1
|
Giordani S, Marassi V, Placci A, Zattoni A, Roda B, Reschiglian P. Field-Flow Fractionation in Molecular Biology and Biotechnology. Molecules 2023; 28:6201. [PMID: 37687030 PMCID: PMC10488451 DOI: 10.3390/molecules28176201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Field-flow fractionation (FFF) is a family of single-phase separative techniques exploited to gently separate and characterize nano- and microsystems in suspension. These techniques cover an extremely wide dynamic range and are able to separate analytes in an interval between a few nm to 100 µm size-wise (over 15 orders of magnitude mass-wise). They are flexible in terms of mobile phase and can separate the analytes in native conditions, preserving their original structures/properties as much as possible. Molecular biology is the branch of biology that studies the molecular basis of biological activity, while biotechnology deals with the technological applications of biology. The areas where biotechnologies are required include industrial, agri-food, environmental, and pharmaceutical. Many species of biological interest belong to the operational range of FFF techniques, and their application to the analysis of such samples has steadily grown in the last 30 years. This work aims to summarize the main features, milestones, and results provided by the application of FFF in the field of molecular biology and biotechnology, with a focus on the years from 2000 to 2022. After a theoretical background overview of FFF and its methodologies, the results are reported based on the nature of the samples analyzed.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Valentina Marassi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Anna Placci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
| | - Andrea Zattoni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy (V.M.)
- byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
2
|
Richer S, Tian Y, Schoenfelder S, Hurst L, Murrell A, Pisignano G. Widespread allele-specific topological domains in the human genome are not confined to imprinted gene clusters. Genome Biol 2023; 24:40. [PMID: 36869353 PMCID: PMC9983196 DOI: 10.1186/s13059-023-02876-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND There is widespread interest in the three-dimensional chromatin conformation of the genome and its impact on gene expression. However, these studies frequently do not consider parent-of-origin differences, such as genomic imprinting, which result in monoallelic expression. In addition, genome-wide allele-specific chromatin conformation associations have not been extensively explored. There are few accessible bioinformatic workflows for investigating allelic conformation differences and these require pre-phased haplotypes which are not widely available. RESULTS We developed a bioinformatic pipeline, "HiCFlow," that performs haplotype assembly and visualization of parental chromatin architecture. We benchmarked the pipeline using prototype haplotype phased Hi-C data from GM12878 cells at three disease-associated imprinted gene clusters. Using Region Capture Hi-C and Hi-C data from human cell lines (1-7HB2, IMR-90, and H1-hESCs), we can robustly identify the known stable allele-specific interactions at the IGF2-H19 locus. Other imprinted loci (DLK1 and SNRPN) are more variable and there is no "canonical imprinted 3D structure," but we could detect allele-specific differences in A/B compartmentalization. Genome-wide, when topologically associating domains (TADs) are unbiasedly ranked according to their allele-specific contact frequencies, a set of allele-specific TADs could be defined. These occur in genomic regions of high sequence variation. In addition to imprinted genes, allele-specific TADs are also enriched for allele-specific expressed genes. We find loci that have not previously been identified as allele-specific expressed genes such as the bitter taste receptors (TAS2Rs). CONCLUSIONS This study highlights the widespread differences in chromatin conformation between heterozygous loci and provides a new framework for understanding allele-specific expressed genes.
Collapse
Affiliation(s)
- Stephen Richer
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Yuan Tian
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, London, UK
| | | | - Laurence Hurst
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Adele Murrell
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Giuseppina Pisignano
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
3
|
Evaluation of keratin 1 gene expression and its single nucleotide polymorphism (rs14024) in systemic sclerosis patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Abstract
Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to cis-acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes.
Collapse
Affiliation(s)
- Siobhan Cleary
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| |
Collapse
|
5
|
ZNF597 is a maternally expressed imprinted gene in the Holstein breed. Theriogenology 2020; 143:133-138. [PMID: 31874365 DOI: 10.1016/j.theriogenology.2019.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/24/2019] [Accepted: 12/14/2019] [Indexed: 11/22/2022]
Abstract
Genomic imprinting is an epigenetic phenomenon that leads to the preferential expression of genes from either the paternal or maternal allele. Imprinted genes play important roles in mammalian growth and development and a central role in placental function. ZNF597 and NAA60 are two paternally imprinted genes in the human ZNF597-NAA60 imprinted locus, both of which show biallelic expression in the mouse, but their imprinting status in cattle is still unknown. In this study, we examined the allelic expression of ZNF597 and NAA60 in adult bovine placental and somatic tissues. By comparing the mRNA-based genotypes with the genomic DNA-based genotypes, we identified monoallelic expression of ZNF597 in the placenta and in seven other tissues, including the cerebrum, heart, liver, spleen, lung, kidney, and muscle. Nevertheless, analysis revealed biallelic expression of the NAA60 gene in these tissues. Moreover, we tested the imprinting status of ZNF597 and confirmed that the maternal allele is expressed in the bovine placenta. To determine the role of DNA methylation in regulating monoallelic/imprinted expression of bovine ZNF597, the methylation status of two CpG-enriched regions in the bovine ZNF597-NAA60 locus was analyzed using the bisulfite sequencing method. Differentially methylated regions were detected on ten CpG loci in the bovine ZNF597 promoter region. In summary, the bovine ZNF597 gene is a maternally expressed gene, and its expression is regulated by DNA methylation, whereas the NAA60 gene is not imprinted in cattle.
Collapse
|
6
|
Crippa M, Bonati MT, Calzari L, Picinelli C, Gervasini C, Sironi A, Bestetti I, Guzzetti S, Bellone S, Selicorni A, Mussa A, Riccio A, Ferrero GB, Russo S, Larizza L, Finelli P. Molecular Etiology Disclosed by Array CGH in Patients With Silver-Russell Syndrome or Similar Phenotypes. Front Genet 2019; 10:955. [PMID: 31749829 PMCID: PMC6843062 DOI: 10.3389/fgene.2019.00955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction: Silver–Russell syndrome (SRS) is an imprinting disorder primarily caused by genetic and epigenetic aberrations on chromosomes 11 and 7. SRS is a rare growth retardation disorder often misdiagnosed due to its heterogeneous and non-specific clinical features. The Netchine–Harbison clinical scoring system (NH-CSS) is the recommended tool for differentiating patients into clinical SRS or unlikely SRS. However, the clinical diagnosis is molecularly confirmed only in about 60% of patients, leaving the remaining substantial proportion of SRS patients with unknown genetic etiology. Materials and Methods: A cohort of 34 Italian patients with SRS or SRS-like features scored according to the NH-CSS and without any SRS-associated (epi)genetic alterations was analyzed by high-resolution array-based comparative genomic hybridization (CGH) in order to identify potentially pathogenic copy number variants (CNVs). Results and Discussion: In seven patients, making up 21% of the initial cohort, five pathogenic and two potentially pathogenic CNVs were found involving distinct genomic regions either previously associated with growth delay conditions (1q24.3-q25.3, 17p13.3, 17q22, and 22q11.2-q11.22) and with SRS spectrum (7p12.1 and 7p15.3-p14.3) or outlined for the first time (19q13.42), providing a better definition of reported and as yet unreported SRS overlapping syndromes. All the variants involve genes with a defined role in growth pathways, and for two genes mapping at 7p, IGF2BP3 and GRB10, the association with SRS turns out to be reinforced. The deleterious effect of the two potentially pathogenic variants, comprising GRB10 and ZNF331 genes, was explored by targeted approaches, though further studies are needed to validate their pathogenic role in the SRS etiology. In conclusion, we reconfirm the utility of performing a genome-wide scan to achieve a differential diagnosis in patients with SRS or similar features and to highlight novel chromosome alterations associated with SRS and growth retardation disorders.
Collapse
Affiliation(s)
- Milena Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Teresa Bonati
- Clinic of Medical Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luciano Calzari
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Picinelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Gervasini
- Medical Genetics, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alessandra Sironi
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Guzzetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simonetta Bellone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Alessandro Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli," Caserta, Italy.,Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | | | - Silvia Russo
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lidia Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Palma Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Bai H, He Y, Ding Y, Carrillo JA, Selvaraj RK, Zhang H, Chen J, Song J. Allele-Specific Expression of CD4 + T Cells in Response to Marek's Disease Virus Infection. Genes (Basel) 2019; 10:E718. [PMID: 31533276 PMCID: PMC6770979 DOI: 10.3390/genes10090718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD) is a T cell lymphoma disease induced by Marek's disease virus (MDV), a highly oncogenic α herpesvirus primarily affecting chickens. MD is a chronic infectious disease that threatens the poultry industry. However, the mechanisms of genetic resistance for MD are complex and not completely understood. In this study, to identify high-confidence candidate genes of MD genetic resistance, high throughput sequencing (RNA-seq) was used to obtain transcriptomic data of CD4+ T cells isolated from MDV-infected and non-infected groups of two reciprocal crosses of individuals mating by two highly inbred chicken lines (63 MD-resistant and 72 MD-susceptible). After RNA-seq analysis with two biological replicates in each group, we identified 61 and 123 single nucleotide polymorphisms (SNPs) (false discovery rate (FDR) < 0.05) annotated in 39 and 132 genes in intercrosses 63 × 72 and 72 × 63, respectively, which exhibited allele-specific expression (ASE) in response to MDV infection. Similarly, we identified 62 and 79 SNPs annotated in 66 and 96 genes in infected and non-infected groups, respectively. We identified 534 and 1543 differentially expressed genes (DEGs) (FDR < 0.05) related to MDV infection in intercrosses 63 × 72 and 72 × 63, respectively. We also identified 328 and 20 DEGs in infected and non-infected groups, respectively. The qRT-PCR using seven DEGs further verified our results of RNA-seq analysis. The qRT-PCR of 11 important ASE genes was performed for gene functional validation in CD4+ T cells and tumors. Combining the analyses, six genes (MCL1, SLC43A2, PDE3B, ADAM33, BLB1, and DMB2), especially MCL1, were highlighted as the candidate genes with the potential to be involved in MDV infection. Gene-set enrichment analysis revealed that many ASE genes are linked to T cell activation, T cell receptor (TCR), B cell receptor (BCR), ERK/MAPK, and PI3K/AKT-mTOR signaling pathways, which play potentially important roles in MDV infection. Our approach underlines the importance of comprehensive functional studies for gaining valuable biological insight into the genetic factors behind MD and other complex traits, and our findings provide additional insights into the mechanisms of MD and disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanghua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, HI 96822, USA
| | - Yi Ding
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - José A Carrillo
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ramesh K Selvaraj
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
8
|
Schulze KV, Szafranski P, Lesmana H, Hopkin RJ, Hamvas A, Wambach JA, Shinawi M, Zapata G, Carvalho CMB, Liu Q, Karolak JA, Lupski JR, Hanchard NA, Stankiewicz P. Novel parent-of-origin-specific differentially methylated loci on chromosome 16. Clin Epigenetics 2019; 11:60. [PMID: 30961659 PMCID: PMC6454695 DOI: 10.1186/s13148-019-0655-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/13/2019] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Congenital malformations associated with maternal uniparental disomy of chromosome 16, upd(16)mat, resemble those observed in newborns with the lethal developmental lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interestingly, ACDMPV-causative deletions, involving FOXF1 or its lung-specific upstream enhancer at 16q24.1, arise almost exclusively on the maternally inherited chromosome 16. Given the phenotypic similarities between upd(16)mat and ACDMPV, together with parental allelic bias in ACDMPV, we hypothesized that there may be unknown imprinted loci mapping to chromosome 16 that become functionally unmasked by chromosomal structural variants. RESULTS To identify parent-of-origin biased DNA methylation, we performed high-resolution bisulfite sequencing of chromosome 16 on peripheral blood and cultured skin fibroblasts from individuals with maternal or paternal upd(16) as well as lung tissue from patients with ACDMPV-causative 16q24.1 deletions and a normal control. We identified 22 differentially methylated regions (DMRs) with ≥ 5 consecutive CpG methylation sites and varying tissue-specificity, including the known DMRs associated with the established imprinted gene ZNF597 and DMRs supporting maternal methylation of PRR25, thought to be paternally expressed in lymphoblastoid cells. Lastly, we found evidence of paternal methylation on 16q24.1 near LINC01082 mapping to the FOXF1 enhancer. CONCLUSIONS Using high-resolution bisulfite sequencing to evaluate DNA methylation across chromosome 16, we found evidence for novel candidate imprinted loci on chromosome 16 that would not be evident in array-based assays and could contribute to the birth defects observed in patients with upd(16)mat or in ACDMPV.
Collapse
Affiliation(s)
- Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Harry Lesmana
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aaron Hamvas
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer A Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gladys Zapata
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- USDA/ARS/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Stachowiak M, Szczerbal I, Flisikowski K. Investigation of allele-specific expression of genes involved in adipogenesis and lipid metabolism suggests complex regulatory mechanisms of PPARGC1A expression in porcine fat tissues. BMC Genet 2018; 19:107. [PMID: 30497374 PMCID: PMC6267897 DOI: 10.1186/s12863-018-0696-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background The expression of genes involved in regulating adipogenesis and lipid metabolism may affect economically important fatness traits in pigs. Allele-specific expression (ASE) reflects imbalance between allelic transcript levels and can be used to identify underlying cis-regulatory elements. ASE has not yet been intensively studied in pigs. The aim of this investigation was to analyze the differential allelic expression of four genes, PPARA, PPARG, SREBF1, and PPARGC1A, which are involved in the regulation of fat deposition in porcine subcutaneous and visceral fat and longissimus dorsi muscle. Results Quantification of allelic proportions by pyrosequencing revealed that both alleles of PPARG and SREBF1 are expressed at similar levels. PPARGC1A showed the greatest ASE imbalance in fat deposits in Polish Large White (PLW), Polish Landrace and Pietrain pigs; and PPARA in PLW pigs. Significant deviations of mean PPARGC1A allelic transcript ratio between cDNA and genomic DNA were detected in all tissues, with the most pronounced difference (p < 0.001) in visceral fat of PLW pigs. To search for potential cis-regulatory elements affecting ASE in the PPARGC1A gene we analyzed the effects of four SNPs (rs337351686, rs340650517, rs336405906 and rs345224049) in the promoter region, but none were associated with ASE in the breeds studied. DNA methylation analysis revealed significant CpG methylation differences between samples showing balanced (allelic transcript ratio ≈1) and imbalanced allelic expression for CpG site at the genomic position in chromosome 8 (SSC8): 18527678 in visceral fat (p = 0.017) and two CpG sites (SSC8:18525215, p = 0.030; SSC8:18525237, p = 0.031) in subcutaneous fat. Conclusions Our analysis of differential allelic expression suggests that PPARGC1A is subjected to cis-regulation in porcine fat tissues. Further studies are necessary to identify other regulatory elements localized outside the PPARGC1A proximal promoter region. Electronic supplementary material The online version of this article (10.1186/s12863-018-0696-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, Liesel-Beckmannstr. 1, 85354, Freising, Germany
| |
Collapse
|
10
|
Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs. Proc Natl Acad Sci U S A 2018; 115:4429-4434. [PMID: 29643074 PMCID: PMC5924919 DOI: 10.1073/pnas.1721381115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungi are a broad class of organisms that play crucial roles in a wide variety of natural and industrial processes. Some are also harmful, destroying crops or infecting immunocompromised patients. Many fungi, at some point during their life cycle, contain two different nuclei, each with different genetic content. We examine the regulation of genes from these nuclei in a mushroom-forming fungus. We find that these nuclei contribute differently to the regulation of the fungal cells, and may therefore have a different impact on their environment. Furthermore, these differences change throughout the development of different tissues. This work contributes to our understanding of fungal physiology by examining this process. Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus. Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation.
Collapse
|
11
|
Luo W, Zhou B, Luo Q, Fang H, Zuo X, Zou Y. Polymorphism of keratin 1 associates with systemic lupus erythematosus and systemic sclerosis in a south Chinese population. PLoS One 2017; 12:e0186409. [PMID: 29028840 PMCID: PMC5640249 DOI: 10.1371/journal.pone.0186409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
Both systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) diseases are related to the genetic and environmental factors, causing damage to the skin. The mutations of keratin 1 gene (KRT1) were reported to associate with skin diseases. The single-nucleotide polymorphism (SNP, rs14024) and the indel polymorphism (cds-indel, rs267607656), consisting mostly of the common haplotypes and could be used for genotyping of KRT1. We used the PCR with sequence specific primers (PCR-SSP) to determine the genotype of KRT1 in 164 SLE, 99 SSc patients, and 418 healthy controls. The results showed that the mutant with G at SNP rs14024 was associated with the high risk to SLE (p = 6.48×10-5) and SSc (p = 8.75×10-5), while the deletion allele at rs267607656 was associated with the low risk to SSc (p = 4.89×10-4) comparing to the normal controls. Haplogenotype, Del-/MU+ was associated with high susceptibility to SLE (OR = 1.87, p = 0.001) and SSc (OR = 2.29, p = 2.34×10-4). In contrast, the Haplogenotype Del+/MU- was associated with resistance to SLE (OR = 0.35, p = 6.24×10-5) and SSc (OR = 0.34, p = 0.001). This study demonstrates that the variations in KRT1 and the specific polymorphism of KRT1 in this Chinese Han population are associated with autoimmune diseases SLE and SSc. Typing KRT1 might be helpful to identify SLE and SSc patients.
Collapse
Affiliation(s)
- Weiguang Luo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bin Zhou
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qizhi Luo
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Huilong Fang
- Department of pathogenic Biology and Immunology, Xiangnan University, Chenzhou, Hunan, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yizhou Zou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Cooperative Innovation Center of Engineering and new Products for Developmental Biology of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
12
|
RNA-Seq Analyses Identify Frequent Allele Specific Expression and No Evidence of Genomic Imprinting in Specific Embryonic Tissues of Chicken. Sci Rep 2017; 7:11944. [PMID: 28931927 PMCID: PMC5607270 DOI: 10.1038/s41598-017-12179-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic and genetic cis-regulatory elements in diploid organisms may cause allele specific expression (ASE) – unequal expression of the two chromosomal gene copies. Genomic imprinting is an intriguing type of ASE in which some genes are expressed monoallelically from either the paternal allele or maternal allele as a result of epigenetic modifications. Imprinted genes have been identified in several animal species and are frequently associated with embryonic development and growth. Whether genomic imprinting exists in chickens remains debatable, as previous studies have reported conflicting evidence. Albeit no genomic imprinting has been reported in the chicken embryo as a whole, we interrogated the existence or absence of genomic imprinting in the 12-day-old chicken embryonic brain and liver by examining ASE in F1 reciprocal crosses of two highly inbred chicken lines (Fayoumi and Leghorn). We identified 5197 and 4638 ASE SNPs, corresponding to 18.3% and 17.3% of the genes with a detectable expression in the embryonic brain and liver, respectively. There was no evidence detected of genomic imprinting in 12-day-old embryonic brain and liver. While ruling out the possibility of imprinted Z-chromosome inactivation, our results indicated that Z-linked gene expression is partially compensated between sexes in chickens.
Collapse
|
13
|
Mining Novel Candidate Imprinted Genes Using Genome-Wide Methylation Screening and Literature Review. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
14
|
Santoni FA, Stamoulis G, Garieri M, Falconnet E, Ribaux P, Borel C, Antonarakis SE. Detection of Imprinted Genes by Single-Cell Allele-Specific Gene Expression. Am J Hum Genet 2017; 100:444-453. [PMID: 28190458 DOI: 10.1016/j.ajhg.2017.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/19/2017] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in parental-specific gene expression. Imprinted genes are involved in the etiology of rare syndromes and have been associated with common diseases such as diabetes and cancer. Standard RNA bulk cell sequencing applied to whole-tissue samples has been used to detect imprinted genes in human and mouse models. However, lowly expressed genes cannot be detected by using RNA bulk approaches. Here, we report an original and robust method that combines single-cell RNA-seq and whole-genome sequencing into an optimized statistical framework to analyze genomic imprinting in specific cell types and in different individuals. Using samples from the probands of 2 family trios and 3 unrelated individuals, 1,084 individual primary fibroblasts were RNA sequenced and more than 700,000 informative heterozygous single-nucleotide variations (SNVs) were genotyped. The allele-specific coverage per gene of each SNV in each single cell was used to fit a beta-binomial distribution to model the likelihood of a gene being expressed from one and the same allele. Genes presenting a significant aggregate allelic ratio (between 0.9 and 1) were retained to identify of the allelic parent of origin. Our approach allowed us to validate the imprinting status of all of the known imprinted genes expressed in fibroblasts and the discovery of nine putative imprinted genes, thereby demonstrating the advantages of single-cell over bulk RNA-seq to identify imprinted genes. The proposed single-cell methodology is a powerful tool for establishing a cell type-specific map of genomic imprinting.
Collapse
Affiliation(s)
- Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; University Hospitals of Geneva, Geneva 1211, Switzerland.
| | - Georgios Stamoulis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Pascale Ribaux
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland; University Hospitals of Geneva, Geneva 1211, Switzerland; Institute of Genetics and Genomics of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
15
|
Braud M, Magee DA, Park SDE, Sonstegard TS, Waters SM, MacHugh DE, Spillane C. Genome-Wide microRNA Binding Site Variation between Extinct Wild Aurochs and Modern Cattle Identifies Candidate microRNA-Regulated Domestication Genes. Front Genet 2017; 8:3. [PMID: 28197171 PMCID: PMC5281612 DOI: 10.3389/fgene.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
The domestication of cattle from the now-extinct wild aurochs (Bos primigenius) involved selection for physiological and behavioral traits, with underlying genetic factors that remain largely unknown. Non-coding microRNAs have emerged as key regulators of the spatio-temporal expression of target genes controlling mammalian growth and development, including in livestock species. During the domestication process, selection of mutational changes in miRNAs and/or miRNA binding sites could have provided a mechanism to generate some of the traits that differentiate domesticated cattle from wild aurochs. To investigate this, we analyzed the open reading frame DNA sequence of 19,994 orthologous protein-coding gene pairs from extant Bos taurus genomes and a single extinct B. primigenius genome. We identified miRNA binding site polymorphisms in the 3′ UTRs of 1,620 of these orthologous genes. These 1,620 genes with altered miRNA binding sites between the B. taurus and B. primigenius lineages represent candidate domestication genes. Using a novel Score Site ratio metric we have ranked these miRNA-regulated genes according to the extent of divergence between miRNA binding site presence, frequency and copy number between the orthologous genes from B. taurus and B. primigenius. This provides an unbiased approach to identify cattle genes that have undergone the most changes in miRNA binding (i.e., regulation) between the wild aurochs and modern-day cattle breeds. In addition, we demonstrate that these 1,620 candidate domestication genes are enriched for roles in pigmentation, fertility, neurobiology, metabolism, immunity and production traits (including milk quality and feed efficiency). Our findings suggest that directional selection of miRNA regulatory variants was important in the domestication and subsequent artificial selection that gave rise to modern taurine cattle.
Collapse
Affiliation(s)
- Martin Braud
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, University Road Galway, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin Dublin, Ireland
| | - Stephen D E Park
- IdentiGEN Ltd, Unit 2, Trinity Enterprise Centre Dublin, Ireland
| | | | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc Dunsany, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College DublinDublin, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College DublinDublin, Ireland
| | - Charles Spillane
- Genetics and Biotechnology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, National University of Ireland Galway, University Road Galway, Ireland
| |
Collapse
|
16
|
Detecting Allelic Expression Imbalance at Candidate Genes Using 5' Exonuclease Genotyping Technology. Methods Mol Biol 2016; 1326:93-103. [PMID: 26498616 DOI: 10.1007/978-1-4939-2839-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Genetic variation along the length of a chromosome can influence the transcription of a gene. In a heterozygous individual, this may lead to one chromosome producing different levels of RNA, compared to its paired chromosome, for a given gene. Allelic differences in gene expression can offer insight into the role of variation in transcription, and subsequently infer a route to conferring disease risk. This phenomenon is known as allele expression imbalance or AEI, which may be assayed using a PCR-based method that includes the quantification of the relative dosage of each allele (e.g., 5' exonuclease assays, TaqMan™). Importantly, in heterozygous individuals the resolution of expression imbalance is performed within a controlled system; the comparison of the alternate allele is reported relative to the wild-type, as the experiment can be performed within a single sample, controlled for background genetic information. Alternative methods for the detection of AEI include Primer-extension MALDI-TOF (Sequenom MassARRAY(®)), Next-Generation Sequencing, and SNP genotyping arrays. Here we present the methods used for the TaqMan™ approach and include a description of the SNP identification, allele-specific PCR, and analytic methods to convert allele amplification metrics to relative allele dosage.
Collapse
|
17
|
Chamberlain AJ, Vander Jagt CJ, Hayes BJ, Khansefid M, Marett LC, Millen CA, Nguyen TTT, Goddard ME. Extensive variation between tissues in allele specific expression in an outbred mammal. BMC Genomics 2015; 16:993. [PMID: 26596891 PMCID: PMC4657355 DOI: 10.1186/s12864-015-2174-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Allele specific gene expression (ASE), with the paternal allele more expressed than the maternal allele or vice versa, appears to be a common phenomenon in humans and mice. In other species the extent of ASE is unknown, and even in humans and mice there are several outstanding questions. These include; to what extent is ASE tissue specific? how often does the direction of allele expression imbalance reverse between tissues? how often is only one of the two alleles expressed? is there a genome wide bias towards expression of the paternal or maternal allele; and finally do genes that are nearby on a chromosome share the same direction of ASE? Here we use gene expression data (RNASeq) from 18 tissues from a single cow to investigate each of these questions in turn, and then validate some of these findings in two tissues from 20 cows. RESULTS Between 40 and 100 million sequence reads were generated per tissue across three replicate samples for each of the eighteen tissues from the single cow (the discovery dataset). A bovine gene expression atlas was created (the first from RNASeq data), and differentially expressed genes in each tissue were identified. To analyse ASE, we had access to unambiguously phased genotypes for all heterozygous variants in the cow's whole genome sequence, where these variants were homozygous in the whole genome sequence of her sire, and as a result we were able to map reads to parental genomes, to determine SNP and genes showing ASE in each tissue. In total 25,251 heterozygous SNP within 7985 genes were tested for ASE in at least one tissue. ASE was pervasive, 89 % of genes tested had significant ASE in at least one tissue. This large proportion of genes displaying ASE was confirmed in the two tissues in a validation dataset. For individual tissues the proportion of genes showing significant ASE varied from as low as 8-16 % of those tested in thymus to as high as 71-82 % of those tested in lung. There were a number of cases where the direction of allele expression imbalance reversed between tissues. For example the gene SPTY2D1 showed almost complete paternal allele expression in kidney and thymus, and almost complete maternal allele expression in the brain caudal lobe and brain cerebellum. Mono allelic expression (MAE) was common, with 1349 of 4856 genes (28 %) tested with more than one heterozygous SNP showing MAE. Across all tissues, 54.17 % of all genes with ASE favoured the paternal allele. Genes that are closely linked on the chromosome were more likely to show higher expression of the same allele (paternal or maternal) than expected by chance. We identified several long runs of neighbouring genes that showed either paternal or maternal ASE, one example was five adjacent genes (GIMAP8, GIMAP7 copy1, GIMAP4, GIMAP7 copy 2 and GIMAP5) that showed almost exclusive paternal expression in brain caudal lobe. CONCLUSIONS Investigating the extent of ASE across 18 bovine tissues in one cow and two tissues in 20 cows demonstrated 1) ASE is pervasive in cattle, 2) the ASE is often MAE but ranges from MAE to slight overexpression of the major allele, 3) the ASE is most often tissue specific and that more than half the time displays divergent allele specific expression patterns across tissues, 4) across all genes there is a slight bias towards expression of the paternal allele and 5) genes expressing the same parental allele are clustered together more than expected by chance, and there are several runs of large numbers of genes expressing the same parental allele.
Collapse
Affiliation(s)
- Amanda J Chamberlain
- Department of Economic Development, Jobs, Transport and Resources, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- Dairy Futures Cooperative Research Centre, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
| | - Christy J Vander Jagt
- Department of Economic Development, Jobs, Transport and Resources, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- Dairy Futures Cooperative Research Centre, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
| | - Benjamin J Hayes
- Department of Economic Development, Jobs, Transport and Resources, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- Dairy Futures Cooperative Research Centre, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- La Trobe University, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
| | - Majid Khansefid
- Department of Economic Development, Jobs, Transport and Resources, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- Dairy Futures Cooperative Research Centre, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- Institute of Land and Food, University of Melbourne, Royal Parade, Parkville, Australia.
| | - Leah C Marett
- Department of Economic Development, Jobs, Transport and Resources, 1301 Hazeldean Rd, Ellinbank, Australia.
| | - Catriona A Millen
- Dairy Futures Cooperative Research Centre, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- Institute of Land and Food, University of Melbourne, Royal Parade, Parkville, Australia.
| | - Thuy T T Nguyen
- Department of Economic Development, Jobs, Transport and Resources, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
| | - Michael E Goddard
- Department of Economic Development, Jobs, Transport and Resources, Agribiosciences Building, 5 Ring Rd, Bundoora, Australia.
- Institute of Land and Food, University of Melbourne, Royal Parade, Parkville, Australia.
| |
Collapse
|
18
|
Okamoto K, Tsunematsu R, Tahira T, Sonoda K, Asanoma K, Yagi H, Yoneda T, Hayashi K, Wake N, Kato K. SNP55, a new functional polymorphism of MDM2-P2 promoter, contributes to allele-specific expression of MDM2 in endometrial cancers. BMC MEDICAL GENETICS 2015; 16:67. [PMID: 26293665 PMCID: PMC4593204 DOI: 10.1186/s12881-015-0216-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 08/13/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND The functional single nucleotide polymorphism (SNP) in the MDM2 promoter region, SNP309, is known to be associated with various diseases, particularly cancer. Although many studies have been performed to demonstrate the mechanism of allele-specific expression (ASE) on SNP309, they have only utilized in vitro techniques. It is unknown whether ASE of MDM2 is ascribed solely to SNP309, in vivo. METHODS We attempted to evaluate ASE of MDM2 in vivo using post-labeling followed by automated capillary electrophoresis under single-strand conformation polymorphism conditions. For measuring a quantitative difference, we utilized the SNPs on the exons of MDM2 as markers, the status of which was heterozygous in a large population. To address the cause of ASE beyond 20%, we confirmed sequences of both MDM2-3'UTR and promoter regions. We assessed the SNP which might be the cause of ASE using biomolecular interaction analysis and luciferase assay. RESULTS ASE beyond 20% was detected in endometrial cancers, but not in cancer-free endometria samples only when an SNP rs1690916 was used as a marker. We suspected that this ASE in endometrial cancer was caused by the sequence heterogeneity in the MDM2-P2 promoter, and found a new functional polymorphism, which we labelled SNP55. There was no difference between cancer-free endometria and endometrial cancer samples neither for SNP55 genotype frequencies nor allele frequencies, and so, SNP55 alone does not affect endometrial cancer risk. The SNP55 status affected the DNA binding affinity of transcription factor Sp1 and nuclear factor kappa-B (NFκB). Transcriptional activity of the P2 promoter containing SNP55C was suppressed by NFκB p50 homodimers, but that of SNP55T was not. Only ASE-positive endometrial cancer samples displayed nuclear localization of NFκB p50. CONCLUSIONS Our findings suggest that both the SNP55 status and the NFκB p50 activity are important in the transcriptional regulation of MDM2 in endometrial cancers.
Collapse
Affiliation(s)
- Kanako Okamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Ryosuke Tsunematsu
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Current address: Department of Obstetrics and Gynecology, National Hospital Organization Ibusuki Medical Center, 4145, Junicho, Ibusuki, Kagoshima, 891-0498, Japan.
| | - Tomoko Tahira
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan.
| | - Kenzo Sonoda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Tomoko Yoneda
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kenshi Hayashi
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Norio Wake
- Research Center for Environmental Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
19
|
Sathyan S, Koshy LV, Srinivas L, Srinivas L, Easwer HV, Premkumar S, Nair S, Bhattacharya RN, Alapatt JP, Banerjee M. Pathogenesis of intracranial aneurysm is mediated by proinflammatory cytokine TNFA and IFNG and through stochastic regulation of IL10 and TGFB1 by comorbid factors. J Neuroinflammation 2015; 12:135. [PMID: 26198819 PMCID: PMC4510902 DOI: 10.1186/s12974-015-0354-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intracranial aneurysm (IA) is often asymptomatic until the time of rupture resulting in subarachnoid hemorrhage (SAH).There is no precise biochemical or phenotype marker for diagnosis of aneurysm. Environmental risk factors that associate with IA can result in modifying the effect of inherited genetic factors and thereby increase the susceptibility to SAH. In addition subsequent to aneurismal rupture, the nature and quantum of inflammatory response might be critical for repair. Therefore, genetic liability to inflammatory response caused by polymorphisms in cytokine genes might be the common denominator for gene and environment in the development of aneurysm and complications associated with rupture. METHODS Functionally relevant polymorphisms in the pro- and anti-inflammatory cytokine genes IL-1 complex (IL1A, IL1B, and IL1RN), TNFA, IFNG, IL3, IL6, IL12B, IL1RN, TGFB1, IL4, and IL10] were screened in radiologically confirmed 220 IA patients and 250 controls from genetically stratified Malayalam-speaking Dravidian ethnic population of south India. Subgroup analyses with genetic and environmental variables were also carried out. RESULTS Pro-inflammatory cytokines TNFA rs361525, IFNG rs2069718, and anti-inflammatory cytokine IL10 rs1800871 and rs1800872 were found to be significantly associated with IA, independent of epidemiological factors. TGFB1 rs1800469 polymorphism was observed to be associated with IA through co-modifying factors such as hypertension and gender. Functional prediction of all the associated SNPs of TNFA, IL10, and TGFB1 indicates their potential role in transcriptional regulation. Meta-analysis further reiterates that IL1 gene cluster and IL6 were not associated with IA. CONCLUSIONS The study suggests that chronic exposure to inflammatory response mediated by genetic variants in pro-inflammatory cytokines TNFA and IFNG could be a primary event, while stochastic regulation of IL10 and TGFB1 response mediated by comorbid factors such as hypertension may augment the pathogenesis of IA through vascular matrix degradation. The implication and interaction of these genetic variants under a specific environmental background will help us identify the resultant phenotypic variation in the pathogenesis of intracranial aneurysm. Identifying genetic risk factors for inflammation might also help in understanding and addressing the posttraumatic complications following the aneurismal rupture.
Collapse
Affiliation(s)
- Sanish Sathyan
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| | - Linda V Koshy
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| | - Lekshmy Srinivas
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| | | | - H V Easwer
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, Kerala, India.
| | - S Premkumar
- Department of Neurosurgery, Calicut Medical College, Calicut, Kerala, India.
| | - Suresh Nair
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, Kerala, India.
| | - R N Bhattacharya
- Department of Neurosurgery, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, Kerala, India.
| | - Jacob P Alapatt
- Department of Neurosurgery, Calicut Medical College, Calicut, Kerala, India.
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
20
|
Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, Zhang R, Eng C, Torgerson DG, Urbanek C, Li JB, Rodriguez-Santana JR, Burchard EG, Seibold MA, MacArthur DG, Montgomery SB, Zaitlen NA, Lappalainen T. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015; 25:927-36. [PMID: 25953952 PMCID: PMC4484390 DOI: 10.1101/gr.192278.115] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.
Collapse
Affiliation(s)
- Yael Baran
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Meena Subramaniam
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Biton
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Emily K Tsang
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA
| | - Manuel A Rivas
- Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Maria Gutierrez-Arcelus
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Kim R Kukurba
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Dara G Torgerson
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Cydney Urbanek
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Max A Seibold
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA; Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Denver, Denver, Colorado 80045, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, New York 10013, USA; Department of Systems Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
21
|
Codina-Solà M, Rodríguez-Santiago B, Homs A, Santoyo J, Rigau M, Aznar-Laín G, Del Campo M, Gener B, Gabau E, Botella MP, Gutiérrez-Arumí A, Antiñolo G, Pérez-Jurado LA, Cuscó I. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders. Mol Autism 2015; 6:21. [PMID: 25969726 PMCID: PMC4427998 DOI: 10.1186/s13229-015-0017-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/19/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. METHODS We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. RESULTS We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. CONCLUSIONS Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.
Collapse
Affiliation(s)
- Marta Codina-Solà
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | | | - Aïda Homs
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Javier Santoyo
- Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain
| | - Maria Rigau
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain
| | - Gemma Aznar-Laín
- Pediatric Neurology, Hospital del Mar, Passeig Marítim 25-29, Barcelona, 08003 Spain
| | - Miguel Del Campo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Servicio de Genética, Hospital Vall d'Hebron, Passeig Vall d'Hebron, 119-129, Barcelona, 08015 Spain
| | - Blanca Gener
- Genetics Service, BioCruces Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, Barakaldo, Bizkaia 48093 Spain
| | - Elisabeth Gabau
- Pediatrics Service, Corporació Sanitària Parc Taulí, Parc Taulí 1, Sabadell, 08208 Spain
| | - María Pilar Botella
- Pediatric Neurology, Hospital de Txagorritxu, C/José de Atxotegui s/n, Victoria-Gasteiz, 01009 Spain
| | - Armand Gutiérrez-Arumí
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Guillermo Antiñolo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain ; Medical Genome Project, Genomics and Bioinformatics Platform of Andalusia (GBPA), C/Albert Einstein, Cartuja Scientific and Technology Park, INSUR Builiding, Sevilla, 41092 Spain ; Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda Manuel Siurot s/n, Sevilla, 41013 Spain
| | - Luis Alberto Pérez-Jurado
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| | - Ivon Cuscó
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 422, Barcelona, 08003 Spain ; Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader 88, Barcelona, 08003 Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), C/ Monforte de Lemos 3-5, Madrid, 28029 Spain
| |
Collapse
|
22
|
Stelzer Y, Bar S, Bartok O, Afik S, Ronen D, Kadener S, Benvenisty N. Differentiation of Human Parthenogenetic Pluripotent Stem Cells Reveals Multiple Tissue- and Isoform-Specific Imprinted Transcripts. Cell Rep 2015; 11:308-20. [DOI: 10.1016/j.celrep.2015.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/19/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022] Open
|
23
|
Yang C, Wei H. Designing microarray and RNA-Seq experiments for greater systems biology discovery in modern plant genomics. MOLECULAR PLANT 2015; 8:196-206. [PMID: 25680773 DOI: 10.1016/j.molp.2014.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 05/07/2023]
Abstract
Microarray and RNA-seq experiments have become an important part of modern genomics and systems biology. Obtaining meaningful biological data from these experiments is an arduous task that demands close attention to many details. Negligence at any step can lead to gene expression data containing inadequate or composite information that is recalcitrant for pattern extraction. Therefore, it is imperative to carefully consider experimental design before launching a time-consuming and costly experiment. Contemporarily, most genomics experiments have two objectives: (1) to generate two or more groups of comparable data for identifying differentially expressed genes, gene families, biological processes, or metabolic pathways under experimental conditions; (2) to build local gene regulatory networks and identify hierarchically important regulators governing biological processes and pathways of interest. Since the first objective aims to identify the active molecular identities and the second provides a basis for understanding the underlying molecular mechanisms through inferring causality relationships mediated by treatment, an optimal experiment is to produce biologically relevant and extractable data to meet both objectives without substantially increasing the cost. This review discusses the major issues that researchers commonly face when embarking on microarray or RNA-seq experiments and summarizes important aspects of experimental design, which aim to help researchers deliberate how to generate gene expression profiles with low background noise but with more interaction to facilitate novel biological discoveries in modern plant genomics.
Collapse
Affiliation(s)
- Chuanping Yang
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Hairong Wei
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang 150040, China; Biotechnology Research Center, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
24
|
Genome-wide detection of allelic gene expression in hepatocellular carcinoma cells using a human exome SNP chip. Gene 2014; 551:236-42. [DOI: 10.1016/j.gene.2014.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 11/22/2022]
|
25
|
Involvement of parental imprinting in the antisense regulation of onco-miR-372-373. Nat Commun 2014; 4:2724. [PMID: 24201333 DOI: 10.1038/ncomms3724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/08/2013] [Indexed: 01/07/2023] Open
Abstract
The monoallelic nature of imprinted genes renders them highly susceptible to genetic and epigenetic perturbations, potentially resulting in transformation and disease. Here we show, using parthenogenetic induced pluripotent stem cells, an imprinted transcript that serves as an antisense regulator of onco-miR-372-3 (named anti-miR-371-3). As miR-372-3 have been shown to have an oncogenic role in testicular germ cell tumours, we study the involvement of their antisense transcript in these cells. Our results suggest that hypermethylation, leading to loss-of-expression of the imprinted antisense transcript, contributes to tumorigenic transformation by affecting the downstream target LATS2. Finally, we provide evidence for a tumour suppressive role of anti-miR-371-3, as its overexpression in tumour cells results in cell growth arrest and apoptosis, and prevents tumour formation on injection into immunodeficient mice.
Collapse
|
26
|
Tsui NBY, Jiang P, Wong YF, Leung TY, Chan KCA, Chiu RWK, Sun H, Lo YMD. Maternal Plasma RNA Sequencing for Genome-Wide Transcriptomic Profiling and Identification of Pregnancy-Associated Transcripts. Clin Chem 2014; 60:954-62. [DOI: 10.1373/clinchem.2014.221648] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Analysis of circulating RNA in the plasma of pregnant women has the potential to serve as a powerful tool for noninvasive prenatal testing and research. However, detection of circulating RNA in the plasma in an unbiased and high-throughput manner has been technically challenging. Therefore, only a limited number of circulating RNA species in maternal plasma have been validated as pregnancy- and placenta-specific biomarkers.
METHODS
We explored the use of massively parallel sequencing for plasma transcriptome profiling in first-, second-, and third-trimester pregnant women. Genotyping was performed for amniotic fluid, placental tissues, and maternal blood cells, with exome-enriched sequencing.
RESULTS
In the early pregnancy group comprising 1 first- and 1 second-trimester pregnancy cases, the fetal contribution to the RNA pool in maternal plasma was 3.70%. The relative proportion of fetal contribution was increased to 11.28% in the late pregnancy group comprising 2 third-trimester pregnancy cases. The placental biallelic expression pattern of PAPPA (pregnancy-associated plasma protein A, pappalysin 1), a known pregnancy-specific gene, and the monoallelic expression pattern of H19 [H19, imprinted maternally expressed transcript (non-protein coding)], an imprinted maternally expressed gene, were also detected in the maternal plasma. Furthermore, by direct examination of the maternal plasma transcriptomic profiles before and after delivery, we identified a panel of pregnancy-associated genes.
CONCLUSIONS
Plasma RNA sequencing provides a holistic view of the maternal plasma transcriptomic repertoire. This technology is potentially valuable for using circulating plasma nucleic acids for prenatal testing and research.
Collapse
Affiliation(s)
- Nancy B Y Tsui
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Peiyong Jiang
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Yuen Fei Wong
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Tak Y Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Rossa W K Chiu
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Hao Sun
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| | - Y M Dennis Lo
- Centre for Research into Circulating Fetal Nucleic Acids, Li Ka Shing Institute of Health Sciences
- Department of Chemical Pathology, and
| |
Collapse
|
27
|
Kukurba KR, Zhang R, Li X, Smith KS, Knowles DA, How Tan M, Piskol R, Lek M, Snyder M, MacArthur DG, Li JB, Montgomery SB. Allelic expression of deleterious protein-coding variants across human tissues. PLoS Genet 2014; 10:e1004304. [PMID: 24786518 PMCID: PMC4006732 DOI: 10.1371/journal.pgen.1004304] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. Gene expression is a fundamental cellular process that contributes to phenotypic diversity. Gene expression can vary between alleles of an individual through differences in genomic imprinting or cis-acting regulatory variation. Distinguishing allelic activity is important for informing the abundance of altered mRNA and protein products. Advances in sequencing technologies allow us to quantify patterns of allele-specific expression (ASE) in different individuals and cell-types. Previous studies have identified patterns of ASE across human populations for single cell-types; however the degree of tissue-specificity of ASE has not been deeply characterized. In this study, we compare patterns of ASE across multiple tissues from a single individual using whole transcriptome sequencing (RNA-Seq) and a targeted, high-resolution assay (mmPCR-Seq). We detect patterns of ASE for rare deleterious and loss-of-function protein-coding variants, informing the frequency at which allelic expression could modify the functional impact of personal deleterious protein-coding across tissues. We demonstrate that these interactions occur for one third of such variants however large direction flips in allelic expression are infrequent.
Collapse
Affiliation(s)
- Kimberly R. Kukurba
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rui Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kevin S. Smith
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - David A. Knowles
- Department of Computer Science, Stanford University School of Medicine, Stanford, California, United States of America
| | - Meng How Tan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Robert Piskol
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (JBL); (SBM)
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Computer Science, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (JBL); (SBM)
| |
Collapse
|
28
|
Hu J, Peter I. Evidence of expression variation and allelic imbalance in Crohn's disease susceptibility genes NOD2 and ATG16L1 in human dendritic cells. Gene 2013; 527:496-502. [PMID: 23850724 DOI: 10.1016/j.gene.2013.06.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 01/08/2023]
Abstract
Human dendritic cells (DCs) play an important role in induction and progression of Crohn's disease (CD). Accumulating evidence suggests that viral infection is required to trigger CD pathogenesis in genetically predisposed individuals. NOD2 and ATG16L1 are among the major CD susceptibility genes implicated in impaired immune response to bacterial infection. In this study, we investigated gene expression and allelic imbalance (AI) of NOD2 and ATG16L1 using common variants in human monocyte-derived DCs. Significant AI was observed in ~40% and ~70% of NOD2 and ATG16L1 heterozygotes, respectively (p<0.05). AI of NOD2 was inversely associated with its expression level (p=0.015). No correlation was detected between gene expression and AI for ATG16L1. When infected with Newcastle Disease Virus (NDV), NOD2 expression in DCs was induced about four-fold (p<0.001), whereas ATG16L1 expression was not affected (p=0.88). In addition, NDV infection tended to lower the variance in AI among DC populations for the NOD2 gene (p=0.05), but not the ATG16L1 gene (p=0.32). Findings of a simulation study, aimed to verify whether the observed variation in gene expression and AI is a result of sample-to-sample variability or experimental measurement error, suggested that NOD2 AI is likely to result from a deterministic event at a single cell level. Overall, our results present initial evidence that AI of the NOD2 and ATG16L1 genes exists in populations of human DCs. In addition, our findings suggest that viral infection may regulate NOD2 expression.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY, USA.
| | | |
Collapse
|
29
|
Zhai R, Feng Y, Zhan X, Shen X, Wu W, Yu P, Zhang Y, Chen D, Wang H, Lin Z, Cao L, Cheng S. Identification of transcriptome SNPs for assessing allele-specific gene expression in a super-hybrid rice Xieyou9308. PLoS One 2013; 8:e60668. [PMID: 23613738 PMCID: PMC3629204 DOI: 10.1371/journal.pone.0060668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
Hybridization, a common process in nature, can give rise to a vast reservoir of allelic variants. Combination of these allelic variants may result in novel patterns of gene action and is thought to contribute to heterosis. In this study, we analyzed genome-wide allele-specific gene expression (ASGE) in the super-hybrid rice variety Xieyou9308 using RNA sequencing technology (RNA-Seq). We identified 9325 reliable single nucleotide polymorphisms (SNPs) distributed throughout the genome. Nearly 68% of the identified polymorphisms were CT and GA SNPs between R9308 and Xieqingzao B, suggesting the existence of DNA methylation, a heritable epigenetic mark, in the parents and their F1 hybrid. Of 2793 identified transcripts with consistent allelic biases, only 480 (17%) showed significant allelic biases during tillering and/or heading stages, implying that trans effects may mediate most transcriptional differences in hybrid offspring. Approximately 67% and 62% of the 480 transcripts showed R9308 allelic expression biases at tillering and heading stages, respectively. Transcripts with higher levels of gene expression in R9308 also exhibited R9308 allelic biases in the hybrid. In addition, 125 transcripts were identified with significant allelic expression biases at both stages, of which 74% showed R9308 allelic expression biases. R9308 alleles may tend to preserve their characteristic states of activity in the hybrid and may play important roles in hybrid vigor at both stages. The allelic expression of 355 transcripts was highly stage-specific, with divergent allelic expression patterns observed at different developmental stages. Many transcripts associated with stress resistance were differently regulated in the F1 hybrid. The results of this study may provide valuable insights into molecular mechanisms of heterosis.
Collapse
Affiliation(s)
- Rongrong Zhai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Xihong Shen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Weiming Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Ping Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Huimin Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zechuan Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
- * E-mail: (LC); (SC)
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, China
- * E-mail: (LC); (SC)
| |
Collapse
|
30
|
Eccleston J, Koh C, Markello TC, Gahl WA, Heller T. An apparent homozygous deletion in maltase-glucoamylase, a lesson in the evolution of SNP arrays. Mol Genet Metab 2012; 107:674-8. [PMID: 23137569 PMCID: PMC3520432 DOI: 10.1016/j.ymgme.2012.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Single nucleotide polymorphism (SNP) arrays possess clinical potential due to their high throughput capacity, sensitivity and versatility. We used such an array to perform a genome-wide SNP analysis of a patient with a multi-system undiagnosed disease involving peripheral neuropathies and food intolerances. The patient had a homozygous deletion within the gene encoding maltase-glucoamylase (MGAM), an intestinal starch digestion enzyme, predicting absence of enzyme activity and potential starch indigestion. We then performed validation testing using a functional MGAM analysis that involved starch ingestion followed by measuring blood glucose and insulin levels as well as hydrogen breath levels. Gastrointestinal tissue was also obtained via endoscopy and immunohistochemical staining for intestinal MGAM was performed. Our results strongly suggest the presence and functioning of MGAM which disproved deficiency predictions based on SNP array analysis findings, classifying the deletion as a functional polymorphism. This study highlights a current clinical limitation of SNP arrays, i.e., distinguishing deleterious genomic alterations from misleading functional polymorphisms. We conclude that novel findings from SNP arrays should be clinically validated and published.
Collapse
Affiliation(s)
- Jason Eccleston
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Thomas C. Markello
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland
| | - William A. Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- National Institutes of Health Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Olbromski R, Siadkowska E, Zelazowska B, Zwierzchowski L. Allelic gene expression imbalance of bovine IGF2, LEP and CCL2 genes in liver, kidney and pituitary. Mol Biol Rep 2012. [PMID: 23184004 PMCID: PMC3538019 DOI: 10.1007/s11033-012-2161-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allelic expression imbalance (AEI) is an important genetic factor being the cause of differences in phenotypic traits that can be heritable. Studying AEI can be useful in searching for factors that modulate gene expression and help to understand molecular mechanisms underlying phenotypic changes. Although it was commonly recognized in many species and we know many genes show allelic expression imbalance, this phenomena was not studied on a larger scale in cattle. Using the pyrosequencing method we analyzed a set of 29 bovine genes in order to find those that have preferential allelic expression. The study was conducted in three tissues: liver, pituitary and kindey. Out of the studied group of genes 3 of them—LEP (leptin), IGF2 (insulin-like growth factor 2), CCL2 (chemokine C–C motif ligand 2) showed allelic expression imbalance.
Collapse
Affiliation(s)
- R Olbromski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences (IGAB PAS), Jastrzębiec, 05-552, Magdalenka, Poland.
| | | | | | | |
Collapse
|
32
|
Li H, Su X, Gallegos J, Lu Y, Ji Y, Molldrem JJ, Liang S. dsPIG: a tool to predict imprinted genes from the deep sequencing of whole transcriptomes. BMC Bioinformatics 2012; 13:271. [PMID: 23083219 PMCID: PMC3497615 DOI: 10.1186/1471-2105-13-271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 09/28/2012] [Indexed: 12/01/2022] Open
Abstract
Background Dysregulation of imprinted genes, which are expressed in a parent-of-origin-specific manner, plays an important role in various human diseases, such as cancer and behavioral disorder. To date, however, fewer than 100 imprinted genes have been identified in the human genome. The recent availability of high-throughput technology makes it possible to have large-scale prediction of imprinted genes. Here we propose a Bayesian model (dsPIG) to predict imprinted genes on the basis of allelic expression observed in mRNA-Seq data of independent human tissues. Results Our model (dsPIG) was capable of identifying imprinted genes with high sensitivity and specificity and a low false discovery rate when the number of sequenced tissue samples was fairly large, according to simulations. By applying dsPIG to the mRNA-Seq data, we predicted 94 imprinted genes in 20 cerebellum samples and 57 imprinted genes in 9 diverse tissue samples with expected low false discovery rates. We also assessed dsPIG using previously validated imprinted and non-imprinted genes. With simulations, we further analyzed how imbalanced allelic expression of non-imprinted genes or different minor allele frequencies affected the predictions of dsPIG. Interestingly, we found that, among biallelically expressed genes, at least 18 genes expressed significantly more transcripts from one allele than the other among different individuals and tissues. Conclusion With the prevalence of the mRNA-Seq technology, dsPIG has become a useful tool for analysis of allelic expression and large-scale prediction of imprinted genes. For ease of use, we have set up a web service and also provided an R package for dsPIG at http://www.shoudanliang.com/dsPIG/.
Collapse
Affiliation(s)
- Hua Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Large-scale profiling and identification of potential regulatory mechanisms for allelic gene expression in colorectal cancer cells. Gene 2012; 512:16-22. [PMID: 23064046 DOI: 10.1016/j.gene.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 01/20/2023]
Abstract
Allelic variation in gene expression is common in humans and this variation is associated with phenotypic variation. In this study, we employed high-density single nucleotide polymorphism (SNP) chips containing 13,900 exonic SNPs to identify genes with allelic gene expression in cells from colorectal cancer cell lines. We found 2 monoallelically expressed genes (ERAP2 and MYLK4), 32 genes with an allelic imbalance in their expression, and 13 genes showing allele substitution by RNA editing. Among a total of 34 allelically expressed genes in colorectal cancer cells, 15 genes (44.1%) were associated with cis-acting eQTL, indicating that large portions of allelically expressed genes are regulated by cis-acting mechanisms of gene expression. In addition, potential regulatory variants present in the proximal promoter regions of genes showing either monoallelic expression or allelic imbalance were not tightly linked with coding SNPs, which were detected with allelic gene expression. These results suggest that multiple rare variants could be involved in the cis-acting regulatory mechanism of allelic gene expression. In the comparison with allelic gene expression data from Centre d'Etude du Polymorphisme Humain (CEPH) family B cells, 12 genes showed B-cell specific allelic imbalance and 1 noncoding SNP showed colorectal cancer cell-specific allelic imbalance. In addition, different patterns of allele substitution were observed between B cells and colorectal cancer cells. Overall, our study not only indicates that allelic gene expression is common in colorectal cancer cells, but our study also provides a better understanding of allele-specific gene expression in colorectal cancer cells.
Collapse
|
34
|
SORL1 genetic variants and cerebrospinal fluid biomarkers of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 2012; 262:529-34. [PMID: 22286501 DOI: 10.1007/s00406-012-0295-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
The neuronal sortilin-related receptor with A-type repeats (SORL1, also called LR11 or sorLA) is involved in amyloidogenesis, and the SORL1 gene is a major risk factor for Alzheimer’s disease (AD). We investigated AD-related CSF biomarkers for associations with SORL1 genetic variants in 105 German patients with mild cognitive impairment (MCI) and AD. The homozygous CC-allele of single nucleotide polymorphism (SNP) 4 was associated with increased Tau concentrations in AD, and the minor alleles of SNP8, SNP9, and SNP10 and the haplotype CGT of these SNPs were associated with increased SORL1 concentrations in MCI. SNP22 and SNP23, and the haplotypes TCT of SNP19-21-23, and TTC of SNP22-23-24 were correlated with decreased Ab42 levels in AD. These results strengthen the functional role of SORL1 in AD.
Collapse
|
35
|
Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny MB, Pinard A, Auer J, Bessières B, Barlier A, Jacques S, Simeoni U, Dandolo L, Letourneur F, Jammes H, Vaiman D. A genome-wide approach reveals novel imprinted genes expressed in the human placenta. Epigenetics 2012; 7:1079-90. [PMID: 22894909 PMCID: PMC3466192 DOI: 10.4161/epi.21495] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting characterizes genes with a monoallelic expression, which is dependent on the parental origin of each allele. Approximately 150 imprinted genes are known to date, in humans and mice but, though computational searches have tried to extract intrinsic characteristics of these genes to identify new ones, the existing list is probably far from being comprehensive. We used a high-throughput strategy by diverting the classical use of genotyping microarrays to compare the genotypes of mRNA/cDNA vs. genomic DNA to identify new genes presenting monoallelic expression, starting from human placental material. After filtering of data, we obtained a list of 1,082 putative candidate monoallelic SNPs located in more than one hundred candidate genes. Among these, we found known imprinted genes, such as IPW, GRB10, INPP5F and ZNF597, which contribute to validate the approach. We also explored some likely candidates of our list and identified seven new imprinted genes, including ZFAT, ZFAT-AS1, GLIS3, NTM, MAGI2, ZC3H12Cand LIN28B, four of which encode zinc finger transcription factors. They are, however, not imprinted in the mouse placenta, except for Magi2. We analyzed in more details the ZFAT gene, which is paternally expressed in the placenta (as ZFAT-AS1, a non-coding antisense RNA) but biallelic in other tissues. The ZFAT protein is expressed in endothelial cells, as well as in syncytiotrophoblasts. The expression of this gene is, moreover, downregulated in placentas from complicated pregnancies. With this work we increase by about 10% the number of known imprinted genes in humans.
Collapse
|
36
|
Harrison P, Southam L, Chapman K, Locklin R, Sabokbar A, Wordsworth BP, Pointon JJ. Evidence of cis-acting regulatory variation in PTPN22 in patients with rheumatoid arthritis. Scand J Rheumatol 2012; 41:249-52. [PMID: 22632125 DOI: 10.3109/03009742.2012.658859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To assess whether there are cis-regulatory polymorphisms that regulate protein tyrosine phosphatase, non-receptor type 22 (PTPN22) expression in rheumatoid arthritis (RA). METHODS RNA was extracted from positively selected CD56+, CD8+, and CD4+ mononuclear cells and the 'residual' cells from 12 RA patients heterozygous for the PTPN22 C1858T single nucleotide polymorphism (SNP) (rs2476601). Relative allelic expression was measured by single base extension (SBE) assay. RESULTS There was relative differential allelic expression (DAE ≥ 20%) in eight patients (p < 10(-5)); seven patients demonstrated DAE in more than one cell type; four patients had statistically significant differences between these cell populations (p(corrected) < 0.05). CONCLUSIONS We have demonstrated significant differences in expression of PTPN22 alleles in RA patients, indicating the probable existence of cis-acting regulatory elements.
Collapse
Affiliation(s)
- P Harrison
- Oxford University Institute of Musculoskeletal Sciences, Nuffield Orthopaedic Centre, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Flor I, Neumann A, Freter C, Helmke BM, Langenbuch M, Rippe V, Bullerdiek J. Abundant expression and hemimethylation of C19MC in cell cultures from placenta-derived stromal cells. Biochem Biophys Res Commun 2012; 422:411-6. [PMID: 22575509 DOI: 10.1016/j.bbrc.2012.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/01/2012] [Indexed: 12/26/2022]
Abstract
MicroRNAs of the chromosome 19 microRNA cluster (C19MC) are known to be abundantly expressed in the placenta. Their genes are located on the long arm of chromosome 19 and seem to be part of a large imprinted region. Although the data available so far suggest important functions in the placenta, no data are available on their general expression patterns in cultures of placenta-derived mesenchymal stromal cells (PDMSC). Surprisingly, qRT-PCR on tissue cultures from first-trimester and term placenta mesenchymal stromal cells showed an abundant expression of the cluster members miR-517a-3p, miR-519a-3p, and miR-520c-3p. Accordingly, analyses of methylation patterns suggested that these cells had escaped methylation and epigenetic silencing, respectively, of the paternal allele. This was confirmed by the results of treatment of chorionic villous stromal cells by the demethylating agent 5-Aza-2'-deoxycytidine. Our results offer clear evidence that, in contrast to what is suggested in previous papers, members of C19MC are highly expressed in PDMSC indicating that their placenta-specific functions are not restricted to the trophoblast.
Collapse
Affiliation(s)
- Inga Flor
- Zentrum für Humangenetik, Universität Bremen, Leobener Str. ZHG, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Chung J, Tsai S, James AH, Thames BH, Shytle S, Piedrahita JA. Lack of genomic imprinting of DNA primase, polypeptide 2 (PRIM2) in human term placenta and white blood cells. Epigenetics 2012; 7:429-31. [PMID: 22437878 DOI: 10.4161/epi.19777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PRIM2, encoding a subunit of primase involved in DNA replication and transcription, is expressed in the placenta and is crucial for mammalian development and growth. Its role in placental function is not well understood. Recently, PRIM2 was reported as imprinted in human white blood cells (WBC). We report here our failure to confirm imprinting of the PRIM2 locus in human placenta or WBC. The discordance between our results and those of others are likely due to an incorrectly annotated PRIM2 pseudogene found in the human genome database.
Collapse
Affiliation(s)
- Jaewook Chung
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | |
Collapse
|
39
|
Reddy TE, Gertz J, Pauli F, Kucera KS, Varley KE, Newberry KM, Marinov GK, Mortazavi A, Williams BA, Song L, Crawford GE, Wold B, Willard HF, Myers RM. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res 2012; 22:860-9. [PMID: 22300769 PMCID: PMC3337432 DOI: 10.1101/gr.131201.111] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/01/2012] [Indexed: 01/01/2023]
Abstract
A complex interplay between transcription factors (TFs) and the genome regulates transcription. However, connecting variation in genome sequence with variation in TF binding and gene expression is challenging due to environmental differences between individuals and cell types. To address this problem, we measured genome-wide differential allelic occupancy of 24 TFs and EP300 in a human lymphoblastoid cell line GM12878. Overall, 5% of human TF binding sites have an allelic imbalance in occupancy. At many sites, TFs clustered in TF-binding hubs on the same homolog in especially open chromatin. While genetic variation in core TF binding motifs generally resulted in large allelic differences in TF occupancy, most allelic differences in occupancy were subtle and associated with disruption of weak or noncanonical motifs. We also measured genome-wide differential allelic expression of genes with and without heterozygous exonic variants in the same cells. We found that genes with differential allelic expression were overall less expressed both in GM12878 cells and in unrelated human cell lines. Comparing TF occupancy with expression, we found strong association between allelic occupancy and expression within 100 bp of transcription start sites (TSSs), and weak association up to 100 kb from TSSs. Sites of differential allelic occupancy were significantly enriched for variants associated with disease, particularly autoimmune disease, suggesting that allelic differences in TF occupancy give functional insights into intergenic variants associated with disease. Our results have the potential to increase the power and interpretability of association studies by targeting functional intergenic variants in addition to protein coding sequences.
Collapse
Affiliation(s)
- Timothy E. Reddy
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Jason Gertz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Florencia Pauli
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Katerina S. Kucera
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | | | | | - Georgi K. Marinov
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Ali Mortazavi
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Brian A. Williams
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Lingyun Song
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Gregory E. Crawford
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Barbara Wold
- Department of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | - Huntington F. Willard
- Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
40
|
Liu R, Maia AT, Russell R, Caldas C, Ponder BA, Ritchie ME. Allele-specific expression analysis methods for high-density SNP microarray data. Bioinformatics 2012; 28:1102-8. [PMID: 22355082 DOI: 10.1093/bioinformatics/bts089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION In the past decade, a number of technologies to quantify allele-specific expression (ASE) in a genome-wide manner have become available to researchers. We investigate the application of single-nucleotide polymorphism (SNP) microarrays to this task, exploring data obtained from both cell lines and primary tissue for which both RNA and DNA profiles are available. RESULTS We analyze data from two experiments that make use of high-density Illumina Infinium II genotyping arrays to measure ASE. We first preprocess each data set, which involves removal of outlier samples, careful normalization and a two-step filtering procedure to remove SNPs that show no evidence of expression in the samples being analyzed and calls that are clear genotyping errors. We then compare three different tests for detecting ASE, one of which has been previously published and two novel approaches. These tests vary at the level at which they operate (per SNP per individual or per SNP) and in the input data they require. Using SNPs from imprinted genes as true positives for ASE, we observe varying sensitivity for the different testing procedures that improves with increasing sample size. Methods that rely on RNA signal alone were found to perform best across a range of metrics. The top ranked SNPs recovered by all methods appear to be reasonable candidates for ASE. AVAILABILITY AND IMPLEMENTATION Analysis was carried out in R (http://www.R-project.org/) using existing functions.
Collapse
Affiliation(s)
- Ruijie Liu
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The individual human genome and epigenome are being defined at unprecedented resolution by current advances in sequencing technologies with important implications for human disease. This review uses examples relevant to clinical practice to illustrate the functional consequences of genetic and epigenetic variation. The insights gained from genome-wide association studies are described together with current efforts to understand the role of rare variants in common disease, set in the context of recent successes in Mendelian traits through the application of whole exome sequencing. The application of functional genomics to interrogate the genome and epigenome, build up an integrated picture of the regulatory genomic landscape and inform disease association studies is discussed, together with the role of expression quantitative trait mapping and analysis of allele-specific gene expression.
Collapse
Affiliation(s)
- J C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
42
|
Lee MP. Allele-specific gene expression and epigenetic modifications and their application to understanding inheritance and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:739-42. [PMID: 22366057 DOI: 10.1016/j.bbagrm.2012.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/31/2012] [Accepted: 02/09/2012] [Indexed: 01/04/2023]
Abstract
Epigenetic information is characterized by its plasticity during development and differentiation as well as its stable transmission during mitotic cell divisions in somatic tissues. This duality contrasts to genetic information, which is essentially static and identical in every cell in an organism with only a few exceptions such as immunoglobulin genes in lymphocytes. Epigenetics is traditionally perceived as a means to regulate gene expression without a change in DNA sequence. This, however, does not exclude a potential role for genetic variations in providing differential backgrounds on which epigenetic modulations and their regulatory consequences are achieved. An effective approach to investigating the interplay between genetic variations and epigenetic variations is through allele-specific analysis of epigenetics and gene expression. Such studies have generated many new insights into functions of genetic variations, mechanisms of gene expression regulation, and the role of mutations and epigenetic alterations in human cancer. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- Maxwell P Lee
- The Laboratory of Population Genetics, Center for Cancer Research, National Cancer Institute, USA.
| |
Collapse
|
43
|
Kannenberg K, Urban C, Binder G. Increased incidence of aberrant DNA methylation within diverse imprinted gene loci outside of IGF2/H19 in Silver-Russell syndrome. Clin Genet 2012; 81:366-77. [DOI: 10.1111/j.1399-0004.2012.01844.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Khan Z, Bloom JS, Amini S, Singh M, Perlman DH, Caudy AA, Kruglyak L. Quantitative measurement of allele-specific protein expression in a diploid yeast hybrid by LC-MS. Mol Syst Biol 2012; 8:602. [PMID: 22893000 PMCID: PMC3435501 DOI: 10.1038/msb.2012.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 07/01/2012] [Indexed: 02/02/2023] Open
Abstract
Understanding the genetic basis of gene regulatory variation is a key goal of evolutionary and medical genetics. Regulatory variation can act in an allele-specific manner (cis-acting) or it can affect both alleles of a gene (trans-acting). Differential allele-specific expression (ASE), in which the expression of one allele differs from another in a diploid, implies the presence of cis-acting regulatory variation. While microarrays and high-throughput sequencing have enabled genome-wide measurements of transcriptional ASE, methods for measurement of protein ASE (pASE) have lagged far behind. We describe a flexible, accurate, and scalable strategy for measurement of pASE by liquid chromatography-coupled mass spectrometry (LC-MS). We apply this approach to a hybrid between the yeast species Saccharomyces cerevisiae and Saccharomyces bayanus. Our results provide the first analysis of the relative contribution of cis-acting and trans-acting regulatory differences to protein expression divergence between yeast species.
Collapse
Affiliation(s)
- Zia Khan
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Joshua S Bloom
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sasan Amini
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David H Perlman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Princeton Mass Spectrometry Center, Princeton University, Princeton, NJ, USA
| | - Amy A Caudy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| |
Collapse
|
45
|
Nothnagel M, Wolf A, Herrmann A, Szafranski K, Vater I, Brosch M, Huse K, Siebert R, Platzer M, Hampe J, Krawczak M. Statistical inference of allelic imbalance from transcriptome data. Hum Mutat 2011; 32:98-106. [PMID: 21120951 DOI: 10.1002/humu.21396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Next-generation sequencing and the availability of high-density genotyping arrays have facilitated an analysis of somatic and meiotic mutations at unprecedented level, but drawing sensible conclusions about the functional relevance of the detected variants still remains a formidable challenge. In this context, the study of allelic imbalance in intermediate RNA phenotypes may prove a useful means to elucidate the likely effects of DNA variants of unknown significance. We developed a statistical framework for the assessment of allelic imbalance in next-generation transcriptome sequencing (RNA-seq) data that requires neither an expression reference nor the underlying nuclear genotype(s), and that allows for allele miscalls. Using extensive simulation as well as publicly available whole-transcriptome data from European-descent individuals in HapMap, we explored the power of our approach in terms of both genotype inference and allelic imbalance assessment under a wide range of practically relevant scenarios. In so doing, we verified a superior performance of our methodology, particularly at low sequencing coverage, compared to the more simplistic approach of completely ignoring allele miscalls. Because the proposed framework can be used to assess somatic mutations and allelic imbalance in one and the same set of RNA-seq data, it will be particularly useful for the analysis of somatic genetic variation in cancer studies.
Collapse
Affiliation(s)
- Michael Nothnagel
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Teare MD, Pinyakorn S, Heighway J, Santibanez Koref MF. Comparing methods for mapping cis acting polymorphisms using allelic expression ratios. PLoS One 2011; 6:e28636. [PMID: 22174852 PMCID: PMC3236754 DOI: 10.1371/journal.pone.0028636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/11/2011] [Indexed: 02/04/2023] Open
Abstract
Genome wide association studies frequently reveal associations between disease susceptibility and polymorphisms outside coding regions. Such associations cannot always be explained by linkage disequilibrium with changes affecting the transcription products. This has stimulated the interest in characterising sequence variation influencing gene expression levels, in particular in changes acting in cis. Differences in transcription between the two alleles at an autosomal locus can be used to test the association between candidate polymorphisms and the modulation of gene expression in cis. This type of approach requires at least one transcribed polymorphism and one candidate polymorphism. In the past five years, different methods have been proposed to analyse such data. Here we use simulations and real data sets to compare the power of some of these methods. The results show that when it is not possible to determine the phase between the transcribed and potentially cis acting allele there is some advantage in using methods that estimate phased genotype and effect on expression simultaneously. However when the phase can be determined, simple regression models seem preferable because of their simplicity and flexibility. The simulations and the analysis of experimental data suggest that in the majority of situations, methods that assume a lognormal distribution of the allelic expression ratios are both robust to deviations from this assumption and more powerful than alternatives that do not make these assumptions.
Collapse
Affiliation(s)
- Marion Dawn Teare
- School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Song MY, Kim HE, Kim S, Choi IH, Lee JK. SNP-based large-scale identification of allele-specific gene expression in human B cells. Gene 2011; 493:211-8. [PMID: 22178530 DOI: 10.1016/j.gene.2011.11.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 01/09/2023]
Abstract
Polymorphism and variations in gene expression provide the genetic basis for human variation. Allelic variation of gene expression, in particular, may play a crucial role in phenotypic variation and disease susceptibility. To identify genes with allelic expression in human cells, we genotyped genomic DNA and cDNA isolated from 31 immortalized B cell lines from three Centre d'Etude du Polymorphisme Humain (CEPH) families using high-density single-nucleotide polymorphism (SNP) chips containing 13,900 exonic SNPs. We identified seven SNPs in five genes with monoallelic expression, 146 SNPs in 125 genes with allelic imbalance in expression with preferentially higher expression of one allele in a heterozygous individual. The monoallelically expressed genes (ERAP2, MDGA1, LOC644422, SDCCAG3P1 and CLTCL1) were regulated by cis-acting, non-imprinted differential allelic control. In addition, all monoallelic gene expression patterns and allelic imbalances in gene expression in B cells were transmitted from parents to offspring in the pedigree, indicating genetic transmission of allelic gene expression. Furthermore, frequent allele substitution, probably due to RNA editing, was also observed in 21 genes in 23 SNPs as well as in 48 SNPs located in regions containing no known genes. In this study, we demonstrated that allelic gene expression is frequently observed in human B cells, and SNP chips are very useful tools for detecting allelic gene expression. Overall, our data provide a valuable framework for better understanding allelic gene expression in human B cells.
Collapse
Affiliation(s)
- Min-Young Song
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
48
|
Al-Hamodi ZH, Saif-Ali R, Ismail IS, Ahmed KA, Muniandy S. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with metabolic syndrome parameters in Malaysian subjects. J Clin Biochem Nutr 2011; 50:184-9. [PMID: 22573918 PMCID: PMC3334369 DOI: 10.3164/jcbn.11-48] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/24/2011] [Indexed: 11/22/2022] Open
Abstract
The plasminogen activator inhibitor-1 4G/5G and tissue plasminogen activator Alu-repeat insertion/deletion polymorphisms might be genetic determinations of increased or decreased of their plasma activities. The aim of this study was to investigate the association of plasminogen activator inhibitor-1 4G/5G and tissue plasminogen activator Alu-repeat I/D polymorphisms with metabolic syndrome parameters in normal Malaysian subjects and to assess the impact of these polymorphisms on their plasma activities and antigens. The genetic polymorphisms were genotyped in 130 normal subjects. In addition, the plasma activities and antigens of plasminogen activator inhibitor-1 and tissue plasminogen activator as well as levels of insulin, glucose, and lipid profile at fasting state were investigated. The subjects with homozygous 4G/4G showed association with an increased triglyceride (p = 0.007), body mass index (p = 0.01) and diastolic blood pressure (p = 0.03). In addition, the plasminogen activator inhibitor-1 4G/5G polymorphism modulates plasma plasminogen activator inhibitor-1 activity and antigen and tissue plasminogen activator activity (p = 0.002, 0.014, 0.003) respectively. These results showed that, the plasminogen activator inhibitor-1 4G/5G polymorphism is associated with metabolic syndrome parameters, plasminogen activator inhibitor-1 and tissue plasminogen activator activities in Malaysian subjects, and may serve to increase the risk of type 2 diabetes and cardiovascular disease in Malaysian subjects.
Collapse
Affiliation(s)
- Zaid H Al-Hamodi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | |
Collapse
|
49
|
Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM. A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res 2011; 21:1728-37. [PMID: 21873452 PMCID: PMC3202289 DOI: 10.1101/gr.119784.110] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 07/12/2011] [Indexed: 11/24/2022]
Abstract
Variation in gene expression is thought to make a significant contribution to phenotypic diversity among individuals within populations. Although high-throughput cDNA sequencing offers a unique opportunity to delineate the genome-wide architecture of regulatory variation, new statistical methods need to be developed to capitalize on the wealth of information contained in RNA-seq data sets. To this end, we developed a powerful and flexible hierarchical Bayesian model that combines information across loci to allow both global and locus-specific inferences about allele-specific expression (ASE). We applied our methodology to a large RNA-seq data set obtained in a diploid hybrid of two diverse Saccharomyces cerevisiae strains, as well as to RNA-seq data from an individual human genome. Our statistical framework accurately quantifies levels of ASE with specified false-discovery rates, achieving high reproducibility between independent sequencing platforms. We pinpoint loci that show unusual and biologically interesting patterns of ASE, including allele-specific alternative splicing and transcription termination sites. Our methodology provides a rigorous, quantitative, and high-resolution tool for profiling ASE across whole genomes.
Collapse
Affiliation(s)
- Daniel A. Skelly
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Marnie Johansson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Jennifer Madeoy
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Jon Wakefield
- Department of Biostatistics and Department of Statistics, University of Washington, Seattle, Washington 98195, USA
| | - Joshua M. Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
50
|
Xiao R, Scott LJ. Detection of cis-acting regulatory SNPs using allelic expression data. Genet Epidemiol 2011; 35:515-25. [PMID: 21769929 DOI: 10.1002/gepi.20601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/09/2011] [Accepted: 05/20/2011] [Indexed: 11/06/2022]
Abstract
Allelic expression (AE) imbalance between the two alleles of a gene can be used to detect cis-acting regulatory SNPs (rSNPs) in individuals heterozygous for a transcribed SNP (tSNP). In this paper, we propose three tests for AE analysis focusing on phase-unknown data and any degree of linkage disequilibrium (LD) between the rSNP and tSNP: a test based on the minimum P-value of a one-sided F test and a two-sided t test (proposed previously for phase-unknown data), a test the combines the F and t tests, and a mixture-model-based test. We compare these three tests to the F and t tests and an existing regression-based test for phase-known data. We show that the ranking of the tests based on power depends most strongly on the magnitude of the LD between the rSNP and tSNP. For phase-unknown data, we find that under a range of scenarios, our proposed tests have higher power than the F and t tests when LD between the rSNP and tSNP is moderate (∼0.2<<∼0.8). We further demonstrate that the presence of a second ungenotyped rSNP almost never invalidates the proposed tests nor substantially changes their power rankings. For detection of cis-acting regulatory SNPs using phase-unknown AE data, we recommend the F test when the rSNP and tSNP are in or near linkage equilibrium (<0.2); the t test when the two SNPs are in strong LD (<0.7); and the mixture-model-based test for intermediate LD levels (0.2<<0.7).
Collapse
Affiliation(s)
- Rui Xiao
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|