1
|
Wang Q, Liu J, Luo Y, Kliemke V, Matta GL, Wang J, Liu Q. The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms. eLife 2025; 13:RP97017. [PMID: 39745781 DOI: 10.7554/elife.97017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F-AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Jinxin Liu
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Yuhang Luo
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicky Kliemke
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Giuliana Leonarda Matta
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Jingjing Wang
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Qian Liu
- Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
- Mark Wainberg Center for Viral Diseases, Lady Davis Institute, Montreal, Canada
| |
Collapse
|
2
|
Traeger J, Yang M, Stacey G, Orr G, Hu D. Lattice light-sheet microscopy allows for super-resolution imaging of receptors in leaf tissue. Biophys J 2024:S0006-3495(24)04109-2. [PMID: 39741415 DOI: 10.1016/j.bpj.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Plant leaf tissues are difficult to image via fluorescence microscopy due to the presence of chlorophyll and other pigments, which provide large background fluorescence. Lattice light-sheet microscopy offers the advantage of using Bessel beams to illuminate a thin focal region of interest for microscopy, allowing for the excitation of fluorescent molecules within this region without surrounding chlorophyll-like objects outside of the region of interest. Here, we apply STORM super-resolution techniques to observe receptor-like kinases in Arabidopsis thaliana leaf cells. By applying this technique with lattice light-sheet microscopy, we can localize immune-response proteins at sub-100-nm length scales and reconstruct three-dimensional locations of proteins within individual leaf cells. Using this technique, we observed the effect of the ATP and flg22 elicitors, where we observed a significant degree of internalization of cognate receptors P2K1 and FLS2. We were also able to similarly observe differences in colocalization due to stimulation with these elicitors, whereby we observe proteins on the membrane becoming less colocalized as a result of stimulation, suggesting an immune-response mechanism involving receptor internalization via distinct pathways. These data show lattice light-sheet microscopy's capabilities for imaging tissue with problematic background fluorescence that otherwise makes super-resolution fluorescence microscopy difficult.
Collapse
Affiliation(s)
- Jeremiah Traeger
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington.
| | - Mengran Yang
- Division of Plant Sciences and Technology, University of Missouri, Columbia, Missouri
| | - Gary Stacey
- Division of Plant Sciences and Technology, University of Missouri, Columbia, Missouri
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
3
|
Palounek D, Vala M, Bujak Ł, Kopal I, Jiříková K, Shaidiuk Y, Piliarik M. Surpassing the Diffraction Limit in Label-Free Optical Microscopy. ACS PHOTONICS 2024; 11:3907-3921. [PMID: 39429866 PMCID: PMC11487630 DOI: 10.1021/acsphotonics.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/22/2024]
Abstract
Super-resolution optical microscopy has enhanced our ability to visualize biological structures on the nanoscale. Fluorescence-based techniques are today irreplaceable in exploring the structure and dynamics of biological matter with high specificity and resolution. However, the fluorescence labeling concept narrows the range of observed interactions and fundamentally limits the spatiotemporal resolution. In contrast, emerging label-free imaging methods are not inherently limited by speed and have the potential to capture the entirety of complex biological processes and dynamics. While pushing a complex unlabeled microscopy image beyond the diffraction limit to single-molecule resolution and capturing dynamic processes at biomolecular time scales is widely regarded as unachievable, recent experimental strides suggest that elements of this vision might be already in place. These techniques derive signals directly from the sample using inherent optical phenomena, such as elastic and inelastic scattering, thereby enabling the measurement of additional properties, such as molecular mass, orientation, or chemical composition. This perspective aims to identify the cornerstones of future label-free super-resolution imaging techniques, discuss their practical applications and theoretical challenges, and explore directions that promise to enhance our understanding of complex biological systems through innovative optical advancements. Drawing on both traditional and emerging techniques, label-free super-resolution microscopy is evolving to offer detailed and dynamic imaging of living cells, surpassing the capabilities of conventional methods for visualizing biological complexities without the use of labels.
Collapse
Affiliation(s)
- David Palounek
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Milan Vala
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Łukasz Bujak
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Ivan Kopal
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Kateřina Jiříková
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Yevhenii Shaidiuk
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Marek Piliarik
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| |
Collapse
|
4
|
Li F, Roy S, Niculcea J, Gould K, Adams EJ, van der Merwe PA, Choudhuri K. Ligand-induced segregation from large cell-surface phosphatases is a critical step in γδ TCR triggering. Cell Rep 2024; 43:114761. [PMID: 39276348 PMCID: PMC11452322 DOI: 10.1016/j.celrep.2024.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Gamma/delta (γδ) T cells are unconventional lymphocytes that recognize diverse ligands via somatically recombined T cell antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αβ TCRs, γδ TCRs are not mechanosensitive and do not require co-receptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close-contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.
Collapse
Affiliation(s)
- Fenglei Li
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jacob Niculcea
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Keith Gould
- Department of Infectious Diseases, Imperial College London, London W2 1NY, UK
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | - Kaushik Choudhuri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Commane M, Jadhav V, Leonova K, Buckley B, Withers H, Gurova K. Image-Based Quantitative Single-Cell Method Showed Increase of Global Chromatin Accessibility in Tumor Compared to Normal Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611456. [PMID: 39282391 PMCID: PMC11398480 DOI: 10.1101/2024.09.05.611456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
The phenotypic plasticity of cancer cells has recently emerged as an important factor of treatment failure. The mechanisms of phenotypic plasticity are not fully understood. One of the hypotheses is that the degree of chromatin accessibility defines the easiness of cell transitions between different phenotypes. To test this, a method to compare overall chromatin accessibility between cells in a population or between cell populations is needed. We propose to measure chromatin accessibility by fluorescence signal from nuclei of cells stained with DNA binding fluorescent molecules. This method is based on the observations that small molecules bind nucleosome-free DNA more easily than nucleosomal DNA. Thus, nuclear fluorescence is proportional to the amount of nucleosome-free DNA, serving as a measure of chromatin accessibility. We optimized the method using several DNA intercalators and minor groove binders and known chromatin-modulating agents and demonstrated that chromatin accessibility is increased upon oncogene-induced transformation and further in tumor cells.
Collapse
Affiliation(s)
- Mairead Commane
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
| | - Vidula Jadhav
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
| | - Katerina Leonova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
| | - Brian Buckley
- Drug Discovery Core Shared Resource, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
| | - Henry Withers
- Drug Discovery Core Shared Resource, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
- Department of Bioinformatics and Biostatistics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Str, Buffalo, NY, USA, 14263
| |
Collapse
|
6
|
Bíró P, Novák T, Czvik E, Mihály J, Szikora S, van de Linde S, Erdélyi M. Triggered cagedSTORM microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3715-3726. [PMID: 38867795 PMCID: PMC11166440 DOI: 10.1364/boe.517480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 06/14/2024]
Abstract
In standard SMLM methods, the photoswitching of single fluorescent molecules and the data acquisition processes are independent, which leads to the detection of single molecule blinking events on several consecutive frames. This mismatch results in several data points with reduced localization precision, and it also increases the possibilities of overlapping. Here we discuss how the synchronization of the fluorophores' ON state to the camera exposure time increases the average intensity of the captured point spread functions and hence improves the localization precision. Simulations and theoretical results show that such synchronization leads to fewer localizations with 15% higher sum signal on average, while reducing the probability of overlaps by 10%.
Collapse
Affiliation(s)
- Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged 6720, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged 6720, Hungary
| | - Elvira Czvik
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged 6720, Hungary
| | - József Mihály
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, Temesvári körút 62, Szeged 6726, Hungary
- Department of Genetics, University of Szeged, Közép fasor 52, Szeged 6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Sebastian van de Linde
- Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged 6720, Hungary
| |
Collapse
|
7
|
Han MH, Park J, Park M. Advances in the multimodal analysis of the 3D chromatin structure and gene regulation. Exp Mol Med 2024; 56:763-771. [PMID: 38658704 PMCID: PMC11059362 DOI: 10.1038/s12276-024-01246-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Recent studies have demonstrated that the three-dimensional conformation of the chromatin plays a crucial role in gene regulation, with aberrations potentially leading to various diseases. Advanced methodologies have revealed a link between the chromatin conformation and biological function. This review divides these methodologies into sequencing-based and imaging-based methodologies, tracing their development over time. We particularly highlight innovative techniques that facilitate the simultaneous mapping of RNAs, histone modifications, and proteins within the context of the 3D architecture of chromatin. This multimodal integration substantially improves our ability to establish a robust connection between the spatial arrangement of molecular components in the nucleus and their functional roles. Achieving a comprehensive understanding of gene regulation requires capturing diverse data modalities within individual cells, enabling the direct inference of functional relationships between these components. In this context, imaging-based technologies have emerged as an especially promising approach for gathering spatial information across multiple components in the same cell.
Collapse
Affiliation(s)
- Man-Hyuk Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minhee Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Astratov VN, Sahel YB, Eldar YC, Huang L, Ozcan A, Zheludev N, Zhao J, Burns Z, Liu Z, Narimanov E, Goswami N, Popescu G, Pfitzner E, Kukura P, Hsiao YT, Hsieh CL, Abbey B, Diaspro A, LeGratiet A, Bianchini P, Shaked NT, Simon B, Verrier N, Debailleul M, Haeberlé O, Wang S, Liu M, Bai Y, Cheng JX, Kariman BS, Fujita K, Sinvani M, Zalevsky Z, Li X, Huang GJ, Chu SW, Tzang O, Hershkovitz D, Cheshnovsky O, Huttunen MJ, Stanciu SG, Smolyaninova VN, Smolyaninov II, Leonhardt U, Sahebdivan S, Wang Z, Luk’yanchuk B, Wu L, Maslov AV, Jin B, Simovski CR, Perrin S, Montgomery P, Lecler S. Roadmap on Label-Free Super-Resolution Imaging. LASER & PHOTONICS REVIEWS 2023; 17:2200029. [PMID: 38883699 PMCID: PMC11178318 DOI: 10.1002/lpor.202200029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/18/2024]
Abstract
Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.
Collapse
Affiliation(s)
- Vasily N. Astratov
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Yair Ben Sahel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yonina C. Eldar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Luzhe Huang
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA
- Bioengineering Department, University of California, Los Angeles, California 90095, USA
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nikolay Zheludev
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
- Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Junxiang Zhao
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary Burns
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zhaowei Liu
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Material Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Evgenii Narimanov
- School of Electrical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Neha Goswami
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - Emanuel Pfitzner
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica 1, Roosevelt Rd. Sec. 4, Taipei 10617 Taiwan
| | - Brian Abbey
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Melbourne, Victoria, Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alberto Diaspro
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Aymeric LeGratiet
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- Université de Rennes, CNRS, Institut FOTON - UMR 6082, F-22305 Lannion, France
| | - Paolo Bianchini
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Natan T. Shaked
- Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Tel Aviv 6997801, Israel
| | - Bertrand Simon
- LP2N, Institut d’Optique Graduate School, CNRS UMR 5298, Université de Bordeaux, Talence France
| | - Nicolas Verrier
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | | | - Olivier Haeberlé
- IRIMAS UR UHA 7499, Université de Haute-Alsace, Mulhouse, France
| | - Sheng Wang
- School of Physics and Technology, Wuhan University, China
- Wuhan Institute of Quantum Technology, China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, USA
| | - Yeran Bai
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Boston University Photonics Center, Boston, MA 02215, USA
| | - Behjat S. Kariman
- Optical Nanoscopy and NIC@IIT, CHT, Istituto Italiano di Tecnologia, Via Enrico Melen 83B, 16152 Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy
| | - Katsumasa Fujita
- Department of Applied Physics and the Advanced Photonics and Biosensing Open Innovation Laboratory (AIST); and the Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Moshe Sinvani
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Zeev Zalevsky
- Faculty of Engineering and the Nano-Technology Center, Bar-Ilan University, Ramat Gan, 52900 Israel
| | - Xiangping Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
| | - Guan-Jie Huang
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shi-Wei Chu
- Department of Physics and Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Omer Tzang
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Dror Hershkovitz
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Ori Cheshnovsky
- School of Chemistry, The Sackler faculty of Exact Sciences, and the Center for Light matter Interactions, and the Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv 69978, Israel
| | - Mikko J. Huttunen
- Laboratory of Photonics, Physics Unit, Tampere University, FI-33014, Tampere, Finland
| | - Stefan G. Stanciu
- Center for Microscopy – Microanalysis and Information Processing, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Vera N. Smolyaninova
- Department of Physics Astronomy and Geosciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Igor I. Smolyaninov
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ulf Leonhardt
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sahar Sahebdivan
- EMTensor GmbH, TechGate, Donau-City-Strasse 1, 1220 Wien, Austria
| | - Zengbo Wang
- School of Computer Science and Electronic Engineering, Bangor University, Bangor, LL57 1UT, United Kingdom
| | - Boris Luk’yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Alexey V. Maslov
- Department of Radiophysics, University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Boya Jin
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA
| | - Constantin R. Simovski
- Department of Electronics and Nano-Engineering, Aalto University, FI-00076, Espoo, Finland
- Faculty of Physics and Engineering, ITMO University, 199034, St-Petersburg, Russia
| | - Stephane Perrin
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Paul Montgomery
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| | - Sylvain Lecler
- ICube Research Institute, University of Strasbourg - CNRS - INSA de Strasbourg, 300 Bd. Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
9
|
Li F, Roy S, Niculcea J, Gould K, Adams EJ, van der Merwe PA, Choudhuri K. Ligand-induced segregation from large cell-surface phosphatases is a critical step in γδ TCR triggering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554524. [PMID: 37662246 PMCID: PMC10473748 DOI: 10.1101/2023.08.23.554524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gamma/delta (γδ) T cells are unconventional adaptive lymphocytes that recognize structurally diverse ligands via somatically-recombined antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αβ TCRs, γδ TCRs are not mechanosensitive, and do not require coreceptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.
Collapse
|
10
|
Saal KA, Shaib AH, Mougios N, Crzan D, Opazo F, Rizzoli SO. Heat denaturation enables multicolor X10-STED microscopy. Sci Rep 2023; 13:5366. [PMID: 37005431 PMCID: PMC10067834 DOI: 10.1038/s41598-023-32524-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Expansion microscopy (ExM) improves imaging quality by physically enlarging the biological specimens. In principle, combining a large expansion factor with optical super-resolution should provide extremely high imaging precision. However, large expansion factors imply that the expanded specimens are dim and are therefore poorly suited for optical super-resolution. To solve this problem, we present a protocol that ensures the expansion of the samples up to 10-fold, in a single expansion step, through high-temperature homogenization (X10ht). The resulting gels exhibit a higher fluorescence intensity than gels homogenized using enzymatic digestion (based on proteinase K). This enables the sample analysis by multicolor stimulated emission depletion (STED) microscopy, for a final resolution of 6-8 nm in neuronal cell cultures or isolated vesicles. X10ht also enables the expansion of 100-200 µm thick brain samples, up to 6-fold. The better epitope preservation also enables the use of nanobodies as labeling probes and the implementation of post-expansion signal amplification. We conclude that X10ht is a promising tool for nanoscale resolution in biological samples.
Collapse
Affiliation(s)
- Kim Ann Saal
- Department of Sensory- and Neurophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Ali H Shaib
- Department of Sensory- and Neurophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Nikolaos Mougios
- Department of Sensory- and Neurophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), Von-Sieboldt-Str. 3a, 37075, Göttingen, Germany
| | - Dagmar Crzan
- Department of Sensory- and Neurophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Sensory- and Neurophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Rudolf Wissell Str. 28a, 37079, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), Von-Sieboldt-Str. 3a, 37075, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Sensory- and Neurophysiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), Von-Sieboldt-Str. 3a, 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Mechanistic insights into HuR inhibitor MS-444 arresting embryonic development revealed by low-input RNA-seq and STORM. Cell Biol Toxicol 2022; 38:1175-1197. [PMID: 36085230 DOI: 10.1007/s10565-022-09757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
With improvements in the survival rate of patients with cancer, fertility maintenance has become a major concern in terms of cancer treatment for women of reproductive age. Thus, it is important to examine the impact on fertility of anticancer drugs that are used clinically or are undergoing trials. The HuR small-molecule inhibitor MS-444 has been used in many cancer treatment studies, but its reproductive toxicity in females is unknown. Here, we reported that MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA by inhibiting HuR dimerization, resulting in the developmental arrest of 2-cell stage embryos in mouse. Combining analysis of low-input RNA-seq for MS-444-treated 2-cell embryos and mapping binding sites of RNA-binding protein, Agbl2 was predicted to be the target gene of MS-444. For further confirmation, RNAi experiment in wild-type zygotes showed that Agbl2 knockdown reduced the proportion of embryos successfully developed to the blastocyst stage: from 71% in controls to 23%. Furthermore, RNA-FISH and luciferase reporter analyses showed that MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA and reduced its stability by inhibiting HuR dimerization. In addition, optimized stochastic optical reconstruction microscopy (STORM) imaging showed that MS-444 significantly reduced the HuR dimerization, and HuR mainly existed in cluster form in 2-cell stage embryos. In conclusion, this study provides clinical guidance for maintaining fertility during the treatment of cancer with MS-444 in women of reproductive age. And also, our research provides guidance for the application of STORM in nanometer scale studies of embryonic cells. HuR inhibitor MS-444 arrested embryonic development at 2-cell stage. Low-input RNA-seq revealed that Agbl2 was the target gene of MS-444. MS-444 blocked the nucleocytoplasmic transport of Agbl2 mRNA by inhibiting HuR dimerization and reduced the stability of Agbl2 mRNA. STORM with our optimized protocol showed that HuR tended to form elliptical and dense clusters in 2-cell stage embryos.
Collapse
|
12
|
Saavedra LA, Buena-Maizón H, Barrantes FJ. Mapping the Nicotinic Acetylcholine Receptor Nanocluster Topography at the Cell Membrane with STED and STORM Nanoscopies. Int J Mol Sci 2022; 23:ijms231810435. [PMID: 36142349 PMCID: PMC9499342 DOI: 10.3390/ijms231810435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The cell-surface topography and density of nicotinic acetylcholine receptors (nAChRs) play a key functional role in the synapse. Here we employ in parallel two labeling and two super-resolution microscopy strategies to characterize the distribution of this receptor at the plasma membrane of the mammalian clonal cell line CHO-K1/A5. Cells were interrogated with two targeted techniques (confocal microscopy and stimulated emission depletion (STED) nanoscopy) and single-molecule nanoscopy (stochastic optical reconstruction microscopy, STORM) using the same fluorophore, Alexa Fluor 647, tagged onto either α-bungarotoxin (BTX) or the monoclonal antibody mAb35. Analysis of the topography of nanometer-sized aggregates (“nanoclusters”) was carried out using STORMGraph, a quantitative clustering analysis for single-molecule localization microscopy based on graph theory and community detection, and ASTRICS, an inter-cluster similarity algorithm based on computational geometry. Antibody-induced crosslinking of receptors resulted in nanoclusters with a larger number of receptor molecules and higher densities than those observed in BTX-labeled samples. STORM and STED provided complementary information, STED rendering a direct map of the mesoscale nAChR distribution at distances ~10-times larger than the nanocluster centroid distances measured in STORM samples. By applying photon threshold filtering analysis, we show that it is also possible to detect the mesoscale organization in STORM images.
Collapse
|
13
|
Riera R, Tauler J, Feiner‐Gracia N, Borrós S, Fornaguera C, Albertazzi L. Complex pBAE Nanoparticle Cell Trafficking: Tracking Both Position and Composition Using Super Resolution Microscopy. ChemMedChem 2022; 17:e202100633. [PMID: 35212466 PMCID: PMC9400995 DOI: 10.1002/cmdc.202100633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Nanomedicine emerged some decades ago with the hope to be the solution for most unmet medical needs. However, tracking materials at nanoscale is challenging to their reduced size, below the resolution limit of most conventional techniques. In this context, we propose the use of direct stochastic optical reconstruction microscopy (dSTORM) to study time stability and cell trafficking after transfection of oligopeptide end-modified poly(β-aminoester) (OM-pBAE) nanoparticles. We selected different combinations of cationic end oligopeptides (arginine - R; histidine - H; and lysine - K) among polymer libraries, since the oligopeptide combination demonstrated to be useful for different applications, such as vaccination and gene silencing. We demonstrate that their time evolution as well as their cell uptake and trafficking are dependent on the oligopeptide. This study opens the pave to broad mechanistic studies at nanoscale that could enable a rational selection of specific pBAE nanoparticles composition after determining their stability and cell trafficking.
Collapse
Affiliation(s)
- Roger Riera
- Department of Biomedical EngineeringInstitute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyDe ZaaleEindhoven5612 AZ (TheNetherlands
| | - Jana Tauler
- Department of Biomedical EngineeringInstitute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyDe ZaaleEindhoven5612 AZ (TheNetherlands
- Grup d'Enginyeria de Materials (GEMAT)Institut Químic de Sarrià Universitat Ramon LlullVia Augusta, 39008017BarcelonaSpain
| | - Natàlia Feiner‐Gracia
- Department of Biomedical EngineeringInstitute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyDe ZaaleEindhoven5612 AZ (TheNetherlands
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT)Institut Químic de Sarrià Universitat Ramon LlullVia Augusta, 39008017BarcelonaSpain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT)Institut Químic de Sarrià Universitat Ramon LlullVia Augusta, 39008017BarcelonaSpain
| | - Lorenzo Albertazzi
- Department of Biomedical EngineeringInstitute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyDe ZaaleEindhoven5612 AZ (TheNetherlands
- Nanoscopy for NanomedicineInstitute for Bioenginyering of CataloniaCarrer de Baldiri Reixac, 10, 1208028BarcelonaSpain
| |
Collapse
|
14
|
Fuentes-Domínguez R, Naznin S, La Cavera III S, Cousins R, Pérez-Cota F, Smith RJ, Clark M. Polarization-Sensitive Super-Resolution Phononic Reconstruction of Nanostructures. ACS PHOTONICS 2022; 9:1919-1925. [PMID: 35726241 PMCID: PMC9204812 DOI: 10.1021/acsphotonics.1c01607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 05/28/2023]
Abstract
In this paper, we show for the first time the polarization-sensitive super-resolution phononic reconstruction of multiple nanostructures in a liquid environment by overcoming the diffraction limit of the optical system (1 μm). By using time-resolved pump-probe spectroscopy, we measure the acoustic signature of nanospheres and nanorods at different polarizations. This enables the size, position, and orientation characterization of multiple nanoparticles in a single point spread function with the precision of 5 nm, 3 nm, and 1.4°, respectively. Unlike electron microscopy where a high vacuum environment is needed for imaging, this technique performs measurements in liquids at ambient pressure, ideal to study the insights of living specimens. This is a potential path toward super-resolution phononic imaging where the acoustic signatures of multiple nanostructures could act as an alternative to fluorescent labels. In this context, phonons also offer the opportunity to extract information about the mechanical properties of the surrounding medium as well as access to subsurface features.
Collapse
Affiliation(s)
- Rafael Fuentes-Domínguez
- Optics
and Photonics Group, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Shakila Naznin
- Optics
and Photonics Group, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Salvatore La Cavera III
- Optics
and Photonics Group, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Cousins
- Nanoscale
and Microscale Research Centre, University
of Nottingham, University Park, Nottingham NG7 2RD, United
Kingdom
| | - Fernando Pérez-Cota
- Optics
and Photonics Group, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard J. Smith
- Optics
and Photonics Group, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Matt Clark
- Optics
and Photonics Group, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
15
|
Belcher HA, Litwa K, Guthold M, Hudson NE. The Applicability of Current Turbidimetric Approaches for Analyzing Fibrin Fibers and Other Filamentous Networks. Biomolecules 2022; 12:807. [PMID: 35740932 PMCID: PMC9221518 DOI: 10.3390/biom12060807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/07/2022] Open
Abstract
Turbidimetry is an experimental technique often used to study the structure of filamentous networks. To extract structural properties such as filament diameter from turbidimetric data, simplifications to light scattering theory must be employed. In this work, we evaluate the applicability of three commonly utilized turbidimetric analysis approaches, each using slightly different simplifications. We make a specific application towards analyzing fibrin fibers, which form the structural scaffold of blood clots, but the results are generalizable. Numerical simulations were utilized to assess the applicability of each approach across a range of fiber lengths and diameters. Simulation results indicated that all three turbidimetric approaches commonly underestimate fiber diameter, and that the “Carr-Hermans” approach, utilizing wavelengths in the range of 500−800 nm, provided <10% error for the largest number of diameter/length combinations. These theoretical results were confirmed, under select conditions, via the comparison of fiber diameters extracted from experimental turbidimetric data, with diameters obtained using super-resolution microscopy.
Collapse
Affiliation(s)
- Heather A. Belcher
- Department of Physics, East Carolina University, Greenville, NC 27858, USA;
| | - Karen Litwa
- Department of Anatomy & Cell Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA;
| | - Nathan E. Hudson
- Department of Physics, East Carolina University, Greenville, NC 27858, USA;
| |
Collapse
|
16
|
Dos Santos Á, Gough RE, Wang L, Toseland CP. Measuring Nuclear Organization of Proteins with STORM Imaging and Cluster Analysis. Methods Mol Biol 2022; 2476:293-309. [PMID: 35635711 DOI: 10.1007/978-1-0716-2221-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Super-resolution microscopy enables the high-precision localization of proteins. Therefore, it is possible to investigate the spatial organization of proteins within the nucleus to understand how their organization relates to regulation and function. Here, we present methodology for single-molecule localization microscopy and cluster analysis where we cover sample preparation, image acquisition, and data analysis.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxford, UK
| | | |
Collapse
|
17
|
Pelicci S, Furia L, Scanarini M, Pelicci PG, Lanzanò L, Faretta M. Novel Tools to Measure Single Molecules Colocalization in Fluorescence Nanoscopy by Image Cross Correlation Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:686. [PMID: 35215014 PMCID: PMC8875509 DOI: 10.3390/nano12040686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Super Resolution Microscopy revolutionized the approach to the study of molecular interactions by providing new quantitative tools to describe the scale below 100 nanometers. Single Molecule Localization Microscopy (SMLM) reaches a spatial resolution less than 50 nm with a precision in calculating molecule coordinates between 10 and 20 nanometers. However new procedures are required to analyze data from the list of molecular coordinates created by SMLM. We propose new tools based on Image Cross Correlation Spectroscopy (ICCS) to quantify the colocalization of fluorescent signals at single molecule level. These analysis procedures have been inserted into an experimental pipeline to optimize the produced results. We show that Fluorescent NanoDiamonds targeted to an intracellular compartment can be employed (i) to correct spatial drift to maximize the localization precision and (ii) to register confocal and SMLM images in correlative multiresolution, multimodal imaging. We validated the ICCS based approach on defined biological control samples and showed its ability to quantitatively map area of interactions inside the cell. The produced results show that the ICCS analysis is an efficient tool to measure relative spatial distribution of different molecular species at the nanoscale.
Collapse
Affiliation(s)
- Simone Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| | - Laura Furia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| | - Mirco Scanarini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (M.S.); (P.G.P.)
| |
Collapse
|
18
|
Rao TC, Nawara TJ, Mattheyses AL. Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy to Investigate Protein Internalization Dynamics. Methods Mol Biol 2022; 2438:45-58. [PMID: 35147934 DOI: 10.1007/978-1-0716-2035-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The establishment of apicobasal or planar cell polarity involves many events that occur at or near the plasma membrane including focal adhesion dynamics, endocytosis, exocytosis, and cytoskeletal reorganization. It is desirable to visualize these events without interference from other regions deeper within the cell. Total internal reflection fluorescence (TIRF) microscopy utilizes an elegant optical sectioning approach to visualize fluorophores near the sample-coverslip interface. TIRF provides high-contrast fluorescence images with limited background and virtually no out-of-focus light, ideal for visualizing and tracking dynamics near the plasma membrane. In this chapter, we present a general experimental and analysis TIRF pipeline for studying cell surface receptor endocytosis. The approach presented can be easily applied to study other dynamic biological processes at or near the plasma membrane using TIRF microscopy.
Collapse
Affiliation(s)
- Tejeshwar C Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tomasz J Nawara
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Vatan T, Minehart JA, Zhang C, Agarwal V, Yang J, Speer CM. Volumetric super-resolution imaging by serial ultrasectioning and stochastic optical reconstruction microscopy in mouse neural tissue. STAR Protoc 2021; 2:100971. [PMID: 34901889 PMCID: PMC8637648 DOI: 10.1016/j.xpro.2021.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we present a protocol for collecting large-volume, four-color, single-molecule localization imaging data from neural tissue. We have applied this technique to map the location and identities of chemical synapses across whole cells in mouse retinae. Our sample preparation approach improves 3D STORM image quality by reducing tissue scattering, photobleaching, and optical distortions associated with deep imaging. This approach can be extended for use on other tissue types enabling life scientists to perform volumetric super-resolution imaging in diverse biological models. For complete details on the use and execution of this protocol, please refer to Sigal et al. (2015).
Collapse
Affiliation(s)
- Tarlan Vatan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Jacqueline A. Minehart
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Neuroscience and Cognitive Science Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Vatsal Agarwal
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jerry Yang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Maizón HB, Barrantes FJ. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Brief Bioinform 2021; 23:6409696. [PMID: 34695840 DOI: 10.1093/bib/bbab435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor's translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.
Collapse
Affiliation(s)
- Héctor Buena Maizón
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
21
|
Lee WTC, Gupta D, Rothenberg E. Single-molecule imaging of replication fork conflicts at genomic DNA G4 structures in human cells. Methods Enzymol 2021; 661:77-94. [PMID: 34776224 DOI: 10.1016/bs.mie.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA G-quadruplexes (G4s) are stable, non-canonical DNA secondary structures formed within guanine(G)-rich sequences. While extensively studied in vitro, evidence of the occurrence of G4s in vivo has only recently emerged. The formation of G4 structures may pose an obstacle for diverse DNA transactions including replication, which is linked to mutagenesis and genomic instability. A fundamental question in the field has been whether and how the formation of G4s is coupled to the progression of replication forks. This process has remained undefined largely due to the lack of experimental approaches capable of monitoring the presence of G4s and their association with the replication machinery in cells. Here, we describe a detailed multicolor single-molecule localization microscopy (SMLM) protocol for detecting nanoscale spatial-association of DNA G4s with the cellular replisome complex. This method offers a unique platform for visualizing the mechanisms of G4 formation at the molecular level, as well as addressing key biological questions as to the functional roles of these structures in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| | - Dipika Gupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
22
|
Jing Y, Zhang C, Yu B, Lin D, Qu J. Super-Resolution Microscopy: Shedding New Light on In Vivo Imaging. Front Chem 2021; 9:746900. [PMID: 34595156 PMCID: PMC8476955 DOI: 10.3389/fchem.2021.746900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Over the past two decades, super-resolution microscopy (SRM), which offered a significant improvement in resolution over conventional light microscopy, has become a powerful tool to visualize biological activities in both fixed and living cells. However, completely understanding biological processes requires studying cells in a physiological context at high spatiotemporal resolution. Recently, SRM has showcased its ability to observe the detailed structures and dynamics in living species. Here we summarized recent technical advancements in SRM that have been successfully applied to in vivo imaging. Then, improvements in the labeling strategies are discussed together with the spectroscopic and chemical demands of the fluorophores. Finally, we broadly reviewed the current applications for super-resolution techniques in living species and highlighted some inherent challenges faced in this emerging field. We hope that this review could serve as an ideal reference for researchers as well as beginners in the relevant field of in vivo super resolution imaging.
Collapse
Affiliation(s)
| | | | | | - Danying Lin
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
23
|
Huang K, Demirci F, Meyers BC, Caplan JL. A Novel Method to Map Small RNAs with High Resolution. Bio Protoc 2021; 11:e4128. [PMID: 34541046 DOI: 10.21769/bioprotoc.4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/02/2022] Open
Abstract
Analyzing cellular structures and the relative location of molecules is essential for addressing biological questions. Super-resolution microscopy techniques that bypass the light diffraction limit have become increasingly popular to study cellular molecule dynamics in situ. However, the application of super-resolution imaging techniques to detect small RNAs (sRNAs) is limited by the choice of proper fluorophores, autofluorescence of samples, and failure to multiplex. Here, we describe an sRNA-PAINT protocol for the detection of sRNAs at nanometer resolution. The method combines the specificity of locked nucleic acid probes and the low background, precise quantitation, and multiplexable characteristics of DNA Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT). Using this method, we successfully located sRNA targets that are important for development in maize anthers at sub-20 nm resolution and quantitated their exact copy numbers. Graphic abstract: Multiplexed sRNA-PAINT. Multiple Vetting and Analysis of RNA for In Situ Hybridization (VARNISH) probes with different docking strands (i.e., a, b, …) will be hybridized to samples. The first probe will be imaged with the a* imager. The a* imager will be washed off with buffer C, and then the sample will be imaged with b* imager. The wash and image steps can be repeated sequentially for multiplexing.
Collapse
Affiliation(s)
- Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Feray Demirci
- FiDoSoft Software Consulting, Redmond, Wisconsin, 98052, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri, USA.,University of Missouri - Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, Missouri, USA
| | - Jeffrey L Caplan
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Bio-Imaging Center, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| |
Collapse
|
24
|
Palmer CS, Lou J, Kouskousis B, Pandzic E, Anderson AJ, Kang Y, Hinde E, Stojanovski D. Super-resolution microscopy reveals the arrangement of inner membrane protein complexes in mammalian mitochondria. J Cell Sci 2021; 134:jcs252197. [PMID: 34313317 DOI: 10.1242/jcs.252197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/03/2021] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial inner membrane is a protein-rich environment containing large multimeric complexes, including complexes of the mitochondrial electron transport chain, mitochondrial translocases and quality control machineries. Although the inner membrane is highly proteinaceous, with 40-60% of all mitochondrial proteins localised to this compartment, little is known about the spatial distribution and organisation of complexes in this environment. We set out to survey the arrangement of inner membrane complexes using stochastic optical reconstruction microscopy (STORM). We reveal that subunits of the TIM23 complex, TIM23 and TIM44 (also known as TIMM23 and TIMM44, respectively), and the complex IV subunit COXIV, form organised clusters and show properties distinct from the outer membrane protein TOM20 (also known as TOMM20). Density based cluster analysis indicated a bimodal distribution of TIM44 that is distinct from TIM23, suggesting distinct TIM23 subcomplexes. COXIV is arranged in larger clusters that are disrupted upon disruption of complex IV assembly. Thus, STORM super-resolution microscopy is a powerful tool for examining the nanoscale distribution of mitochondrial inner membrane complexes, providing a 'visual' approach for obtaining pivotal information on how mitochondrial complexes exist in a cellular context.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jieqiong Lou
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Betty Kouskousis
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
- Monash Micro Imaging, Monash University, Clayton, Victoria 3168, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yilin Kang
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth Hinde
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Xu J, Liu Y. Probing Chromatin Compaction and Its Epigenetic States in situ With Single-Molecule Localization-Based Super-Resolution Microscopy. Front Cell Dev Biol 2021; 9:653077. [PMID: 34178982 PMCID: PMC8222792 DOI: 10.3389/fcell.2021.653077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin organization play a vital role in gene regulation and genome maintenance in normal biological processes and in response to environmental insults. Disruption of chromatin organization imposes a significant effect on many cellular processes and is often associated with a range of pathological processes such as aging and cancer. Extensive attention has been attracted to understand the structural and functional studies of chromatin architecture. Biochemical assays coupled with the state-of-the-art genomic technologies have been traditionally used to probe chromatin architecture. Recent advances in single molecule localization microscopy (SMLM) open up new opportunities to directly visualize higher-order chromatin architecture, its compaction status and its functional states at nanometer resolution in the intact cells or tissue. In this review, we will first discuss the recent technical advantages and challenges of using SMLM to image chromatin architecture. Next, we will focus on the recent applications of SMLM for structural and functional studies to probe chromatin architecture in key cellular processes. Finally, we will provide our perspectives on the recent development and potential applications of super-resolution imaging of chromatin architecture in improving our understanding in diseases.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Marin Z, Graff M, Barentine AES, Soeller C, Chung KKH, Fuentes LA, Baddeley D. PYMEVisualize: an open-source tool for exploring 3D super-resolution data. Nat Methods 2021; 18:582-584. [PMID: 34002092 DOI: 10.1038/s41592-021-01165-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Zach Marin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Michael Graff
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew E S Barentine
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Christian Soeller
- Living Systems Institute and Biomedical Physics, University of Exeter, Exeter, UK
| | - Kenny Kwok Hin Chung
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Heydarian H, Joosten M, Przybylski A, Schueder F, Jungmann R, Werkhoven BV, Keller-Findeisen J, Ries J, Stallinga S, Bates M, Rieger B. 3D particle averaging and detection of macromolecular symmetry in localization microscopy. Nat Commun 2021; 12:2847. [PMID: 33990554 PMCID: PMC8121824 DOI: 10.1038/s41467-021-22006-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Single molecule localization microscopy offers in principle resolution down to the molecular level, but in practice this is limited primarily by incomplete fluorescent labeling of the structure. This missing information can be completed by merging information from many structurally identical particles. In this work, we present an approach for 3D single particle analysis in localization microscopy which hugely increases signal-to-noise ratio and resolution and enables determining the symmetry groups of macromolecular complexes. Our method does not require a structural template, and handles anisotropic localization uncertainties. We demonstrate 3D reconstructions of DNA-origami tetrahedrons, Nup96 and Nup107 subcomplexes of the nuclear pore complex acquired using multiple single molecule localization microscopy techniques, with their structural symmetry deducted from the data.
Collapse
Affiliation(s)
- Hamidreza Heydarian
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Maarten Joosten
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Adrian Przybylski
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Florian Schueder
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sjoerd Stallinga
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Mark Bates
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Bernd Rieger
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
28
|
Abstract
There has long been a crucial tradeoff between spatial and temporal resolution in imaging. Imaging beyond the diffraction limit of light has traditionally been restricted to be used only on fixed samples or live cells outside of tissue labeled with strong fluorescent signal. Current super-resolution live cell imaging techniques require the use of special fluorescence probes, high illumination, multiple image acquisitions with post-acquisition processing, or often a combination of these processes. These prerequisites significantly limit the biological samples and contexts that this technique can be applied to. Here we describe a method to perform super-resolution (~140 nm XY-resolution) time-lapse fluorescence live cell imaging in situ. This technique is also compatible with low fluorescent intensity, for example, EGFP or mCherry endogenously tagged at lowly expressed genes. As a proof-of-principle, we have used this method to visualize multiple subcellular structures in the Drosophila testis. During tissue preparation, both the cellular structure and tissue morphology are maintained within the dissected testis. Here, we use this technique to image microtubule dynamics, the interactions between microtubules and the nuclear membrane, as well as the attachment of microtubules to centromeres. This technique requires special procedures in sample preparation, sample mounting and immobilizing of specimens. Additionally, the specimens must be maintained for several hours after dissection without compromising cellular function and activity. While we have optimized the conditions for live super-resolution imaging specifically in Drosophila male germline stem cells (GSCs) and progenitor germ cells in dissected testis tissue, this technique is broadly applicable to a variety of different cell types. The ability to observe cells under their physiological conditions without sacrificing either spatial or temporal resolution will serve as an invaluable tool to researchers seeking to address crucial questions in cell biology.
Collapse
Affiliation(s)
- Rajesh Ranjan
- Department of Biology, The Johns Hopkins University;
| | - Xin Chen
- Department of Biology, The Johns Hopkins University;
| |
Collapse
|
29
|
Yang Z, Samanta S, Yan W, Yu B, Qu J. Super-resolution Microscopy for Biological Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:23-43. [PMID: 34053021 DOI: 10.1007/978-981-15-7627-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Studying the ultra-fine structures and functions of the subcellular organelles and exploring the dynamic biological events in depth are the key issues in contemporary biological research. Fluorescence bio-imaging has been used to study cell biology for decades. However, the structures and functions of the subcellular organelles which fall under the diffraction limit are still not explored fully at a nanoscale level. Several super-resolution microscopy (SRM) techniques have been devised over the years which can be utilized to overcome diffraction limit. These techniques have opened a new window in biological research. However, SRM methods are highly vulnerable to the lack of appropriate fluorophores and other sophisticated technical considerations. Therefore, this chapter briefly summarizes the basic principles of various SRM methods which have been frequently utilized in biological imaging. The chapter not only gives an overview of the technical advantages and drawbacks about using different SRM techniques for bio-imaging applications but also briefly articulates the nitty-gritties of selecting a proper fluorescent probe for a specific SRM experiment with biological samples.
Collapse
Affiliation(s)
- Zhigang Yang
- Center for Biomedical Phonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Soham Samanta
- Center for Biomedical Phonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Wei Yan
- Center for Biomedical Phonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Bin Yu
- Center for Biomedical Phonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Phonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
30
|
Fu Y, Hua P, Lou Y, Li Z, Jia M, Jing Y, Cai M, Wang H, Tong T, Gao J. Mechanistic Insights into Trop2 Clustering on Lung Cancer Cell Membranes Revealed by Super-resolution Imaging. ACS OMEGA 2020; 5:32456-32465. [PMID: 33376883 PMCID: PMC7758963 DOI: 10.1021/acsomega.0c04597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/27/2020] [Indexed: 05/16/2023]
Abstract
The transmembrane glycoprotein Trop2 plays important roles in various types of human cancers, especially lung cancer. Although it has been found to form clusters on cancer cell membranes, the factors that affect its clustering are not yet fully understood. Here, using direct stochastic optical reconstruction microscopy (dSTORM), we found that Trop2 generated more, larger, and denser clusters on apical cell membranes than on basal membranes and that the differences might be related to the different membrane structures. Moreover, dual-color dSTORM imaging revealed significant colocalization of Trop2 and lipid rafts, and methyl-β-cyclodextrin disruption dramatically impaired the formation of Trop2 clusters, indicating a key role of lipid rafts in Trop2 clustering. Additionally, depolymerization of the actin cytoskeleton decreased Trop2 cluster numbers and areas, revealing that actin can stabilize the clusters. More importantly, stimulation of Trop2 in cancer cells hardly changed the cluster morphology, suggesting that Trop2 is activated and forms clusters in cancer cells. Altogether, our work links the spatial organization of Trop2 to different membrane structures and Trop activation and uncovers the essential roles of lipid rafts and actin in Trop2 cluster maintenance.
Collapse
Affiliation(s)
- Yilin Fu
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Peiyan Hua
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Yan Lou
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Zihao Li
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Meng Jia
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Yingying Jing
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
- University
of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230027, China
| | - Mingjun Cai
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
| | - Hongda Wang
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
- University
of Science and Technology of China, No. 96, Jinzhai Road, Hefei, Anhui 230027, China
- Qingdao
National Laboratory for Marine Science and Technology, Laboratory for Marine Biology and Biotechnology, Wenhai Road, Qingdao, Shandong 266237, China
| | - Ti Tong
- The
Second Hospital of Jilin University, No. 218, Ziqiang Road, Changchun, Jilin 130041, China
| | - Jing Gao
- State
Key Laboratory of Electroanalytical Chemistry, Research Center of
Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
31
|
Alexandrov A, Asada T, De Lellis G, Di Crescenzo A, Gentile V, Naka T, Tioukov V, Umemoto A. Super-resolution high-speed optical microscopy for fully automated readout of metallic nanoparticles and nanostructures. Sci Rep 2020; 10:18773. [PMID: 33139810 PMCID: PMC7608637 DOI: 10.1038/s41598-020-75883-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
We have designed a fully automated optical microscope running at high-speed and achieving a very high spatial resolution. In order to overcome the resolution limit of optical microscopes, it exploits the localized surface plasmon resonance phenomenon. The customized setup using a polarization analyzer, based on liquid crystals, produces no vibrations and it is capable of probing isolated nanoparticles. We tested its performance with an automated readout using a fine-grained nuclear emulsion sample exposed to 60 keV carbon ion beam and, for the first time, successfully reconstructed the directional information from ultra-short tracks produced by such low-energetic ions using a solid-state tracking detector.
Collapse
Affiliation(s)
- Andrey Alexandrov
- I.N.F.N. Sezione di Napoli, 80126, Napoli, Italy. .,Università degli Studi di Napoli Federico II, 80126, Napoli, Italy. .,National University of Science and Technology MISIS, 119049, Moscow, Russia. .,Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Takashi Asada
- I.N.F.N. LNGS-Laboratori Nazionali del Gran Sasso, Assergi, 67100, L'Aquila, Italy
| | - Giovanni De Lellis
- I.N.F.N. Sezione di Napoli, 80126, Napoli, Italy.,Università degli Studi di Napoli Federico II, 80126, Napoli, Italy.,CERN, Geneva, Switzerland
| | | | - Valerio Gentile
- I.N.F.N. Sezione di Napoli, 80126, Napoli, Italy.,National University of Science and Technology MISIS, 119049, Moscow, Russia
| | - Tatsuhiro Naka
- Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Center for Experimental Studies, Nagoya University, Furou-cho, Chigusa-ku, Nagoya, 464-8602, Japan.,Department of Physics, Toho University, Funabashi, Chiba, 274-8510, Japan
| | | | - Atsuhiro Umemoto
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
32
|
Super-Resolution Fluorescence Microscopy Reveals Clustering Behaviour of Chlamydia pneumoniae's Major Outer Membrane Protein. BIOLOGY 2020; 9:biology9100344. [PMID: 33092039 PMCID: PMC7589890 DOI: 10.3390/biology9100344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Chlamydia pneumoniae is a Gram-negative bacterium responsible for a number of human respiratory diseases and linked to some chronic inflammatory diseases. The major outer membrane protein (MOMP) of Chlamydia is a conserved immunologically dominant protein located in the outer membrane, which, together with its surface exposure and abundance, has led to MOMP being the main focus for vaccine and antimicrobial studies in recent decades. MOMP has a major role in the chlamydial outer membrane complex through the formation of intermolecular disulphide bonds, although the exact interactions formed are currently unknown. Here, it is proposed that due to the large number of cysteines available for disulphide bonding, interactions occur between cysteine-rich pockets as opposed to individual residues. Such pockets were identified using a MOMP homology model with a supporting low-resolution (~4 Å) crystal structure. The localisation of MOMP in the E. coli membrane was assessed using direct stochastic optical reconstruction microscopy (dSTORM), which showed a decrease in membrane clustering with cysteine-rich regions containing two mutations. These results indicate that disulphide bond formation was not disrupted by single mutants located in the cysteine-dense regions and was instead compensated by neighbouring cysteines within the pocket in support of this cysteine-rich pocket hypothesis.
Collapse
|
33
|
Wu R, Liu W, Sun Y, Shen C, Guo J, Zhao J, Mao G, Li Y, Du G. Nanoscale insight into chromatin remodeling and DNA repair complex in HeLa cells after ionizing radiation. DNA Repair (Amst) 2020; 96:102974. [PMID: 32998084 DOI: 10.1016/j.dnarep.2020.102974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
The dynamic structure of nuclear chromatin and its regulation in the formation of repair complex is essential in DNA damage response and repair. Using single molecule localization microscopy STORM this work discovered that the nuclear chromatin organization was relaxed from 200 to 400 nm thick irregular frame and remodeled to dispersed sub-100 nm structure in HeLa cells after X-ray irradiation. The DSB repair factors (γ-H2AX, MDC1, 53BP1) showed distribution as microscale-colocalized and nanoscale interlaced substructure in the DSB repair complex. The dual-color nanoscopic imaging of γ-H2AX and chromatin at the DSB sites suggest that DNA damage response and repair cascade are chromatin structure-dependent and also partly dependent on the distance to the DSB sites. The sub-100 nm structure of fibers and nanoclusters of the relaxed nuclear chromatin and the DSB repair factors highly resembled the cross-section view of chromatin organization. These data demonstrated the polymorphic and dynamic behavior of the chromatin organization in vivo, and provided nanoscale insight into the interplay between chromatin remodeling and DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Ruqun Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Sun
- BIOPIC, Peking University, Beijing, 100871, China
| | - Cheng Shen
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinlong Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangbo Mao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaning Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guanghua Du
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
34
|
DIRAS3 (ARHI) Blocks RAS/MAPK Signaling by Binding Directly to RAS and Disrupting RAS Clusters. Cell Rep 2020; 29:3448-3459.e6. [PMID: 31825828 DOI: 10.1016/j.celrep.2019.11.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 08/06/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022] Open
Abstract
Oncogenic RAS mutations drive cancers at many sites. Recent reports suggest that RAS dimerization, multimerization, and clustering correlate strongly with activation of RAS signaling. We have found that re-expression of DIRAS3, a RAS-related small GTPase tumor suppressor that is downregulated in multiple cancers, inhibits RAS/mitogen-activated protein kinase (MAPK) signaling by interacting directly with RAS-forming heteromers, disrupting RAS clustering, inhibiting Raf kinase activation, and inhibiting transformation and growth of cancer cells and xenografts. Disruption of K-RAS cluster formation requires the N terminus of DIRAS3 and interaction of both DIRAS3 and K-RAS with the plasma membrane. Interaction of DIRAS3 with both K-RAS and H-RAS suggests a strategy for inhibiting oncogenic RAS function.
Collapse
|
35
|
Liu Y, Song Y, Zhang S, Diao M, Huang S, Li S, Tan X. PSGL-1 inhibits HIV-1 infection by restricting actin dynamics and sequestering HIV envelope proteins. Cell Discov 2020; 6:53. [PMID: 32802403 PMCID: PMC7400672 DOI: 10.1038/s41421-020-0184-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
PSGL-1 has recently been identified as an HIV restriction factor that inhibits HIV DNA synthesis and more potently, virion infectivity. But the underlying mechanisms of these inhibitions are unknown. Here we show that PSGL-1 directly binds to cellular actin filaments (F-actin) to restrict actin dynamics, which leads to inhibition of HIV DNA synthesis. PSGL-1 is incorporated into nascent virions and restricts actin dynamics in the virions, which partially accounts for the inhibition of virion infectivity. More potently, PSGL-1 inhibits incorporation of Env proteins into nascent virions, causing a loss of envelope spikes on the virions as shown by Cryo-electron microscopy and super-resolution imaging. This loss is associated with a profound defect in viral entry. Mechanistically, PSGL-1 binds gp41 and sequesters gp41 at the plasma membrane, explaining the inhibition of Env incorporation in nascent virions. PSGL-1’s dual anti-HIV mechanisms represent novel strategies of human cells to defend against HIV infection.
Collapse
Affiliation(s)
- Ying Liu
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yutong Song
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Zhang
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Li
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
36
|
Mountoufaris G, Canzio D, Nwakeze CL, Chen WV, Maniatis T. Writing, Reading, and Translating the Clustered Protocadherin Cell Surface Recognition Code for Neural Circuit Assembly. Annu Rev Cell Dev Biol 2019; 34:471-493. [PMID: 30296392 DOI: 10.1146/annurev-cellbio-100616-060701] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of neurites of individual neurons to distinguish between themselves and neurites from other neurons and to avoid self (self-avoidance) plays a key role in neural circuit assembly in both invertebrates and vertebrates. Similarly, when individual neurons of the same type project into receptive fields of the brain, they must avoid each other to maximize target coverage (tiling). Counterintuitively, these processes are driven by highly specific homophilic interactions between cell surface proteins that lead to neurite repulsion rather than adhesion. Among these proteins in vertebrates are the clustered protocadherins (Pcdhs), and key to their function is the generation of enormous cell surface structural diversity. Here we review recent advances in understanding how a Pcdh cell surface code is generated by stochastic promoter choice; how this code is amplified and read by homophilic interactions between Pcdh complexes at the surface of neurons; and, finally, how the Pcdh code is translated to cellular function, which mediates self-avoidance and tiling and thus plays a central role in the development of complex neural circuits. Not surprisingly, Pcdh mutations that diminish homophilic interactions lead to wiring defects and abnormal behavior in mice, and sequence variants in the Pcdh gene cluster are associated with autism spectrum disorders in family-based genetic studies in humans.
Collapse
Affiliation(s)
- George Mountoufaris
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA; .,Current address: Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Chiamaka L Nwakeze
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| | - Weisheng V Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA; .,Current address: Leveragen, Inc., Cambridge, Massachusetts 02139, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical School, and Zuckerman Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
37
|
Tam JM, Reedy JL, Lukason DP, Kuna SG, Acharya M, Khan NS, Negoro PE, Xu S, Ward RA, Feldman MB, Dutko RA, Jeffery JB, Sokolovska A, Wivagg CN, Lassen KG, Le Naour F, Matzaraki V, Garner EC, Xavier RJ, Kumar V, van de Veerdonk FL, Netea MG, Miranti CK, Mansour MK, Vyas JM. Tetraspanin CD82 Organizes Dectin-1 into Signaling Domains to Mediate Cellular Responses to Candida albicans. THE JOURNAL OF IMMUNOLOGY 2019; 202:3256-3266. [PMID: 31010852 DOI: 10.4049/jimmunol.1801384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022]
Abstract
Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate β-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1β) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.
Collapse
Affiliation(s)
- Jenny M Tam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel P Lukason
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sunnie G Kuna
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Mridu Acharya
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Biomedical Engineering and Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Paige E Negoro
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Shuying Xu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rebecca A Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael B Feldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Richard A Dutko
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jane B Jeffery
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Anna Sokolovska
- Department of Developmental Immunology, Massachusetts General Hospital, Boston, MA 02114
| | - Carl N Wivagg
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Kara G Lassen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | | | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ethan C Garner
- Center for Systems Biology, Harvard University, Boston, MA 02115
| | - Ramnik J Xavier
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Gastrointestinal Unit/Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114; and
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ 85724
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; .,Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
Zong S, Pan F, Zhang R, Chen C, Wang Z, Cui Y. Super blinking and biocompatible nanoprobes based on dye doped BSA nanoparticles for super resolution imaging. NANOTECHNOLOGY 2019; 30:065701. [PMID: 30523996 DOI: 10.1088/1361-6528/aaf03b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As one of the super-resolved optical imaging techniques, single molecule localization microscopy (SMLM) received considerable attention due to its impressive spatial resolution. Compared with other fluorescence imaging techniques, SMLM has one particular request for the fluorophores, that is, continuous 'on' and 'off' behaviors of their signals (referred to as 'blinking'). Hence, we present here a kind of super blinking and biocompatible nanoprobes (denoted as SBNs) for SMLM. The SBNs have two main advantages, first, they possess an outstanding fluorescence blinking. Second, they are biocompatible since they are based on bovine serum albumin (BSA). The SBNs are fabricated by doping organic dyes into BSA nanoparticles. We fabricated two kinds of SBNs, one was doped with Alexa Fluor 647 (A647) and the other was doped with Alexa Fluor 594 (A594). Especially for A594 doped SBNs, the improved blinking of A594 doped SBNs induced a better localization precision as compared with A594 alone. Moreover, SMLM imaging of breast cancer cells and exosomes using the SBNs was successfully realized with high spatial resolutions. The work demonstrated here provides a new strategy to prepare novel kinds of super blinking fluorescent agents for SMLM, which broadens the selection of suitable fluorophores for SMLM.
Collapse
Affiliation(s)
- Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Samanta S, Gong W, Li W, Sharma A, Shim I, Zhang W, Das P, Pan W, Liu L, Yang Z, Qu J, Kim JS. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): Recent highlights and future possibilities. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Neagu AN. Proteome Imaging: From Classic to Modern Mass Spectrometry-Based Molecular Histology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:55-98. [PMID: 31347042 DOI: 10.1007/978-3-030-15950-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In order to overcome the limitations of classic imaging in Histology during the actually era of multiomics, the multi-color "molecular microscope" by its emerging "molecular pictures" offers quantitative and spatial information about thousands of molecular profiles without labeling of potential targets. Healthy and diseased human tissues, as well as those of diverse invertebrate and vertebrate animal models, including genetically engineered species and cultured cells, can be easily analyzed by histology-directed MALDI imaging mass spectrometry. The aims of this review are to discuss a range of proteomic information emerging from MALDI mass spectrometry imaging comparative to classic histology, histochemistry and immunohistochemistry, with applications in biology and medicine, concerning the detection and distribution of structural proteins and biological active molecules, such as antimicrobial peptides and proteins, allergens, neurotransmitters and hormones, enzymes, growth factors, toxins and others. The molecular imaging is very well suited for discovery and validation of candidate protein biomarkers in neuroproteomics, oncoproteomics, aging and age-related diseases, parasitoproteomics, forensic, and ecotoxicology. Additionally, in situ proteome imaging may help to elucidate the physiological and pathological mechanisms involved in developmental biology, reproductive research, amyloidogenesis, tumorigenesis, wound healing, neural network regeneration, matrix mineralization, apoptosis and oxidative stress, pain tolerance, cell cycle and transformation under oncogenic stress, tumor heterogeneity, behavior and aggressiveness, drugs bioaccumulation and biotransformation, organism's reaction against environmental penetrating xenobiotics, immune signaling, assessment of integrity and functionality of tissue barriers, behavioral biology, and molecular origins of diseases. MALDI MSI is certainly a valuable tool for personalized medicine and "Eco-Evo-Devo" integrative biology in the current context of global environmental challenges.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| |
Collapse
|
41
|
Helk T, Zürch M, Spielmann C. Perspective: Towards single shot time-resolved microscopy using short wavelength table-top light sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:010902. [PMID: 30868083 PMCID: PMC6404932 DOI: 10.1063/1.5082686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/14/2019] [Indexed: 05/08/2023]
Abstract
Time-resolved imaging allows revealing the interaction mechanisms in the microcosm of both inorganic and biological objects. While X-ray microscopy has proven its advantages for resolving objects beyond what can be achieved using optical microscopes, dynamic studies using full-field imaging at the nanometer scale are still in their infancy. In this perspective, we present the current state of the art techniques for full-field imaging in the extreme-ultraviolet- and soft X-ray-regime which are suitable for single exposure applications as they are paramount for studying dynamics in nanoscale systems. We evaluate the performance of currently available table-top sources, with special emphasis on applications, photon flux, and coherence. Examples for applications of single shot imaging in physics, biology, and industrial applications are discussed.
Collapse
|
42
|
Miklosi AG, Del Favero G, Marko D, Harkany T, Lubec G. Resolution Matters: Correlating Quantitative Proteomics and Nanoscale-Precision Microscopy for Reconstructing Synapse Identity. Proteomics 2018; 18:e1800139. [PMID: 29932496 PMCID: PMC6099515 DOI: 10.1002/pmic.201800139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Indexed: 11/25/2022]
Abstract
For more than a century, the precision at which any protein (or RNA) could be localized in living cells depends on the spatial resolution of microscopy. Light microscopy, even recently benchmarked laser-scanning microscopy, is inherently liable to the diffraction limit of visible light. Electron microscopy that had existed as the only alternative for decades is, in turn, of low throughput and sensitive to processing artefacts. Therefore, researchers have looked for alternative technologies particularly with ever-growing interest in resolving structural underpinnings of cellular heterogeneity in the human body. Computational ("in silico") predictions provided only partial solutions given the incompleteness of existing databases and erroneous assumptions on evolutionarily conserved sequence homology across species. A breakthrough that facilitates subcellular protein localization came with the introduction of "super-resolution" microscopy, which yields 20-60 nm resolution by overcoming diffraction-limited technologies. The ensuing combination of "super-resolution" microscopy with unbiased proteomics continues to produce never-before-seen gains by quantitatively addressing the distribution, interaction, turnover, and secretion of proteins in living cells. Here, we illustrate the power of this combined work flow by the example of transmembrane receptor localization at the neuronal synapse. We also discuss how dynamic analysis allows for inferences be made for cellular physiology and pathobiology.
Collapse
Affiliation(s)
- Andras Gabor Miklosi
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaA‐1090,Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaViennaA‐1090Austria
| | - Doris Marko
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaViennaA‐1090Austria
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaA‐1090,Austria
- Department of NeuroscienceKarolinska InstitutetSE‐17177StockholmSweden
| | - Gert Lubec
- Neuroproteomics LaboratoryParacelsus Medical UniversityA‐5020SalzburgAustria
| |
Collapse
|
43
|
Beliveau BJ, Boettiger AN, Nir G, Bintu B, Yin P, Zhuang X, Wu CT. In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT. Methods Mol Biol 2018; 1663:231-252. [PMID: 28924672 DOI: 10.1007/978-1-4939-7265-4_19] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OligoSTORM and OligoDNA-PAINT meld the Oligopaint technology for fluorescent in situ hybridization (FISH) with, respectively, Stochastic Optical Reconstruction Microscopy (STORM) and DNA-based Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) to enable in situ single-molecule super-resolution imaging of nucleic acids. Both strategies enable ≤20 nm resolution and are appropriate for imaging nanoscale features of the genomes of a wide range of species, including human, mouse, and fruit fly (Drosophila).
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Alistair N Boettiger
- Howard Hughes Medical Institute, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Guy Nir
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Rosenthal K, Oehling V, Dusny C, Schmid A. Beyond the bulk: disclosing the life of single microbial cells. FEMS Microbiol Rev 2017; 41:751-780. [PMID: 29029257 PMCID: PMC5812503 DOI: 10.1093/femsre/fux044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/08/2017] [Indexed: 01/08/2023] Open
Abstract
Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
Collapse
Affiliation(s)
- Katrin Rosenthal
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Verena Oehling
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- Laboratory of Chemical Biotechnology, Department of Biochemical & Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Christian Dusny
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| |
Collapse
|
45
|
Zhang N, Khan LA, Membreno E, Jafari G, Yan S, Zhang H, Gobel V. The C. elegans Intestine As a Model for Intercellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis at the Single-cell Level: Labeling by Antibody Staining, RNAi Loss-of-function Analysis and Imaging. J Vis Exp 2017:56100. [PMID: 28994799 PMCID: PMC5628585 DOI: 10.3791/56100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Multicellular tubes, fundamental units of all internal organs, are composed of polarized epithelial or endothelial cells, with apical membranes lining the lumen and basolateral membranes contacting each other and/or the extracellular matrix. How this distinctive membrane asymmetry is established and maintained during organ morphogenesis is still an unresolved question of cell biology. This protocol describes the C. elegans intestine as a model for the analysis of polarized membrane biogenesis during tube morphogenesis, with emphasis on apical membrane and lumen biogenesis. The C. elegans twenty-cell single-layered intestinal epithelium is arranged into a simple bilaterally symmetrical tube, permitting analysis on a single-cell level. Membrane polarization occurs concomitantly with polarized cell division and migration during early embryogenesis, but de novo polarized membrane biogenesis continues throughout larval growth, when cells no longer proliferate and move. The latter setting allows one to separate subcellular changes that simultaneously mediate these different polarizing processes, difficult to distinguish in most polarity models. Apical-, basolateral membrane-, junctional-, cytoskeletal- and endomembrane components can be labeled and tracked throughout development by GFP fusion proteins, or assessed by in situ antibody staining. Together with the organism's genetic versatility, the C. elegans intestine thus provides a unique in vivo model for the visual, developmental, and molecular genetic analysis of polarized membrane and tube biogenesis. The specific methods (all standard) described here include how to: label intestinal subcellular components by antibody staining; analyze genes involved in polarized membrane biogenesis by loss-of-function studies adapted to the typically essential tubulogenesis genes; assess polarity defects during different developmental stages; interpret phenotypes by epifluorescence, differential interference contrast (DIC) and confocal microscopy; quantify visual defects. This protocol can be adapted to analyze any of the often highly conserved molecules involved in epithelial polarity, membrane biogenesis, tube and lumen morphogenesis.
Collapse
Affiliation(s)
- Nan Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School; College of Life Sciences, Jilin University
| | - Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School
| | - Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School
| | - Siyang Yan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School; Faculty of Health Sciences, University of Macau;
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital, Harvard Medical School;
| |
Collapse
|
46
|
Ma H, Xu J, Jin J, Huang Y, Liu Y. A Simple Marker-Assisted 3D Nanometer Drift Correction Method for Superresolution Microscopy. Biophys J 2017; 112:2196-2208. [PMID: 28538156 DOI: 10.1016/j.bpj.2017.04.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/15/2022] Open
Abstract
High-precision fluorescence microscopy such as superresolution imaging or single-particle tracking often requires an online drift correction method to maintain the stability of the three-dimensional (3D) position of the sample at a nanometer precision throughout the entire data acquisition process. Current online drift correction methods require modification of the existing two-dimensional (2D) fluorescence microscope with additional optics and detectors, which can be cumbersome and limit its use in many biological laboratories. Here we report a simple marker-assisted online drift correction method in which all 3D positions can be derived from fiducial markers on the coverslip of the sample on a standard 2D fluorescence microscope without additional optical components. We validate this method by tracking the long-term 3D stability of single-molecule localization microscopy at a precision of <2 and 5 nm in the lateral and axial dimension, respectively. We then provide three examples to evaluate the performance of the marker-assisted drift correction method. Finally, we give an example of a biological application of superresolution imaging of spatiotemporal alteration for a DNA replication structure with both low-abundance newly synthesized DNAs at the early onset of DNA synthesis and gradually condensed DNA structures during DNA replication. Using an isogenic breast cancer progression cell line model that recapitulates normal-like, precancerous, and tumorigenic stages, we characterize a distinction in the DNA replication process in normal, precancerous, and tumorigenic cells.
Collapse
Affiliation(s)
- Hongqiang Ma
- Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianquan Xu
- Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jingyi Jin
- Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Medicine, Tsinghua University, Haidian District, Beijing, China
| | - Yi Huang
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Yang Liu
- Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
47
|
Xu J, Ma H, Liu Y. Stochastic Optical Reconstruction Microscopy (STORM). CURRENT PROTOCOLS IN CYTOMETRY 2017; 81:12.46.1-12.46.27. [PMID: 28678417 PMCID: PMC5663316 DOI: 10.1002/cpcy.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Super-resolution (SR) fluorescence microscopy, a class of optical microscopy techniques at a spatial resolution below the diffraction limit, has revolutionized the way we study biology, as recognized by the Nobel Prize in Chemistry in 2014. Stochastic optical reconstruction microscopy (STORM), a widely used SR technique, is based on the principle of single molecule localization. STORM routinely achieves a spatial resolution of 20 to 30 nm, a ten-fold improvement compared to conventional optical microscopy. Among all SR techniques, STORM offers a high spatial resolution with simple optical instrumentation and standard organic fluorescent dyes, but it is also prone to image artifacts and degraded image resolution due to improper sample preparation or imaging conditions. It requires careful optimization of all three aspects-sample preparation, image acquisition, and image reconstruction-to ensure a high-quality STORM image, which will be extensively discussed in this unit. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hongqiang Ma
- Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yang Liu
- Biomedical and Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Yi J, Manna A, Barr VA, Hong J, Neuman KC, Samelson LE. Highly Multiplexed, Super-resolution Imaging of T Cells Using madSTORM. J Vis Exp 2017. [PMID: 28671659 DOI: 10.3791/55997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Imaging heterogeneous cellular structures using single molecule localization microscopy has been hindered by inadequate localization precision and multiplexing ability. Using fluorescent nano-diamond fiducial markers, we describe the drift correction and alignment procedures required to obtain high precision in single molecule localization microscopy. In addition, a new multiplexing strategy, madSTORM, is described in which multiple molecules are targeted in the same cell using sequential binding and elution of fluorescent antibodies. madSTORM is demonstrated on an activated T cell to visualize the locations of different components within a membrane-bound, multi-protein structure called the T cell receptor microcluster. In addition, application of madSTORM as a general tool for visualization of multi-protein structures is discussed.
Collapse
Affiliation(s)
- Jason Yi
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health
| | - Asit Manna
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health
| | - Valarie A Barr
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health
| | - Jennifer Hong
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood, Institute, National Institutes of Health
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood, Institute, National Institutes of Health
| | - Lawrence E Samelson
- Laboratory of Cellular & Molecular Biology, National Cancer Institute, National Institutes of Health;
| |
Collapse
|
49
|
Prakash K. Investigating Chromatin Organisation Using Single Molecule Localisation Microscopy. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-52183-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
50
|
GEORGIADES PANTELIS, ALLAN VIKIJ, DICKINSON MARK, WAIGH THOMASA. Reduction of coherent artefacts in super-resolution fluorescence localisation microscopy. J Microsc 2016; 264:375-383. [PMID: 27541861 PMCID: PMC5132149 DOI: 10.1111/jmi.12453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 04/14/2016] [Accepted: 07/05/2016] [Indexed: 01/26/2023]
Abstract
Super-resolution localisation microscopy techniques depend on uniform illumination across the field of view, otherwise the resolution is degraded, resulting in imaging artefacts such as fringes. Lasers are currently the light source of choice for switching fluorophores in PALM/STORM methods due to their high power and narrow bandwidth. However, the high coherence of these sources often creates interference phenomena in the microscopes, with associated fringes/speckle artefacts in the images. We quantitatively demonstrate the use of a polymer membrane speckle scrambler to reduce the effect of the coherence phenomena. The effects of speckle in the illumination plane, at the camera and after software localisation of the fluorophores, were characterised. Speckle phenomena degrade the resolution of the microscope at large length scales in reconstructed images, effects that were suppressed by the speckle scrambler, but the small length scale resolution is unchanged at ∼30 nm.
Collapse
Affiliation(s)
- PANTELIS GEORGIADES
- Biological Physics, School of Physics and AstronomyThe University of ManchesterManchesterU.K.
- Faculty of Life Sciences, Michael Smith BuildingThe University of ManchesterOxford Road, ManchesterM13 9PTU.K.
| | - VIKI J. ALLAN
- Faculty of Life Sciences, Michael Smith BuildingThe University of ManchesterOxford Road, ManchesterM13 9PTU.K.
- Photon Science InstituteThe University of ManchesterOxford Road, ManchesterM13 9PLU.K.
| | - MARK DICKINSON
- Photon Science InstituteThe University of ManchesterOxford Road, ManchesterM13 9PLU.K.
| | - THOMAS A. WAIGH
- Biological Physics, School of Physics and AstronomyThe University of ManchesterManchesterU.K.
- Photon Science InstituteThe University of ManchesterOxford Road, ManchesterM13 9PLU.K.
| |
Collapse
|