, France
| | - David-Alexandre Trégouët
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris, France
- Institute for Cardiometabolism and Nutrition, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France
| | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol 2017; 15:7. [PMID: 28173793 PMCID: PMC5297171 DOI: 10.1186/s12915-017-0352-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The prevalence of several human morbid phenotypes is sometimes much higher than intuitively expected. This can directly arise from the presence of two sexes, male and female, in one species. Men and women have almost identical genomes but are distinctly dimorphic, with dissimilar disease susceptibilities. Sexually dimorphic traits mainly result from differential expression of genes present in both sexes. Such genes can be subject to different, and even opposing, selection constraints in the two sexes. This can impact human evolution by differential selection on mutations with dissimilar effects on the two sexes. RESULTS We comprehensively mapped human sex-differential genetic architecture across 53 tissues. Analyzing available RNA-sequencing data from 544 adults revealed thousands of genes differentially expressed in the reproductive tracts and tissues common to both sexes. Sex-differential genes are related to various biological systems, and suggest new insights into the pathophysiology of diverse human diseases. We also identified a significant association between sex-specific gene transcription and reduced selection efficiency and accumulation of deleterious mutations, which might affect the prevalence of different traits and diseases. Interestingly, many of the sex-specific genes that also undergo reduced selection efficiency are essential for successful reproduction in men or women. This seeming paradox might partially explain the high incidence of human infertility. CONCLUSIONS This work provides a comprehensive overview of the sex-differential transcriptome and its importance to human evolution and human physiology in health and in disease.
Collapse
Affiliation(s)
- Moran Gershoni
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Gutiérrez-Malacatt H, Ayala-Sanchez M, Aquino-Ortega X, Dominguez-Rodriguez J, Martinez-Tovar A, Olarte-Carrillo I, Martinez-Hernandez A, C CCC, Orozco L, Cordova EJ. The rs61764370 Functional Variant in the KRAS Oncogene is Associated with Chronic Myeloid Leukemia Risk in Women. Asian Pac J Cancer Prev 2017; 17:2265-70. [PMID: 27221928 DOI: 10.7314/apjcp.2016.17.4.2265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is one of the most frequent hematopoietic malignancies in the elderly population; however, knowledge is limited regarding the genetic factors associated with increased risk for CML. Polymorphisms affecting microRNA (miRNA) biogenesis or mRNA:miRNA interactions are important risk factors in the development of different types of cancer. Thus, we carried out a case-control study to test the association with CML susceptibility of gene variants located in the miRNA machinery genes AGO1 (rs636832) and GEMIN4 (rs2740348), as well as in the miRNA binding sites of the genes BRCA1 (rs799917) and KRAS (rs61764370). MATERIALS AND METHODS We determined the genotype of 781 Mexican-Mestizo individuals (469 healthy subjects and 312 CML cases) for the four polymorphisms using TaqMan probes to test the association with CML susceptibility. RESULTS We found a borderline association of the minor homozygote genotype of the KRAS_rs61764370 polymorphism with an increased risk for CML susceptibility (P = 0.06). After gender stratification, this association was significant only for women (odds ratio [OR] = 13.41, P = 0.04). The distribution of the allelic and genotypic frequencies of the four studied SNPs was neither associated with advanced phases of CML nor treatment response. CONCLUSIONS To the best of our knowledge, this study is the first to show a significant association of the KRAS_rs61764370 SNP with CML. To further determine such an association of with CML susceptibility, our results must be replicated in different ethnic groups.
Collapse
|
43
|
Kassam I, Lloyd-Jones L, Holloway A, Small KS, Zeng B, Bakshi A, Metspalu A, Gibson G, Spector TD, Esko T, Montgomery GW, Powell JE, Yang J, Visscher PM, McRae AF. Autosomal genetic control of human gene expression does not differ across the sexes. Genome Biol 2016; 17:248. [PMID: 27908293 PMCID: PMC5134098 DOI: 10.1186/s13059-016-1111-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite their nearly identical genomes, males and females differ in risk, incidence, prevalence, severity and age-at-onset of many diseases. Sexual dimorphism is also seen in human autosomal gene expression, and has largely been explored by examining the contribution of genotype-by-sex interactions to variation in gene expression. RESULTS In this study, we use data from a mixture of pedigree and unrelated individuals with verified European ancestry to investigate the sex-specific genetic architecture of gene expression measured in whole blood across n=1048 males and n=1005 females by treating gene expression intensities in the sexes as two distinct traits and estimating the genetic correlation (r G) between them. These correlations measure the similarity of the combined additive genetic effects of all single-nucleotide polymorphisms across the autosomal chromosomes, and thus the level of common genetic control of gene expression across the sexes. Genetic correlations are estimated across the sexes for the expression levels of 12,528 autosomal gene expression probes using bivariate GREML, and tested for differences in autosomal genetic control of gene expression across the sexes. Overall, no deviation of the distribution of test statistics is observed from that expected under the null hypothesis of a common autosomal genetic architecture for gene expression across the sexes. CONCLUSIONS These results suggest that males and females share the same common genetic control of gene expression.
Collapse
Affiliation(s)
- Irfahan Kassam
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
| | - Luke Lloyd-Jones
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Alexander Holloway
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Biao Zeng
- School of Biology and Centre for Integrative Genomics, Georgia Institute of Technology, Atlanta, USA
| | - Andrew Bakshi
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Greg Gibson
- School of Biology and Centre for Integrative Genomics, Georgia Institute of Technology, Atlanta, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tonu Esko
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Grant W Montgomery
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Joseph E Powell
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Jian Yang
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M Visscher
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Australia
| | - Allan F McRae
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
44
|
Singh SK, Lupo PJ, Scheurer ME, Saxena A, Kennedy AE, Ibrahimou B, Barbieri MA, Mills KI, McCauley JL, Okcu MF, Dorak MT. A childhood acute lymphoblastic leukemia genome-wide association study identifies novel sex-specific risk variants. Medicine (Baltimore) 2016; 95:e5300. [PMID: 27861356 PMCID: PMC5120913 DOI: 10.1097/md.0000000000005300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) occurs more frequently in males. Reasons behind sex differences in childhood ALL risk are unknown. In the present genome-wide association study (GWAS), we explored the genetic basis of sex differences by comparing genotype frequencies between male and female cases in a case-only study to assess effect-modification by sex.The case-only design included 236 incident cases of childhood ALL consecutively recruited at the Texas Children's Cancer Center in Houston, Texas from 2007 to 2012. All cases were non-Hispanic whites, aged 1 to 10 years, and diagnosed with confirmed B-cell precursor ALL. Genotyping was performed using the Illumina HumanCoreExome BeadChip on the Illumina Infinium platform. Besides the top 100 statistically most significant results, results were also analyzed by the top 100 highest effect size with a nominal statistical significance (P <0.05).The statistically most significant sex-specific association (P = 4 × 10) was with the single nucleotide polymorphism (SNP) rs4813720 (RASSF2), an expression quantitative trait locus (eQTL) for RASSF2 in peripheral blood. rs4813720 is also a strong methylation QTL (meQTL) for a CpG site (cg22485289) within RASSF2 in pregnancy, at birth, childhood, and adolescence. cg22485289 is one of the hypomethylated CpG sites in ALL compared with pre-B cells. Two missense SNPs, rs12722042 and 12722039, in the HLA-DQA1 gene yielded the highest effect sizes (odds ratio [OR] ∼ 14; P <0.01) for sex-specific results. The HLA-DQA1 SNPs belong to DQA1*01 and confirmed the previously reported male-specific association with DQA1*01. This finding supports the proposed infection-related etiology in childhood ALL risk for males. Further analyses revealed that most SNPs (either direct effect or through linkage disequilibrium) were within active enhancers or active promoter regions and had regulatory effects on gene expression levels.Cumulative data suggested that RASSF2 rs4813720, which correlates with increased RASSF2 expression, may counteract the suppressor effect of estrogen-regulated miR-17-92 on RASSF2 resulting in protection in males. Given the amount of sex hormone-related mechanisms suggested by our findings, future studies should examine prenatal or early postnatal programming by sex hormones when hormone levels show a large variation.
Collapse
Affiliation(s)
- Sandeep K. Singh
- Department of Environmental and Occupational Health, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
- Department of Biological Sciences, Florida International University, Miami, FL
| | - Philip J. Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer Center
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Anshul Saxena
- Department of Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | - Amy E. Kennedy
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Boubakari Ibrahimou
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| | | | - Ken I. Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Jacob L. McCauley
- Dr. John T. Macdonald Foundation, Department of Human Genetics, John P. Hussman Institute for Human Genomics, Biorepository Facility, Center for Genome Technology University of Miami, Miller School of Medicine
| | - Mehmet Fatih Okcu
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | - Mehmet Tevfik Dorak
- Department of Epidemiology, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL
| |
Collapse
|
45
|
Lappalainen T. Functional genomics bridges the gap between quantitative genetics and molecular biology. Genome Res 2016; 25:1427-31. [PMID: 26430152 PMCID: PMC4579327 DOI: 10.1101/gr.190983.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deep characterization of molecular function of genetic variants in the human genome is becoming increasingly important for understanding genetic associations to disease and for learning to read the regulatory code of the genome. In this paper, I discuss how recent advances in both quantitative genetics and molecular biology have contributed to understanding functional effects of genetic variants, lessons learned from eQTL studies, and future challenges in this field.
Collapse
Affiliation(s)
- Tuuli Lappalainen
- New York Genome Center, New York, New York 10013, USA; Department of Systems Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
46
|
Drehmer MN, Suterio DG, Muniz YCN, de Souza IR, Löfgren SE. BAFF Expression is Modulated by Female Hormones in Human Immune Cells. Biochem Genet 2016; 54:722-30. [PMID: 27306360 DOI: 10.1007/s10528-016-9752-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 08/30/2023]
Abstract
Among several autoimmune diseases, one of the main risk factors is the female gender, and much consideration has been given to the involvement of female hormones in their etiology. B-cell activating factor (BAFF) is a key factor in survival and maturation of B cells and is overexpressed in several autoimmune patients although the mechanism behind this feature is unclear. In murine models, BAFF expression could be upregulated by exogenous estrogen treatment in splenocytes; however, no evidence of this relationship was available in humans. Here, leukocytes from healthy male and female individuals were collected and cultivated in the presence or absence of estrogen or progesterone. BAFF gene expression was accessed by quantitative PCR and compared between treated and untreated group of cells. In the presence of estrogen, BAFF expression was upregulated by more than 5 times in both genders. When exposed to progesterone, the female-originated cells showed increased expression, while the cells of male origin a significant downregulation of BAFF. Our results suggest that female hormones can modulate the expression of BAFF, a key cytokine in autoimmune pathways, in human immune cells. These data might contribute to the understanding of the etiology as well as the gender bias featured by several autoimmune disorders.
Collapse
Affiliation(s)
- Manuela N Drehmer
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Dalila G Suterio
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Yara C N Muniz
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Iliada R de Souza
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Sara E Löfgren
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianopolis, Brazil.
| |
Collapse
|
47
|
Sex bias in paediatric autoimmune disease – Not just about sex hormones? J Autoimmun 2016; 69:12-23. [DOI: 10.1016/j.jaut.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
|
48
|
Kukurba KR, Parsana P, Balliu B, Smith KS, Zappala Z, Knowles DA, Favé MJ, Davis JR, Li X, Zhu X, Potash JB, Weissman MM, Shi J, Kundaje A, Levinson DF, Awadalla P, Mostafavi S, Battle A, Montgomery SB. Impact of the X Chromosome and sex on regulatory variation. Genome Res 2016; 26:768-77. [PMID: 27197214 PMCID: PMC4889977 DOI: 10.1101/gr.197897.115] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
The X Chromosome, with its unique mode of inheritance, contributes to differences between the sexes at a molecular level, including sex-specific gene expression and sex-specific impact of genetic variation. Improving our understanding of these differences offers to elucidate the molecular mechanisms underlying sex-specific traits and diseases. However, to date, most studies have either ignored the X Chromosome or had insufficient power to test for the sex-specific impact of genetic variation. By analyzing whole blood transcriptomes of 922 individuals, we have conducted the first large-scale, genome-wide analysis of the impact of both sex and genetic variation on patterns of gene expression, including comparison between the X Chromosome and autosomes. We identified a depletion of expression quantitative trait loci (eQTL) on the X Chromosome, especially among genes under high selective constraint. In contrast, we discovered an enrichment of sex-specific regulatory variants on the X Chromosome. To resolve the molecular mechanisms underlying such effects, we generated chromatin accessibility data through ATAC-sequencing to connect sex-specific chromatin accessibility to sex-specific patterns of expression and regulatory variation. As sex-specific regulatory variants discovered in our study can inform sex differences in heritable disease prevalence, we integrated our data with genome-wide association study data for multiple immune traits identifying several traits with significant sex biases in genetic susceptibilities. Together, our study provides genome-wide insight into how genetic variation, the X Chromosome, and sex shape human gene regulation and disease.
Collapse
Affiliation(s)
- Kimberly R Kukurba
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kevin S Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Zachary Zappala
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - David A Knowles
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Marie-Julie Favé
- Sainte-Justine University Hospital Research Centre, Department of Pediatrics, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Joe R Davis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Xiaowei Zhu
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - James B Potash
- Department of Psychiatry, University of Iowa Hospitals & Clinics, Iowa City, Iowa 52242, USA
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, New York 10032, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Douglas F Levinson
- Department of Psychiatry, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Philip Awadalla
- Sainte-Justine University Hospital Research Centre, Department of Pediatrics, University of Montreal, Montreal, Québec H3T 1J4, Canada
| | - Sara Mostafavi
- Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alexis Battle
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA;
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Computer Science, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
49
|
Wang J, Gamazon ER, Pierce BL, Stranger BE, Im HK, Gibbons RD, Cox NJ, Nicolae DL, Chen LS. Imputing Gene Expression in Uncollected Tissues Within and Beyond GTEx. Am J Hum Genet 2016; 98:697-708. [PMID: 27040689 PMCID: PMC4833292 DOI: 10.1016/j.ajhg.2016.02.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/22/2016] [Indexed: 01/14/2023] Open
Abstract
Gene expression and its regulation can vary substantially across tissue types. In order to generate knowledge about gene expression in human tissues, the Genotype-Tissue Expression (GTEx) program has collected transcriptome data in a wide variety of tissue types from post-mortem donors. However, many tissue types are difficult to access and are not collected in every GTEx individual. Furthermore, in non-GTEx studies, the accessibility of certain tissue types greatly limits the feasibility and scale of studies of multi-tissue expression. In this work, we developed multi-tissue imputation methods to impute gene expression in uncollected or inaccessible tissues. Via simulation studies, we showed that the proposed methods outperform existing imputation methods in multi-tissue expression imputation and that incorporating imputed expression data can improve power to detect phenotype-expression correlations. By analyzing data from nine selected tissue types in the GTEx pilot project, we demonstrated that harnessing expression quantitative trait loci (eQTLs) and tissue-tissue expression-level correlations can aid imputation of transcriptome data from uncollected GTEx tissues. More importantly, we showed that by using GTEx data as a reference, one can impute expression levels in inaccessible tissues in non-GTEx expression studies.
Collapse
Affiliation(s)
- Jiebiao Wang
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University and Vanderbilt Genetics Institute, Nashville, TN 37232, USA; Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Barbara E Stranger
- Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA; Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Robert D Gibbons
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Nancy J Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University and Vanderbilt Genetics Institute, Nashville, TN 37232, USA
| | - Dan L Nicolae
- Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Statistics, University of Chicago, Chicago, IL 60637, USA
| | - Lin S Chen
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Kim JH, Park JL, Kim SY. Non-negligible Occurrence of Errors in Gender Description in Public Data Sets. Genomics Inform 2016; 14:34-40. [PMID: 27103889 PMCID: PMC4838528 DOI: 10.5808/gi.2016.14.1.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
Due to advances in omics technologies, numerous genome-wide studies on human samples have been published, and most of the omics data with the associated clinical information are available in public repositories, such as Gene Expression Omnibus and ArrayExpress. While analyzing several public datasets, we observed that errors in gender information occur quite often in public datasets. When we analyzed the gender description and the methylation patterns of gender-specific probes (glucose-6-phosphate dehydrogenase [G6PD], ephrin-B1 [EFNB1], and testis specific protein, Y-linked 2 [TSPY2]) in 5,611 samples produced using Infinium 450K HumanMethylation arrays, we found that 19 samples from 7 datasets were erroneously described. We also analyzed 1,819 samples produced using the Affymetrix U133Plus2 array using several gender-specific genes (X (inactive)-specific transcript [XIST], eukaryotic translation initiation factor 1A, Y-linked [EIF1AY], and DEAD [Asp-Glu-Ala-Asp] box polypeptide 3, Y-linked [DDDX3Y]) and found that 40 samples from 3 datasets were erroneously described. We suggest that the users of public datasets should not expect that the data are error-free and, whenever possible, that they should check the consistency of the data.
Collapse
Affiliation(s)
- Jong Hwan Kim
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jong-Luyl Park
- Epigenome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Seon-Young Kim
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|