1
|
Duong VT, Lee D, Kim YH, Oh SO. Functional role of UNC13D in immune diseases and its therapeutic applications. Front Immunol 2024; 15:1460882. [PMID: 39469717 PMCID: PMC11513310 DOI: 10.3389/fimmu.2024.1460882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
UNC13 family (also known as Munc13) proteins are evolutionarily conserved proteins involved in the rapid and regulated secretion of vesicles, including synaptic vesicles and cytotoxic granules. Fast and regulated secretion at the neuronal and immunological synapses requires multiple steps, from the biogenesis of vesicles to membrane fusion, and a complex array of proteins for each step. Defects at these steps can lead to various genetic disorders. Recent studies have shown multiple roles of UNC13D in the secretion of cytotoxic granules by immune cells. Here, the molecular structure and detailed roles of UNC13D in the biogenesis, tethering, and priming of cytotoxic vesicles and in endoplasmic reticulum are summarized. Moreover, its association with immune diseases, including familial hemophagocytic lymphohistiocytosis type 3, macrophage activation syndrome, juvenile idiopathic arthritis, and autoimmune lymphoproliferative syndrome, is reviewed. Finally, the therapeutic application of CRISPR/Cas9-based gene therapy for genetic diseases is introduced.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
2
|
Gregorich ZR, Yanghai Z, Kamp TJ, Granzier H, Guo W. Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004355. [PMID: 38288598 PMCID: PMC10923161 DOI: 10.1161/circgen.123.004355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
RBM20 (RNA-binding motif protein 20) is a vertebrate- and muscle-specific RNA-binding protein that belongs to the serine-arginine-rich family of splicing factors. The RBM20 gene was first identified as a dilated cardiomyopathy-linked gene over a decade ago. Early studies in Rbm20 knockout rodents implicated disrupted splicing of RBM20 target genes as a causative mechanism. Clinical studies show that pathogenic variants in RBM20 are linked to aggressive dilated cardiomyopathy with early onset heart failure and high mortality. Subsequent studies employing pathogenic variant knock-in animal models revealed that variants in a specific portion of the arginine-serine-rich domain in RBM20 not only disrupt splicing but also hinder nucleocytoplasmic transport and lead to the formation of RBM20 biomolecular condensates in the sarcoplasm. Conversely, mice harboring a disease-associated variant in the RRM (RNA recognition motif) do not show evidence of adverse remodeling or exhibit sudden death despite disrupted splicing of RBM20 target genes. Thus, whether disrupted splicing, biomolecular condensates, or both contribute to dilated cardiomyopathy is under debate. Beyond this, additional questions remain, such as whether there is sexual dimorphism in the presentation of RBM20 cardiomyopathy. What are the clinical features of RBM20 cardiomyopathy and why do some individuals develop more severe disease than others? In this review, we summarize the reported observations and discuss potential mechanisms of RBM20 cardiomyopathy derived from studies employing in vivo animal models and in vitro human-induced pluripotent stem cell-derived cardiomyocytes. Potential therapeutic strategies to treat RBM20 cardiomyopathy are also discussed.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Zhang Yanghai
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Timothy J. Kamp
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
3
|
Mitchell LA, Jivani K, Young MA, Jacobs C, Willis AM. Systematic review of the uptake and outcomes from returning secondary findings to adult participants in research genomic testing. J Genet Couns 2024. [PMID: 38197527 DOI: 10.1002/jgc4.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
The increasing use of genomic sequencing in research means secondary findings (SF) is more frequently detected and becoming a more pressing issue for researchers. This is reflected by the recent publication of multiple guidelines on this issue, calling for researchers to have a plan for managing SF prior to commencing their research. A deeper understanding of participants' experiences and outcomes from receiving SF is needed to ensure that the return of SF is conducted ethically and with adequate support. This review focuses on the uptake and outcomes of receiving actionable SF for research participants. This review included studies from January 2010 to January 2023. Databases searched included Medline, Embase, PsycINFO, and Scopus. Of the 3903 studies identified, 29 were included in the analysis. The uptake of SF ranged between 20% and 97%, and outcomes were categorized into psychological, clinical, lifestyle and behavioral, and family outcomes. The results indicate there is minimal psychological impact from receiving SF. Almost all participants greatly valued receiving SF. These findings highlight considerations for researchers when returning results, including the importance of involving genetic health professionals in consenting, results return process, and ensuring continuity of care by engaging healthcare providers.
Collapse
Affiliation(s)
- Lucas A Mitchell
- Clinical Translation and Engagement Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karishma Jivani
- Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Mary-Anne Young
- Clinical Translation and Engagement Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Chris Jacobs
- Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Amanda M Willis
- Clinical Translation and Engagement Platform, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Oladayo A, Gowans LJJ, Awotoye W, Alade A, Busch T, Naicker T, Eshete MA, Adeyemo WL, Hetmanski JB, Zeng E, Adamson O, Adeleke C, Li M, Sule V, Kayali S, Olotu J, Mossey PA, Obiri‐Yeboah S, Buxo CJ, Beaty T, Taub M, Donkor P, Marazita ML, Odukoya O, Adeyemo AA, Murray JC, Prince A, Butali A. Clinically actionable secondary findings in 130 triads from sub-Saharan African families with non-syndromic orofacial clefts. Mol Genet Genomic Med 2023; 11:e2237. [PMID: 37496383 PMCID: PMC10568375 DOI: 10.1002/mgg3.2237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION The frequency and implications of secondary findings (SFs) from genomic testing data have been extensively researched. However, little is known about the frequency or reporting of SFs in Africans, who are underrepresented in large-scale population genomic studies. The availability of data from the first whole-genome sequencing for orofacial clefts in an African population motivated this investigation. METHODS In total, 130 case-parent trios were analyzed for SFs within the ACMG SFv.3.0 list genes. Additionally, we filtered for four more genes (HBB, HSD32B, G6PD and ACADM). RESULTS We identified 246 unique variants in 55 genes; five variants in four genes were classified as pathogenic or likely pathogenic (P/LP). The P/LP variants were seen in 2.3% (9/390) of the subjects, a frequency higher than ~1% reported for diverse ethnicities. On the ACMG list, pathogenic variants were observed in PRKAG (p. Glu183Lys). Variants in the PALB2 (p. Glu159Ter), RYR1 (p. Arg2163Leu) and LDLR (p. Asn564Ser) genes were predicted to be LP. CONCLUSION This study provides information on the frequency and pathogenicity of SFs in an African cohort. Early risk detection will help reduce disease burden and contribute to efforts to increase knowledge of the distribution and impact of actionable genomic variants in diverse populations.
Collapse
Affiliation(s)
- Abimbola Oladayo
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchUniversity of IowaIowa CityIowaUSA
| | - Lord Jephthah Joojo Gowans
- Iowa Institute for Oral Health ResearchUniversity of IowaIowa CityIowaUSA
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Waheed Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchUniversity of IowaIowa CityIowaUSA
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
- Department of Epidemiology, College of Public HealthUniversity of IowaIowa CityIowaUSA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Thirona Naicker
- Department of PediatricsUniversity of KwaZulu‐NatalPinetownSouth Africa
| | - Mekonen A. Eshete
- School Medicine, Surgical DepartmentAddis Ababa UniversityAddis AbabaEthiopia
| | - Wasiu L. Adeyemo
- Department of Oral and Maxillofacial SurgeryUniversity of LagosLagosNigeria
| | - Jacqueline B. Hetmanski
- Department of EpidemiologySchool of Public Health Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Olawale Adamson
- Department of Oral and Maxillofacial SurgeryUniversity of LagosLagosNigeria
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Veronica Sule
- Department of Operative Dentistry, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Sami Kayali
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
| | - Joy Olotu
- Department of AnatomyUniversity of Port HarcourtPort HarcourtNigeria
| | | | - Solomon Obiri‐Yeboah
- Department of Surgery, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Carmen J. Buxo
- Dental and Craniofacial Genomics CoreUniversity of Puerto Rico School of Dental MedicineSan JuanPuerto RicoUSA
| | - Terri Beaty
- Department of EpidemiologySchool of Public Health Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Margaret Taub
- Department of EpidemiologySchool of Public Health Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Peter Donkor
- Department of Surgery, School of Medicine and DentistryKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, and Department of Human Genetics, Graduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Oluwakemi Odukoya
- Department of Community Health and Primary Care, College of MedicineUniversity of LagosLagosNigeria
| | | | | | - Anya Prince
- College of LawUniversity of IowaIowa CityIowaUSA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of DentistryUniversity of IowaIowa CityIowaUSA
- Iowa Institute for Oral Health ResearchUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
5
|
Khan F, Arshad A, Ullah A, Steenackers E, Mortier G, Ahmad W, Arshad M, Khan S, Hayat A, Khan I, Khan MA, Van Hul W. Identification of a Novel Nonsense Variant in the DLL3 Gene Underlying Spondylocostal Dysostosis in a Consanguineous Pakistani Family. Mol Syndromol 2023; 14:191-200. [PMID: 37323197 PMCID: PMC10267518 DOI: 10.1159/000527043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2023] Open
Abstract
Introduction Spondylocostal dysostosis (SCD) is characterized by multiple vertebral abnormalities associated with abnormalities of the ribs. Five genes causative for the disease have been identified. These include DLL3 (OMIM *602768), MESP2 (OMIM #608681), LFNG (OMIM #609813), TBX6 (OMIM *602427), and HES7 (OMIM *608059). Methods In the current study, we investigated a Pakistani consanguineous family segregating spondylocostal dysotosis. Whole-exome sequencing (WES) followed by Sanger sequencing was performed using DNA of affected and unaffected individuals to identify pathogenic variant(s). The identified variant was interpreted using ACMG classification. Literature review was performed to summarize currently known mutated alleles of DLL3 and the underlying clinical phenotypes. Results Clinical examination using anthropometric measurements and radiographs diagnosed the patients to be afflicted with SCD. Pedigree analysis of the affected family showed an autosomal recessive inheritance pattern of the disease. WES followed by Sanger sequencing identified a novel homozygous nonsense variant (DLL3(NM_016941.4): c.535G>T; p.Glu179Ter) in the DLL3 gene located on chromosome 19q13.2. Conclusion The study will be helpful in carrier testing and genetic counseling to prevent segregation of the disease to the next generations within this family. It also provides knowledge for clinicians and researchers in search of a better understanding of SCD anomalies.
Collapse
Affiliation(s)
- Feroz Khan
- Department of Zoology, Wild Life and Fisheries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Abida Arshad
- Department of Zoology, Wild Life and Fisheries, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ellen Steenackers
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Sarmir Khan
- Department of Reproductive Medicine, Academy of Medical Sciences, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amir Hayat
- Department Biochemistry, Faculty of Life and Chemical Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Ikram Khan
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Muhammad Asim Khan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Wagener R, Walter C, Surowy HM, Brandes D, Soura S, Alzoubi D, Yasin L, Fischer U, Dugas M, Borkhardt A, Brozou T. Noncancer-related Secondary Findings in a Cohort of 231 Children With Cancer and Their Parents. J Pediatr Hematol Oncol 2023; 45:e244-e248. [PMID: 35537032 DOI: 10.1097/mph.0000000000002475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Application of next-generation sequencing may lead to the detection of secondary findings (SF) not related to the initially analyzed disease but to other severe medically actionable diseases. However, the analysis of SFs is not yet routinely performed. We mined whole-exome sequencing data of 231 pediatric cancer patients and their parents who had been treated in our center for the presence of SFs. By this approach, we identified in 6 children (2.6%) pathogenic germline variants in 5 of the noncancer-related genes on the American College of Medical Genetics and Genomics (ACMG) SF v3.0 list, of which the majority were related to cardiovascular diseases ( RYR2 , MYBPC3 , KCNQ1 ). Interestingly, only the patient harboring the KCNQ1 variant showed at the time point of the analysis signs of the related Long QT syndrome. Moreover, we report 3 variants of unknown significance which, although not classified as pathogenic, have been reported in the literature to occur in individuals with the respective disease. While the frequency of patients with SFs is low, the impact of such findings on the patients' life is enormous, with regard to the potential prevention of life-threatening diseases. Hence, we are convinced that such actionable SF should be routinely analyzed.
Collapse
Affiliation(s)
- Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Carolin Walter
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf
| | - Harald M Surowy
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Stavrieta Soura
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Deya Alzoubi
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty
| |
Collapse
|
7
|
Ivanoshchuk D, Shakhtshneider E, Mikhailova S, Ovsyannikova A, Rymar O, Valeeva E, Orlov P, Voevoda M. The Mutation Spectrum of Rare Variants in the Gene of Adenosine Triphosphate (ATP)-Binding Cassette Subfamily C Member 8 in Patients with a MODY Phenotype in Western Siberia. J Pers Med 2023; 13:jpm13020172. [PMID: 36836406 PMCID: PMC9967647 DOI: 10.3390/jpm13020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
During differential diagnosis of diabetes mellitus, the greatest difficulties are encountered with young patients because various types of diabetes can manifest themselves in this age group (type 1, type 2, and monogenic types of diabetes mellitus, including maturity-onset diabetes of the young (MODY)). The MODY phenotype is associated with gene mutations leading to pancreatic-β-cell dysfunction. Using next-generation sequencing technology, targeted sequencing of coding regions and adjacent splicing sites of MODY-associated genes (HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1) was carried out in 285 probands. Previously reported missense variants c.970G>A (p.Val324Met) and c.1562G>A (p.Arg521Gln) in the ABCC8 gene were found once each in different probands. Variant c.1562G>A (p.Arg521Gln) in ABCC8 was detected in a compound heterozygous state with a pathogenic variant of the HNF1A gene in a diabetes patient and his mother. Novel frameshift mutation c.4609_4610insC (p.His1537ProfsTer22) in this gene was found in one patient. All these variants were detected in available family members of the patients and cosegregated with diabetes mellitus. Thus, next-generation sequencing of MODY-associated genes is an important step in the diagnosis of rare MODY subtypes.
Collapse
Affiliation(s)
- Dinara Ivanoshchuk
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-4963; Fax: +7-(383)-333-1278
| | - Elena Shakhtshneider
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Svetlana Mikhailova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Alla Ovsyannikova
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Oksana Rymar
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Emil Valeeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Pavel Orlov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
- Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Mikhail Voevoda
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Wildin RS, Giummo CA, Reiter AW, Peterson TC, Leonard DGB. Primary Care Implementation of Genomic Population Health Screening Using a Large Gene Sequencing Panel. Front Genet 2022; 13:867334. [PMID: 35547253 PMCID: PMC9081681 DOI: 10.3389/fgene.2022.867334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
To realize the promise of genomic medicine, harness the power of genomic technologies, and capitalize on the extraordinary pace of research linking genomic variation to disease risks, healthcare systems must embrace and integrate genomics into routine healthcare. We have implemented an innovative pilot program for genomic population health screening for any-health-status adults within the largest health system in Vermont, United States. This program draws on key research and technological advances to safely extract clinical value for genomics in routine health care. The program offers no-cost, non-research DNA sequencing to patients by their primary care providers as a preventive health tool. We partnered with a commercial clinical testing company for two next generation sequencing gene panels comprising 431 genes related to both high and low-penetrance common health risks and carrier status for recessive disorders. Only pathogenic or likely pathogenic variants are reported. Routine written clinical consultation is provided with a concise, clinical “action plan” that presents core messages for primary care provider and patient use and supports clinical management and health education beyond the testing laboratory’s reports. Access to genetic counseling is free in most cases. Predefined care pathways and access to genetics experts facilitates the appropriate use of results. This pilot tests the feasibility of routine, ethical, and scalable use of population genomic screening in healthcare despite generally imperfect genomic competency among both the public and health care providers. This article describes the program design, implementation process, guiding philosophies, and insights from 2 years of experience offering testing and returning results in primary care settings. To aid others planning similar programs, we review our barriers, solutions, and perceived gaps in the context of an implementation research framework.
Collapse
Affiliation(s)
- Robert S Wildin
- Department of Pathology & Laboratory Medicine, University of Vermont Health Network and Robert Larner M.D. College of Medicine at the University of Vermont, Burlington, VT, United States.,Department of Pediatrics, University of Vermont Health Network and Robert Larner M.D. College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Christine A Giummo
- Department of Pathology & Laboratory Medicine, University of Vermont Health Network and Robert Larner M.D. College of Medicine at the University of Vermont, Burlington, VT, United States.,Department of Pediatrics, University of Vermont Health Network and Robert Larner M.D. College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Aaron W Reiter
- Department of Family Medicine, University of Vermont Health Network and Robert Larner M.D. College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Thomas C Peterson
- Department of Family Medicine, University of Vermont Health Network and Robert Larner M.D. College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Debra G B Leonard
- Department of Pathology & Laboratory Medicine, University of Vermont Health Network and Robert Larner M.D. College of Medicine at the University of Vermont, Burlington, VT, United States
| |
Collapse
|
9
|
Role of Actionable Genes in Pursuing a True Approach of Precision Medicine in Monogenic Diabetes. Genes (Basel) 2022; 13:genes13010117. [PMID: 35052457 PMCID: PMC8774614 DOI: 10.3390/genes13010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022] Open
Abstract
Monogenic diabetes is a genetic disorder caused by one or more variations in a single gene. It encompasses a broad spectrum of heterogeneous conditions, including neonatal diabetes, maturity onset diabetes of the young (MODY) and syndromic diabetes, affecting 1-5% of patients with diabetes. Some of these variants are harbored by genes whose altered function can be tackled by specific actions ("actionable genes"). In suspected patients, molecular diagnosis allows the implementation of effective approaches of precision medicine so as to allow individual interventions aimed to prevent, mitigate or delay clinical outcomes. This review will almost exclusively concentrate on the clinical strategy that can be specifically pursued in carriers of mutations in "actionable genes", including ABCC8, KCNJ11, GCK, HNF1A, HNF4A, HNF1B, PPARG, GATA4 and GATA6. For each of them we will provide a short background on what is known about gene function and dysfunction. Then, we will discuss how the identification of their mutations in individuals with this form of diabetes, can be used in daily clinical practice to implement specific monitoring and treatments. We hope this article will help clinical diabetologists carefully consider who of their patients deserves timely genetic testing for monogenic diabetes.
Collapse
|
10
|
Haga SB. Revisiting Secondary Information Related to Pharmacogenetic Testing. Front Genet 2021; 12:741395. [PMID: 34659361 PMCID: PMC8517135 DOI: 10.3389/fgene.2021.741395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Incidental or secondary findings have been a major part of the discussion of genomic medicine research and clinical applications. For pharmacogenetic (PGx) testing, secondary findings arise due to the pleiotropic effects of pharmacogenes, often related to their endogenous functions. Unlike the guidelines that have been developed for whole exome or genome sequencing applications for management of secondary findings (though slightly different from PGx testing in that these refer to detection of variants in multiple genes, some with clinical significance and actionability), no corresponding guidelines have been developed for PGx clinical laboratories. Nonetheless, patient and provider education will remain key components of any PGx testing program to minimize adverse responses related to secondary findings.
Collapse
|
11
|
Higgs E, Dagan-Rosenfeld O, Snyder M. Adapting skills from genetic counseling to wearables technology research during the COVID-19 pandemic: Poised for the pivot. J Genet Couns 2021; 30:1269-1275. [PMID: 34580951 DOI: 10.1002/jgc4.1509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022]
Abstract
Genetic counselors have shown themselves to be adaptable in an evolving profession, with expansion into new sub-specialties, various non-clinical settings, and research roles. The COVID-19 pandemic caused a sudden and drastic shift in healthcare priorities. In an effort to contribute meaningfully to the COVID-19 crisis, and to adapt to a remote- and essential-only research environment, our workplace and thus our roles pivoted from genomics research to remote COVID-19 research using wearables technologies. With a deep understanding of genomic data, we were quickly able to apply similar concepts to wearables data including considering privacy implications, managing uncertain findings, and acknowledging the lack of ethnic diversity in many datasets. By sharing our own experience as an example, we hope individuals trained in genetic counseling may see opportunities for adaptation of their skills into expanding roles.
Collapse
Affiliation(s)
- Emily Higgs
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
An ethical analysis of divergent clinical approaches to the application of genetic testing for autism and schizophrenia. Hum Genet 2021; 141:1069-1084. [PMID: 34453583 DOI: 10.1007/s00439-021-02349-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/16/2021] [Indexed: 12/27/2022]
Abstract
Genetic testing to identify genetic syndromes and copy number variants (CNVs) via whole genome platforms such as chromosome microarray (CMA) or exome sequencing (ES) is routinely performed clinically, and is considered by a variety of organizations and societies to be a "first-tier" test for individuals with developmental delay (DD), intellectual disability (ID), or autism spectrum disorder (ASD). However, in the context of schizophrenia, though CNVs can have a large effect on risk, genetic testing is not typically a part of routine clinical care, and no clinical practice guidelines recommend testing. This raises the question of whether CNV testing should be similarly performed for individuals with schizophrenia. Here we consider this proposition in light of the history of genetic testing for ID/DD and ASD, and through the application of an ethical analysis designed to enable robust, accountable and justifiable decision-making. Using a systematic framework and application of relevant bioethical principles (beneficence, non-maleficence, autonomy, and justice), our examination highlights that while CNV testing for the indication of ID has considerable benefits, there is currently insufficient evidence to suggest that overall, the potential harms are outweighed by the potential benefits of CNV testing for the sole indications of schizophrenia or ASD. However, although the application of CNV tests for children with ASD or schizophrenia without ID/DD is, strictly speaking, off-label use, there may be clinical utility and benefits substantive enough to outweigh the harms. Research is needed to clarify the harms and benefits of testing in pediatric and adult contexts. Given that genetic counseling has demonstrated benefits for schizophrenia, and has the potential to mitigate many of the potential harms from genetic testing, any decisions to implement genetic testing for schizophrenia should involve high-quality evidence-based genetic counseling.
Collapse
|
13
|
Sapp JC, Facio FM, Cooper D, Lewis KL, Modlin E, van der Wees P, Biesecker LG. A systematic literature review of disclosure practices and reported outcomes for medically actionable genomic secondary findings. Genet Med 2021; 23:2260-2269. [PMID: 34433902 PMCID: PMC9017985 DOI: 10.1038/s41436-021-01295-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose: Secondary findings (SF) are present in 1–4% of individuals undergoing genome/exome sequencing. A review of how SF are disclosed and what outcomes result from their receipt is urgent and timely. Methods: We conducted a systematic literature review of SF disclosure practices and outcomes after receipt including cascade testing, family and provider communication, and healthcare actions. Of the 1,184 non-duplicate records screened we summarize findings from 27 included research articles describing SF disclosure practices, outcomes after receipt, or both. Results: The included articles reported 709 unique SF index recipients/families. Referrals and/or recommendations were provided 647 SF recipients and outcome data were available for 236. At least one recommended evaluation was reported for 146 SF recipients; 16 reports of treatment or prophylactic surgery were identified. We found substantial variations in how the constructs of interest were defined and described. Conclusion: Variation in how SF disclosure and outcomes were described limited our ability to compare findings. We conclude the literature provided limited insight into how the ACMG guidelines have been translated into precision health outcomes for SF recipients. Robust studies of SF recipients are needed and should be prioritized for future research.
Collapse
Affiliation(s)
- Julie C Sapp
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA. .,Translational Health Sciences, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Flavia M Facio
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - Diane Cooper
- National Institutes of Health Library, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Katie L Lewis
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - Emily Modlin
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| | - Philip van der Wees
- Translational Health Sciences, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Radboud University Medical Center, IQ Healthcare and Rehabilitation, Nijmegen, Netherlands
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
14
|
Dorval G, Jeanpierre C, Morinière V, Tournant C, Bessières B, Attié-Bittach T, Amiel J, Spaggari E, Ville Y, Merieau E, Gubler MC, Saunier S, Heidet L. Cystic kidney diseases associated with mutations in phosphomannomutase 2 promotor: a large spectrum of phenotypes. Pediatr Nephrol 2021; 36:2361-2369. [PMID: 33580824 DOI: 10.1007/s00467-021-04953-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/24/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Co-occurrence of polycystic kidney disease and hyperinsulinemic hypoglycemia has been reported in children in a few families associated with a variant in the promotor of the PMM2 gene, at position -167 upstream of the coding sequence. PMM2 encodes phosphomannomutase 2, a key enzyme in N-glycosylation. While biallelic coding PMM2 mutations are involved in congenital disorder of glycosylation CDG1A, that particular variant in the promoter of the gene, either in the homozygous state or associated with a mutation in the coding exons of the gene, is thought to restrict the N-glycosylation defect to the kidney and the pancreas. METHODS Targeted exome sequencing of a panel of genes involved in monogenic kidney diseases. RESULTS We identified a PMM2 variant at position -167 associated with a pathogenic PMM2 variant in the coding exons in 3 families, comprising 6 cases affected with a cystic kidney disease. The spectrum of phenotypes was very broad, from extremely enlarged fetal cystic kidneys in the context of a COACH-like syndrome, to isolated cystic kidney disease with small kidneys, slowly progressing toward kidney failure in adulthood. Hypoglycemia was reported only in one case. CONCLUSION These data show that the PMM2 promotor variation, in trans of a PMM2 coding mutation, is associated with a wide spectrum of kidney phenotypes, and is not always associated with extra-renal symptoms. When present, extra-renal defects may include COACH-like syndrome. These data prompt screening of PMM2 in unresolved cases of fetal hyperechogenic/cystic kidneys as well as in cystic kidney disease in children and adults. Graphical Abstract.
Collapse
Affiliation(s)
- Guillaume Dorval
- APHP, Service de Génétique moléculaire, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Cécile Jeanpierre
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Vincent Morinière
- APHP, Service de Génétique moléculaire, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
| | - Carole Tournant
- APHP, Service de Génétique moléculaire, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
| | - Bettina Bessières
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
| | - Tania Attié-Bittach
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
- Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Jeanne Amiel
- Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
- APHP, Service de Génétique, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
| | - Emmanuel Spaggari
- APHP, Service d'Obstétrique et Médecine fœtale, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
| | - Yves Ville
- APHP, Service d'Obstétrique et Médecine fœtale, Hôpital universitaire Necker-Enfants malades, F-75015, Paris, France
- EA 7328, Université de Paris, Paris, France
| | - Elodie Merieau
- Service de Néphrologie pédiatrique, Hôpital universitaire de Tours, Tours, France
| | - Marie-Claire Gubler
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France
| | - Laurence Heidet
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015, Paris, France.
- APHP, Service de Néphrologie pédiatrique, Centre de Référence MARHEA, Hôpital universitaire Necker-Enfants malades, 149 rue de Sèvres, F-75015, Paris, France.
| |
Collapse
|
15
|
Cochran M, East K, Greve V, Kelly M, Kelley W, Moore T, Myers RM, Odom K, Schroeder MC, Bick D. A study of elective genome sequencing and pharmacogenetic testing in an unselected population. Mol Genet Genomic Med 2021; 9:e1766. [PMID: 34313030 PMCID: PMC8457704 DOI: 10.1002/mgg3.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/08/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Genome sequencing (GS) of individuals without a medical indication, known as elective GS, is now available at a number of centers around the United States. Here we report the results of elective GS and pharmacogenetic panel testing in 52 individuals at a private genomics clinic in Alabama. METHODS Individuals seeking elective genomic testing and pharmacogenetic testing were recruited through a private genomics clinic in Huntsville, AL. Individuals underwent clinical genome sequencing with a separate pharmacogenetic testing panel. RESULTS Six participants (11.5%) had pathogenic or likely pathogenic variants that may explain one or more aspects of their medical history. Ten participants (19%) had variants that altered the risk of disease in the future, including two individuals with clonal hematopoiesis of indeterminate potential. Forty-four participants (85%) were carriers of a recessive or X-linked disorder. All individuals with pharmacogenetic testing had variants that affected current and/or future medications. CONCLUSION Our study highlights the importance of collecting detailed phenotype information to interpret results in elective GS.
Collapse
Affiliation(s)
- Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Kelly East
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Veronica Greve
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Melissa Kelly
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Whitley Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Troy Moore
- Kailos Genetics, Huntsville, Alabama, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Katherine Odom
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| |
Collapse
|
16
|
Elfatih A, Mohammed I, Abdelrahman D, Mifsud B. Frequency and management of medically actionable incidental findings from genome and exome sequencing data; A systematic review. Physiol Genomics 2021; 53:373-384. [PMID: 34250816 DOI: 10.1152/physiolgenomics.00025.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The application of whole genome/exome sequencing technologies in clinical genetics and research has resulted in the discovery of incidental findings unrelated to the primary purpose of genetic testing. The American College of Medical Genetics and Genomics published guidelines for reporting pathogenic and likely pathogenic variants that are deemed to be medically actionable, which allowed us to learn about the epidemiology of incidental findings in different populations. However, consensus guidelines for variant reporting and classification are still lacking. We conducted a systematic literature review of incidental findings in whole genome/exome sequencing studies to obtain a comprehensive understanding of variable reporting and classification methods for variants that are deemed to be medically actionable across different populations. The review highlights the elements that demand further consideration or adjustment.
Collapse
Affiliation(s)
- Amal Elfatih
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Idris Mohammed
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Doua Abdelrahman
- Integrated Genomics Services, Translational Research, Research Branch, Sidra Medicine, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar.,William Harvey Research Institute, Queen Mary University London, London, UK
| |
Collapse
|
17
|
Zhu C, Wu J, Sun H, Briganti F, Meder B, Wei W, Steinmetz LM. Single-molecule, full-length transcript isoform sequencing reveals disease-associated RNA isoforms in cardiomyocytes. Nat Commun 2021; 12:4203. [PMID: 34244519 PMCID: PMC8270901 DOI: 10.1038/s41467-021-24484-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Alternative splicing generates differing RNA isoforms that govern phenotypic complexity of eukaryotes. Its malfunction underlies many diseases, including cancer and cardiovascular diseases. Comparative analysis of RNA isoforms at the genome-wide scale has been difficult. Here, we establish an experimental and computational pipeline that performs de novo transcript annotation and accurately quantifies transcript isoforms from cDNA sequences with a full-length isoform detection accuracy of 97.6%. We generate a searchable, quantitative human transcriptome annotation with 31,025 known and 5,740 novel transcript isoforms ( http://steinmetzlab.embl.de/iBrowser/ ). By analyzing the isoforms in the presence of RNA Binding Motif Protein 20 (RBM20) mutations associated with aggressive dilated cardiomyopathy (DCM), we identify 121 differentially expressed transcript isoforms in 107 cardiac genes. Our approach enables quantitative dissection of complex transcript architecture instead of mere identification of inclusion or exclusion of individual exons, as exemplified by the discovery of IMMT isoforms mis-spliced by RBM20 mutations. Thereby we achieve a path to direct differential expression testing independent of an existing annotation of transcript isoforms, providing more immediate biological interpretation and higher resolution transcriptome comparisons.
Collapse
Affiliation(s)
- Chenchen Zhu
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Jingyan Wu
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Han Sun
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
| | - Francesca Briganti
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, USA
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Benjamin Meder
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Stanford Genome Technology Center, Stanford University, Palo Alto, USA.
| | - Lars M Steinmetz
- Department of Genetics, School of Medicine, Stanford University, Stanford, USA.
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, USA.
- Stanford Genome Technology Center, Stanford University, Palo Alto, USA.
- DZHK (German Center for Cardiovascular Research), partner site EMBL Heidelberg, Heidelberg, Germany.
| |
Collapse
|
18
|
Haga SB, Orlando LA. The enduring importance of family health history in the era of genomic medicine and risk assessment. Per Med 2020; 17:229-239. [PMID: 32320338 DOI: 10.2217/pme-2019-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Improving disease risk prediction and tailoring preventive interventions to patient risk factors is one of the primary goals of precision medicine. Family health history is the traditional approach to quickly gather genetic and environmental data relevant to the patient. While the utility of family health history is well-documented, its utilization is variable, in part due to lack of patient and provider knowledge and incomplete or inaccurate data. With the advances and reduced costs of sequencing technologies, comprehensive sequencing tests can be performed as a risk assessment tool. We provide an overview of each of these risk assessment approaches, the benefits and limitations and implementation challenges.
Collapse
Affiliation(s)
- Susanne B Haga
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 101 Science Drive, Box 3382, Durham, NC 27708, USA
| | - Lori A Orlando
- Center for Applied Genomics & Precision Medicine, Duke University School of Medicine, 101 Science Drive, Box 3382, Durham, NC 27708, USA
| |
Collapse
|
19
|
Design and Reporting Considerations for Genetic Screening Tests. J Mol Diagn 2020; 22:599-609. [DOI: 10.1016/j.jmoldx.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
|
20
|
Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proc Natl Acad Sci U S A 2020; 117:3053-3062. [PMID: 31980526 PMCID: PMC7022190 DOI: 10.1073/pnas.1909378117] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To understand the value and clinical impact of surveying genome-wide disease-causing genes and variants, we used a prospective cohort study design that enrolled volunteers who agreed to have their whole genome sequenced and to participate in deep phenotyping using clinical laboratory tests, metabolomics technologies, and advanced noninvasive imaging. The genomic results are integrated with the phenotype results. Approximately 1 in 6 adult individuals (17.3%) had genetic findings and, when integrated with deep phenotyping data, including family/medical histories with genetic findings, 1 in 9 (11.5%) had genotype and phenotype associations. Genomics and metabolomics association analysis revealed 5.1% of heterozygotes with phenotype manifestations affecting serum metabolite levels. We report observations from our study in which health outcomes and benefits were not measured. Genome sequencing has established clinical utility for rare disease diagnosis. While increasing numbers of individuals have undergone elective genome sequencing, a comprehensive study surveying genome-wide disease-associated genes in adults with deep phenotyping has not been reported. Here we report the results of a 3-y precision medicine study with a goal to integrate whole-genome sequencing with deep phenotyping. A cohort of 1,190 adult participants (402 female [33.8%]; mean age, 54 y [range 20 to 89+]; 70.6% European) had whole-genome sequencing, and were deeply phenotyped using metabolomics, advanced imaging, and clinical laboratory tests in addition to family/medical history. Of 1,190 adults, 206 (17.3%) had at least 1 genetic variant with pathogenic (P) or likely pathogenic (LP) assessment that suggests a predisposition of genetic risk. A multidisciplinary clinical team reviewed all reportable findings for the assessment of genotype and phenotype associations, and 137 (11.5%) had genotype and phenotype associations. A high percentage of genotype and phenotype associations (>75%) was observed for dyslipidemia (n = 24), cardiomyopathy, arrhythmia, and other cardiac diseases (n = 42), and diabetes and endocrine diseases (n = 17). A lack of genotype and phenotype associations, a potential burden for patient care, was observed in 69 (5.8%) individuals with P/LP variants. Genomics and metabolomics associations identified 61 (5.1%) heterozygotes with phenotype manifestations affecting serum metabolite levels in amino acid, lipid and cofactor, and vitamin pathways. Our descriptive analysis provides results on the integration of whole-genome sequencing and deep phenotyping for clinical assessments in adults.
Collapse
|
21
|
Mohebnasab M, Eriksson O, Persson B, Sandholm K, Mohlin C, Huber-Lang M, Keating BJ, Ekdahl KN, Nilsson B. Current and Future Approaches for Monitoring Responses to Anti-complement Therapeutics. Front Immunol 2019; 10:2539. [PMID: 31787968 PMCID: PMC6856077 DOI: 10.3389/fimmu.2019.02539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/14/2019] [Indexed: 01/13/2023] Open
Abstract
Aberrations in complement system functions have been identified as either direct or indirect pathophysiological mechanisms in many diseases and pathological conditions, such as infections, autoimmune diseases, inflammation, malignancies, and allogeneic transplantation. Currently available techniques to study complement include quantification of (a) individual complement components, (b) complement activation products, and (c) molecular mechanisms/function. An emerging area of major interest in translational studies aims to study and monitor patients on complement regulatory drugs for efficacy as well as adverse events. This area is progressing rapidly with several anti-complement therapeutics under development, in clinical trials, or already in clinical use. In this review, we summarized the appropriate indications, techniques, and interpretations of basic complement analyses, exemplified by a number of clinical disorders.
Collapse
Affiliation(s)
- Maedeh Mohebnasab
- Division of Transplantation, Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Oskar Eriksson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Barbro Persson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kerstin Sandholm
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Camilla Mohlin
- Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma Immunology, University Hospital of Ulm, Ulm, Germany
| | - Brendan J Keating
- Division of Transplantation, Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Kristina N Ekdahl
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Centre of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Bo Nilsson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Schüssler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, Zhou W, Mishra T, Mataraso S, Dagan-Rosenfeld O, Ganz AB, Dunn J, Hornburg D, Rego S, Perelman D, Ahadi S, Sailani MR, Zhou Y, Leopold SR, Chen J, Ashland M, Christle JW, Avina M, Limcaoco P, Ruiz C, Tan M, Butte AJ, Weinstock GM, Slavich GM, Sodergren E, McLaughlin TL, Haddad F, Snyder MP. A longitudinal big data approach for precision health. Nat Med 2019; 25:792-804. [PMID: 31068711 PMCID: PMC6713274 DOI: 10.1038/s41591-019-0414-6] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Precision health relies on the ability to assess disease risk at an individual level, detect early preclinical conditions and initiate preventive strategies. Recent technological advances in omics and wearable monitoring enable deep molecular and physiological profiling and may provide important tools for precision health. We explored the ability of deep longitudinal profiling to make health-related discoveries, identify clinically relevant molecular pathways and affect behavior in a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus. The cohort underwent integrative personalized omics profiling from samples collected quarterly for up to 8 years (median, 2.8 years) using clinical measures and emerging technologies including genome, immunome, transcriptome, proteome, metabolome, microbiome and wearable monitoring. We discovered more than 67 clinically actionable health discoveries and identified multiple molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We developed prediction models for insulin resistance by using omics measurements, illustrating their potential to replace burdensome tests. Finally, study participation led the majority of participants to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling can lead to actionable health discoveries and provide relevant information for precision health.
Collapse
Affiliation(s)
- Sophia Miryam Schüssler-Fiorenza Rose
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Spinal Cord Injury Service, Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kegan J Moneghetti
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Samson Mataraso
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Orit Dagan-Rosenfeld
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessilyn Dunn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Mobilize Center, Stanford University, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shannon Rego
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dalia Perelman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sara Ahadi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - M Reza Sailani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yanjiao Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Medicine, University of Connecticut Health, Farmington, CT, USA
| | - Shana R Leopold
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jieming Chen
- Bakar Computational Health Sciences Institute and Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Melanie Ashland
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Christle
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monika Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia Limcaoco
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Camilo Ruiz
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marilyn Tan
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute and Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - George M Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Tracey L McLaughlin
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Francois Haddad
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Rego S, Dagan-Rosenfeld O, Bivona SA, Snyder MP, Ormond KE. Much ado about nothing: A qualitative study of the experiences of an average-risk population receiving results of exome sequencing. J Genet Couns 2019; 28:428-437. [PMID: 30835913 PMCID: PMC6456364 DOI: 10.1002/jgc4.1096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
The increasing availability of exome sequencing to the general ("healthy") population raises questions about the implications of genomic testing for individuals without suspected Mendelian diseases. Little is known about this population's motivations for undergoing exome sequencing, their expectations, reactions, and perceptions of utility. In order to address these questions, we conducted in-depth semi-structured interviews with 12 participants recruited from a longitudinal multi-omics profiling study that included exome sequencing. Participants were interviewed after receiving exome results, which included Mendelian disease-associated pathogenic and likely pathogenic variants, pharmacogenetic variants, and risk assessments for multifactorial diseases such as type 2 diabetes. The primary motivation driving participation in exome sequencing was personal curiosity. While they reported feeling validation and relief, participants were frequently underwhelmed by the results and described having expected more from exome sequencing. All participants reported discussing the results with at least some family, friends, and healthcare providers. Participants' recollection of the results returned to them was sometimes incorrect or incomplete, in many cases aligning with their perceptions of their health risks when entering the study. These results underscore the need for different genetic counseling approaches for generally healthy patients undergoing exome sequencing, in particular the need to provide anticipatory guidance to moderate participants' expectations. They also provide a preview of potential challenges clinicians may face as genomic sequencing continues to scale-up in the general population despite a lack of full understanding of its impact.
Collapse
Affiliation(s)
- Shannon Rego
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Institute for Human Genetics, University of California-San Francisco, San Francisco, California
| | - Orit Dagan-Rosenfeld
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Stephanie A Bivona
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Kelly E Ormond
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Stanford University Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|