1
|
Li J, Sayeed S, McClane BA. The presence of differentiated C2C12 muscle cells enhances toxin production and growth by Clostridium perfringens type A strain ATCC3624. Virulence 2024; 15:2388219. [PMID: 39192628 PMCID: PMC11364075 DOI: 10.1080/21505594.2024.2388219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Clostridium perfringens type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the plc gene, and perfringolysin O (PFO), encoded by the pfoA gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces C. perfringens type A strain ATCC3624 to upregulate plc and pfoA expression, as well as increase expression of several regulatory genes, including virS/R, agrB/D, and eutV/W. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in plc and pfoA expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support C. perfringens growth in muscle.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sameera Sayeed
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Kumon T, Oiki S, Hashimoto W. Molecular identification of hyaluronate lyase, not hyaluronidase, as an intrinsic hyaluronan-degrading enzyme in Clostridium perfringens strain ATCC 13124. Sci Rep 2024; 14:24266. [PMID: 39438475 PMCID: PMC11496695 DOI: 10.1038/s41598-024-73955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Clostridium perfringens, an opportunistic pathogen, produces mu-toxin hyaluronidases including endo-β-N-acetylglucosaminidases (Nags) as a virulence invasion factor. To clarify an intrinsic factor for degradation of host extracellular hyaluronan, we focused on hyaluronate lyase (HysA), distinct from endo-β-N-acetylglucosaminidases. C. perfringens strain ATCC 13124 was found to assimilate host-derived extracellular mucosubstances, hyaluronan and mucin, which induced expression of the hyaluronan-related genetic cluster, including hyaluronate lyase gene (hysA), but repressed endo-β-N-acetylglucosaminidase genes. This genetic cluster is conserved in some strains of C. perfringens. The recombinant strain ATCC 13124 hyaluronate lyase HysA showed an hyaluronan-degrading activity through β-elimination reaction. The hyaluronan-degrading enzyme in the culture supernatant of strain ATCC 13124 exhibited the lyase activity and was identical to the recombinant hyaluronate lyase on the native-PAGE gel, followed by activity straining. These results demonstrated that the intrinsic hyaluronan-degrading enzyme of C. perfringens strain ATCC 13124 is hyaluronate lyase HysA, but not hyaluronidases NagH, NagJ, and NagK.
Collapse
Affiliation(s)
- Tomoya Kumon
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
3
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Mehdizadeh Gohari I, Gonzales JL, Uzal FA, McClane BA. Overexpressing the cpr1953 Orphan Histidine Kinase Gene in the Absence of cpr1954 Orphan Histidine Kinase Gene Expression, or Vice Versa, Is Sufficient to Obtain Significant Sporulation and Strong Production of Clostridium perfringens Enterotoxin or Spo0A by Clostridium perfringens Type F Strain SM101. Toxins (Basel) 2024; 16:195. [PMID: 38668620 PMCID: PMC11053440 DOI: 10.3390/toxins16040195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Jessica L. Gonzales
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA 92408, USA; (J.L.G.); (F.A.U.)
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, CA 92408, USA; (J.L.G.); (F.A.U.)
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| |
Collapse
|
5
|
Mehdizadeh Gohari I, Edwards AN, McBride SM, McClane BA. The impact of orphan histidine kinases and phosphotransfer proteins on the regulation of clostridial sporulation initiation. mBio 2024; 15:e0224823. [PMID: 38477571 PMCID: PMC11210211 DOI: 10.1128/mbio.02248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front Physiol 2024; 14:1326809. [PMID: 38235383 PMCID: PMC10791986 DOI: 10.3389/fphys.2023.1326809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
7
|
Blau K, Gallert C. Prophage Carriage and Genetic Diversity within Environmental Isolates of Clostridioides difficile. Int J Mol Sci 2023; 25:2. [PMID: 38203173 PMCID: PMC10778935 DOI: 10.3390/ijms25010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Clostridioides difficile is an important human pathogen causing antibiotic-associated diarrhoea worldwide. Besides using antibiotics for treatment, the interest in bacteriophages as an alternative therapeutic option has increased. Prophage abundance and genetic diversity are well-documented in clinical strains, but the carriage of prophages in environmental strains of C. difficile has not yet been explored. Thus, the prevalence and genetic diversity of integrated prophages in the genomes of 166 environmental C. difficile isolates were identified. In addition, the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems were determined in the genomes of prophage regions. Predicted prophages and CRISPR-Cas systems were identified by using the PHASTER web server and CRISPRCasFinder, respectively. Phylogenetic relationships among predicated prophages were also constructed based on phage-related genes, terminase large (TerL) subunits and LysM. Among 372 intact prophages, the predominant prophages were phiCDHM1, phiCDHM19, phiMMP01, phiCD506, phiCD27, phiCD211, phiMMP03, and phiC2, followed by phiMMP02, phiCDKM9, phiCD6356, phiCDKM15, and phiCD505. Two newly discovered siphoviruses, phiSM101- and phivB_CpeS-CP51-like Clostridium phages, were identified in two C. difficile genomes. Most prophages were found in sequence types (STs) ST11, ST3, ST8, ST109, and ST2, followed by ST6, ST17, ST4, ST5, ST44, and ST58. An obvious correlation was found between prophage types and STs/ribotypes. Most predicated prophages carry CRISPR arrays. Some prophages carry several gene products, such as accessory gene regulator (Agr), putative spore protease, and abortive infection (Abi) systems. This study shows that prophage carriage, along with genetic diversity and their CRISPR arrays, may play a role in the biology, lifestyle, and fitness of their host strains.
Collapse
Affiliation(s)
| | - Claudia Gallert
- Department of Microbiology–Biotechnology, Faculty of Technology, University of Applied Sciences Emden/Leer, 26723 Emden, Germany;
| |
Collapse
|
8
|
Yang J, Huang J, Huang Z, Xu Y, Li W, Zhu S, Zhao Y, Ye B, Liu L, Zhu J, Xia M, Liu Y. Cardiometabolic benefits of Lacticaseibacillus paracasei 8700:2: A randomized double-blind placebo-controlled trial. Clin Nutr 2023; 42:1637-1646. [PMID: 37506599 DOI: 10.1016/j.clnu.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND & AIMS Modulating microbial metabolism via probiotic supplementation has been proposed as an attractive strategy for the prevention of cardiometabolic diseases. Recently, Lacticaseibacillus paracasei (L. paracasei) was reported to alleviate metabolic disorders in murine models, however, its beneficial effects in humans remain to be determined. This study evaluated whether L. paracasei supplementation could improve endothelial function and cardiometabolic health in subjects with metabolic syndrome (MetS). METHODS In this randomized, double-blind and placebo-controlled trial among 130 participants with MetS, subjects were randomly assigned to placebo or L. paracasei 8700: 2 (10 billion CFU) daily for 12 weeks. Endothelial function was measured by flow-mediated slowing, and cardiometabolic health was determined by both components and severity of MetS. Ideal compliance was defined as consumption no less than 70% of the capsules. RESULTS 130 individuals (mean [SD] age, 45.97 [7.11] years; 95 men [73.1%]) were enrolled and randomized to L. paracasei (n = 66) or placebo control (n = 64). Compared to placebo, L. paracasei supplementation led to a greater reduction in remnant cholesterol (-0.16 mmol/L, 95%CI: -0.29 mmol/L to -0.02 mmol/L; P = 0.024). Such a reduction in remnant cholesterol was significantly associated with improvement in endothelial function (r = -0.23, P = 0.027). In subjects with an ideal compliance with trial protocol, L. paracasei treatment additionally lowered triglycerides, alleviated MetS severity and delayed weight gain. On the contrary, no obvious effect on insulin sensitivity or pancreatic beta-cell function was observed after L. paracasei intervention. Moreover, regarding safety and tolerability, no significant between-group difference in protocol-specified adverse events of interest was observed. CONCLUSIONS L. paracasei supplementation enhanced endothelial function potentially through downregulating remnant cholesterol levels. Our study provides a feasible and safe strategy for the prevention of cardiometabolic diseases in subjects with severe dyslipidemia and endothelial dysfunction. REGISTERED Under ClinicalTrails.gov identifier NCT05005754.
Collapse
Affiliation(s)
- Jialu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Jingyi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Zhihao Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Yingxi Xu
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Wenkang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Bingqi Ye
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Ludi Liu
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, China
| | - Jiangyuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China.
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, China.
| |
Collapse
|
9
|
Li J, Pradhan A, McClane BA. NanJ Is the Major Sialidase for Clostridium perfringens Type F Food Poisoning Strain 01E809. Infect Immun 2023; 91:e0005323. [PMID: 37212696 PMCID: PMC10269042 DOI: 10.1128/iai.00053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Clostridium perfringens type F strains cause food poisoning (FP) when they sporulate and produce C. perfringens enterotoxin (CPE) in the intestines. Most type F FP strains carry a chromosomal cpe gene (c-cpe strains). C. perfringens produces up to three different sialidases, named NanH, NanI, and NanJ, but some c-cpe FP strains carry only nanJ and nanH genes. This study surveyed a collection of such strains and showed that they produce sialidase activity when cultured in Todd-Hewitt broth (TH) (vegetative cultures) or modified Duncan-Strong (MDS) medium (sporulating cultures). Sialidase null mutants were constructed in 01E809, a type F c-cpe FP strain carrying the nanJ and nanH genes. Characterization of those mutants identified NanJ as the major sialidase of 01E809 and showed that, in vegetative and sporulating cultures, nanH expression affects nanJ expression and vice versa; those regulatory effects may involve media-dependent changes in transcription of the codY or ccpA genes but not nanR. Additional characterization of these mutants demonstrated the following: (i) NanJ contributions to growth and vegetative cell survival are media dependent, with this sialidase increasing 01E809 growth in MDS but not TH; (ii) NanJ enhances 24-h vegetative cell viability in both TH and MDS cultures; and (iii) NanJ is important for 01E809 sporulation and, together with NanH, CPE production in MDS cultures. Lastly, NanJ was shown to increase CPE-induced cytotoxicity and CH-1 pore formation in Caco-2 cells. Collectively, these results suggest that NanJ may have a contributory role in FP caused by type F c-cpe strains that carry the nanH and nanJ genes.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arhat Pradhan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Mehdizadeh Gohari I, Li J, Navarro MA, Mendonça FS, Uzal FA, McClane BA. Identification of orphan histidine kinases that impact sporulation and enterotoxin production by Clostridium perfringens type F strain SM101 in a pathophysiologically-relevant ex vivo mouse intestinal contents model. PLoS Pathog 2023; 19:e1011429. [PMID: 37262083 PMCID: PMC10263361 DOI: 10.1371/journal.ppat.1011429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
When causing food poisoning or antibiotic-associated diarrhea, Clostridium perfringens type F strains must sporulate to produce C. perfringens enterotoxin (CPE) in the intestines. C. perfringens is thought to use some of its seven annotated orphan histidine kinases to phosphorylate Spo0A and initiate sporulation and CPE production. We previously demonstrated the CPR0195 orphan kinase, but not the putative CPR1055 orphan kinase, is important when type F strain SM101 initiates sporulation and CPE production in modified Duncan-Strong (MDS) sporulation medium. Since there is no small animal model for C. perfringens sporulation, the current study used diluted mouse intestinal contents (MIC) to develop an ex vivo sporulation model and employed this model to test sporulation and CPE production by SM101 CPR0195 and CPR1055 null mutants in a pathophysiologically-relevant context. Surprisingly, both mutants still sporulated and produced CPE at wild-type levels in MIC. Therefore, five single null mutants were constructed that cannot produce one of the previously-unstudied putative orphan kinases of SM101. Those mutants implicated CPR1316, CPR1493, CPR1953 and CPR1954 in sporulation and CPE production by SM101 MDS cultures. Phosphorylation activity was necessary for CPR1316, CPR1493, CPR1953 and CPR1954 to affect sporulation in those MDS cultures, supporting their identity as kinases. Importantly, only the CPR1953 or CPR1954 null mutants exhibited significantly reduced levels of sporulation and CPE production in MIC cultures. These phenotypes were reversible by complementation. Characterization studies suggested that, in MDS or MIC, the CPR1953 and CPR1954 mutants produce less Spo0A than wild-type SM101. In addition, the CPR1954 mutant exhibited little or no Spo0A phosphorylation in MDS cultures. These studies, i) highlight the importance of using pathophysiologically-relevant models to investigate C. perfringens sporulation and CPE production in a disease context and ii) link the CPR1953 and CPR1954 kinases to C. perfringens sporulation and CPE production in disease-relevant conditions.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, United States of America
| | - Fábio S. Mendonça
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, United States of America
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, United States of America
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
11
|
Hashimoto A, Suzuki H, Oonaka K. Prevalence of cpe-positive Clostridium perfringens in surface-attached soil of commercially available potatoes and its significance as a potential source of food poisoning. Anaerobe 2023; 79:102687. [PMID: 36549463 DOI: 10.1016/j.anaerobe.2022.102687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We aimed to examine the surface-attached soil of commercially available potatoes in Japan to determine the association between foodborne infection and the circulation of Clostridium perfringens through vegetables, soil, and environments. METHODS C. perfringens spores were isolated from 30 surface-attached soil samples of potatoes obtained from six regions in Japan. We performed multiplex polymerase chain reaction (PCR) and sequencing to detect the presence of six toxin and plasmid-related genes in the isolates. RESULTS Sulfite-reducing clostridial spores were detected in 28 (93%) of 30 potato samples, and toxin gene PCR was performed using 613 isolates. The C. perfringens α toxin gene (cpa) was detected in 288 isolates (288/613; 47%) from 25 potato samples (83%), and these isolates were presumed to be the strains of C. perfringens. The toxin types of C. perfringens were classified into type A, in which 73% of isolates had only cpa, followed by type F in 20%, type C in 6%, and type E in 0.003% (1 isolate). The enterotoxin gene (cpe) related to food poisoning was detected in 64 isolates from 9 potato samples (3%). Of these, 59 isolates had cpa and cpe, whereas five had cpa, C. perfringens β toxin gene, and cpe. All tested cpe-positive isolates had plasmid-type cpe. CONCLUSIONS The isolation of culturable cpe-positive C. perfringens from the surface-attached soil of commercially available potatoes indicates that potatoes are a potential source of foodborne transmission of C. perfringens.
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Life and Environmental Sciences, Faculty of Bioresource, Prefectural University of Hiroshima, 5562, Nanatsuka-cho, Shobara City, Hiroshima, 727-0023, Japan.
| | - Hiroyuki Suzuki
- Research and Development Center, Suzuken Co., Ltd., 5-28-1 Hongo, Bunkyo Ward, Tokyo, 113-0033, Japan.
| | - Kenji Oonaka
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuou-ku, Sagamihara City, Kanagawa, 252-5201, Japan.
| |
Collapse
|
12
|
Characterization of NanR Regulation of Sialidase Production, Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strains Carrying a Chromosomal Enterotoxin Gene. Toxins (Basel) 2022; 14:toxins14120872. [PMID: 36548769 PMCID: PMC9788507 DOI: 10.3390/toxins14120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens type F food poisoning (FP) strains produce C. perfringens enterotoxin (CPE) to cause a common bacterial food-borne illness in the United States. During FP, CPE is synthesized in the intestines when C. perfringens sporulates. Besides CPE, FP strains also produce sialidases. Most FP strains carry their cpe gene on the chromosome and all surveyed chromosomal cpe (c-cpe) FP strains produce NanH sialidase or both NanJ and NanH sialidases. NanR has been shown previously to regulate sialidase activity in non-FP strains. The current study investigated whether NanR also regulates sialidase activity or influences sporulation and CPE production for c-cpe FP strains SM101 and 01E809. In sporulation medium, the SM101 nanR null mutant showed lower sialidase activity, sporulation, and CPE production than its wild-type parent, while the 01E809 nanR null mutant showed roughly similar sialidase activity, sporulation, and CPE production as its parent. In vegetative medium, the nanR null mutants of both strains produced more spores than their parents while NanR repressed sialidase activity in SM101 but positively regulated sialidase activity in 01E809. These results demonstrate that NanR regulates important virulence functions of c-cpe strains, with this control varying depending on strain and culture conditions.
Collapse
|
13
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
14
|
Alimolaei M, Ezatkhah M, Soltani S. Toxin genotypes of Clostridium perfringens isolates from common quail (Coturnix coturnix) with or without acute necrotic enteritis. Toxicon 2022; 221:106984. [DOI: 10.1016/j.toxicon.2022.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
|
15
|
Kurnia RS, Tarigan S, Nugroho CMH, Silaen OSM, Natalia L, Ibrahim F, Sudarmono PP. Potency of bacterial sialidase Clostridium perfringens as antiviral of Newcastle disease infections using embryonated chicken egg in ovo model. Vet World 2022; 15:1896-1905. [DOI: 10.14202/vetworld.2022.1896-1905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Clostridium toxins are widely used as medicinal agents. Many active metabolic enzymes, including sialidase (neuraminidase), hyaluronidase, and collagenase, contribute to the mechanism of action of these toxins. Sialidase from Clostridium perfringens recognizes and degrades sialic acid receptors in the host cell glycoprotein, glycolipid, and polysaccharide complexes. Sialic acid promotes the adhesion of various pathogens, including viruses, under pathological conditions. This study aimed to investigate the potential of C. perfringens sialidase protein to inhibit Newcastle disease virus (NDV) infection in ovo model.
Materials and Methods: C. perfringens was characterized by molecular identification through polymerase chain reaction (PCR) and is cultured in a broth medium to produce sialidase. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis was conducted to characterize the sialidase protein. In contrast, enzymatic activity and protein concentration were carried out using a neuraminidase assay kit and Bradford to obtain suitable active substances. Furthermore, embryonated chicken egg models were used to observe the toxicity of several sialidase doses. Then, the hemagglutination (HA) titer was obtained, and absolute quantitative reverse transcription–PCR assay was performed to measure the viral replication inhibitory activity of sialidase against NDV.
Results: Each isolate had a specific sialidase gene and its product. The sialidase derived from C. perfringens could hydrolyze the sialic acid receptor Neu5Ac (2,6)-Gal higher than Neu5Ac (2,3)Gal in chicken erythrocytes, as observed by enzyme-linked lectin assay. A significant difference (p = 0.05) in the HA titer in the pre-challenge administration group at dosages of 375 mU, 187.5 mU, and 93.75 mU in the competitive inhibition experiment suggests that sialidase inhibits NDV reproduction. Quantification of infective viral copy confirmed the interference of viral replication in the pre-challenge administration group, with a significant difference (p = 0.05) at the treatment doses of 750 mU, 375 mU, and 46.87 mU.
Conclusion: The potency of sialidase obtained from C. perfringens was shown in this study, given its ability to reduce the viral titer and copy number in allantoic fluids without adversely impacting the toxicity of the chicken embryo at different concentrations.
Collapse
Affiliation(s)
- Ryan Septa Kurnia
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Simson Tarigan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | | | - Otto Sahat Martua Silaen
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Lily Natalia
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Fera Ibrahim
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Pratiwi Pudjilestari Sudarmono
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
16
|
Camargo A, Guerrero-Araya E, Castañeda S, Vega L, Cardenas-Alvarez MX, Rodríguez C, Paredes-Sabja D, Ramírez JD, Muñoz M. Intra-species diversity of Clostridium perfringens: A diverse genetic repertoire reveals its pathogenic potential. Front Microbiol 2022; 13:952081. [PMID: 35935202 PMCID: PMC9354469 DOI: 10.3389/fmicb.2022.952081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens is the causative agent of many enterotoxic diseases in humans and animals, and it is present in diverse environments (soil, food, sewage, and water). Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) have provided a general approach about genetic diversity of C. perfringens; however, those studies are limited to specific locations and often include a reduced number of genomes. In this study, 372 C. perfringens genomes from multiple locations and sources were used to assess the genetic diversity and phylogenetic relatedness of this pathogen. In silico MLST was used for typing the isolates, and the resulting sequence types (ST) were assigned to clonal complexes (CC) based on allelic profiles that differ from its founder by up to double-locus variants. A pangenome analysis was conducted, and a core genome-based phylogenetic tree was created to define phylogenetic groups. Additionally, key virulence factors, toxinotypes, and antibiotic resistance genes were identified using ABRicate against Virulence Factor Database (VFDB), TOXiper, and Resfinder, respectively. The majority of the C. perfringens genomes found in publicly available databases were derived from food (n = 85) and bird (n = 85) isolates. A total of 195 STs, some of them shared between sources such as food and human, horses and dogs, and environment and birds, were grouped in 25 CC and distributed along five phylogenetic groups. Fifty-three percent of the genomes were allocated to toxinotype A, followed by F (32%) and G (7%). The most frequently found virulence factors based on > 70% coverage and 99.95% identity were plc (100%), nanH (99%), ccp (99%), and colA (98%), which encode an alpha-toxin, a sialidase, an alpha-clostripain, and a collagenase, respectively, while tetA (39.5%) and tetB (36.2%), which mediate tetracycline resistance determinants, were the most common antibiotic resistance genes detected. The analyses conducted here showed a better view of the presence of this pathogen across several host species. They also confirm that the genetic diversity of C. perfringens is based on a large number of virulence factors that vary among phylogroups, and antibiotic resistance markers, especially to tetracyclines, aminoglycosides, and macrolides. Those characteristics highlight the importance of C. perfringens as a one of the most common causes of foodborne illness.
Collapse
Affiliation(s)
- Anny Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Faculty of Health Sciences, Universidad de Boyacá, Tunja, Colombia
| | - Enzo Guerrero-Araya
- ANID, Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - María X. Cardenas-Alvarez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, United States
| | - César Rodríguez
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Daniel Paredes-Sabja
- ANID, Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- ANID, Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- *Correspondence: Marina Muñoz,
| |
Collapse
|
17
|
McMahon SG, Melville SB, Chen J. Mechanical limitation of bacterial motility mediated by growing cell chains. Biophys J 2022; 121:2461-2473. [PMID: 35591787 PMCID: PMC9279174 DOI: 10.1016/j.bpj.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/20/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Contrasting most known bacterial motility mechanisms, a bacterial sliding motility discovered in at least two gram-positive bacterial families does not depend on designated motors. Instead, the cells maintain end-to-end connections following cell divisions to form long chains and exploit cell growth and division to push the cells forward. To investigate the dynamics of this motility mechanism, we constructed a mechanical model that depicts the interplay of the forces acting on and between the cells comprising the chain. Due to the exponential growth of individual cells, the tips of the chains can, in principle, accelerate to speeds faster than any known single-cell motility mechanism can achieve. However, analysis of the mechanical model shows that the exponential acceleration comes at the cost of an exponential buildup in mechanical stress in the chain, making overly long chains prone to breakage. Additionally, the mechanical model reveals that the dynamics of the chain expansion hinges on a single non-dimensional parameter. Perturbation analysis of the mechanical model further predicts the critical stress leading to chain breakage and its dependence on the non-dimensional parameter. Finally, we developed a simplistic population-expansion model that uses the predicted breaking behavior to estimate the physical limit of chain-mediated population expansion. Predictions from the models provide critical insights into how this motility depends on key physical properties of the cell and the substrate. Overall, our models present a generically applicable theoretical framework for cell-chain-mediated bacterial sliding motility and provide guidance for future experimental studies on such motility.
Collapse
Affiliation(s)
- Sean G McMahon
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Stephen B Melville
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| | - Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
18
|
Venhorst J, van der Vossen JMBM, Agamennone V. Battling Enteropathogenic Clostridia: Phage Therapy for Clostridioides difficile and Clostridium perfringens. Front Microbiol 2022; 13:891790. [PMID: 35770172 PMCID: PMC9234517 DOI: 10.3389/fmicb.2022.891790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Clostridioides difficile and Clostridium perfringens are responsible for many health care-associated infections as well as systemic and enteric diseases. Therefore, they represent a major health threat to both humans and animals. Concerns regarding increasing antibiotic resistance (related to C. difficile and C. perfringens) have caused a surge in the pursual of novel strategies that effectively combat pathogenic infections, including those caused by both pathogenic species. The ban on antibiotic growth promoters in the poultry industry has added to the urgency of finding novel antimicrobial therapeutics for C. perfringens. These efforts have resulted in various therapeutics, of which bacteriophages (in short, phages) show much promise, as evidenced by the Eliava Phage Therapy Center in Tbilisi, Georgia (https://eptc.ge/). Bacteriophages are a type of virus that infect bacteria. In this review, the (clinical) impact of clostridium infections in intestinal diseases is recapitulated, followed by an analysis of the current knowledge and applicability of bacteriophages and phage-derived endolysins in this disease indication. Limitations of phage and phage endolysin therapy were identified and require considerations. These include phage stability in the gastrointestinal tract, influence on gut microbiota structure/function, phage resistance development, limited host range for specific pathogenic strains, phage involvement in horizontal gene transfer, and-for phage endolysins-endolysin resistance, -safety, and -immunogenicity. Methods to optimize features of these therapeutic modalities, such as mutagenesis and fusion proteins, are also addressed. The future success of phage and endolysin therapies require reliable clinical trial data for phage(-derived) products. Meanwhile, additional research efforts are essential to expand the potential of exploiting phages and their endolysins for mitigating the severe diseases caused by C. difficile and C. perfringens.
Collapse
Affiliation(s)
- Jennifer Venhorst
- Biomedical Health, Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
19
|
Wu Z, Xu Q, Gu S, Chen Y, Lv L, Zheng B, Wang Q, Wang K, Wang S, Xia J, Yang L, Bian X, Jiang X, Zheng L, Li L. Akkermansia muciniphila Ameliorates Clostridioides difficile Infection in Mice by Modulating the Intestinal Microbiome and Metabolites. Front Microbiol 2022; 13:841920. [PMID: 35663882 PMCID: PMC9159907 DOI: 10.3389/fmicb.2022.841920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile is a common cause of nosocomial infection. Antibiotic-induced dysbiosis in the intestinal microbiota is a core cause of C. difficile infection (CDI). Akkermansia muciniphila plays an active role in maintaining gastrointestinal balance and might offer the protective effects on CDI as probiotics. Here, we investigated the effects and mechanisms of A. muciniphila on CDI. C57BL/6 mice (n = 29) were administered A. muciniphila Muc T (3 × 109 CFUs, 0.2 mL) or phosphate-buffered saline (PBS) by oral gavage for 2 weeks. Mice were pretreated with an antibiotic cocktail and subsequently challenged with the C. difficile strain VPI 10463. A. muciniphila treatment prevented weight loss in mice and reduced the histological injury of the colon. And it also alleviated inflammation and improved the barrier function of the intestine. The administration effects of A. muciniphila may be associated with an increase in short-chain fatty acid production and the maintenance of bile acids' steady-state. Our results provide evidence that administration of A. muciniphila to CDI mice, with an imbalance in the microbial community structure, lead to a decrease in abundance of members of the Enterobacteriaceae and Enterococcaceae. In short, A. muciniphila shows a potential anti-CDI role by modulating gut microbiota and the metabolome.
Collapse
Affiliation(s)
- Zhengjie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaomai Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bacterial Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
20
|
Huang S, Tian Y, Wang Y, García P, Liu B, Lu R, Wu L, Bao H, Pang M, Zhou Y, Wang R, Zhang H. The Broad Host Range Phage vB_CpeS_BG3P Is Able to Inhibit Clostridium perfringens Growth. Viruses 2022; 14:v14040676. [PMID: 35458406 PMCID: PMC9033094 DOI: 10.3390/v14040676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
Clostridium perfringens is an important pathogen for both humans and animals, causing human foodborne disease and necrotic enteritis in poultry. In the present study, a C. perfringens-specific phage, vB_CpeS_BG3P (designated as BG3P hereafter), was isolated from chicken farm sewage. Both electron microscopy and phylogenetic analysis suggested that phage BG3P is a novel phage belonging to Siphoviridae family. Phage BG3P exhibited a broad host range against different C. perfringens isolates (90.63% of strains were infected). Sequencing of the complete genome revealed a linear double-stranded DNA (43,528 bp) with 28.65% GC content. After sequence analysis, 73 open reading frames (orfs) were predicted, of which only 13 were annotated with known functions. No tRNA and virulence encoding genes were detected. It should be noted that the protein of orf 15 has 97.92% homology to C. perfringens-specific chloramphenicol resistance protein, which has not been reported for any C. perfringens phage. Phylogenetic analysis of the ssDNA binding protein demonstrated that this phage is closely related to C. perfringens phages phiSM101 and phi3626. In considering future use as an antimicrobial agent, some biological characteristics were observed, such as a good pH (3−11) stability and moderate temperature tolerance (<60 °C). Moreover, bacteriophage BG3P showed a good antimicrobial effect against C. perfringens liquid cultures. Thus, phage treatment with MOI ≥ 100 completely inhibited bacterial growth compared to untreated cultures. Although phage BG3P shows good lytic efficiency and broad host range in vitro, future development and application may need to consider removal of the chloramphenicol-like resistance gene or exploring its lysin for future antibacterial applications.
Collapse
Affiliation(s)
- Sisi Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
| | - Yuan Tian
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongjuan Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China;
| | - Pilar García
- Dairy Research Institute of Asturias (IPLA-CSIC), 33300 Villaviciosa, Asturias, Spain;
| | - Banhong Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Rui Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liting Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
| | - Hongduo Bao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
| | - Maoda Pang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
| | - Yan Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.T.); (B.L.); (R.L.); (L.W.); (H.B.); (M.P.); (Y.Z.); (R.W.)
- Correspondence: ; Tel.: +86-25-84391627; Fax: +86-25-84391617
| |
Collapse
|
21
|
Burgess SA, Palevich FP, Gardner A, Mills J, Brightwell G, Palevich N. Occurrence of genes encoding spore germination in Clostridium species that cause meat spoilage. Microb Genom 2022; 8. [PMID: 35166653 PMCID: PMC8942025 DOI: 10.1099/mgen.0.000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.
Collapse
Affiliation(s)
- Sara A Burgess
- Molecular Epidemiology and Veterinary Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Faith P Palevich
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Amanda Gardner
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - John Mills
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
22
|
Johnston MD, Whiteside TE, Allen ME, Kurtz DM. Toxigenic Profile of Clostridium perfringens Strains Isolated from Natural Ingredient Laboratory Animal Diets. Comp Med 2022; 72:50-58. [PMID: 35148812 DOI: 10.30802/aalas-cm-22-000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens is an anaerobic, gram-positive, spore-forming bacterium that ubiquitously inhabits a wide varietyof natural environments including the gastrointestinal tract of humans and animals. C. perfringens is an opportunistic enteropathogen capable of producing at least 20 different toxins in various combinations. Strains of C. perfringens are currentlycategorized into 7 toxinotypes (A, B, C, D, E, F, and G) based on the presence or absence of 6 typing-toxins (α, β, epsilon, iota, enterotoxin, and netB). Each toxinotype is associated with specific histotoxic and enteric diseases. Spontaneous enteritis due to C. perfringens has been reported in laboratory animals; however, the source of the bacteria was unknown. The Quality Assurance Laboratory (QAL) at the National Institute of Environmental Health Sciences (NIEHS) routinely screens incoming animal feeds for aerobic, enteric pathogens, such as Salmonella spp. and E. coli. Recently, QAL incorporated anaerobic screening of incoming animal feeds. To date, the lab has isolated numerous Clostridium species, including C. perfringens, from 23 lots ofnatural ingredient laboratory animal diets. Published reports of C. perfringens isolation from laboratory animal feeds couldnot be found in the literature. Therefore, we performed a toxin profile screen of our isolated strains of C. perfringens usingPCR to determine which toxinotypes were present in the laboratory animal diets. Our results showed that most C. perfringens strains we isolated from the laboratory animal feed were toxinotype A with most strains also possessing the theta toxin. Two of the C. perfringens strains also possessed the β toxin. Our results demonstrated the presence of C. perfringens in nonsterile, natural ingredient feeds for laboratory animals which could serve as a source of this opportunistic pathogen.
Collapse
|
23
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Abdel-Glil MY, Thomas P, Linde J, Jolley KA, Harmsen D, Wieler LH, Neubauer H, Seyboldt C. Establishment of a Publicly Available Core Genome Multilocus Sequence Typing Scheme for Clostridium perfringens. Microbiol Spectr 2021; 9:e0053321. [PMID: 34704797 PMCID: PMC8549748 DOI: 10.1128/spectrum.00533-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens is a spore-forming anaerobic pathogen responsible for a variety of histotoxic and intestinal infections in humans and animals. High-resolution genotyping aiming to identify bacteria at strain level has become increasingly important in modern microbiology to understand pathogen transmission pathways and to tackle infection sources. This study aimed at establishing a publicly available genome-wide multilocus sequence-typing (MLST) scheme for C. perfringens. A total of 1,431 highly conserved core genes (1.34 megabases; 50% of the reference genome genes) were indexed for a core genome-based MLST (cgMLST) scheme for C. perfringens. The scheme was applied to 282 ecologically and geographically diverse genomes, showing that the genotyping results of cgMLST were highly congruent with the core genome-based single-nucleotide-polymorphism typing in terms of resolution and tree topology. In addition, the cgMLST provided a greater discrimination than classical MLST methods for C. perfringens. The usability of the scheme for outbreak analysis was confirmed by reinvestigating published outbreaks of C. perfringens-associated infections in the United States and the United Kingdom. In summary, a publicly available scheme and an allele nomenclature database for genomic typing of C. perfringens have been established and can be used for broad-based and standardized epidemiological studies. IMPORTANCE Global epidemiological surveillance of bacterial pathogens is enhanced by the availability of standard tools and sharing of typing data. The use of whole-genome sequencing has opened the possibility for high-resolution characterization of bacterial strains down to the clonal and subclonal levels. Core genome multilocus sequence typing is a robust system that uses highly conserved core genes for deep genotyping. The method has been successfully and widely used to describe the epidemiology of various bacterial species. Nevertheless, a cgMLST typing scheme for Clostridium perfringens is currently not publicly available. In this study, we (i) developed a cgMLST typing scheme for C. perfringens, (ii) evaluated the performance of the scheme on different sets of C. perfringens genomes from different hosts and geographic regions as well as from different outbreak situations, and, finally, (iii) made this scheme publicly available supported by an allele nomenclature database for global and standard genomic typing.
Collapse
Affiliation(s)
- Mostafa Y. Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, Muenster, Germany
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
25
|
Jaakkola K, Virtanen K, Lahti P, Keto-Timonen R, Lindström M, Korkeala H. Comparative Genome Analysis and Spore Heat Resistance Assay Reveal a New Component to Population Structure and Genome Epidemiology Within Clostridium perfringens Enterotoxin-Carrying Isolates. Front Microbiol 2021; 12:717176. [PMID: 34566921 PMCID: PMC8456093 DOI: 10.3389/fmicb.2021.717176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens causes a variety of human and animal enteric diseases including food poisoning, antibiotic-associated diarrhea, and necrotic enteritis. Yet, the reservoirs of enteropathogenic enterotoxin-producing strains remain unknown. We conducted a genomic comparison of 290 strains and a heat resistance phenotyping of 30 C. perfringens strains to elucidate the population structure and ecology of this pathogen. C. perfringens genomes shared a conserved genetic backbone with more than half of the genes of an average genome conserved in >95% of strains. The cpe-carrying isolates were found to share genetic context: the cpe-carrying plasmids had different distribution patterns within the genetic lineages and the estimated pan genome of cpe-carrying isolates had a larger core genome and a smaller accessory genome compared to that of 290 strains. We characterize cpe-negative strains related to chromosomal cpe-carrying strains elucidating the origin of these strains and disclose two distinct groups of chromosomal cpe-carrying strains with different virulence characteristics, spore heat resistance properties, and, presumably, ecological niche. Finally, an antibiotic-associated diarrhea isolate carrying two copies of the enterotoxin cpe gene and the associated genetic lineage with the potential for the emergence of similar strains are outlined. With C. perfringens as an example, implications of input genome quality for pan genome analysis are discussed. Our study furthers the understanding of genome epidemiology and population structure of enteropathogenic C. perfringens and brings new insight into this important pathogen and its reservoirs.
Collapse
Affiliation(s)
- Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Kira Virtanen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Päivi Lahti
- City of Helsinki, Unit of Environmental Services, Helsinki, Finland
| | - Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Liu C, Hu J, Wu Y, Irwin DM, Chen W, Zhang Z, Yu L. Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins. J Genet Genomics 2021; 48:825-835. [PMID: 34474998 DOI: 10.1016/j.jgg.2021.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023]
Abstract
Pangolins are among the most critically endangered animals due to widespread poaching and worldwide trafficking. Captive breeding is considered to be one way to protect them and increase the sizes of their populations. However, comparative studies of captive and wild pangolins in the context of gut microbiota are rare. Here, the gut microbiome of captive and confiscated-rescued wild pangolins is compared, and the effects of different periods of captivity and captivity with and without antibiotic treatment are considered. We show that different diets and periods of captivity, as well as the application of antibiotic therapy, can alter gut community composition and abundance in pangolins. Compared to wild pangolins, captive pangolins have an increased capacity for chitin and cellulose/hemicellulose degradation, fatty acid metabolism, and short-chain fatty acid synthesis, but a reduced ability to metabolize exogenous substances. In addition to increasing the ability of the gut microbiota to metabolize nutrients in captivity, captive breeding imposes some risks for survival by resulting in a greater abundance of antibiotic resistance genes and virulence factors in captive pangolins than in wild pangolins. Our study is important for the development of guidelines for pangolin conservation, including health assessment, disease prevention, and rehabilitation of wild pangolin populations.
Collapse
Affiliation(s)
- Chunbing Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jingyang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yajiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou 510070, China.
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
27
|
The potential of Akkermansia muciniphila in inflammatory bowel disease. Appl Microbiol Biotechnol 2021; 105:5785-5794. [PMID: 34312713 DOI: 10.1007/s00253-021-11453-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Akkermansia muciniphila is a next-generation probiotic with significant application prospects. The role of A. muciniphila in metabolic diseases and tumor immunotherapy has been widely recognized. Recent clinical trials further confirmed its safety and therapeutic value in human metabolic diseases. A. muciniphila also shows potential in the treatment of intestinal inflammatory diseases, especially for inflammatory bowel disease (IBD). The improvement in the efficacy of washed microbiota transplantation (WMT) in treating IBD is closely related to the increase in the abundance of A. muciniphila in patients' gut. However, there is still controversy regarding the pro-inflammatory or anti-inflammatory effect of A. muciniphila on IBD. Currently, several studies targeting the correlation between A. muciniphila and IBD have demonstrated opposite conclusions. Similarly, the interventional studies exploring causality between them also come to conflicting results. This article therefore aims to review the relationship between A. muciniphila and IBD, the effect of intervention of A. muciniphila on IBD, and the possible reasons for the contradictory role of A. muciniphila in the treatment of IBD. KEY POINTS: The effect of A. muciniphila on inflammatory bowel disease is controversy. A. muciniphila shows anti-inflammatory potential in IBD. The colitogenicity of A. muciniphila is context dependent.
Collapse
|
28
|
Liu L, Yan X, Lillehoj H, Sun Z, Zhao H, Xianyu Z, Lee Y, Melville S, Gu C, Wang Y, Lu M, Li C. Comparison of the Pathogenicity of Five Clostridium perfringens Isolates Using an Eimeria maxima Coinfection Necrotic Enteritis Disease Model in Commercial Broiler Chickens. Avian Dis 2021; 64:386-392. [PMID: 33205165 DOI: 10.1637/aviandiseases-d-19-00098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/15/2020] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens (CP) is the etiologic agent of necrotic enteritis (NE) in broiler chickens that is responsible for massive economic losses in the poultry industry in response to voluntary reduction and withdrawal of antibiotic growth promoters. Large variations exist in the CP isolates in inducing intestinal NE lesions. However, limited information is available on CP isolate genetics in inducing NE with other predisposing factors. This study investigated the ability of five CP isolates from different sources to influence NE pathogenesis by using an Eimeria maxima (EM) coinfection NE model: Str.13 (from soil), LLY_N11 (healthy chicken intestine), SM101 (food poisoning), Del1 (netB+tpeL-) and LLY_Tpel17 (netB+tpeL+) for NE-afflicted chickens. The 2-wk-old broiler chickens were preinfected with EM (5 × 103 oocysts) followed by CP infection (around 1 × 109 colony-forming units per chicken). The group of the LLY_Tpel17 isolate with EM coinfection had 25% mortality. No mortality was observed in the groups infected with EM alone, all CP alone, or dual infections of EM/other CP isolates. In this model of EM/CP coinfections, the relative percentages of body weight gain showed statistically significant decreases in all EM/CP groups except the EM/SM101 group when compared with the sham control group. Evident gut lesions were only observed in the three groups of EM/LLY_N11, EM/Del1, and EM/LLY_Tpel17, all of which possessed an essential NE pathogenesis locus in their genomes. Our studies indicate that LLY_Tpel17 is highly pathogenic to induce severe gut lesions and would be a good CP challenge strain for studies investigating pathogenesis and evaluating the protection efficacy for antibiotic alternative approaches.
Collapse
Affiliation(s)
- Liheng Liu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghe Yan
- Environmental Microbial and Food Safety Laboratory, ARS/USDA, Beltsville, MD 20705
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Zhifeng Sun
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Hongyan Zhao
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhezi Xianyu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Stephen Melville
- Department of Biological Sciences, Virginia Polytech and State University, Blacksburg, VA 24061
| | - Changqin Gu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfei Wang
- Biostatistics Center, Duke Human Vaccine Institute, Durham, NC 27710
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Beltsville, MD 20705
| |
Collapse
|
29
|
Charlebois A, Parent E, Létourneau-Montminy MP, Boulianne M. Persistence of a Clostridium perfringens Strain in a Broiler Chicken Farm over a Three-Year Period. Avian Dis 2021; 64:415-420. [PMID: 33205171 DOI: 10.1637/aviandiseases-d-19-00112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 03/18/2020] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens, a commensal of the intestinal tract of many animal species, has been associated with necrotic enteritis (NE), an economically significant poultry disease. Clostridium perfringens is known to survive in the environment for extended periods of time through the formation of spores. These spores have the potential to be transmitted to subsequent flocks. Persistence of a single C. perfringens strain in a broiler chicken farm environment has, however, been poorly documented. The aim of this study was to compare multiple isolates of C. perfringens collected over time in a single farm with recurrent episodes of NE. Isolates were recovered from the intestines of chickens affected with NE (2014 and 2016 outbreaks) and from healthy chickens (2017), as well as from environmental samples (2016). PCR characterization of those isolates showed that all sampling groups contained netB-positive isolates except for the environmental samples. Moreover, results showed that all environmental isolates were positive for the cna adhesin whereas other groups had lower numbers of cna-positive isolates. Biofilm formation assays showed that most of the isolates were able to form biofilm. Pulsed-field gel electrophoresis analysis showed that one clone was present in every sampling group, with the exception of the 2014 outbreak. However, one clone found in the latter group was highly similar, having 94% similarity with the persistent C. perfringens clone. This study describes for the first time the persistence of a C. perfringens strain on a broiler chicken house over a 3-yr period.
Collapse
Affiliation(s)
- Audrey Charlebois
- Chaire en recherche avicole et Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada, J2S 2M2
| | - Eric Parent
- Chaire en recherche avicole et Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada, J2S 2M2
| | - Marie-Pierre Létourneau-Montminy
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada, G1V 0A6
| | - Martine Boulianne
- Chaire en recherche avicole et Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Département de sciences cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada, J2S 2M2
| |
Collapse
|
30
|
NanH Is Produced by Sporulating Cultures of Clostridium perfringens Type F Food Poisoning Strains and Enhances the Cytotoxicity of C. perfringens Enterotoxin. mSphere 2021; 6:6/2/e00176-21. [PMID: 33910991 PMCID: PMC8092135 DOI: 10.1128/msphere.00176-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium perfringens type F strains cause the second most common bacterial foodborne illness in the United States. C. perfringens enterotoxin (CPE) is responsible for the diarrhea and cramping symptoms of this food poisoning (FP). Previous studies showed that NanI sialidase can enhance CPE activity in vitro. Clostridium perfringens type F food poisoning (FP) strains cause one of the most common foodborne illnesses. This FP develops when type F FP strains sporulate in the intestines and produce C. perfringens enterotoxin (CPE), which is responsible for the diarrhea and abdominal cramps of this disease. While C. perfringens can produce up to three different sialidases, the current study surveyed FP strains, which confirmed the results of a previous study that they consistently carry the nanH sialidase gene, often as their only sialidase gene. NanH production was found to be associated with sporulating cultures of the surveyed type F FP strains, including SM101 (a transformable derivative of a FP strain). The sporulation-associated regulation of NanH production by strain SM101 growing in modified Duncan-Strong medium (MDS) was shown to involve Spo0A, but it did not require the completion of sporulation. NanH production was not necessary for either the growth or sporulation of SM101 when cultured in MDS. In those MDS cultures, NanH accumulated in the sporulating mother cell until it was released coincidently with CPE. Since CPE becomes extracellular when mother cells lyse to release their mature spores, this indicates that mother cell lysis is also important for NanH release. The copresence of NanH and CPE in supernatants from lysed sporulating cultures was shown to enhance CPE cytotoxicity for Caco-2 cells. This enhancement was attributable to NanH increasing CPE binding and could be replicated with purified recombinant NanH. These in vitro findings suggest that NanH may be an accessory virulence factor during type F FP. IMPORTANCEClostridium perfringens type F strains cause the second most common bacterial foodborne illness in the United States. C. perfringens enterotoxin (CPE) is responsible for the diarrhea and cramping symptoms of this food poisoning (FP). Previous studies showed that NanI sialidase can enhance CPE activity in vitro. While many type F FP strains do not produce NanI, they do consistently make NanH sialidase. This study shows that, like CPE, NanH is produced by sporulating type F FP strains and then released extracellularly when their sporulating cells lyse to release their mature spore. NanH was shown to enhance CPE cytotoxicity in vitro by increasing CPE binding to cultured Caco-2 cells. This enhancement could be important because many type F FP strains produce less CPE than necessary (in a purified form) to cause intestinal pathology in animal models. Therefore, NanH represents a potential accessory virulence factor for type F FP.
Collapse
|
31
|
Hu WS, Woo DU, Kang YJ, Koo OK. Biofilm and Spore Formation of Clostridium perfringens and Its Resistance to Disinfectant and Oxidative Stress. Antibiotics (Basel) 2021; 10:antibiotics10040396. [PMID: 33917564 PMCID: PMC8067515 DOI: 10.3390/antibiotics10040396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Clostridium perfringens is a major human pathogen that causes gastroenteritis via enterotoxin production and has the ability to form spores and biofilms for environmental persistence and disease transmission. This study aimed to compare the disinfectant and environmental resistance properties of C. perfringens vegetative cells and spores in planktonic and sessile conditions, and to examine the nucleotide polymorphisms and transcription under sessile conditions in C. perfringens strains isolated from meat. The sporulation rate of sessile C. perfringens TYJAM-D-66 (cpe+) was approximately 19% at day 5, while those of CMM-C-80 (cpe−) and SDE-B-202 (cpe+) were only 0.26% and 0.67%, respectively, at day 7. When exposed to aerobic conditions for 36 h, TYJAM-D-66, CMM-C-80, and SDE-B-202 vegetative cells showed 1.70 log, 5.36 log, and 5.67 log reductions, respectively. After treatment with sodium hypochlorite, the survival rates of TYJAM-D-66 vegetative cells (53.6%) and spores (82.3%) in biofilms were higher than those of planktonic cells (9.23%). Biofilm- and spore-related genes showed different expression within TYJAM-D-66 (–4.66~113.5), CMM-C-80 (–3.02~2.49), and SDE-B-202 (–5.07~2.73). Our results indicate the resistance of sessile cells and spores of C. perfringens upon exposure to stress conditions after biofilm formation.
Collapse
Affiliation(s)
- Wen Si Hu
- Department of Food Science and Engineering, Liaocheng University, Liaocheng 252059, China;
| | - Dong U Woo
- Division of Life Science Department, Gyeongsang National University, Jinju 52828, Korea; (D.U.W.); (Y.J.K.)
- Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea
| | - Yang Jae Kang
- Division of Life Science Department, Gyeongsang National University, Jinju 52828, Korea; (D.U.W.); (Y.J.K.)
- Division of Bio & Medical Big Data Department (BK4 Program), Gyeongsang National University, Jinju 52828, Korea
| | - Ok Kyung Koo
- Department of Food and Nutrition, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1441
| |
Collapse
|
32
|
Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 2021; 49:2655-2673. [PMID: 33590101 PMCID: PMC7969092 DOI: 10.1093/nar/gkab064] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Plasmids and temperate phages are key contributors to bacterial evolution. They are usually regarded as very distinct. However, some elements, termed phage–plasmids, are known to be both plasmids and phages, e.g. P1, N15 or SSU5. The number, distribution, relatedness and characteristics of these phage–plasmids are poorly known. Here, we screened for these elements among ca. 2500 phages and 12000 plasmids and identified 780 phage–plasmids across very diverse bacterial phyla. We grouped 92% of them by similarity of gene repertoires to eight defined groups and 18 other broader communities of elements. The existence of these large groups suggests that phage–plasmids are ancient. Their gene repertoires are large, the average element is larger than an average phage or plasmid, and they include slightly more homologs to phages than to plasmids. We analyzed the pangenomes and the genetic organization of each group of phage–plasmids and found the key phage genes to be conserved and co-localized within distinct groups, whereas genes with homologs in plasmids are much more variable and include most accessory genes. Phage–plasmids are a sizeable fraction of the sequenced plasmids (∼7%) and phages (∼5%), and could have key roles in bridging the genetic divide between phages and other mobile genetic elements.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | | | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| |
Collapse
|
33
|
Abdel-Glil MY, Thomas P, Linde J, Busch A, Wieler LH, Neubauer H, Seyboldt C. Comparative in silico genome analysis of Clostridium perfringens unravels stable phylogroups with different genome characteristics and pathogenic potential. Sci Rep 2021; 11:6756. [PMID: 33762628 PMCID: PMC7991664 DOI: 10.1038/s41598-021-86148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Clostridium perfringens causes a plethora of devastating infections, with toxin production being the underlying mechanism of pathogenicity in various hosts. Genomic analyses of 206 public-available C. perfringens strains´ sequence data identified a substantial degree of genomic variability in respect to episome content, chromosome size and mobile elements. However, the position and order of the local collinear blocks on the chromosome showed a considerable degree of preservation. The strains were divided into five stable phylogroups (I–V). Phylogroup I contained human food poisoning strains with chromosomal enterotoxin (cpe) and a Darmbrand strain characterized by a high frequency of mobile elements, a relatively small genome size and a marked loss of chromosomal genes, including loss of genes encoding virulence traits. These features might correspond to the adaptation of these strains to a particular habitat, causing human foodborne illnesses. This contrasts strains that belong to phylogroup II where the genome size points to the acquisition of genetic material. Most strains of phylogroup II have been isolated from enteric lesions in horses and dogs. Phylogroups III, IV and V are heterogeneous groups containing a variety of different strains, with phylogroup III being the most abundant (65.5%). In conclusion, C. perfringens displays five stable phylogroups reflecting different disease involvements, prompting further studies on the evolution of this highly important pathogen.
Collapse
Affiliation(s)
- Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany. .,Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt.
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany.,Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany
| | - Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Lothar H Wieler
- Robert Koch-Institut, Nordufer 20, 13353, Berlin, Germany.,Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, Building 35, 14163, Berlin, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany.
| |
Collapse
|
34
|
Holin-Dependent Secretion of the Large Clostridial Toxin TpeL by Clostridium perfringens. J Bacteriol 2021; 203:JB.00580-20. [PMID: 33526612 DOI: 10.1128/jb.00580-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Large clostridial toxins (LCTs) are secreted virulence factors found in several species, including Clostridioides difficile, Clostridium perfringens, Paeniclostridium sordellii, and Clostridium novyi LCTs are large toxins that lack a secretion signal sequence, and studies by others have shown that the LCTs of C. difficile, TcdA and TcdB, require a holin-like protein, TcdE, for secretion. The TcdE gene is located on the pathogenicity locus (PaLoc) of C. difficile, and holin-encoding genes are also present in the LCT-encoded PaLocs from P. sordellii and C. perfringens However, the holin (TpeE) associated with the C. perfringens LCT TpeL has no homology and a different membrane topology than TcdE. In addition, TpeE has a membrane topology identical to that of the TatA protein, which is the core of the twin-arginine translocation (Tat) secretion system. To determine if TpeE was necessary and sufficient to secrete TpeL, the genes from a type C strain of C. perfringens were expressed in a type A strain of C. perfringens, HN13, and secretion was measured using Western blot methods. We found that TpeE was required for TpeL secretion and that secretion was not due to cell lysis. Mutant forms of TpeE lacking an amphipathic helix and a charged C-terminal domain failed to secrete TpeL, and mutations that deleted conserved LCT domains in TpeL indicated that only the full-length protein could be secreted. In summary, we have identified a novel family of holin-like proteins that can function, in some cases, as a system of protein secretion for proteins that need to fold in the cytoplasm.IMPORTANCE Little is known about the mechanism by which LCTs are secreted. Since LCTs are major virulence factors in clostridial pathogens, we wanted to define the mechanism by which an LCT in C. perfringens, TpeL, is secreted by a protein (TpeE) lacking homology to previously described secretion-associated holins. We discovered that TpeE is a member of a widely dispersed class of holin proteins, and TpeE is necessary for the secretion of TpeL. TpeE bears a high degree of similarity in membrane topology to TatA proteins, which form the pore through which Tat secretion substrates pass through the cytoplasmic membrane. Thus, the TpeE-TpeL secretion system may be a model for understanding not only holin-dependent secretion but also how TatA proteins function in the secretion process.
Collapse
|
35
|
Determination of Genomic Epidemiology of Historical Clostridium perfringens Outbreaks in New York State by Use of Two Web-Based Platforms: National Center for Biotechnology Information Pathogen Detection and FDA GalaxyTrakr. J Clin Microbiol 2021; 59:JCM.02200-20. [PMID: 33177125 DOI: 10.1128/jcm.02200-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridium perfringens is the second leading cause of bacterial foodborne illness in the United States. The Wadsworth Center (WC) at the New York State Department of Health enumerates infectious dose from primary patient and food samples and, until recently, identified C. perfringens to the species level only. We investigated whether whole-genome sequence-based subtyping could benefit epidemiological investigations of this pathogen, as it has with other enteric organisms. We retrospectively sequenced 76 patient and food samples received between May 2010 and February 2020, including 52 samples linked epidemiologically to 13 outbreaks and 24 sporadic samples not linked to other samples. Phylogenetic trees were built using two Web-based platforms: National Centers for Biotechnology Information Pathogen Detection (NCBI-PD) and GalaxyTrakr (a Galaxy instance supported by the GenomeTrakr initiative). For GalaxyTrakr analyses, single nucleotide polymorphism (SNP) matrices and maximum-likelihood (ML) trees were generated using 3 different reference genomes. Across the four separate analyses, phylogenetic clustering was generally concordant with epidemiologically identified outbreaks. SNP diversity among phylogenetically linked samples from an outbreak ranged from 0 to 20 SNPs, excepting one outbreak ranging from 4 to 62 SNPs. Importantly, four of the 13 outbreak isolates harbored one or more samples that were phylogenetic outliers, and for two outbreaks, no samples were closely related. Two specimens were found harboring two distinct genotypes. For samples below CDC enumeration dose threshold, phylogenetic clustering was robust and linked patient and/or food samples. We concluded that WGS phylogenetic clusters (i) are largely concordant with epidemiologically defined outbreaks, irrespective of analysis platform or reference genome we employed; (ii) have limited pairwise SNP diversity, allowing phylogenetic clusters to be distinguished from sporadic cases; and (iii) can aid in epidemiological investigations by identifying outlier and polyclonal samples.
Collapse
|
36
|
Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TT, Sukumaran AT. Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions. Microorganisms 2020; 8:E1533. [PMID: 33036173 PMCID: PMC7599686 DOI: 10.3390/microorganisms8101533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
United States is the largest producer and the second largest exporter of broiler meat in the world. In the US, broiler production is largely converting to antibiotic-free programs which has caused an increase in morbidity and mortality within broiler farms. Escherichia coli and Clostridium perfringens are two important pathogenic bacteria readily found in the broiler environment and result in annual billion-dollar losses from colibacillosis, gangrenous dermatitis, and necrotic enteritis. The broiler industry is in search of non-antibiotic alternatives including novel vaccines, prebiotics, probiotics, and housing management strategies to mitigate production losses due to these diseases. This review provides an overview of the broiler industry and antibiotic free production, current challenges, and emerging research on antibiotic alternatives to reduce pathogenic microbial presence and improve bird health.
Collapse
Affiliation(s)
- Courtney A. Fancher
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Aaron S. Kiess
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Pratima A. Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| | - Thu T.N. Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA;
| | - Anuraj T. Sukumaran
- Department of Poultry Science, Mississippi State University, Starkville, MS 39762, USA; (C.A.F.); (L.Z.); (A.S.K.); (P.A.A.)
| |
Collapse
|
37
|
Extension of the taxonomic coverage of the family GH126 outside Firmicutes and in silico characterization of its non-catalytic terminal domains. 3 Biotech 2020; 10:420. [PMID: 32953382 PMCID: PMC7479077 DOI: 10.1007/s13205-020-02415-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
The family GH126 is a family of glycoside hydrolases established in 2011. Officially, in the CAZy database, it counts ~ 1000 sequences originating solely from bacterial phylum Firmicutes. Two members, the proteins CPF_2247 from Clostridium perfringens and PssZ from Listeria monocytogenes have been characterized as a probable α-amylase and an exopolysaccharide-specific glycosidase, respectively; their three-dimensional structures being also solved as possessing catalytic (α/α)6-barrel fold. Previously, based on a detailed in silico analysis, the seven conserved sequence regions (CSRs) were identified for the family along with elucidating basic evolutionary relationships within the family members. The present study represents a continuation study focusing on two particular aims: (1) to find out whether the taxonomic coverage of the family GH126 might be extended outside the Firmicutes and, if positive, to deliver those out-of-Firmicutes proteins with putting them into the context of the family; and (2) to identify the family members containing the N- and/or C-terminal extensions of their polypeptide chain, additional to the catalytic (α/α)6-barrel domain, and perform the bioinformatics characterization of the extra domains. The main results could be summarized as follows: (1) 17 bacterial proteins caught by BLAST searches outside Firmicutes (especially from phyla Proteobacteria, Actinobacteria and Bacteroidetes) have been found and convincingly suggested as new family GH126 members; and (2) a thioredoxin-like fold and various leucine-rich repeat motifs identified by Phyre2 structure homology modelling have been recognized as extra domains occurring most frequently in the N-terminal extensions of family GH126 members possessing a modular organization.
Collapse
|
38
|
Feng Y, Fan X, Zhu L, Yang X, Liu Y, Gao S, Jin X, Liu D, Ding J, Guo Y, Hu Y. Phylogenetic and genomic analysis reveals high genomic openness and genetic diversity of Clostridium perfringens. Microb Genom 2020; 6:mgen000441. [PMID: 32975504 PMCID: PMC7660258 DOI: 10.1099/mgen.0.000441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridium perfringens is associated with a variety of diseases in both humans and animals. Recent advances in genomic sequencing make it timely to re-visit this important pathogen. Although the genome sequence of C. perfringens was first determined in 2002, large-scale comparative genomics with isolates of different origins is still lacking. In this study, we used whole-genome sequencing of 45 C. perfringens isolates with isolation time spanning an 80-year period and performed comparative analysis of 173 genomes from worldwide strains. We also conducted phylogenetic lineage analysis and introduced an openness index (OI) to evaluate the openness of bacterial genomes. We classified all these genomes into five lineages and hypothesized that the origin of C. perfringens dates back to ~80 000 years ago. We showed that the pangenome of the 173 C. perfringens strains contained a total of 26 954 genes, while the core genome comprised 1020 genes, accounting for about a third of the genome of each isolate. We demonstrated that C. perfringens had the highest OI compared with 51 other bacterial species. Intact prophage sequences were found in nearly 70.0 % of C. perfringens genomes, while CRISPR sequences were found only in ~40.0 %. Plasmids were prevalent in C. perfringens isolates, and half of the virulence genes and antibiotic resistance genes (ARGs) identified in all the isolates could be found in plasmids. ARG-sharing network analysis showed that C. perfringens shared its 11 ARGs with 55 different bacterial species, and a high frequency of ARG transfer may have occurred between C. perfringens and species in the genera Streptococcus and Staphylococcus. Correlation analysis showed that the ARG number in C. perfringens strains increased with time, while the virulence gene number was relative stable. Our results, taken together with previous studies, revealed the high genome openness and genetic diversity of C. perfringens and provide a comprehensive view of the phylogeny, genomic features, virulence gene and ARG profiles of worldwide strains.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xuezheng Fan
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | | | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jiabo Ding
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
39
|
Fourie JCJ, Bezuidenhout CC, Sanko TJ, Mienie C, Adeleke R. Inside environmental Clostridium perfringens genomes: antibiotic resistance genes, virulence factors and genomic features. JOURNAL OF WATER AND HEALTH 2020; 18:477-493. [PMID: 32833675 DOI: 10.2166/wh.2020.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Until recently, research has focused on Clostridium perfringens in clinical settings without considering environmental isolates. In this study, environmental genomes were used to investigate possible antibiotic resistance and the presence of virulence traits in C. perfringens strains from raw surface water. In silico assembly of three C. perfringens strains, DNA generated almost complete genomes setting their length ranging from 3.4 to 3.6 Mbp with GC content of 28.18%. An average of 3,175 open reading frames was identified, with the majority associated with carbohydrate and protein metabolisms. The genomes harboured several antibiotic resistance genes for glycopeptides, macrolide-lincosamide-streptogramin B, β-lactam, trimethoprim, tetracycline and aminoglycosides and also the presence of several genes encoding for polypeptides and multidrug resistance efflux pumps and 35 virulence genes. Some of these encode for haemolysins, sialidase, hyaluronidase, collagenase, perfringolysin O and phospholipase C. All three genomes contained sequences indicating phage, antibiotic resistance and pathogenic islands integration sites. A genomic comparison of these three strains confirmed high similarity and shared core genes with clinical C. perfringens strains, highlighting their health security risks. This study provides a genomic insight into the potential pathogenicity of C. perfringens present in the environment and emphasises the importance of monitoring this niche in the future.
Collapse
Affiliation(s)
| | | | - Tomasz Janusz Sanko
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Charlotte Mienie
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| | - Rasheed Adeleke
- Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa E-mail:
| |
Collapse
|
40
|
Fontaine SS, Kohl KD. Gut microbiota of invasive bullfrog tadpoles responds more rapidly to temperature than a noninvasive congener. Mol Ecol 2020; 29:2449-2462. [PMID: 32463954 DOI: 10.1111/mec.15487] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/28/2022]
Abstract
Environmental temperature can alter the composition, diversity, and function of ectothermic vertebrate gut microbial communities, which may result in negative consequences for host physiology, or conversely, increase phenotypic plasticity and persistence in harsh conditions. The magnitude of either of these effects will depend on the length of time animals are exposed to extreme temperatures, and how quickly the composition and function of the gut microbiota can respond to temperature change. However, the temporal effects of temperature on gut microbiota are currently unknown. Here, we investigated the length of time required for increased temperature to alter the composition of gut bacterial communities in tadpoles of two frog species, the green frog, Lithobates clamitans, and its congener, the globally invasive American bullfrog, L. catesbeianus. We also explored the potential functional consequences of these changes by comparing predicted metagenomic profiles across temperature treatments at the last experimental time point. Bullfrog-associated microbial communities were more plastic than those of the green frog. Specifically, bullfrog communities were altered by increased temperature within hours, while green frog communities took multiple days to exhibit significant changes. Further, over ten times more bullfrog bacterial functional pathways were temperature-dependent compared to the green frog. These results support our hypothesis that bullfrog gut microbial communities would respond more rapidly to temperature change, potentially bolstering their ability to exploit novel environments. More broadly, we have revealed that even short-term increases in environmental temperature, expected to occur frequently under global climate change, can alter the gut microbiota of ectothermic vertebrates.
Collapse
Affiliation(s)
- Samantha S Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
41
|
A detailed in silico analysis of the amylolytic family GH126 and its possible relatedness to family GH76. Carbohydr Res 2020; 494:108082. [PMID: 32634753 DOI: 10.1016/j.carres.2020.108082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 11/21/2022]
Abstract
The glycoside hydrolase (GH) family 126 was established based on the X-ray structure determination of the amylolytic enzyme CPF_2247 from Clostridium perfringens genome. Its original identification as a putative carbohydrate-active enzyme was based on its low, yet significant sequence identity to members of the family GH8, which are inverting endo-β-1,4-glucanases. As the family GH8 forms the clan GH-M with GH48, the CPF_2247 protein also exhibits similarities with members of the family GH48. The original screening of the CPF_2247 on carbohydrate substrates demonstrated its activity on glycogen and amylose, thus classifying this protein as an "α-amylase". It should be pointed out, however, there are apparent inconsistencies concerning the exact enzyme specificity of the "amylase" CPF_2247, since it exhibits both the endo- and exo-fashion of action. The family GH126 currently counts ~1000 amino acid sequences solely from Bacteria; all belonging to the phylum Firmicutes. The present study delivers the first detailed bioinformatics study of 117 selected amino acid sequences from the family GH126, featuring the insightful sequence-structure comparison with the aim to define seven conserved sequence regions and elucidate the evolutionary relationships within the family. In addition, a comparative structural analysis of the GH126 members with representatives of other GH families adopting the same (α/α)6-barrel catalytic domain fold indicates the possible sharing a catalytic residue between the families GH126 and GH76.
Collapse
|
42
|
The Agr-Like Quorum-Sensing System Is Important for Clostridium perfringens Type A Strain ATCC 3624 To Cause Gas Gangrene in a Mouse Model. mSphere 2020; 5:5/3/e00500-20. [PMID: 32554714 PMCID: PMC7300355 DOI: 10.1128/msphere.00500-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clostridium perfringens type A is involved in gas gangrene in humans and animals. Following a traumatic injury, rapid bacterial proliferation and exotoxin production result in severe myonecrosis. C. perfringens alpha toxin (CPA) and perfringolysin (PFO) are the main virulence factors responsible for the disease. Recent in vitro studies have identified an Agr-like quorum-sensing (QS) system in C. perfringens that regulates the production of both toxins. The system is composed of an AgrB membrane transporter and an AgrD peptide that interacts with a two-component regulatory system in response to fluctuations in the cell population density. In addition, a synthetic peptide named 6-R has been shown to interfere with this signaling mechanism, affecting the function of the Agr-like QS system in vitro In the present study, C. perfringens type A strain ATCC 3624 and an isogenic agrB-null mutant were tested in a mouse model of gas gangrene. When mice were intramuscularly challenged with 106 CFU of wild-type ATCC 3624, severe myonecrosis and leukocyte aggregation occurred by 4 h. Similar numbers of an agrB-null mutant strain produced significantly less severe changes in the skeletal muscle of challenged mice. Complementation of the mutant to regain agrB expression restored virulence to wild-type levels. The burdens of all three C. perfringens strains in infected muscle were similar. In addition, animals injected intramuscularly with wild-type ATCC 3624 coincubated with the 6-R peptide developed less severe microscopic changes. This study provides the first in vivo evidence that the Agr-like QS system is important for C. perfringens type A-mediated gas gangrene.IMPORTANCE Clostridium perfringens type A strains produce toxins that are responsible for clostridial myonecrosis, also known as gas gangrene. Toxin production is regulated by an Agr-like quorum-sensing (QS) system that responds to changes in cell population density. In this study, we investigated the importance of this QS system in a mouse model of gas gangrene. Mice challenged with a C. perfringens strain with a nonfunctional regulatory system developed less severe changes in the injected skeletal muscle compared to animals receiving the wild-type strain. In addition, a synthetic peptide was able to decrease the effects of the QS in this disease model. These studies provide new understanding of the pathogenesis of gas gangrene and identified a potential therapeutic target to prevent the disease.
Collapse
|
43
|
Low KE, Smith SP, Abbott DW, Boraston AB. The glycoconjugate-degrading enzymes of Clostridium perfringens: Tailored catalysts for breaching the intestinal mucus barrier. Glycobiology 2020; 31:681-690. [PMID: 32472136 DOI: 10.1093/glycob/cwaa050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
The gastrointestinal (GI) tract of humans and animals is lined with mucus that serves as a barrier between the gut microbiota and the epithelial layer of the intestine. As the proteins present in mucus are typically heavily glycosylated, such as the mucins, several enteric commensal and pathogenic bacterial species are well-adapted to this rich carbon source and their genomes are replete with carbohydrate-active enzymes targeted toward dismantling the glycans and proteins present in mucus. One such species is Clostridium perfringens, a Gram-positive opportunistic pathogen indigenous to the gut of humans and animals. The genome of C. perfringens encodes numerous carbohydrate-active enzymes that are predicted or known to target glycosidic linkages within or on the termini of mucus glycans. Through this enzymatic activity, the degradation of the mucosal layer by C. perfringens has been implicated in a number of GI diseases, the most severe of which is necrotic enteritis. In this review, we describe the wide array of extracellular glycoside hydrolases, and their accessory modules, that is possessed by C. perfringens, and examine the unique multimodularity of these proteins in the context of degrading the glycoconjugates in mucus as a potential component of disease.
Collapse
Affiliation(s)
- Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1 Ave S, Lethbridge T1J 4B1, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, 99 University Ave, Kingston K7L 3N6, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1 Ave S, Lethbridge T1J 4B1, Canada
| | - Alisdair B Boraston
- Faculty of Biochemistry and Microbiology, University of Victoria, Victoria V8P 5C2, Canada
| |
Collapse
|
44
|
Pluvinage B, Massel PM, Burak K, Boraston AB. Structural and functional analysis of four family 84 glycoside hydrolases from the opportunistic pathogen Clostridium perfringens. Glycobiology 2020; 30:49-57. [PMID: 31701135 DOI: 10.1093/glycob/cwz069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Clostridium perfringens possesses the ability to colonize the protective mucin layer in the gastrointestinal tract. To assist this, the C. perfringens genome contains a battery of genes encoding glycoside hydrolases (GHs) that are likely active on mucin glycans, including four genes encoding family 84 GHs: CpGH84A (NagH), CpGH84B (NagI), CpGH84C (NagJ) and CpGH84D (NagK). To probe the potential advantage gained by the expansion of GH84 enzymes in C. perfringens, we undertook the structural and functional characterization of the CpGH84 catalytic modules. Here, we show that these four CpGH84 catalytic modules act as β-N-acetyl-D-glucosaminidases able to hydrolyze N- and O-glycan motifs. CpGH84A and CpGH84D displayed a substrate specificity restricted to terminal β-1,2- and β-1,6-linked N-acetyl-D-glucosamine (GlcNAc). CpGH84B and CpGH84C appear more promiscuous with activity on terminal β-1,2-, β-1,3- and β-1,6-linked GlcNAc; both possess some activity toward β-1,4-linked GlcNAc, but this is dependent upon which monosaccharide it is linked to. Furthermore, all the CpGH84s have different optimum pHs ranging from 5.2 to 7.0. Consistent with their β-N-acetyl-D-glucosaminidase activities, the structures of the four catalytic modules revealed similar folds with a catalytic site including a conserved -1 subsite that binds GlcNAc. However, nonconserved residues in the vicinity of the +1 subsite suggest different accommodation of the sugar preceding the terminal GlcNAc, resulting in subtly different substrate specificities. This structure-function comparison of the four GH84 catalytic modules from C. perfringens reveals their different biochemical properties, which may relate to how they are deployed in the bacterium's niche in the host.
Collapse
Affiliation(s)
- Benjamin Pluvinage
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Patricia M Massel
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Kristyn Burak
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| | - Alisdair B Boraston
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
45
|
Mehdizadeh Gohari I, Unterer S, Whitehead AE, Prescott JF. NetF-producing Clostridium perfringens and its associated diseases in dogs and foals. J Vet Diagn Invest 2020; 32:230-238. [PMID: 32081091 PMCID: PMC7081511 DOI: 10.1177/1040638720904714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of type A Clostridium perfringens in canine acute hemorrhagic diarrhea syndrome and foal necrotizing enteritis is poorly characterized. However, a highly significant association between the presence of novel toxigenic C. perfringens and these specific enteric diseases has been described. These novel toxigenic strains produce 3 novel putative toxins, which have been designated NetE, NetF, and NetG. Although not conclusively demonstrated, current evidence suggests that NetF is likely the major virulence factor in strains responsible for canine acute hemorrhagic diarrhea syndrome and foal necrotizing enteritis. NetF is a beta-pore-forming toxin that belongs to the same toxin superfamily as CPB and NetB toxins produced by C. perfringens. The netF gene is encoded on a conjugative plasmid that, in the case of netF, also carries another putative toxin gene, netE. In addition, these strains consistently also carry a cpe tcp-conjugative plasmid, and a proportion also carry a separate netG tcp-conjugative plasmid. The netF and netG genes form part of a locus with all the features of the pathogenicity loci of tcp-conjugative plasmids. The netF-positive isolates are clonal in origin and fall into 2 clades. Disease in dogs or foals can be associated with either clade. Thus, these are strains with unique virulence-associated characteristics associated with serious and sometimes fatal cases of important enteric diseases in 2 animal species.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| | - Stefan Unterer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| | - Ashley E Whitehead
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| | - John F Prescott
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA (Mehdizadeh Gohari)
- Department of Clinical Veterinary Medicine, Clinic of Small Animal Internal Medicine, Ludwig Maximilian University of Munich, Munich, Germany (Unterer)
- Department of Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Alberta, Canada (Whitehead)
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada (Prescott)
| |
Collapse
|
46
|
Vieco-Saiz N, Belguesmia Y, Vachée A, Le Maréchal C, Salvat G, Drider D. Antibiotic resistance, genome analysis and further safe traits of Clostridium perfringens ICVB082; a strain capable of producing an inhibitory compound directed only against a closely related pathogenic strain. Anaerobe 2020; 62:102177. [PMID: 32097777 DOI: 10.1016/j.anaerobe.2020.102177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 12/28/2022]
Abstract
Eleven strains of clostridia were isolated from chickens suffering from necrotic enteritis (NE) disease, and were identified by 16S rDNA sequencing as C. perfringens (Clin1, ICVB079, ICVB080, ICVB081, ICVB082, ICVB083, ICVB085, ICVB088, ICVB089, ICVB090), C. sporogenes (ICVB086) and C. cadaveris (ICVB087). These novel strains were then characterized for their pathoproperties including their sensitivity to different antibiotics, hemolytic activities and abilities to carry netB gene, which encodes the necrotic enteritis B-Like toxin (NetB); a key virulence factor involved in the NE. Whilst, no antibiotic resistance was detected for all these strains, C. perfringens ICVB081 and C. perfringens Clin1 have β-hemolytic activities and carry DNA coding for the netB gene. Remarkably, cross-resistant assays performed between these Clostridium strains underpinned the capability of C. perfringens ICVB082 to inhibit the pathogenic C. perfringens DSM756, used as reference strain. This inhibition was exerted through production of an extracellular compound, which was sensitive to heat treatment, lipase and active at pH values ranging from 4 to 7. This report deals with the isolation of novel Clostridium strains from chicken origin and underlines the safety and inhibitory capability of C. perfringens ICVB082 through an extracellular metabolite.
Collapse
Affiliation(s)
- Nuria Vieco-Saiz
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| | - Yanath Belguesmia
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| | - Anne Vachée
- Laboratoire de Biologie, Centre Hospitalier de Roubaix, Boulevard Lacordaire, 59100, Roubaix, France.
| | | | - Gilles Salvat
- ANSES, 14 Rue Pierre et Marie Curie, 94701, Maisons-Alfort Cedex, France.
| | - Djamel Drider
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, F-59000, Lille, France.
| |
Collapse
|
47
|
Pham TT, Ban J, Hong Y, Lee J, Vu TH, Truong AD, Lillehoj HS, Hong YH. MicroRNA gga-miR-200a-3p modulates immune response via MAPK signaling pathway in chicken afflicted with necrotic enteritis. Vet Res 2020; 51:8. [PMID: 32014061 PMCID: PMC6998359 DOI: 10.1186/s13567-020-0736-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that contribute to host immune response as post-transcriptional regulation. The current study investigated the biological role of the chicken (Gallus gallus) microRNA-200a-3p (gga-miR-200a-3p), using 2 necrotic enteritis (NE) afflicted genetically disparate chicken lines, 6.3 and 7.2, as well as the mechanisms underlying the fundamental signaling pathways in chicken. The expression of gga-miR-200a-3p in the intestinal mucosal layer of NE-induced chickens, was found to be upregulated during NE infection in the disease-susceptible chicken line 7.2. To validate the target genes, we performed an overexpression analysis of gga-miR-200a-3p using chemically synthesized oligonucleotides identical to gga-miR-200a-3p, reporter gene analysis including luciferase reporter assay, and a dual fluorescence reporter assay in cultured HD11 chicken macrophage cell lines. Gga-miR-200a-3p was observed to be a direct transcriptional repressor of ZAK, MAP2K4, and TGFβ2 that are involved in mitogen-activated protein kinase (MAPK) pathway by targeting the 3′-UTR of their transcripts. Besides, gga-miR-200a-3p may indirectly affect the expression of protein kinases including p38 and ERK1/2 at both transcriptional and translational levels, suggesting that this miRNA may function as an important regulator of the MAPK signaling pathway. Proinflammatory cytokines consisting of IL-1β, IFN-γ, IL-12p40, IL-17A, and LITAF belonging to Th1 and Th17-type cytokines, were upregulated upon gga-miR-200a-3p overexpression. These findings have enhanced our knowledge of the immune function of gga-miR-200a-3p mediating the chicken immune response via regulation of the MAPK signaling pathway and indicate that this miRNA may serve as an important biomarker of diseases in domestic animals.
Collapse
Affiliation(s)
- Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.,Key Laboratory of Animal Cell Biotechnology, National Institute of Animal Science, 9 Tan Phong, Thuy Phuong, Bac Tu Liem, Hanoi, 100000, Viet Nam
| | - Jihye Ban
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jiae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
48
|
Soncini SR, Hartman AH, Gallagher TM, Camper GJ, Jensen RV, Melville SB. Changes in the expression of genes encoding type IV pili-associated proteins are seen when Clostridium perfringens is grown in liquid or on surfaces. BMC Genomics 2020; 21:45. [PMID: 31937237 PMCID: PMC6958937 DOI: 10.1186/s12864-020-6453-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clostridium perfringens is a Gram-positive anaerobic pathogen that causes multiple diseases in humans and animals. C. perfringens lack flagella but have type IV pili (TFP) and can glide on agar surfaces. When C. perfringens bacteria are placed on surfaces, they become elongated, flexible and have TFP on their surface, traits not seen in liquid-grown cells. In addition, the main pilin in C. perfringens TFP, PilA2, undergoes differential post-translational modification when grown in liquid or on plates. To understand the mechanisms underlying these phenotypes, bacteria were grown in three types of liquid media and on agar plates with the same medium to compare gene expression using RNA-Seq. RESULTS Hundreds of genes were differentially expressed, including transcriptional regulatory protein-encoding genes and genes associated with TFP functions, which were higher on plates than in liquid. Transcript levels of TFP genes reflected the proportion of each protein predicted to reside in a TFP assembly complex. To measure differences in rates of translation, the Escherichia coli reporter gene gusA gene (encoding β-glucuronidase) was inserted into the chromosome downstream of TFP promoters and in-frame with the first gene of the operon. β-glucuronidase expression was then measured in cells grown in liquid or on plates. β-glucuronidase activity was proportional to mRNA levels in liquid-grown cells, but not plate-grown cells, suggesting significant levels of post-transcriptional regulation of these TFP-associated genes occurs when cells are grown on surfaces. CONCLUSIONS This study reveals insights into how a non-flagellated pathogenic rod-shaped bacterium senses and responds to growth on surfaces, including inducing transcriptional regulators and activating multiple post-transcriptional regulatory mechanisms associated with TFP functions.
Collapse
Affiliation(s)
- Samantha R Soncini
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Current address: UPMC Genome Center, Pittsburgh, PA, USA
| | - Andrea H Hartman
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Tara M Gallagher
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.,Current address: Department of Molecular Biology & Biochemistry, University of California, Irvine, USA
| | - Gary J Camper
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Roderick V Jensen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Stephen B Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
49
|
Wang YH. Sialidases From Clostridium perfringens and Their Inhibitors. Front Cell Infect Microbiol 2020; 9:462. [PMID: 31998664 PMCID: PMC6966327 DOI: 10.3389/fcimb.2019.00462] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022] Open
Abstract
Clostridium perfringens is an important human and animal pathogen that is the primary causative agent of necrotizing enteritis and enterotoxemia in many types of animals; it causes traumatic gas gangrene in humans and animals and is associated with cases of food poisoning in humans. C. perfringens produces a variety of toxins as well as many enzymes, including three sialidases, NanH, NanI, and NanJ. Sialidases could be important virulence factors that promote the pathogenesis of C. perfringens. Among them, NanI promotes the colonization of C. perfringens in the intestinal tract and enhances the cytotoxic activity and association of several major C. perfringens toxins with host cells. In recent years, studies on the structure and functions of sialidases have yielded interesting results, and the functions of sialic acid and sialidases in bacterial pathogenesis have become a hot research topic. An in-depth understanding and additional studies of sialidases will further elucidate mechanisms of C. perfringens pathogenesis and could promote the development and clinical applications of sialidase inhibitors. This article reviews the structural characteristics, expression regulation, roles of sialidases in C. perfringens pathogenesis, and effects of their inhibitors.
Collapse
Affiliation(s)
- Yan-Hua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
50
|
Salamon D, Ochońska D, Wojak I, Mikołajczyk E, Bulanda M, Brzychczy-Włoch M. Evidence for Infections by the Same Strain of Beta 2-toxigenic Clostridium perfringens Type A Acquired in One Hospital Ward. Pol J Microbiol 2019; 68:323-329. [PMID: 31880878 PMCID: PMC7256698 DOI: 10.33073/pjm-2019-035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 11/05/2022] Open
Abstract
This study conducts a comparative phenotypic and genetic analysis of C. perfringens strains isolated from two patients hospitalized at the same time in 2017 in the surgical ward of the Provincial Specialist Hospital in Włocławek (Kujawsko-Pomorskie Province) who developed necrotizing soft tissue infections (NSTI). To explain the recurring cases of this infection, a comparative analysis was performed for these strains and the ones originating from infections recorded at the same hospital in three patients with gas gangrene in 2015. The two C. perfringens isolates studied in 2017 (8554/M/17 from patient No. 1 and 8567/M/17 from patient No. 2) had identical biochemical profiles. A comparison of research results using multiplex PCR from 2017 with a genetic analysis of strains from 2015 enabled us to demonstrate that the strains currently studied have the genes encoding the same toxins (α and β2) as the two strains analyzed in 2015: no. 7143 (patient No. 3) and no. 7149 (patient No. 2). A comparative analysis of the strain profiles obtained with pulsed-field gel electrophoresis (PFGE) in 2017 with the results from 2015 has found one identical and genetically unique restriction profile, corresponding to one clone of C. perfringens comprising of two strains: no. 8567/M/17 (patient No. 2 in 2017) and no. 7143 (patient No. 3 in 2015). The epidemiological data and detailed analysis of the course of both events suggest that this clone of C. perfringens possibly survived in adverse conditions of the external environment in the operating block of this hospital for many months.
Collapse
Affiliation(s)
- Dominika Salamon
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Krakow , Poland
| | - Dorota Ochońska
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Krakow , Poland
| | - Ilona Wojak
- Department of Microbiological Diagnostics, Blessed Father Jerzy Popieluszko Provincial Specialist Hospital , Wloclawek , Poland
| | - Ewa Mikołajczyk
- Department of Microbiological Diagnostics, Blessed Father Jerzy Popieluszko Provincial Specialist Hospital , Wloclawek , Poland
| | - Małgorzata Bulanda
- Department of Epidemiology of Infections, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Krakow , Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College , Krakow , Poland
| |
Collapse
|