1
|
Zhang T, Zhang C, Wang W, Hu S, Tian Q, Li Y, Cui L, Li L, Wang Z, Cao X, Wang D. Effects of drought stress on the secondary metabolism of Scutellaria baicalensis Georgi and the function of SbWRKY34 in drought resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109362. [PMID: 39642440 DOI: 10.1016/j.plaphy.2024.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
The pharmacological properties of the dried root of Scutellaria baicalensis Georgi, a Chinese medicinal herb, include antioxidant, antibacterial, and antiviral effects. In S. baicalensis quality assessment, concentrations of baicalin, wogonoside, baicalein, and wogonin in the root are crucial. Drought stress commonly affects the biomass and build-up of active compounds in medicinal sections of medicinal plants and thus their quality. The molecular mechanisms underlying the response of S. baicalensis to drought stress remain unexplored. To delve into the impacts of drought stress on the growth and metabolic processes of S. baicalensis, as well as to unravel the underlying molecular mechanisms. We found prolonged and intensified drought treatment causes an initial surge in its fresh weight, plant height, and stem diameter followed by a gradual slowdown, while malondialdehyde (MDA) content rises; while the fresh weight, length, superoxide dismutase (SOD), and catalase (CAT) activities peak before declining, and the root's diameter continuously narrows. In this study, flavonoid index ingredient levels in S. baicalensis initially decreased, then rose as the drought duration extended, followed by a notable post-rehydration increase in baicalin, wogonoside, and baicalein content and decrease in levels of wogonin and oroxylin A. Transcriptome sequencing and KEGG analysis revealed a significant enrichment of DEGs involved in phenylpropanoid biosynthesis and plant hormone signal transduction pathways. The expression levels of SbPAL, SbCCL, Sb4CL, SbCHI, SbFNSII, SbF6H, and SbUGT genes in the flavonoid biosynthetic pathway and PYR/PYL, PP2C, ABF, and SnRK2 genes in the abscisic acid signal transduction pathway were significantly changed. Drought responsive SbWRKY34 was selected for the subsequent investigation. SbWRKY34 showed the highest level in stems, and the encoding protein was localized in the nucleus. Overexpression of SbWRKY34 in Arabidopsis thaliana (OE-SbWRKY34 lines) resulted in increased sensitivity to drought stress, with considerably reduced MDA content and elevated SOD and CAT activities. Concurrently, the expression levels of AtCAT3, AtDREB, AtRD22, AtRD29A, and AtRD29B were significantly reduced in these lines, suggesting that SbWRKY34 functions to negatively regulate drought resistance in A. thaliana.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China; Chengdu Institute of Chinese Herbal Medicine, Chengdu, 610016, China
| | - Caijuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Wentao Wang
- University of Chinese Academy of Science, Beijing, 100049, China; Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Suying Hu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China; Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Qian Tian
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Yunyun Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Langjun Cui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Lin Li
- Taiyuan University, Taiyuan, 030032, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
2
|
Liu NF, Enomoto M, Marshall CB, Ikura M. Reconstitution and characterization of BRAF in complex with 14-3-3 and KRAS4B on nanodiscs. Protein Sci 2024; 33:e5016. [PMID: 38747381 PMCID: PMC11094772 DOI: 10.1002/pro.5016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024]
Abstract
RAF kinases are key components of the RAS-MAPK signaling pathway, which drives cell growth and is frequently overactivated in cancer. Upstream signaling activates the small GTPase RAS, which recruits RAF to the cell membrane, driving a transition of the latter from an auto-inhibited monomeric conformation to an active dimer. Despite recent progress, mechanistic details underlying RAF activation remain unclear, particularly the role of RAS and the membrane in mediating this conformational rearrangement of RAF together with 14-3-3 to permit RAF kinase domain dimerization. Here, we reconstituted an active complex of dimeric BRAF, a 14-3-3 dimer and two KRAS4B on a nanodisc bilayer and verified that its assembly is GTP-dependent. Biolayer interferometry (BLI) was used to compare the binding affinities of monomeric versus dimeric full-length BRAF:14-3-3 complexes for KRAS4B-conjugated nanodiscs (RAS-ND) and to investigate the effects of membrane lipid composition and spatial density of KRAS4B on binding. 1,2-Dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) and higher KRAS4B density enhanced the interaction of BRAF:14-3-3 with RAS-ND to different degrees depending on BRAF oligomeric state. We utilized our reconstituted system to dissect the effects of KRAS4B and the membrane on the kinase activity of monomeric and dimeric BRAF:14-3-3 complexes, finding that KRAS4B or nanodiscs alone were insufficient to stimulate activity, whereas RAS-ND increased activity of both states of BRAF. The reconstituted assembly of full-length BRAF with 14-3-3 and KRAS on a cell-free, defined lipid bilayer offers a more holistic biophysical perspective to probe regulation of this multimeric signaling complex at the membrane surface.
Collapse
Affiliation(s)
- Ningdi F. Liu
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Masahiro Enomoto
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
3
|
Guo L, Yang G. Pioneering DNA assembling techniques and their applications in eukaryotic microalgae. Biotechnol Adv 2024; 70:108301. [PMID: 38101551 DOI: 10.1016/j.biotechadv.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Assembling DNA fragments is a fundamental manipulation of cloning microalgal genes and carrying out microalgal synthetic biological studies. From the earliest DNA recombination to current trait and metabolic pathway engineering, we are always accompanied by homology-based DNA assembling. The improvement and modification of pioneering DNA assembling techniques and the combinational applications of the available assembling techniques have diversified and complicated the literature environment and aggravated our identification of the core and pioneering methodologies. Identifying the core assembling methodologies and using them appropriately and flourishing them even are important for researchers. A group of microalgae have been evolving as the models for both industrial applications and biological studies. DNA assembling requires researchers to know the methods available and their improvements and evolvements. In this review, we summarized the pioneering (core; leading) DNA assembling techniques developed previously, extended these techniques to their modifications, improvements and their combinations, and highlighted their applications in eukaryotic microalgae. We predicted that the gene(s) will be assembled into a functional cluster (e.g., those involving in a metabolic pathway, and stacked on normal microalgal chromosomes, their artificial episomes and looming artificial chromosomes. It should be particularly pointed out that the techniques mentioned in this review are classified according to the strategy used to assemble the final construct.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; MoE Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Zhao Z, Brooks D, Guo Y, Geisbrecht ER. Identification of CryAB as a target of NUAK kinase activity in Drosophila muscle tissue. Genetics 2023; 225:iyad167. [PMID: 37713608 PMCID: PMC10627272 DOI: 10.1093/genetics/iyad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
Phosphorylation reactions performed by protein kinases are one of the most studied post-translational modifications within cells. Much is understood about conserved residues within protein kinase domains that perform catalysis of the phosphotransfer reaction, yet the identity of the target substrates and downstream biological effects vary widely among cells, tissues, and organisms. Here, we characterize key residues essential for NUAK kinase activity in Drosophila melanogaster myogenesis and homeostasis. Creation of a NUAK kinase-dead mutation using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 results in lethality at the embryo to larval transition, while loss of NUAK catalytic function later in development produces aggregation of the chaperone protein αB-crystallin/CryAB in muscle tissue. Yeast 2-hybrid assays demonstrate a physical interaction between NUAK and CryAB. We further show that a phospho-mimetic version of NUAK promotes the phosphorylation of CryAB and this post-translational modification occurs at 2 previously unidentified phosphosites that are conserved in the primary sequence of human CryAB. Mutation of these serine residues in D. melanogaster NUAK abolishes CryAB phosphorylation, thus, proving their necessity at the biochemical level. These studies together highlight the importance of kinase activity regulation and provide a platform to further explore muscle tissue proteostasis.
Collapse
Affiliation(s)
- Ziwei Zhao
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Yungui Guo
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Rd, Manhattan, KS 66506, USA
| |
Collapse
|
5
|
Xiao R, Sun Y, Yang S, Yang Y, Wang D, Wang Z, Zhou W. Systematic Identification and Functional Analysis of the Hypericum perforatum L. bZIP Gene Family Indicating That Overexpressed HpbZIP69 Enhances Drought Resistance. Int J Mol Sci 2023; 24:14238. [PMID: 37762543 PMCID: PMC10531856 DOI: 10.3390/ijms241814238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Basic leucine zipper (bZIP) transcription factors play significant roles in plants' growth and development processes, as well as in response to biological and abiotic stresses. Hypericum perforatum is one of the world's top three best-selling herbal medicines, mainly used to treat depression. However, there has been no systematic identification or functional analysis of the bZIP gene family in H. perforatum. In this study, 79 HpbZIP genes were identified. Based on phylogenetic analysis, the HpbZIP gene family was divided into ten groups, designated A-I and S. The physicochemical properties, gene structures, protein conserved motifs, and Gene Ontology enrichments of all HpbZIPs were systematically analyzed. The expression patterns of all genes in different tissues of H. perforatum (i.e., root, stem, leaf, and flower) were analyzed by qRT-PCR, revealing the different expression patterns of HpbZIP under abiotic stresses. The HpbZIP69 protein is localized in the nucleus. According to the results of the yeast one-hybrid (Y1H) assays, HpbZIP69 can bind to the HpASMT2 (N-acetylserotonin O-methyltransferase) gene promoter (G-box cis-element) to activate its activity. Overexpressing HpbZIP69 in Arabidopsis wild-type lines enhanced their tolerance to drought. The MDA and H2O2 contents were significantly decreased, and the activity of superoxide dismutase (SOD) was considerably increased under the drought stress. These results may aid in additional functional studies of HpbZIP transcription factors, and in cultivating drought-resistant medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (R.X.); (Y.S.); (S.Y.); (Y.Y.); (D.W.)
| | - Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (R.X.); (Y.S.); (S.Y.); (Y.Y.); (D.W.)
| |
Collapse
|
6
|
Shakoor S, Rao AQ, Ajmal S, Yasmeen A, Khan MAU, Sadaqat S, Ashraf NM, Wolter F, Pacher M, Husnain T. Multiplex Cas9-based excision of CLCuV betasatellite and DNA-A revealed reduction of viral load with asymptomatic cotton plants. PLANTA 2023; 258:79. [PMID: 37698688 DOI: 10.1007/s00425-023-04233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023]
Abstract
MAIN CONCLUSION Multiplexed Cas9-based genome editing of cotton resulted in reduction of viral load with asymptomatic cotton plants. In depth imaging of proteomic dynamics of resulting CLCuV betasatellite and DNA-A protein was also performed. The notorious cotton leaf curl virus (CLCuV), which is transmitted by the sap-sucking insect whitefly, continuously damages cotton crops. Although the application of various toxins and RNAi has shown some promise, sustained control has not been achieved. Consequently, CRISPR_Cas9 was applied by designing multiplex targets against DNA-A (AC2 and AC3) and betasatellite (βC1) of CLCuV using CRISPR direct and ligating into the destination vector of the plant using gateway ligation method. The successful ligation of targets into the destination vector was confirmed by the amplification of 1049 bp using a primer created from the promoter and target, while restriction digestion using the AflII and Asc1 enzymes determined how compact the plasmid developed and the nucleotide specificity of the plasmid was achieved through Sanger sequencing. PCR confirmed the successful introduction of plasmid into CKC-1 cotton variety. Through Sanger sequencing and correlation with the mRNA expression of DNA-A and betasatellite in genome-edited cotton plants subjected to agroinfiltration of CLCuV infectious clone, the effectiveness of knockout was established. The genome-edited cotton plants demonstrated edited efficacy of 72% for AC2 and AC3 and 90% for the (βC1) through amplicon sequencing, Molecular dynamics (MD) simulations were used to further validate the results. Higher RMSD values for the edited βC1 and AC3 proteins indicated functional loss caused by denaturation. Thus, CRISPR_Cas9 constructs can be rationally designed using high-throughput MD simulation technique. The confidence in using this technology to control plant virus and its vector was determined by the knockout efficiency and the virus inoculation assay.
Collapse
Affiliation(s)
- Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| | - Sara Ajmal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | | | - Sahar Sadaqat
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Felix Wolter
- Pacific Biosciences, Bonn, Nordrhein-Westfalen, Deutschland
| | - Michael Pacher
- CureVac Manufacturing GmbH, Tübingen, Baden-Württemberg, Deutschland
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| |
Collapse
|
7
|
Sultana S, Abdullah M, Li J, Hochstrasser M, Kachroo AH. Species-specific protein-protein interactions govern the humanization of the 20S proteasome in yeast. Genetics 2023; 225:iyad117. [PMID: 37364278 PMCID: PMC10471208 DOI: 10.1093/genetics/iyad117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Yeast and humans share thousands of genes despite a billion years of evolutionary divergence. While many human genes can functionally replace their yeast counterparts, nearly half of the tested shared genes cannot. For example, most yeast proteasome subunits are "humanizable," except subunits comprising the β-ring core, including β2c (HsPSMB7, a constitutive proteasome subunit). We developed a high-throughput pipeline to humanize yeast proteasomes by generating a large library of Hsβ2c mutants and screening them for complementation of a yeast β2 (ScPup1) knockout. Variants capable of replacing ScPup1 included (1) those impacting local protein-protein interactions (PPIs), with most affecting interactions between the β2c C-terminal tail and the adjacent β3 subunit, and (2) those affecting β2c proteolytic activity. Exchanging the full-length tail of human β2c with that of ScPup1 enabled complementation. Moreover, wild-type human β2c could replace yeast β2 if human β3 was also provided. Unexpectedly, yeast proteasomes bearing a catalytically inactive HsPSMB7-T44A variant that blocked precursor autoprocessing were viable, suggesting an intact propeptide stabilizes late assembly intermediates. In contrast, similar modifications in human β2i (HsPSMB10), an immunoproteasome subunit and the co-ortholog of yeast β2, do not enable complementation in yeast, suggesting distinct interactions are involved in human immunoproteasome core assembly. Broadly, our data reveal roles for specific PPIs governing functional replaceability across vast evolutionary distances.
Collapse
Affiliation(s)
- Sarmin Sultana
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| | - Mudabir Abdullah
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| | - Jianhui Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Aashiq H Kachroo
- Centre for Applied Synthetic Biology, Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
8
|
Zare-Mehrjerdi O, Trader G, Kirik V. Overlap extension cloning of PCR products into a Gateway-compatible plasmid vector. Biotechniques 2023. [PMID: 37424091 PMCID: PMC10388215 DOI: 10.2144/btn-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
A PCR cloning method that combines a dual selection pGATE-1 plasmid vector and an improved overlap extension cloning was developed. This efficient and cost-effective method allows for the introduction of DNA fragments into the Gateway cloning pipeline. The cloning efficiency is facilitated by a dual selection that includes the ccdB gene and gentamicin resistance. For users of the Gateway cloning system, substantial cost saving comes from eliminating BP recombination and ligation reactions to introduce DNA fragments into pDONR or pENTR vectors. Beyond the Gateway technology, this recombination-based cloning system can be used to efficiently clone PCR amplicons by adding 24-base pair adaptor sequences that are utilized by bacterial homologous recombination mechanism.
Collapse
Affiliation(s)
- Omid Zare-Mehrjerdi
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Gracie Trader
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| | - Viktor Kirik
- Illinois State University, School of Biological Sciences, Normal, IL 61790-4120, USA
| |
Collapse
|
9
|
Nawawi O, Abdullah MP, Yusuf CYL. A streamlined strategy for self-production of a commercial positive selection vector, the pJET1.2/blunt cloning vector, using common laboratory E. coli strains. 3 Biotech 2023; 13:224. [PMID: 37292140 PMCID: PMC10244300 DOI: 10.1007/s13205-023-03647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Positive selection vectors carry a lethal gene encoding a toxic product that is harmful to most laboratory E. coli strains. Previously, we reported a strategy for in-house production of a commercial positive selection vector, the pJET1.2/blunt cloning vector, using common laboratory E. coli strains. However, the strategy involves lengthy gel electrophoresis and extraction procedures to purify the linearized vector after digestion. Here, we streamlined the strategy to eliminate the gel-purification step. A uniquely designed short fragment called the Nawawi fragment was inserted into the coding sequence of the lethal gene of the pJET1.2 plasmid, resulting in the pJET1.2N plasmid that can be propagated in the E. coli strain DH5α. Digestion of the pJET1.2N plasmid with EcoRV released the Nawawi fragment, and the resulting blunt-ended pJET1.2/blunt cloning vector can be used directly for DNA cloning without prior purification. Cloning of a DNA fragment was not hindered by the Nawawi fragments carried over from the digestion step. After transformation, the pJET1.2N-derived pJET1.2/blunt cloning vector produced > 98% positive clones. The streamlined strategy accelerates the in-house production of the pJET1.2/blunt cloning vector and enables DNA cloning at a lower cost. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03647-3.
Collapse
Affiliation(s)
- Omar Nawawi
- Laboratory of Plant Genetic and Cell Biology, Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin Campus, 77300 Merlimau, Melaka Malaysia
| | - Mohd Puad Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Chong Yu Lok Yusuf
- Laboratory of Plant Genetic and Cell Biology, Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin Campus, 77300 Merlimau, Melaka Malaysia
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678000 China
| |
Collapse
|
10
|
Rodriguez Araya E, Merli ML, Cribb P, de Souza VC, Serra E. Deciphering Divergent Trypanosomatid Nuclear Complexes by Analyzing Interactomic Datasets with AlphaFold2 and Genetic Approaches. ACS Infect Dis 2023; 9:1267-1282. [PMID: 37167453 DOI: 10.1021/acsinfecdis.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acetylation signaling pathways in trypanosomatids, a group of early branching organisms, are poorly understood due to highly divergent protein sequences. To overcome this challenge, we used interactomic datasets and AlphaFold2 (AF2)-multimer to predict direct interactions and validated them using yeast two and three-hybrid assays. We focused on MORF4 related gene (MRG) domain-containing proteins and their interactions, typically found in histone acetyltransferase/deacetylase complexes. The results identified a structurally conserved complex, TcTINTIN, which is orthologous to human and yeast trimer independent of NuA4 for transcription interaction (TINTIN) complexes; and another trimeric complex involving an MRG domain, only seen in trypanosomatids. The identification of a key component of TcTINTIN, TcMRGBP, would not have been possible through traditional homology-based methods. We also conducted molecular dynamics simulations, revealing a conformational change that potentially affects its affinity for TcBDF6. The study also revealed a novel way in which an MRG domain participates in simultaneous interactions with two MRG binding proteins binding two different surfaces, a phenomenon not previously reported. Overall, this study demonstrates the potential of using AF2-processed interactomic datasets to identify protein complexes in deeply branched eukaryotes, which can be challenging to study based on sequence similarity. The findings provide new insights into the acetylation signaling pathways in trypanosomatids, specifically highlighting the importance of MRG domain-containing proteins in forming complexes, which may have important implications for understanding the biology of these organisms and developing new therapeutics. On the other hand, our validation of AF2 models for the determination of multiprotein complexes illuminates the power of using such artificial intelligence-derived tools in the future development of biology.
Collapse
Affiliation(s)
- Elvio Rodriguez Araya
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| | - Marcelo L Merli
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| | | | - Esteban Serra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Suipacha 590, CP2000 Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, CP2000 Rosario, Argentina
| |
Collapse
|
11
|
Boudra R, Patenall BL, King S, Wang D, Best SA, Ko JY, Xu S, Padilla MG, Schmults CD, Barthel SR, Lian CG, Ramsey MR. PRMT1 Inhibition Selectively Targets BNC1-Dependent Proliferation, but not Migration in Squamous Cell Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.533164. [PMID: 37034732 PMCID: PMC10081292 DOI: 10.1101/2023.03.27.533164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Squamous Cell Carcinoma (SCC) develops in stratified epithelial tissues and demonstrates frequent alterations in transcriptional regulators. We sought to discover SCC-specific transcriptional programs and identified the transcription factor Basonuclin 1 (BNC1) as highly expressed in SCC compared to other tumor types. RNA-seq and ChIP-seq analysis identified pro-proliferative genes activated by BNC1 in SCC cells and keratinocytes. Inhibition of BNC1 in SCC cells suppressed proliferation and increased migration via FRA1. In contrast, BNC1 reduction in keratinocytes caused differentiation, which was abrogated by IRF6 knockdown, leading to increased migration. Protein interactome analysis identified PRMT1 as a co-activator of BNC1-dependent proliferative genes. Inhibition of PRMT1 resulted in a dose-dependent reduction in SCC cell proliferation without increasing migration. Importantly, therapeutic inhibition of PRMT1 in SCC xenografts significantly reduced tumor size, resembling functional effects of BNC1 knockdown. Together, we identify BNC1-PRMT1 as an SCC-lineage specific transcriptional axis that promotes cancer growth, which can be therapeutically targeted to inhibit SCC tumorigenesis.
Collapse
|
12
|
Fang W, Liao C, Zhang Q. Optimized protocols for chromatin immunoprecipitation of exogenously expressed epitope-tagged proteins. STAR Protoc 2023; 4:102050. [PMID: 36853721 PMCID: PMC9876949 DOI: 10.1016/j.xpro.2023.102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Chromatin immunoprecipitation (ChIP) assay is widely used for investigating the interaction between DNA and DNA-binding proteins such as transcription factors, co-factors, or chromatin-associated proteins. However, a successful ChIP assay largely depends on the quality of a ChIP-grade primary antibody. In cases where specific antibodies are unavailable or with low binding affinity, here, we describe a tailored protocol to achieve robust and reproducible chromatin binding by expressing an exogenous epitope-tagged protein in cells, followed by ChIP assays using a tag-specific antibody. For complete details on the use and execution of this protocol, please refer to Fang et al. (2021)1 and Kidder et al. (2011).2.
Collapse
Affiliation(s)
- Wentong Fang
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
The genome editing revolution. Trends Biotechnol 2023; 41:396-409. [PMID: 36709094 DOI: 10.1016/j.tibtech.2022.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023]
Abstract
A series of spectacular scientific discoveries and technological advances in the second half of the 20th century have provided the basis for the ongoing genome editing revolution. The elucidation of structural and functional features of DNA and RNA was followed by pioneering studies on genome editing: Molecular biotechnology was born. Since then, four decades followed during which progress of scientific insights and technological methods continued at an overwhelming pace. Fundamental insights into microbial host-virus interactions led to the development of tools for genome editing using restriction enzymes or the revolutionary CRISPR-Cas technology. In this review, we provide a historical overview of milestones that led to the genome editing revolution and speculate about future trends in biotechnology.
Collapse
|
14
|
Genetic Manipulation of Mycoplasma pneumoniae. Methods Mol Biol 2023; 2646:347-357. [PMID: 36842129 DOI: 10.1007/978-1-0716-3060-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Mycoplasma pneumoniae is a small cell wall-lacking bacterium that is a common cause of bronchitis and pneumonia in humans. In addition to its clinical importance, M. pneumoniae has recently been considered a promising model organism for synthetic biology because of its small genome size and unique cell structure. At one cell pole, M. pneumoniae forms the attachment organelle that is responsible for adherence to host cells and gliding motility. The attachment organelle is a membrane protrusion and is composed of number of molecules, including adhesin and cytoskeletal proteins. Genetic manipulation techniques are key research approaches for understanding the structure and the function of this unique molecular machinery. In this chapter, standard genetic engineering methods for this species using the Tn4001 transposon vector are described.
Collapse
|
15
|
Chen LY, Wang WW, Wozniak JM, Parker CG. A heterobifunctional molecule system for targeted protein acetylation in cells. Methods Enzymol 2023; 681:287-323. [PMID: 36764762 DOI: 10.1016/bs.mie.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Protein acetylation is a vital biological process that regulates myriad cellular events. Despite its profound effects on protein function, there are limited research tools to dynamically and selectively regulate protein acetylation. To address this, we developed an acetylation tagging system, called AceTAG, to target proteins for chemically induced acetylation directly in live cells. AceTAG uses heterobifunctional molecules composed of a ligand for the lysine acetyltransferase p300/CBP and a FKBP12F36V ligand. Target proteins are genetically tagged with FKBP12F36V and brought in proximity with p300/CBP by AceTAG molecules to subsequently undergo protein-specific acetylation. Targeted acetylation of proteins in cells using AceTAG is selective, rapid, and can be modulated in a dose-dependent fashion, enabling controlled investigations of acetylated protein targets directly in cells. In this protocol, we focus on (1) generation of AceTAG constructs and cell lines, (2) in vitro characterization of AceTAG mediated ternary complex formation and cellular target engagement studies; and (3) in situ characterization of AceTAG induced acetylation of targeted proteins by immunoblotting and quantitative proteomics. The robust procedures described herein should enable the use of AceTAG to explore the roles of acetylation for a variety of protein targets.
Collapse
Affiliation(s)
- Li-Yun Chen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Wesley Wei Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Jacob M Wozniak
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
16
|
Stanković D, Csordás G, Uhlirova M. Drosophila pVALIUM10 TRiP RNAi lines cause undesired silencing of Gateway-based transgenes. Life Sci Alliance 2023; 6:e202201801. [PMID: 36446522 PMCID: PMC9711858 DOI: 10.26508/lsa.202201801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Post-transcriptional gene silencing using double-stranded RNA has revolutionized the field of functional genetics, allowing fast and easy disruption of gene function in various organisms. In Drosophila, many transgenic RNAi lines have been generated in large-scale efforts, including the Drosophila Transgenic RNAi Project (TRiP), to facilitate in vivo knockdown of virtually any Drosophila gene with spatial and temporal resolution. The available transgenic RNAi lines represent a fundamental resource for the fly community, providing an unprecedented opportunity to address a vast range of biological questions relevant to basic and biomedical research fields. However, caution should be applied regarding the efficiency and specificity of the RNAi approach. Here, we demonstrate that pVALIUM10-based RNAi lines, representing ∼13% of the total TRiP collection (1,808 of 13,410 pVALIUM TRiP-based RNAi lines), cause unintended off-target silencing of transgenes expressed from Gateway destination vectors. The silencing is mediated by targeting attB1 and attB2 sequences generated via site-specific recombination and included in the transcribed mRNA. Deleting these attB sites from the Gateway expression vector prevents silencing and restores expected transgene expression.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Gábor Csordás
- Institute of Genetics, Biological Research Centre of the Eötvös Loránd Research Network, Szeged, Hungary
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Mittelberger C, Hause B, Janik K. The 'Candidatus Phytoplasma mali' effector protein SAP11CaPm interacts with MdTCP16, a class II CYC/TB1 transcription factor that is highly expressed during phytoplasma infection. PLoS One 2022; 17:e0272467. [PMID: 36520844 PMCID: PMC9754288 DOI: 10.1371/journal.pone.0272467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
'Candidatus Phytoplasma mali', is a bacterial pathogen associated with the so-called apple proliferation disease in Malus × domestica. The pathogen manipulates its host with a set of effector proteins, among them SAP11CaPm, which shares similarity to SAP11AYWB from 'Candidatus Phytoplasma asteris'. SAP11AYWB interacts and destabilizes the class II CIN transcription factors of Arabidopsis thaliana, namely AtTCP4 and AtTCP13 as well as the class II CYC/TB1 transcription factor AtTCP18, also known as BRANCHED1 being an important factor for shoot branching. It has been shown that SAP11CaPm interacts with the Malus × domestica orthologues of AtTCP4 (MdTCP25) and AtTCP13 (MdTCP24), but an interaction with MdTCP16, the orthologue of AtTCP18, has never been proven. The aim of this study was to investigate this potential interaction and close a knowledge gap regarding the function of SAP11CaPm. A Yeast two-hybrid test and Bimolecular Fluorescence Complementation in planta revealed that SAP11CaPm interacts with MdTCP16. MdTCP16 is known to play a role in the control of the seasonal growth of perennial plants and an increase of MdTCP16 gene expression has been detected in apple leaves in autumn. In addition to this, MdTCP16 is highly expressed during phytoplasma infection. Binding of MdTCP16 by SAP11CaPm might lead to the induction of shoot proliferation and early bud break, both of which are characteristic symptoms of apple proliferation disease.
Collapse
Affiliation(s)
- Cecilia Mittelberger
- Molecular Biology and Microbiology, Group of Functional Genomics, Research Centre Laimburg, Pfatten (Vadena), South Tyrol, Italy
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Saxony-Anhalt, Germany
| | - Katrin Janik
- Molecular Biology and Microbiology, Group of Functional Genomics, Research Centre Laimburg, Pfatten (Vadena), South Tyrol, Italy
- * E-mail:
| |
Collapse
|
18
|
A Novel R2R3-MYB Transcription Factor SbMYB12 Positively Regulates Baicalin Biosynthesis in Scutellaria baicalensis Georgi. Int J Mol Sci 2022; 23:ijms232415452. [PMID: 36555123 PMCID: PMC9778813 DOI: 10.3390/ijms232415452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Scutellaria baicalensis Georgi is an annual herb from the Scutellaria genus that has been extensively used as a traditional medicine for over 2000 years in China. Baicalin and other flavonoids have been identified as the principal bioactive ingredients. The biosynthetic pathway of baicalin in S. baicalensis has been elucidated; however, the specific functions of R2R3-MYB TF, which regulates baicalin synthesis, has not been well characterized in S. baicalensis to date. Here, a S20 R2R3-MYB TF (SbMYB12), which encodes 263 amino acids with a length of 792 bp, was expressed in all tested tissues (mainly in leaves) and responded to exogenous hormone methyl jasmonate (MeJA) treatment. The overexpression of SbMYB12 significantly promoted the accumulation of flavonoids such as baicalin and wogonoside in S. baicalensis hairy roots. Furthermore, biochemical experiments revealed that SbMYB12 is a nuclear-localized transcription activator that binds to the SbCCL7-4, SbCHI-2, and SbF6H-1 promoters to activate their expression. These results illustrate that SbMYB12 positively regulates the generation of baicalin and wogonoside. In summary, this work revealed a novel S20 R2R3-MYB regulator and enhances our understanding of the transcriptional and regulatory mechanisms of baicalin biosynthesis, as well as sheds new light on metabolic engineering in S. baicalensis.
Collapse
|
19
|
Salar S, Schubot FD. Biochemical analysis of protein-protein interfaces underlying the regulation of bacterial secretion systems. Methods Enzymol 2022; 679:1-32. [PMID: 36682859 DOI: 10.1016/bs.mie.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial pathogens such as Pseudomonas aeruginosa use complex regulatory networks to tailor gene expression patterns to meet complex environmental challenges. P. aeruginosa is capable of causing both acute and chronic persistent infections, each type being characterized by distinct symptoms brought about by distinct sets of virulence mechanisms. The GacS/GacA phosphorelay system sits at the heart of a complex regulatory network that reciprocally governs the expression of virulence factors associated with either acute or chronic infections. A second non-enzymatic signaling cascade involving four proteins, ExsA, ExsC, ExsD, and ExsE is a key player in regulating the expression of the type three secretion system, an essential facilitator of acute infections. Both signaling pathways involve a remarkable array of non-canonical interactions that we sought to characterize. In the following section, we will outline several strategies, we adapted to map protein-protein interfaces and quantify the strength of biomolecular interactions by pairing complex mutational analyses with FRET binding assays and Bacterial-Two-Hybrid assays with appropriate functional assays. In the process, protocols were developed for disrupting large hydrophobic interfaces, deleting entire domains within a protein, and for mapping protein-protein interfaces formed primarily through backbone interactions.
Collapse
Affiliation(s)
- Safoura Salar
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, United States
| | - Florian D Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA, United States.
| |
Collapse
|
20
|
Singh A, Varma A, Prasad R, Porwal S. Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes. ENVIRONMENTAL RESEARCH 2022; 215:114338. [PMID: 36116499 DOI: 10.1016/j.envres.2022.114338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
The tannery industry generates a consequential threat to the environment by producing a large amount of potentially toxic metal-containing waste. Bioremediation has been a promising approach for treating potentially toxic metals, but the efficiency of remediation in microbes is one of the factors limiting their application in tanneries waste treatment. The motivation behind the present work was to explore the microbial diversity and chromate reductase genes present in the tannery effluent-contaminated soil using metagenomics approach. The use of shotgun sequencing enabled the identification of operational parameters that influence microbiome composition and their ability to reduce Chromium (Cr) concentration. The Cr concentration in Kanpur tannery effluent contaminated soil sample was 700 ppm which is many folds than the approved permissible limit by World Health Organisation (WHO) for Cr is 100 ppm. Metagenomic Deoxyribo Nucleic Acid (DNA) was extracted to explore taxonomic community structure, phylogenetic linkages, and functional profile. With a Guanine-Cytosine (GC) abundance of 54%, total of 45,163,604 high-quality filtered reads were obtained. Bacteria (83%), Archaebacteria (14%), and Viruses (3%) were discovered in the structural biodiversity. Bacteria were classified to phylum level, with Proteobacteria (52%) being the dominant population, followed by Bacteriodetes (15%), Chloroflexi (15%), Spirochaetes (7%), Thermotogae (5%), Actinobacteria (4%), and Firmicutes (1%). The OXR genes were cloned and checked for their efficiency to reduce Cr concentration. Insitu validation of OXR8 gene showed a reduction of Cr concentration from 700 ppm to 24 ppm in 72 h (96.51% reduction). The results of this study suggests that there is a huge reservoir of microbes and chromate reductase genes which are unexplored yet.
Collapse
Affiliation(s)
- Ayushi Singh
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari-845401, Bihar, India.
| | - Shalini Porwal
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Noida-201301, India.
| |
Collapse
|
21
|
Vázquez-Domínguez I, Duijkers L, Fadaie Z, Alaerds ECW, Post MA, van Oosten EM, O’Gorman L, Kwint M, Koolen L, Hoogendoorn ADM, Kroes HY, Gilissen C, Cremers FPM, Collin RWJ, Roosing S, Garanto A. The Predicted Splicing Variant c.11+5G>A in RPE65 Leads to a Reduction in mRNA Expression in a Cell-Specific Manner. Cells 2022; 11:3640. [PMID: 36429068 PMCID: PMC9688607 DOI: 10.3390/cells11223640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic variants in RPE65 lead to retinal diseases, causing a vision impairment. In this work, we investigated the pathomechanism behind the frequent RPE65 variant, c.11+5G>A. Previous in silico predictions classified this change as a splice variant. Our prediction using novel software's suggested a 124-nt exon elongation containing a premature stop codon. This elongation was validated using midigenes-based approaches. Similar results were observed in patient-derived induced pluripotent stem cells (iPSC) and photoreceptor precursor cells. However, the splicing defect in all cases was detected at low levels and thereby does not fully explain the recessive condition of the resulting disease. Long-read sequencing discarded other rearrangements or variants that could explain the diseases. Subsequently, a more relevant model was employed: iPSC-derived retinal pigment epithelium (RPE) cells. In patient-derived iPSC-RPE cells, the expression of RPE65 was strongly reduced even after inhibiting a nonsense-mediated decay, contradicting the predicted splicing defect. Additional experiments demonstrated a cell-specific gene expression reduction due to the presence of the c.11+5G>A variant. This decrease also leads to the lack of the RPE65 protein, and differences in size and pigmentation between the patient and control iPSC-RPE. Altogether, our data suggest that the c.11+5G>A variant causes a cell-specific defect in the expression of RPE65 rather than the anticipated splicing defect which was predicted in silico.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Eef C. W. Alaerds
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Merel A. Post
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Edwin M. van Oosten
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Luke O’Gorman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Louet Koolen
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Anita D. M. Hoogendoorn
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Hester Y. Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, Clinical Genetics, University Medical Center of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GD Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
22
|
Yasmeen A, Shakoor S, Azam S, Bakhsh A, Shahid N, Latif A, Shahid AA, Husnain T, Rao AQ. CRISPR/Cas-mediated knockdown of vacuolar invertase gene expression lowers the cold-induced sweetening in potatoes. PLANTA 2022; 256:107. [PMID: 36342558 DOI: 10.1007/s00425-022-04022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
VInv gene editing in potato using CRISPR/Cas9 resulted in knockdown of expression and a lower VInv enzymatic activity resulting in a decrease in post-harvest cold-storage sugars formation and sweetening in potatoes. CRISPR-Cas9-mediated knockdown of vacuolar invertase (VInv) gene was carried out using two sgRNAs in local cultivar of potato plants. The transformation efficiency of potatoes was found to be 11.7%. The primary transformants were screened through PCR, Sanger sequencing, digital PCR, and ELISA. The overall editing efficacy was determined to be 25.6% as per TIDE analysis. The amplicon sequencing data showed maximum indel frequency for potato plant T12 (14.3%) resulting in 6.2% gene knockout and 6% frame shift. While for plant B4, the maximum indel frequency of 2.0% was found which resulted in 4.4% knockout and 4% frameshift as analyzed by Geneious. The qRT-PCR data revealed that mRNA expression of VInv gene was reduced 90-99-fold in edited potato plants when compared to the non-edited control potato plant. Following cold storage, chips analysis of potatoes proved B4 and T12 as best lines. Reducing sugars' analysis by titration method determined fivefold reduction in percentage of reducing sugars in tubers of B4 transgenic lines as compared to the control. Physiologically genome-edited potatoes behaved like their conventional counterpart. This is first successful report of knockdown of potato VInv gene in Pakistan that addressed cold-induced sweetening resulting in minimum accumulation of reducing sugars in genome edited tubers.
Collapse
Affiliation(s)
- Aneela Yasmeen
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Sana Shakoor
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Saira Azam
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Naila Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ayesha Latif
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Ahmad Ali Shahid
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan
| | - Abdul Qayyum Rao
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, 53700, Pakistan.
| |
Collapse
|
23
|
Nawawi O, Abdullah MP, Yusuf CYL. A strategy for in-house production of a positive selection cloning vector from the commercial pJET1.2/blunt cloning vector at minimal cost. 3 Biotech 2022; 12:216. [PMID: 35965659 PMCID: PMC9363543 DOI: 10.1007/s13205-022-03289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
Key message In-house production of a positive selection cloning vector could be simple, efficient and low cost. Abstract DNA cloning technology requires a vector to harbour a gene of interest for multiplication of the gene in bacterial cells. Positive selection vector has become a popular type of cloning vector due to the simplicity and efficiency of the positive selection system. Due to the presence of a toxic gene, propagation of a commercial positive selection vector in common laboratory E. coli strains is infeasible. This study demonstrated a strategy for propagation and in-house production of a commercial positive selection vector, i.e., pJET1.2/blunt cloning vector, at low cost. This was done by insertion of a specially designed DNA fragment (MCS fragment), which can be easily removed later by EcoRV digestion, into the pJET1.2/blunt cloning vector to allow the propagation of the modified plasmid (termed pJET1.2M) in common E. coli strains. Removal of the MCS fragment from the pJET1.2M plasmid produces the pJET1.2/blunt cloning vector ready for gene cloning. The self-made pJET1.2/blunt cloning vector exhibited a cloning efficiency of 100%. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03289-x.
Collapse
Affiliation(s)
- Omar Nawawi
- Laboratory of Plant Genetic and Cell Biology, Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin Campus, 77300 Merlimau, Melaka, Malaysia
| | - Mohd Puad Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Chong Yu Lok Yusuf
- Laboratory of Plant Genetic and Cell Biology, Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, Jasin Campus, 77300 Merlimau, Melaka, Malaysia
| |
Collapse
|
24
|
Systematic Analysis and Functional Characterization of R2R3-MYB Genes in Scutellaria baicalensis Georgi. Int J Mol Sci 2022; 23:ijms23169342. [PMID: 36012606 PMCID: PMC9408826 DOI: 10.3390/ijms23169342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
R2R3-MYB transcription factors participate in multiple critical biological processes, particularly as relates to the regulation of secondary metabolites. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine and possesses various bioactive attributes including anti-inflammation, anti-HIV, and anti-COVID-19 properties due to its flavonoids. In the current study, a total of 95 R2R3-MYB genes were identified in S. baicalensis and classified into 34 subgroups, as supported by similar exon–intron structures and conserved motifs. Among them, 93 R2R3-SbMYBs were mapped onto nine chromosomes. Collinear analysis revealed that segmental duplications were primarily responsible for driving the evolution and expansion of the R2R3-SbMYB gene family. Synteny analyses showed that the ortholog numbers of the R2R3-MYB genes between S. baicalensis and other dicotyledons had a higher proportion compared to that which is found from the monocotyledons. RNA-seq data indicated that the expression patterns of R2R3-SbMYBs in different tissues were different. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that 36 R2R3-SbMYBs from different subgroups exhibited specific expression profiles under various conditions, including hormone stimuli treatments (methyl jasmonate and abscisic acid) and abiotic stresses (drought and cold shock treatments). Further investigation revealed that SbMYB18/32/46/60/70/74 localized in the nucleus, and SbMYB18/32/60/70 possessed transcriptional activation activity, implying their potential roles in the regulatory mechanisms of various biological processes. This study provides a comprehensive understanding of the R2R3-SbMYBs gene family and lays the foundation for further investigation of their biological function.
Collapse
|
25
|
Satou C, Neve RL, Oyibo HK, Zmarz P, Huang KH, Arn Bouldoires E, Mori T, Higashijima SI, Keller GB, Friedrich RW. A viral toolbox for conditional and transneuronal gene expression in zebrafish. eLife 2022; 11:e77153. [PMID: 35866706 PMCID: PMC9307271 DOI: 10.7554/elife.77153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
The zebrafish is an important model in systems neuroscience but viral tools to dissect the structure and function of neuronal circuitry are not established. We developed methods for efficient gene transfer and retrograde tracing in adult and larval zebrafish by herpes simplex viruses (HSV1). HSV1 was combined with the Gal4/UAS system to target cell types with high spatial, temporal, and molecular specificity. We also established methods for efficient transneuronal tracing by modified rabies viruses in zebrafish. We demonstrate that HSV1 and rabies viruses can be used to visualize and manipulate genetically or anatomically identified neurons within and across different brain areas of adult and larval zebrafish. An expandable library of viruses is provided to express fluorescent proteins, calcium indicators, optogenetic probes, toxins and other molecular tools. This toolbox creates new opportunities to interrogate neuronal circuits in zebrafish through combinations of genetic and viral approaches.
Collapse
Affiliation(s)
- Chie Satou
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General HospitalCambridgeUnited States
| | - Hassana K Oyibo
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Pawel Zmarz
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Kuo-Hua Huang
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Takuma Mori
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu UniversityNaganoJapan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic BiologyOkazakiJapan
- Graduate University for Advanced StudiesOkazakiJapan
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
26
|
Kim E, Kim YJ, Ji Z, Kang JM, Wirianto M, Paudel KR, Smith JA, Ono K, Kim JA, Eckel-Mahan K, Zhou X, Lee HK, Yoo JY, Yoo SH, Chen Z. ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer. Cell Death Dis 2022; 13:374. [PMID: 35440077 PMCID: PMC9018867 DOI: 10.1038/s41419-022-04826-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/19/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by poor response to standard therapies and therefore unfavorable clinical outcomes. Better understanding of TNBC and new therapeutic strategies are urgently needed. ROR nuclear receptors are multifunctional transcription factors with important roles in circadian pathways and other processes including immunity and tumorigenesis. Nobiletin (NOB) is a natural compound known to display anticancer effects, and our previous studies showed that NOB activates RORs to enhance circadian rhythms and promote physiological fitness in mice. Here, we identified several TNBC cell lines being sensitive to NOB, by itself or in combination. Cell and xenograft experiments showed that NOB significantly inhibited TNBC cell proliferation and motility in vitro and in vivo. ROR loss- and gain-of-function studies showed concordant effects of the NOB–ROR axis on MDA-MB-231 cell growth. Mechanistically, we found that NOB activates ROR binding to the ROR response elements (RRE) of the IκBα promoter, and NOB strongly inhibited p65 nuclear translocation. Consistent with transcriptomic analysis indicating cancer and NF-κB signaling as major pathways altered by NOB, p65-inducible expression abolished NOB effects, illustrating a requisite role of NF-κB suppression mediating the anti-TNBC effect of NOB. Finally, in vivo mouse xenograft studies showed that NOB enhanced the antitumor efficacy in mammary fat pad implanted TNBC, as a single agent or in combination with the chemotherapy agent Docetaxel. Together, our study highlights an anti-TNBC mechanism of ROR-NOB via suppression of NF-κB signaling, suggesting novel preventive and chemotherapeutic strategies against this devastating disease. ![]()
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Yoon-Jin Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Zhiwei Ji
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Keshav Raj Paudel
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Joshua A Smith
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Jin-Ah Kim
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Hyun Kyoung Lee
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA.
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Plavec TV, Ključevšek T, Berlec A. Introduction of Modified BglBrick System in Lactococcus lactis for Straightforward Assembly of Multiple Gene Cassettes. Front Bioeng Biotechnol 2021; 9:797521. [PMID: 34957084 PMCID: PMC8703077 DOI: 10.3389/fbioe.2021.797521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Genetic modification of lactic acid bacteria is an evolving and highly relevant field of research that allows the engineered bacteria to be equipped with the desired functions through the controlled expression of the recombinant protein. Novel genetic engineering techniques offer the advantage of being faster, easier and more efficient in incorporating modifications to the original bacterial strain. Here, we have developed a modified BglBrick system, originally introduced in Escherichia coli and optimized it for the lactic acid bacterium Lactococcus lactis. Six different expression cassettes, encoding model proteins, were assembled in different order as parts of a modified BglBrick system in a novel plasmid pNBBX. All cassettes included nisin promoter, protein encoding gene and transcription terminator. We demonstrated successful intracellular expression of the two fluorescent proteins and display of the four protein binders on the bacterial surface. These were expressed either alone or concomitantly, in combinations of three model proteins. Thus, a modified BglBrick system developed herein enables simple and modular construction of multigene plasmids and controlled simultaneous expression of three proteins in L. lactis.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tim Ključevšek
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
28
|
Brzáčová Z, Peťková M, Veljačiková K, Zajičková T, Tomáška Ľ. Reconstruction of human genome evolution in yeast: an educational primer for use with "systematic humanization of the yeast cytoskeleton discerns functionally replaceable from divergent human genes". Genetics 2021; 219:6380399. [PMID: 34849890 DOI: 10.1093/genetics/iyab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
The evolution of eukaryotic organisms starting with the last eukaryotic common ancestor was accompanied by lineage-specific expansion of gene families. A paper by Garge et al. provides an excellent opportunity to have students explore how expansion of gene families via gene duplication results in protein specialization, in this case in the context of eukaryotic cytoskeletal organization . The authors tested hypotheses about conserved protein function by systematic "humanization" of the yeast cytoskeletal components while employing a wide variety of methodological approaches. We outline several exercises to promote students' ability to explore the genomic databases, perform bioinformatic analyses, design experiments for functional analysis of human genes in yeast and critically interpret results to address both specific and general questions.
Collapse
Affiliation(s)
- Zuzana Brzáčová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Mária Peťková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Katarína Veljačiková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Terézia Zajičková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava 842 15, Slovakia
| |
Collapse
|
29
|
Leitão ADG, Rudolffi-Soto P, Chappard A, Bhumkar A, Lau D, Hunter DJB, Gambin Y, Sierecki E. Selectivity of Lewy body protein interactions along the aggregation pathway of α-synuclein. Commun Biol 2021; 4:1124. [PMID: 34556785 PMCID: PMC8460662 DOI: 10.1038/s42003-021-02624-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The aggregation of alpha-synuclein (α-SYN) follows a cascade of oligomeric, prefibrillar and fibrillar forms, culminating in the formation of Lewy Bodies (LB), the pathological hallmarks of Parkinson's Disease. Although LB contain over 70 proteins, the potential for interactions along the aggregation pathway of α-SYN is unknown. Here we propose a map of interactions of 65 proteins against different species of α-SYN. We measured binding to monomeric α-SYN using AlphaScreen, a sensitive nano-bead luminescence assay for detection of protein interactions. To access oligomeric species, we used the pathological mutants of α-SYN (A30P, G51D and A53T) which form oligomers with distinct properties. Finally, we generated amyloid fibrils from recombinant α-SYN. Binding to oligomers and fibrils was measured by two-color coincidence detection (TCCD) on a single molecule spectroscopy setup. Overall, we demonstrate that LB components are recruited to specific steps in the aggregation of α-SYN, uncovering future targets to modulate aggregation in synucleinopathies.
Collapse
Affiliation(s)
- André D G Leitão
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Paulina Rudolffi-Soto
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Alexandre Chappard
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- School of Chemistry, The University of Edinburgh, Edinburgh, UK
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dominic J B Hunter
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Green MR, Sambrook J. A Guide to Cloning the Products of Polymerase Chain Reactions. Cold Spring Harb Protoc 2021; 2021:2021/9/pdb.top101345. [PMID: 34470865 DOI: 10.1101/pdb.top101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This introduction outlines various methods to clone amplified DNAs and to facilitate the construction of complex multicomponent genetic units. Because of the ease with which the termini of amplified DNAs can be tailored by polymerase chain reaction (PCR), many of the methods outlined here use PCR not only to synthesize DNAs but also to link them together into purpose-designed constructs. The most recent refinements however have been the development of modular genetic units that can be harnessed to target DNAs not by PCR but by site-specific recombination enzymes.
Collapse
|
31
|
SmSPL6 Induces Phenolic Acid Biosynthesis and Affects Root Development in Salvia miltiorrhiza. Int J Mol Sci 2021; 22:ijms22157895. [PMID: 34360660 PMCID: PMC8348295 DOI: 10.3390/ijms22157895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza is a renowned model medicinal plant species for which 15 SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family genes have been identified; however, the specific functions of SmSPLs have not been well characterized as of yet. For this study, the expression patterns of SmSPL6 were determined through its responses to treatments of exogenous hormones, including indole acetic acid (IAA), gibberellic acid (GA3), methyl jasmonic acid (MeJA), and abscisic acid (ABA). To characterize its functionality, we obtained SmSPL6-ovexpressed transgenic S. miltiorrhiza plants and found that overexpressed SmSPL6 promoted the accumulation of phenolic acids and repressed the biosynthesis of anthocyanin. Meanwhile, the root lengths of the SmSPL6-overexpressed lines were significantly longer than the control; however, both the fresh weights and lateral root numbers decreased. Further investigations indicated that SmSPL6 regulated the biosynthesis of phenolic acid by directly binding to the promoter regions of the enzyme genes Sm4CL9 and SmCYP98A14 and activated their expression. We concluded that SmSPL6 regulates not only the biosynthesis of phenolic acids, but also the development of roots in S. miltiorrhiza.
Collapse
|
32
|
Ali R, Al-Atrsh F, Al-Mariri A. Create of a DNA fragments of Brucella melitensis by splicing overlap extension used in gateway recombination. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Putscher E, Hecker M, Fitzner B, Lorenz P, Zettl UK. Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress. Int J Mol Sci 2021; 22:5154. [PMID: 34068052 PMCID: PMC8152502 DOI: 10.3390/ijms22105154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Splicing is an important RNA processing step. Genetic variations can alter the splicing process and thereby contribute to the development of various diseases. Alterations of the splicing pattern can be examined by gene expression analyses, by computational tools for predicting the effects of genetic variants on splicing, and by splicing reporter minigene assays for studying alternative splicing events under defined conditions. The minigene assay is based on transient transfection of cells with a vector containing a genomic region of interest cloned between two constitutive exons. Cloning can be accomplished by the use of restriction enzymes or by site-specific recombination using Gateway cloning. The vectors pDESTsplice and pSpliceExpress represent two minigene systems based on Gateway cloning, which are available through the Addgene plasmid repository. In this review, we describe the features of these two splicing reporter minigene systems. Moreover, we provide an overview of studies in which determinants of alternative splicing were investigated by using pDESTsplice or pSpliceExpress. The studies were reviewed with regard to the investigated splicing regulatory events and the experimental strategy to construct and perform a splicing reporter minigene assay. We further elaborate on how analyses on the regulation of RNA splicing offer promising prospects for gaining important insights into disease mechanisms.
Collapse
Affiliation(s)
- Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Schillingallee 70, 18057 Rostock, Germany;
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Street 20, 18147 Rostock, Germany; (E.P.); (B.F.); (U.K.Z.)
| |
Collapse
|
34
|
Serrano-Ron L, Cabrera J, Perez-Garcia P, Moreno-Risueno MA. Unraveling Root Development Through Single-Cell Omics and Reconstruction of Gene Regulatory Networks. FRONTIERS IN PLANT SCIENCE 2021; 12:661361. [PMID: 34017350 PMCID: PMC8129646 DOI: 10.3389/fpls.2021.661361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/25/2021] [Indexed: 05/30/2023]
Abstract
Over the last decades, research on postembryonic root development has been facilitated by "omics" technologies. Among these technologies, microarrays first, and RNA sequencing (RNA-seq) later, have provided transcriptional information on the underlying molecular processes establishing the basis of System Biology studies in roots. Cell fate specification and development have been widely studied in the primary root, which involved the identification of many cell type transcriptomes and the reconstruction of gene regulatory networks (GRN). The study of lateral root (LR) development has not been an exception. However, the molecular mechanisms regulating cell fate specification during LR formation remain largely unexplored. Recently, single-cell RNA-seq (scRNA-seq) studies have addressed the specification of tissues from stem cells in the primary root. scRNA-seq studies are anticipated to be a useful approach to decipher cell fate specification and patterning during LR formation. In this review, we address the different scRNA-seq strategies used both in plants and animals and how we could take advantage of scRNA-seq to unravel new regulatory mechanisms and reconstruct GRN. In addition, we discuss how to integrate scRNA-seq results with previous RNA-seq datasets and GRN. We also address relevant findings obtained through single-cell based studies and how LR developmental studies could be facilitated by scRNA-seq approaches and subsequent GRN inference. The use of single-cell approaches to investigate LR formation could help to decipher fundamental biological mechanisms such as cell memory, synchronization, polarization, or pluripotency.
Collapse
Affiliation(s)
| | | | | | - Miguel A. Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
35
|
Kong L, Li Z, Song Q, Li X, Luo K. Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa. Int J Mol Sci 2021; 22:ijms22073448. [PMID: 33810585 PMCID: PMC8036549 DOI: 10.3390/ijms22073448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Poplar wood is the main source of renewable biomass energy worldwide, and is also considered to be a model system for studying woody plants. The Full-length cDNA Over-eXpressing (FOX) gene hunting system is an effective method for generating gain-of-function mutants. Large numbers of novel genes have successfully been identified from many herbaceous plants according to the phenotype of gain-of-function mutants under normal or abiotic stress conditions using this system. However, the system has not been used for functional gene identification with high-throughput mutant screening in woody plants. In this study, we constructed a FOX library from the Chinese white poplar, Populus tomentosa. The poplar cDNA library was constructed into the plant expression vector pEarleyGate101 and further transformed into Arabidopsis thaliana (thale cress). We collected 1749 T1 transgenic plants identified by PCR. Of these, 593 single PCR bands from different transgenic lines were randomly selected for sequencing, and 402 diverse sequences of poplar genes were isolated. Most of these genes were involved in photosynthesis, environmental adaptation, and ribosome biogenesis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. We characterized in detail two mutant lines carrying PtoCPCa or PtoWRKY13 cDNA insertions. Phenotypic characterization showed that overexpression of these genes in A. thaliana affected trichome development or secondary cell wall (SCW) deposition, respectively. Together, the Populus-FOX-Arabidopsis library generated in our experiments will be helpful for efficient discovery of novel genes in poplar.
Collapse
Affiliation(s)
| | | | | | | | - Keming Luo
- Correspondence: ; Tel.: +86-23-6825-3021; Fax: +86-23-6825-2365
| |
Collapse
|
36
|
De Vega D, Holden N, Hedley PE, Morris J, Luna E, Newton A. Chitosan primes plant defence mechanisms against Botrytis cinerea, including expression of Avr9/Cf-9 rapidly elicited genes. PLANT, CELL & ENVIRONMENT 2021; 44:290-303. [PMID: 33094513 PMCID: PMC7821246 DOI: 10.1111/pce.13921] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/21/2020] [Accepted: 06/29/2020] [Indexed: 05/10/2023]
Abstract
Current crop protection strategies against the fungal pathogen Botrytis cinerea rely on a combination of conventional fungicides and host genetic resistance. However, due to pathogen evolution and legislation in the use of fungicides, these strategies are not sufficient to protect plants against this pathogen. Defence elicitors can stimulate plant defence mechanisms through a phenomenon known as defence priming. Priming results in a faster and/or stronger expression of resistance upon pathogen recognition by the host. This work aims to study defence priming by a commercial formulation of the elicitor chitosan. Treatments with chitosan result in induced resistance (IR) in solanaceous and brassicaceous plants. In tomato plants, enhanced resistance has been linked with priming of callose deposition and accumulation of the plant hormone jasmonic acid (JA). Large-scale transcriptomic analysis revealed that chitosan primes gene expression at early time-points after infection. In addition, two novel tomato genes with a characteristic priming profile were identified, Avr9/Cf-9 rapidly elicited protein 75 (ACRE75) and 180 (ACRE180). Transient and stable over-expression of ACRE75, ACRE180 and their Nicotiana benthamiana homologs, revealed that they are positive regulators of plant resistance against B. cinerea. This provides valuable information in the search for strategies to protect Solanaceae plants against B. cinerea.
Collapse
Affiliation(s)
| | - Nicola Holden
- The James Hutton InstituteDundeeUK
- Scotland's Rural College, Aberdeen CampusAberdeenUK
| | | | | | - Estrella Luna
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
37
|
The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase. Arch Biochem Biophys 2020; 695:108647. [DOI: 10.1016/j.abb.2020.108647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
|
38
|
Hussain SB, Shi CY, Guo LX, Du W, Bai YX, Kamran HM, Fernie AR, Liu YZ. Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5935-5947. [PMID: 32589717 DOI: 10.1093/jxb/eraa298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to evaluate the general role of the vacuolar pyrophosphatase proton pump (V-PPase) in sucrose accumulation in citrus species. First, three citrus V-PPase genes, designated CsVPP-1, CsVPP-2, and CsVPP-4, were identified in the citrus genome. CsVPP-1 and CsVPP-2 belonging to citrus type I V-PPase genes are targeted to the tonoplast, and CsVPP-4 belonging to citrus type II V-PPase genes is located in the Golgi bodies. Moreover, there was a significantly positive correlation between transcript levels of type I V-PPase genes and sucrose, rather than hexose, content in fruits of seven citrus cultivars. Drought and abscisic acid treatments significantly induced the CsVPP-1 and CsVPP-2 transcript levels, as well as the sucrose content. The overexpression of type I V-PPase genes significantly increased PPase activity, decreased pyrophosphate contents, and increased sucrose contents, whereas V-PPase inhibition produced the opposite effect in both citrus fruits and leaves. Furthermore, altering the expression levels of type I V-PPase genes significantly influenced the transcript levels of sucrose transporter genes. Taken together, this study demonstrated that CsVPP-1 and CsVPP-2 play key roles in sucrose storage in the vacuole by regulating pyrophosphate homeostasis, ultimately the sucrose biosynthesis and transcript levels of sucrose transport genes, providing a novel lead for engineering or breeding modified taste in citrus and other fruits.
Collapse
Affiliation(s)
- Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Ling-Xia Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Wei Du
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Ying-Xing Bai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Hafiz Muhammad Kamran
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
39
|
Liao L, Yang L, Xu Y, Li X, Tan G, Fu B, Duan K, Li Z, Yu D, Li C. Fusion-PCR generates attL recombination site adaptors and allows Rapid One-Step Gateway (ROG) cloning. Biochimie 2020; 174:69-73. [PMID: 32325113 DOI: 10.1016/j.biochi.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 11/20/2022]
Abstract
Gateway recombination-based cloning, which eliminates the use of restriction endonucleases and ligase, has been widely used for the construction of high-throughput (HTP) vectors. However, this approach is very expensive and its two-stage reaction process is laborious and time consuming. Therefore, we developed a Gateway cloning method that uses fusion-PCR to generate attL recombination site adaptors, and the PCR products, which can be directly cloned into destination vectors, giving rise to Rapid One-Step Gateway (ROG) Cloning. 100% of cloning efficiencies were obtained by this ROG method. This method has no BP reaction/entry clone step, thus halving the cost and time consumed. Overall, this work provides a highly efficient, rapid, low-cost method for directional recombination cloning.
Collapse
Affiliation(s)
- Libing Liao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Lushan Biotanical Garden, Chinese Academy of Science, Jiujiang, 332900, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Lu Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Yanxia Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China
| | - Guangxuan Tan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China
| | - Beibei Fu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Kelei Duan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Zhiqiang Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, 466001, China
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Lushan Biotanical Garden, Chinese Academy of Science, Jiujiang, 332900, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China.
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou, 466001, China; Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
40
|
Dächert C, Gladilin E, Binder M. Gene Expression Profiling of Different Huh7 Variants Reveals Novel Hepatitis C Virus Host Factors. Viruses 2019; 12:v12010036. [PMID: 31905685 PMCID: PMC7019296 DOI: 10.3390/v12010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic Hepatitis C virus (HCV) infection still constitutes a major global health problem with almost half a million deaths per year. To date, the human hepatoma cell line Huh7 and its derivatives is the only cell line that robustly replicates HCV. However, even different subclones and passages of this single cell line exhibit tremendous differences in HCV replication efficiency. By comparative gene expression profiling using a multi-pronged correlation analysis across eight different Huh7 variants, we identified 34 candidate host factors possibly affecting HCV permissiveness. For seven of the candidates, we could show by knock-down studies their implication in HCV replication. Notably, for at least four of them, we furthermore found that overexpression boosted HCV replication in lowly permissive Huh7 cells, most prominently for the histone-binding transcriptional repressor THAP7 and the nuclear receptor NR0B2. For NR0B2, our results suggest a finely balanced expression optimum reached in highly permissive Huh7 cells, with even higher levels leading to a nearly complete breakdown of HCV replication, likely due to a dysregulation of bile acid and cholesterol metabolism. Our unbiased expression-profiling approach, hence, led to the identification of four host cellular genes that contribute to HCV permissiveness in Huh7 cells. These findings add to an improved understanding of the molecular underpinnings of the strict host cell tropism of HCV.
Collapse
Affiliation(s)
- Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Evgeny Gladilin
- Division Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Correspondence: ; Tel.: +49-622-142-4974
| |
Collapse
|
41
|
Nogueira-López G, Padilla-Arizmendi F, Inwood S, Lyne S, Steyaert JM, Nieto-Jacobo MF, Stewart A, Mendoza-Mendoza A. TrichoGate: An Improved Vector System for a Large Scale of Functional Analysis of Trichoderma Genes. Front Microbiol 2019; 10:2794. [PMID: 31921006 PMCID: PMC6915037 DOI: 10.3389/fmicb.2019.02794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Species of the genus Trichoderma are ubiquitous in the environment and are widely used in agriculture, as biopesticides, and in the industry for the production of plant cell wall-degrading enzymes. Trichoderma represents an important genus of endophytes, and several Trichoderma species have become excellent models for the study of fungal biology and plant–microbe interactions; moreover, are exceptional biotechnological factories for the production of bioactive molecules useful in agriculture and medicine. Next-generation sequencing technology coupled with systematic construction of recombinant DNA molecules provides powerful tools that contribute to the functional analysis of Trichoderma genetics, thus allowing for a better understanding of the underlying factors determining its biology. Here, we present the creation of diverse vectors containing (i) promoter-specific vectors for Trichoderma, (ii) gene deletions (using hygromycin phosphotransferase as selection marker), (iii) protein localization (mCherry and eGFP, which were codon-optimized for Trichoderma), (iv) gene complementation (neomycin phosphotransferase) and (v) overexpression of encoding gene proteins fused to fluorescent markers, by using the Golden Gate cloning technology. Furthermore, we present the design and implementation of a binary vector for Agrobacterium-mediated transformation in Trichoderma to increase the homologous recombination rate and the generation of a novel selection marker based on carboxin resistance.
Collapse
Affiliation(s)
| | | | - Sarah Inwood
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Sarah Lyne
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Johanna M Steyaert
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Lincoln Agritech Ltd, Lincoln, New Zealand
| | - Maria Fernanda Nieto-Jacobo
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Plant & Food Research Gerald St, Lincoln, New Zealand
| | - Alison Stewart
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Foundation For Arable Research, Templeton, New Zealand
| | | |
Collapse
|
42
|
Li D, Zheng C, Zhou J, Chen B, Xu R, Yuan W, Zheng E, Liang W, Yang Y, He L, Shi J, Yan C, Wang X, Chen J. pGP-B2E, a Recombinant Compatible TA/TB-Ligation Vector for Rapid and Inexpensive Gene Cloning. Mol Biotechnol 2019; 62:56-66. [PMID: 31749084 DOI: 10.1007/s12033-019-00226-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA cloning is the basic step for different fields of life science, and many efforts have been made to simplify this procedure. In this study, we report two general purpose plasmids (pGP), pGP-XB2E and pGP-B2E, for rapid and cost-effective construct of basic clones. The BciVI and XcmI cleavage sites are designed in pGP-XB2E to test plasmid linearization efficiency. The plasmid has better linearization efficiency by using BciVI which could almost completely digest 2 μg plasmid in 10 min with only one-tenth the recommended enzyme concentration. In order to further optimize the pGP-XB2E, a new plasmid, pGP-B2E, which removed XcmI cleavage site was designed. This vector is highly efficient for cloning PCR products up to 1812 bp, and the number of colonies was about five times that of pGP-XB2E. In addition to TA cloning, blunt-end PCR products with T ended in the primer could be positively linked to the T-vector pGP-B2E without A-tailing treatment (TB cloning). Moreover, as an entry vector, pGP-B2E was also compatible for gateway recombination reaction without frameshift mutations. In general, this vector provides a universal, quick, and cost-efficient method for basic molecular cloning.
Collapse
Affiliation(s)
- Dongyue Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chao Zheng
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Plant Protection, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Bin Chen
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Rumeng Xu
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Wenxia Yuan
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ersong Zheng
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Weifang Liang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Yong Yang
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Lijuan He
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jianghua Shi
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, 315101, People's Republic of China
| | - Xuming Wang
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
| | - Jianping Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
- State Key Laboratory of Breeding Base for Zhejiang Agricultural Products Quality and Safety, MOA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, People's Republic of China.
- Institute of Plant Virology, Ningbo University, Ningbo, People's Republic of China.
| |
Collapse
|
43
|
Reece-Hoyes JS, Walhout AJM. Generating Yeast Two-Hybrid Bait Strains. Cold Spring Harb Protoc 2018; 2018:2018/7/pdb.prot094979. [PMID: 29967272 DOI: 10.1101/pdb.prot094979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Generating DNA-binding domain (DB)-bait strains for Gateway-compatible yeast two-hybrid (Y2H) screens involves three steps. The first is to generate an Entry clone containing a DNA fragment encoding the protein of interest (e.g., an open reading frame, ORF). The second is to transfer this DNA fragment from the Entry clone to the Y2H Destination vector, pDEST32. The final step is to transform this construct into the Y2H yeast strain, MaV103. This protocol takes 24-37 d plus sequence confirmation, if necessary, to complete.
Collapse
|
44
|
Reece-Hoyes JS, Walhout AJM. Gateway-Compatible Yeast One-Hybrid and Two-Hybrid Assays. Cold Spring Harb Protoc 2018; 2018:2018/7/pdb.top094953. [PMID: 29967278 DOI: 10.1101/pdb.top094953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the first section of this introduction, we provide background information for yeast two-hybrid (Y2H) assays that provide a genetic method for the identification and analysis of binary protein-protein interactions and that are complementary to biochemical methods such as immunoprecipitation. In the second section, we discuss yeast one-hybrid (Y1H) assays that provide a "gene-centered" (DNA-to-protein) genetic method to identify and study protein-DNA interactions between cis-regulatory elements and transcription factors (TFs). This method is complementary to "TF-centered" (protein-to-DNA) biochemical methods such as chromatin immunoprecipitation.
Collapse
|
45
|
Reece-Hoyes JS, Walhout AJM. Generating Yeast One-Hybrid DNA-Bait Strains. Cold Spring Harb Protoc 2018; 2018:2018/7/pdb.prot094961. [PMID: 29967271 DOI: 10.1101/pdb.prot094961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Generating DNA-bait strains for gateway-compatible yeast one-hybrid (Y1H) screens involves three steps. The first is to generate an Entry clone containing the DNA-bait of interest. Gateway cloning is used to clone larger baits, such as promoters, into pDONR-P4-P1R. (An alternative set of steps is also presented in this protocol that describes the creation of Entry clones by annealing primers and performing conventional ligation into pMW#5-a strategy best suited for smaller DNA-baits up to 100 bp.) The second is to transfer this DNA-bait from the Entry clone to the two Y1H reporter Destination vectors, pMW#2 (HIS3) and pMW#3 (LacZ). A two-step process is used because Entry clones generate a versatile resource that can be used for transfer of DNA-baits into a variety of vectors, for instance, upstream of the green fluorescent protein-encoding ORF to study spatiotemporal expression patterns. The final step is to integrate the HIS3 and LacZ reporter constructs into the genome of the Y1H yeast strain, YM4271. The entire process takes 24-32 d, plus sequence confirmation if necessary.
Collapse
|
46
|
Reece-Hoyes JS, Walhout AJM. Generating an Open Reading Frame (ORF) Entry Clone and Destination Clone. Cold Spring Harb Protoc 2018; 2018:2018/1/pdb.prot094938. [PMID: 29295905 DOI: 10.1101/pdb.prot094938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This protocol describes using the Gateway recombinatorial cloning system to create an Entry clone carrying an open reading frame (ORF) and then to transfer the ORF into a Destination vector. In this example, BP recombination is used to clone an ORF from a cDNA source into the Donor vector pDONR 221. The ORF from the resulting Entry clone is then transferred into the Destination vector pDEST-15; the product (the Destination clone) will express the ORF as an amino-terminal GST-fusion. The technique can be used as a guide for cloning any other DNA fragment of interest-a promoter sequence or 3' untranslated region (UTR), for example-with substitutions of different genetic material such as genomic DNA, att sites, and vectors as required. The series of constructions and transformations requires 9-15 d, not including time that may be required for sequence confirmation, if desired/necessary.
Collapse
|
47
|
Reece-Hoyes JS, Walhout AJM. Using Multisite LR Cloning to Generate a Destination Clone. Cold Spring Harb Protoc 2018; 2018:2018/1/pdb.prot094946. [PMID: 29295906 DOI: 10.1101/pdb.prot094946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This protocol describes using the Gateway recombinatorial cloning system to simultaneously transfer a promoter and an open reading frame (ORF) from two different Entry clones into the same Destination vector using LR enzymes. A multisite cloning reaction transfers the inserts from multiple Entry clones into a single Destination vector. This type of recombination is much less efficient than transferring a single DNA fragment; however, the variety of Destination clones that can be generated in this manner is vast. In this example protocol, we describe using pDEST-MB14 to make a Destination clone that features a promoter fragment fused upstream to an ORF that is cloned in-frame with a carboxy-terminal green fluorescent protein (GFP) moiety encoded by the plasmid backbone. This method can be used as a guide for other multisite cloning reactions.
Collapse
|