1
|
He L, Nong H, Tan J, Wu Q, Zheng R, Zhao S, Yu Q, Wang J, Liu B. Growth of 2D Cr 2 O 3 -CrN Mosaic Heterostructures with Tunable Room-Temperature Ferromagnetism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304946. [PMID: 37482950 DOI: 10.1002/adma.202304946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Indexed: 07/25/2023]
Abstract
2D magnets have generated much attention due to their potential for spintronic devices. Heterostructures of 2D magnets are interesting platforms for exploring physical phenomena and applications. However, the controlled growth of 2D room-temperature ferromagnetic heterostructures is challenging. Here, one-pot chemical vapor deposition growth of stable 2D Cr2 O3 -CrN mosaic heterostructures (MHs) is reported with a controlled ratio of components that possess robust room-temperature ferromagnetism. The 2D MHs consist of Cr2 O3 flakes with embedded CrN subdomains and the CrN:Cr2 O3 ratio can be tuned from 0% to 100% during growth. By changing the CrN:Cr2 O3 ratio, the ferromagnetism of the MHs (e.g., saturation magnetization, coercive field), which originates from the interfacial coupling between Cr2 O3 and CrN, can be controlled. Importantly, the obtained Cr2 O3 -CrN MHs are stable in air at elevated temperatures and have robust ferromagnetism with Curie temperature >400 K. This work presents a facile method for fabricating 2D MHs with tunable magnetism which will benefit high-temperature spintronics.
Collapse
Affiliation(s)
- Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Rongxu Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shilong Zhao
- School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
2
|
Shi W, Zheng J, Li Z, Wang M, Zhu Z, Zhang J, Zhang H, Chen Y, Hu F, Shen B, Chen Y, Sun J. Enhancing Interfacial Ferromagnetism and Magnetic Anisotropy of CaRuO 3 /SrTiO 3 Superlattices via Substrate Orientation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308172. [PMID: 38037707 DOI: 10.1002/smll.202308172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Artificial oxide heterostructures have provided promising platforms for the exploration of emergent quantum phases with extraordinary properties. One of the most interesting phenomena is the interfacial magnetism formed between two non-magnetic compounds. Here, a robust ferromagnetic phase emerged at the (111)-oriented heterointerface between paramagnetic CaRuO3 and diamagnetic SrTiO3 is reported. The Curie temperature is as high as ≈155 K and the saturation magnetization is as large as ≈1.3 µB per formula unit for the (111)-CaRuO3 /SrTiO3 superlattices, which are obviously superior to those of the (001)-oriented counterparts and are comparable to the typical itinerant ferromagnet SrRuO3 . A strong in-plane magnetic anisotropy with six-fold symmetry is further revealed by the anisotropic magnetoresistance measurements, presenting a large in-plane anisotropic field of 3.0-3.6 T. More importantly, the magnetic easy axis of the (111)-oriented superlattices can be effectively tuned from 〈11 2 ¯ $11\overline{2}$ 1〉 to 〈1 1 ¯ 0 $1 \bar{1}0$ 〉 directions by increasing the layer thickness of SrTiO3 . The findings demonstrate a feasible approach to enhance the interface coupling effect by varying the stacking orientation of oxide heterostructures. The tunable magnetic anisotropy also shows potential applications in low-power-consumption or exchange spring devices.
Collapse
Affiliation(s)
- Wenxiao Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengqin Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jine Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Hui Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yunzhong Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengxia Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Spintronics Institute, University of Jinan, Jinan, Shandong, 250022, China
| |
Collapse
|
3
|
Qi H, Wu W, Chen X. Ferroelectric Resistance Switching in Epitaxial BiFeO 3/La 0.7Sr 0.3MnO 3 Heterostructures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7198. [PMID: 38005127 PMCID: PMC10673057 DOI: 10.3390/ma16227198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
BiFeO3/La0.7Sr0.3MnO3 (BFO/LSMO) epitaxial heterostructures were successfully synthesized by pulsed laser deposition on (001)-oriented SrTiO3 single-crystal substrates with Au top electrodes. Stable bipolar resistive switching characteristics regulated by ferroelectric polarization reversal was observed in the Au/BFO/LSMO heterostructures. The conduction mechanism was revealed to follow the Schottky emission model, and the Schottky barriers in high-resistance and low-resistance states were estimated based on temperature-dependent current-voltage curves. Further, the observed memristive behavior was interpreted via the modulation effect on the depletion region width and the Schottky barrier height caused by ferroelectric polarization reversal, combining with the oxygen vacancies migration near the BFO/LSMO interface.
Collapse
Affiliation(s)
- Hongyan Qi
- Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, School of Physics and Mechanical & Electronical Engineering, Hubei University of Education, Wuhan 430205, China;
| | | | - Xinqi Chen
- Expert Workstation for Terahertz Technology and Advanced Energy Materials and Devices, School of Physics and Mechanical & Electronical Engineering, Hubei University of Education, Wuhan 430205, China;
| |
Collapse
|
4
|
Gao Y, Roldan MA, Qiao L, Mandrus D, Shen X, Chisholm MF, Singh DJ, Cao G. Vertical nanoscale strain-induced electronic localization in epitaxial La 2/3Sr 1/3MnO 3 films with ZrO 2 nanopillar inclusions. NANO CONVERGENCE 2023; 10:35. [PMID: 37505327 PMCID: PMC10382461 DOI: 10.1186/s40580-023-00382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Unusual electrical transport properties associated with weak or strong localization are sometimes found in disordered electronic materials. Here, we report experimental observation of a crossover of electronic behavior from weak localization to enhanced weak localization due to the spatial influence of disorder induced by ZrO2 nanopillars in (La2/3Sr1/3MnO3)1-x:(ZrO2)x (x = 0, 0.2, and 0.3) nanocomposite films. The spatial strain regions, identified by scanning transmission electron microscopy and high-resolution x-ray diffraction, induce a coexistence of two-dimentional (2D) and three-dimentional (3D) localization and switches to typical 2D localization with increasing density of ZrO2 pillars due to length scale confinement, which interestingly accords with enhancing vertically interfacial strain. Based on the excellent agreement of our experimental results with one-parameter scaling theory of localization, the enhanced weak localization exists in metal range close to the fixed point. These films provide a tunable experimental model for studying localization in particular the transition regime by appropriate choice of the second epitaxial phase.
Collapse
Affiliation(s)
- Yuze Gao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China
| | - Manuel A Roldan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6056, USA
- Departamento Fisica Aplicada III, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Liang Qiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David Mandrus
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6056, USA
| | - Xuechu Shen
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Matthew F Chisholm
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6056, USA
| | - David J Singh
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211-7010, USA
| | - Guixin Cao
- Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
- Zhejiang Laboratory, Hangzhou, 311100, China.
| |
Collapse
|
5
|
Soltan S, Macke S, Ilse SE, Pennycook T, Zhang ZL, Christiani G, Benckiser E, Schütz G, Goering E. Ferromagnetic order controlled by the magnetic interface of LaNiO 3/La 2/3Ca 1/3MnO 3 superlattices. Sci Rep 2023; 13:3847. [PMID: 36890187 PMCID: PMC9995495 DOI: 10.1038/s41598-023-30814-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Interface engineering in complex oxide superlattices is a growing field, enabling manipulation of the exceptional properties of these materials, and also providing access to new phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex charge and spin structure in a bulk paramagnetic material. We investigate a superlattice (SLs) consisting of paramagnetic LaNiO3 (LNO) and highly spin-polarized ferromagnetic La2/3Ca1/3MnO3 (LCMO), grown on SrTiO3 (001) substrate. We observed emerging magnetism in LNO through an exchange bias mechanism at the interfaces in X-ray resonant magnetic reflectivity. We find non-symmetric interface induced magnetization profiles in LNO and LCMO which we relate to a periodic complex charge and spin superstructure. High resolution scanning transmission electron microscopy images reveal that the upper and lower interfaces exhibit no significant structural variations. The different long range magnetic order emerging in LNO layers demonstrates the enormous potential of interfacial reconstruction as a tool for tailored electronic properties.
Collapse
Affiliation(s)
- S Soltan
- Physics Department, Faculty of Science, Helwan University, Helwan, Cairo, 11798, Egypt. .,Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany. .,Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - S Macke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - S E Ilse
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - T Pennycook
- EMAT, University of Antwerp Campus Groenenborger, 2020, Antwerp, Belgium.,Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Z L Zhang
- Erich-Schmid-Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, 8700, Leoben, Austria
| | - G Christiani
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - E Benckiser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - G Schütz
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - E Goering
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany.
| |
Collapse
|
6
|
Jin Q, Wang Z, Zhang Q, Yu Y, Lin S, Chen S, Qi M, Bai H, Huon A, Li Q, Wang L, Yin X, Tang CS, Wee ATS, Meng F, Zhao J, Wang JO, Guo H, Ge C, Wang C, Yan W, Zhu T, Gu L, Chambers SA, Das S, Charlton T, Fitzsimmons MR, Liu GQ, Wang S, Jin KJ, Yang H, Guo EJ. Room-Temperature Ferromagnetism at an Oxide-Nitride Interface. PHYSICAL REVIEW LETTERS 2022; 128:017202. [PMID: 35061447 DOI: 10.1103/physrevlett.128.017202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 05/28/2023]
Abstract
Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr_{2}O_{3})-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr^{3+} ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.
Collapse
Affiliation(s)
- Qiao Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yonghong Yu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengru Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingqun Qi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - He Bai
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Amanda Huon
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Qian Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Xinmao Yin
- Physics Department, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiali Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Ou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Tao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Sujit Das
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau 91767, France
| | - Timothy Charlton
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Michael R Fitzsimmons
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Gang-Qin Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shanmin Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kui-Juan Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hongxin Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
7
|
Long decay length of magnon-polarons in BiFeO 3/La 0.67Sr 0.33MnO 3 heterostructures. Nat Commun 2021; 12:7258. [PMID: 34907202 PMCID: PMC8671416 DOI: 10.1038/s41467-021-27405-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022] Open
Abstract
Magnons can transfer information in metals and insulators without Joule heating, and therefore are promising for low-power computation. The on-chip magnonics however suffers from high losses due to limited magnon decay length. In metallic thin films, it is typically on the tens of micrometre length scale. Here, we demonstrate an ultra-long magnon decay length of up to one millimetre in multiferroic/ferromagnetic BiFeO3(BFO)/La0.67Sr0.33MnO3(LSMO) heterostructures at room temperature. This decay length is attributed to a magnon-phonon hybridization and is more than two orders of magnitude longer than that of bare metallic LSMO. The long-distance modes have high group velocities of 2.5 km s-1 as detected by time-resolved Brillouin light scattering. Numerical simulations suggest that magnetoelastic coupling via the BFO/LSMO interface hybridizes phonons in BFO with magnons in LSMO to form magnon-polarons. Our results provide a solution to the long-standing issue on magnon decay lengths in metallic magnets and advance the bourgeoning field of hybrid magnonics.
Collapse
|
8
|
Chi X, Guo R, Xiong J, Ren L, Peng X, Tay BK, Chen J. Enhanced Tunneling Magnetoresistance Effect via Ferroelectric Control of Interface Electronic/Magnetic Reconstructions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56638-56644. [PMID: 34786928 DOI: 10.1021/acsami.1c15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic tunnel junctions (MTJs) with tunable tunneling magnetoresistances (TMR) have already been proven to have great potential for spintronics. Especially, when ferroelectric materials are used as insulating barriers, more novel functions of MTJs can be realized due to interface magnetoelectric coupling. Here, we demonstrate a very large ferroelectric modulation of TMR (as high as 570% in low-resistance state) in the ferroelectric/magnetic La0.5Sr0.5MnO3/BaTiO3 (LSMO/BTO) junctions and find robust interfacial electronic and magnetic reconstructions via ferroelectric polarization switching. Through electrical, magnetic, and optical measurements combined with X-ray absorption and magnetic circular dichroism, we reveal that the interfacial electronic and magnetic (ferromagnetic/antiferromagnetic phase transition) reconstructions originate from strong electromagnetic coupling between BTO and LSMO at the interface and are driven by the modulation of hole/electron doping at the interface of LSMO/BTO through ferroelectric polarization switching. As a result, the ferroelectrically controlled interface barrier height and width and spin filter effect enable a giant electrical modulation of TMR. Our results shed new light on the intrinsic mechanisms governing magnetoelectric coupling and offering a new route to enhance magnetoelectric coupling for spin control in spintronic devices.
Collapse
Affiliation(s)
- Xiao Chi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Rui Guo
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- UMI 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, 637553 Singapore
| | - Juxia Xiong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, P.R. China
| | - Lizhu Ren
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Beng Kang Tay
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- UMI 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, 637553 Singapore
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
9
|
Zhang Q, Li X, Zhu J. Direct Observation of Interface-Dependent Multidomain State in the BaTiO 3 Tunnel Barrier of a Multiferroic Tunnel Junction Memristor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43641-43647. [PMID: 34473930 DOI: 10.1021/acsami.1c11661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiferroic tunnel junctions (MFTJs), normally consisting of a four-state resistance, have been studied extensively as a potential candidate for nonvolatile memory devices. More interestingly, the MFTJs whose resistance can be tuned continuously with applied voltage were also reported recently. Since the performance of MFTJs is closely related to their interfacial structures, it is necessary to investigate MFTJs at the atomic scale. In this work, atomic-resolution HAADF, ABF, and EELS of the La0.7Sr0.3MnO3/BaTiO3/La0.7Sr0.3MnO3 MFTJ memristor have been obtained with aberration-corrected scanning transmission electron microscopy (STEM). These results demonstrate varied degree of interfacial cation intermixing at the bottom BTO/LSMO interface, which has a direct influence on the polarization of the ferroelectric barrier BTO and the electronic structure of Mn near the interfaces. We also took advantage of a simplified model to explain the relation between the interfacial behavior and polarization states, which could be a contributing factor to the transport properties of this MFTJ.
Collapse
Affiliation(s)
- Qiqi Zhang
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People's Republic of China
- Ji Hua Laboratory, Foshan 528000, People's Republic of China
| | - Xiaoguang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Physics, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230000, People's Republic of China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Si W, Jia Y, Yu P, Yu R, Zhu J. Controlling Strain Relaxation by Interface Design in Highly Lattice-Mismatched Heterostructure. NANO LETTERS 2021; 21:6867-6874. [PMID: 34382816 DOI: 10.1021/acs.nanolett.1c01938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain engineering plays an important role in tuning the microstructure and properties of heterostructures. The key to implement the strain modulation to heterostructures is controlling the strain relaxation, which is generally realized by varying the thickness of thin films or changing substrates. Here, we show that interface polarity can tailor the behavior of strain relaxation in a hexagonal manganite film, whose strain state can be tuned to different extents. Using scanning transmission electron microscopy, a reconstructed atomic layer with elongated interlayer spacing and minor in-plane rotation is observed at the interface, suggesting that the bond hierarchy at interface transits from three-dimension to two-dimension, which accounts for the strain-free heteroepitaxy. Utilizing interface polarity to control the strain relaxation highlights a conceptually opt route to optimize the strain engineering and the realization of strain-free heteroepitaxy in such highly lattice-mismatched heterostructure also provides possibility to transform more bulklike functional oxides to low dimensionality.
Collapse
Affiliation(s)
- Yang Zhang
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Ji Hua Laboratory, Foshan 528299, P.R. China
| | - Wenlong Si
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
| | - Yanli Jia
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
11
|
Liu C, Liu Y, Zhang B, Sun CJ, Lan D, Chen P, Wu X, Yang P, Yu X, Charlton T, Fitzsimmons MR, Ding J, Chen J, Chow GM. Ferroelectric Self-Polarization Controlled Magnetic Stratification and Magnetic Coupling in Ultrathin La 0.67Sr 0.33MnO 3 Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30137-30145. [PMID: 34137601 DOI: 10.1021/acsami.1c02300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiferroic oxide heterostructures consisting of ferromagnetic and ferroelectric components hold the promise for nonvolatile magnetic control via ferroelectric polarization, advantageous for the low-dissipation spintronics. Modern understanding of the magnetoelectric coupling in these systems involves structural, orbital, and magnetic reconstructions at interfaces. Previous works have long proposed polarization-dependent interfacial magnetic structures; however, direct evidence is still missing, which requires advanced characterization tools with near-atomic-scale spatial resolutions. Here, extensive polarized neutron reflectometry (PNR) studies have determined the magnetic depth profiles of PbZr0.2Ti0.8O3/La0.67Sr0.33MnO3 (PZT/LSMO) bilayers with opposite self-polarizations. When the LSMO is 2-3 nm thick, the bilayers show two magnetic transitions on cooling. However, temperature-dependent magnetization is different below the lower-temperature transition for opposite polarizations. PNR finds that the LSMO splits into two magnetic sublayers, but the inter-sublayer magnetic couplings are of opposite signs for the two polarizations. Near-edge X-ray absorption spectroscopy further shows contrasts in both the Mn valences and the Mn-O bond anisotropy between the two polarizations. This work completes the puzzle for the magnetoelectric coupling model at the PZT/LSMO interface, showing a synergic interplay among multiple degrees of freedom toward emergent functionalities at complex oxide interfaces.
Collapse
Affiliation(s)
- Chao Liu
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yaohua Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bangmin Zhang
- School of Physics, Sun Yat-Sen University, Guangzhou510275 Guangdong, China
| | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Da Lan
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Pingfan Chen
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiaohan Wu
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ping Yang
- Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603, Singapore
| | - Timothy Charlton
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael R Fitzsimmons
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Ding
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jingsheng Chen
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Gan Moog Chow
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
12
|
Xu K, Gu Y, Song C, Zhong X, Zhu J. Atomic insight into spin, charge and lattice modulations at SrFeO 3-x/SrTiO 3 interfaces. NANOSCALE 2021; 13:6066-6075. [PMID: 33616142 DOI: 10.1039/d0nr07697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel phenomena and functionalities at interfaces of oxide heterostructures are currently of great interest in a wide range of applications. At such interfaces, charge, spin, orbital and lattice ordering coexist and correlate closely, contributing to rich functional responses. By using atomically resolved imaging and spectroscopy techniques, we investigated magnetic behaviors and structural modulation at the SrFeO3-x/SrTiO3 interface. Fe/Ti element intermixing and oxygen vacancies occurred across a few unit cells at the interface. Furthermore, antiferromagnetic spin ordering of Fe with different valence states in the interface of SrFeO3-x/SrTiO3 induced uncompensated magnetic moments. Compared to the SrFeO3-x/La0.3Sr0.7Al0.65Ta0.35O3 heterojunction, the variations of charge and lattice order parameters at the SrFeO3-x/SrTiO3 interfaces were also determined by advanced electron microscopy, which provided a good understanding of the physical origin of disparate macroscopic magnetic properties, further investigated by magnetometer measurements and X-ray magnetic circular dichroism (XMCD) spectra. These studies provide comprehensive insight into the interfacial modulation of ferrite oxide, which may be useful for designing future devices in oxide electronics.
Collapse
Affiliation(s)
- Kun Xu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | | | | | | | | |
Collapse
|
13
|
Dong W, Peters JJP, Rusu D, Staniforth M, Brunier AE, Lloyd-Hughes J, Sanchez AM, Alexe M. Emergent Antipolar Phase in BiFeO 3-La 0.7Sr 0.3MnO 3 Superlattice. NANO LETTERS 2020; 20:6045-6050. [PMID: 32643949 DOI: 10.1021/acs.nanolett.0c02063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferroelectric-paraelectric superlattices show emerging new states, such as polar vortices, through the interplay and different energy scales of various thermodynamic constraints. By introducing magnetic coupling at BiFeO3-La0.7Sr0.3MnO3 interfaces epitaxially grown on SrTiO3 substrate, we find, for the first time in thin films, a sub-nanometer thick lamella-like BiFeO3. The emergent phase is characterized by an arrangement of a two unit cell thick lamella-like structure featuring antiparallel polarization, resulting an antiferroelectric-like structure typically associated with a morphotropic phase transition. The antipolar phase is embedded within a nominal R3c structure and is independent of the BiFeO3 thickness (4-30 unit cells). Moreover, the superlattice structure with the morphotropic phase demonstrates azimuth-independent second harmonic generation responses, indicating a change of overall symmetry mediated by a delicate spatial distribution of the emergent phase. This work enriches the understanding of a metastable state manipulated by thermodynamic constraints by lattice strain and magnetic coupling.
Collapse
Affiliation(s)
- Wen Dong
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Jonathan J P Peters
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Dorin Rusu
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michael Staniforth
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Alan E Brunier
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - James Lloyd-Hughes
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ana M Sanchez
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Marin Alexe
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
14
|
Jin C, Geng W, Wang L, Han W, Zheng D, Hu S, Ye M, Xu Z, Ji Y, Zhao J, Chen Z, Wang G, Tang Y, Zhu Y, Ma X, Chen L. Tuning ferroelectricity and ferromagnetism in BiFeO 3/BiMnO 3 superlattices. NANOSCALE 2020; 12:9810-9816. [PMID: 32329477 DOI: 10.1039/c9nr09670a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiferroic materials with multifunctional characteristics play a critical role in the field of microelectronics. In a perovskite oxide, ferroelectric polarization and ferromagnetism usually cannot coexist in a single-phase material at the same time. In this work, we design a superlattice structure composed of alternating BiFeO3 and BiMnO3 layers and illustrate how tuning the supercell size of epitaxial BiFeO3/BiMnO3 superlattices facilitates ferroelectric polarization while maintaining relatively strong ferromagnetism. A comprehensive investigation reveals that the enhanced ferroelectric polarization of BiMnO3 layers originates from the induction effect induced by a strong polarization field generated by the adjacent ferroelectric BiFeO3 layers. For the magnetic behavior, we consider the existence of interfacial antiferromagnetic superexchange interaction of Fe-O-Mn between BiFeO3 and BiMnO3 layers in our superlattices. This modulation effect of artificial superlattices provides a platform to accurately control the multiple order parameters in a multiferroic oxide system.
Collapse
Affiliation(s)
- Cai Jin
- School of Physics, Harbin Institute of Technology, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang N, Luo X, Han L, Zhang Z, Zhang R, Olin H, Yang Y. Structure, Performance, and Application of BiFeO 3 Nanomaterials. NANO-MICRO LETTERS 2020; 12:81. [PMID: 34138095 PMCID: PMC7770668 DOI: 10.1007/s40820-020-00420-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 05/27/2023]
Abstract
Multiferroic nanomaterials have attracted great interest due to simultaneous two or more properties such as ferroelectricity, ferromagnetism, and ferroelasticity, which can promise a broad application in multifunctional, low-power consumption, environmentally friendly devices. Bismuth ferrite (BiFeO3, BFO) exhibits both (anti)ferromagnetic and ferroelectric properties at room temperature. Thus, it has played an increasingly important role in multiferroic system. In this review, we systematically discussed the developments of BFO nanomaterials including morphology, structures, properties, and potential applications in multiferroic devices with novel functions. Even the opportunities and challenges were all analyzed and summarized. We hope this review can act as an updating and encourage more researchers to push on the development of BFO nanomaterials in the future.
Collapse
Affiliation(s)
- Nan Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xudong Luo
- School of Materials and Metallurgy, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, Liaoning, People's Republic of China
| | - Lu Han
- School of Materials and Metallurgy, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, Liaoning, People's Republic of China.
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114051, Liaoning, People's Republic of China
| | - Renyun Zhang
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Håkan Olin
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
16
|
Ramírez Camacho MC, Sánchez Valdés CF, Curiel M, Sánchez Llamazares JL, Siqueiros JM, Raymond Herrera O. Superparamagnetic state in La 0.7Sr 0.3MnO 3 thin films obtained by rf-sputtering. Sci Rep 2020; 10:2568. [PMID: 32054941 PMCID: PMC7018749 DOI: 10.1038/s41598-020-59334-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/13/2020] [Indexed: 12/03/2022] Open
Abstract
A novel superparamagnetic state has been observed in high quality La0.7Sr0.3MnO3 (LSMO) thin films directly grown by rf-sputtering on SiOx/Si(100) substrates. The films are nanostructured without grain boundaries, constituted by locally epitaxial nanoregions grown layer-by-layer with out-of-plane (012) preferential orientation, induced by the constrain of the native silicon oxide. Low magnetic field ZFC-FC magnetization curves show a cross-over from superparamagnetic to ferromagnetic state dependent of the thickness. The thicker film (140 nm) exhibits typical ferromagnetic order. The thinner films (40 and 60 nm) exhibit superparamagnetic behavior attributed to interacting ferromagnetic monodomain nanoregions with critical size, random in-plane oriented, where the inter-monodomain boundaries with surface spin-glass structure regulate the blocking of magnetization depending on the magnetic field intensity. M(H) hysteresis loops showed noticeable coercive fields in all samples, larger than those reported for LSMO. Such properties of half-metal LSMO film foresee potential integration in new Si-technology nanodevices in Spintronics.
Collapse
Affiliation(s)
- M C Ramírez Camacho
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, 22860, Ensenada, Baja California, México
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Blvd. Benito Juarez s/n, 21280, Baja California, México
| | - C F Sánchez Valdés
- División Multidisciplinaria, Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, J. J. Macías Delgado # 18100, Ciudad Juárez, 32579, Chihuahua, México
| | - M Curiel
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Blvd. Benito Juarez s/n, 21280, Baja California, México
| | - J L Sánchez Llamazares
- Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4ª sección, San Luis Potosí, 78216, México
| | - J M Siqueiros
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, 22860, Ensenada, Baja California, México
| | - O Raymond Herrera
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, 22860, Ensenada, Baja California, México.
| |
Collapse
|
17
|
Wang H, Chen J, Liu T, Zhang J, Baumgaertl K, Guo C, Li Y, Liu C, Che P, Tu S, Liu S, Gao P, Han X, Yu D, Wu M, Grundler D, Yu H. Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films. PHYSICAL REVIEW LETTERS 2020; 124:027203. [PMID: 32004033 DOI: 10.1103/physrevlett.124.027203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI), which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves. In this work, we experimentally evidence the interfacial DMI in a 7-nm-thick YIG film by measuring the nonreciprocal spin-wave propagation in terms of frequency, amplitude, and most importantly group velocities using all electrical spin-wave spectroscopy. The velocities of propagating spin waves show chirality among three vectors, i.e., the film normal direction, applied field, and spin-wave wave vector. By measuring the asymmetric group velocities, we extract a DMI constant of 16 μJ/m^{2}, which we independently confirm by Brillouin light scattering. Thickness-dependent measurements reveal that the DMI originates from the oxide interface between the YIG and garnet substrate. The interfacial DMI discovered in the ultrathin YIG films is of key importance for functional chiral magnonics as ultralow spin-wave damping can be achieved.
Collapse
Affiliation(s)
- Hanchen Wang
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China
| | - Jilei Chen
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Tao Liu
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jianyu Zhang
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China
| | - Korbinian Baumgaertl
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chenyang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuehui Li
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Chuanpu Liu
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Ping Che
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sa Tu
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Peng Gao
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Dapeng Yu
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
- Shenzhen Institute for Quantum Science and Engineering (SIQSE), and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Mingzhong Wu
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Dirk Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Microengineering (IMT), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Haiming Yu
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100191, China
| |
Collapse
|
18
|
Yin L, Mi W. Progress in BiFeO 3-based heterostructures: materials, properties and applications. NANOSCALE 2020; 12:477-523. [PMID: 31850428 DOI: 10.1039/c9nr08800h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BiFeO3-based heterostructures have attracted much attention for potential applications due to their room-temperature multiferroic properties, proper band gaps and ultrahigh ferroelectric polarization of BiFeO3, such as data storage, optical utilization in visible light regions and synapse-like function. Here, this work aims to offer a systematic review on the progress of BiFeO3-based heterostructures. In the first part, the optical, electric, magnetic, and valley properties and their interactions in BiFeO3-based heterostructures are briefly reviewed. In the second part, the morphologies of BiFeO3 and medium materials in the heterostructures are discussed. Particularly, in the third part, the physical properties and underlying mechanism in BiFeO3-based heterostructures are discussed thoroughly, such as the photovoltaic effect, electric field control of magnetism, resistance switching, and two-dimensional electron gas and valley characteristics. The fourth part illustrates the applications of BiFeO3-based heterostructures based on the materials and physical properties discussed in the second and third parts. This review also includes a future prospect, which can provide guidance for exploring novel physical properties and designing multifunctional devices.
Collapse
Affiliation(s)
- Li Yin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | | |
Collapse
|
19
|
Fu G, Li W, Cao H, Chen X, Wang S, Luo L, Wu M, Tian H, Ren Z, Han G. Polarization screening-induced epitaxial growth and interfacial magnetism of BiFeO 3/PbTiO 3nanoplates. CrystEngComm 2020. [DOI: 10.1039/c9ce01862j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-crystal BiFeO3/PbTiO3nanoplates have been synthesizedviaa hydrothermal method, where BFO films selectively grew on the negative polar surface of PTO with a saturation thickness of about 18–20 nm and a room-temperature ferromagnetism.
Collapse
|
20
|
Liu C, An F, Gharavi PSM, Lu Q, Zha J, Chen C, Wang L, Zhan X, Xu Z, Zhang Y, Qu K, Yao J, Ou Y, Zhao Z, Zhong X, Zhang D, Valanoor N, Chen L, Zhu T, Chen D, Zhai X, Gao P, Jia T, Xie S, Zhong G, Li J. Large-scale multiferroic complex oxide epitaxy with magnetically switched polarization enabled by solution processing. Natl Sci Rev 2020; 7:84-91. [PMID: 34692020 PMCID: PMC8289034 DOI: 10.1093/nsr/nwz143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/14/2022] Open
Abstract
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single-crystalline epitaxy for multiferroic (1-x)BiTi(1-y)/2Fe y Mg(1-y)/2O3-(x)CaTiO3 (BTFM-CTO) solid solution in large area, confirming its ferroelectricity at the atomic scale with strong spontaneous polarization. Careful compositional tuning leads to a bulk magnetization of 0.07 ± 0.035 μB/Fe at room temperature, enabling magnetically induced polarization switching exhibiting a large magnetoelectric coefficient of 2.7-3.0 × 10-7 s/m. This work demonstrates the great potential of solution processing in large-scale complex oxide epitaxy and establishes novel room-temperature magnetoelectric coupling in epitaxial BTFM-CTO film, making it possible to explore a much wider space of composition, phase, and structure that can be easily scaled up for industrial applications.
Collapse
Affiliation(s)
- Cong Liu
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
| | - Feng An
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Paria S M Gharavi
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qinwen Lu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junkun Zha
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chao Chen
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Liming Wang
- Dongguan Neutron Science Center, Dongguan 523803, China
| | - Xiaozhi Zhan
- Dongguan Neutron Science Center, Dongguan 523803, China
| | - Zedong Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yuan Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ke Qu
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Junxiang Yao
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
| | - Yun Ou
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
- Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhiming Zhao
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xiangli Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Dongwen Zhang
- Department of Physics, College of Science, National University of Defense Technology, Changsha 410073, China
| | - Nagarajan Valanoor
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen 518005, China
| | - Tao Zhu
- Dongguan Neutron Science Center, Dongguan 523803, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan Neutron Science Center, Dongguan 523808, China
| | - Deyang Chen
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xiaofang Zhai
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Tingting Jia
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
| | - Shuhong Xie
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Gaokuo Zhong
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
| | - Jiangyu Li
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
| |
Collapse
|
21
|
Study of band structure, transport and magnetic properties of BiFeO3–TbMnO3 composite. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Wang H, Chi X, Liu Z, Yoong H, Tao L, Xiao J, Guo R, Wang J, Dong Z, Yang P, Sun CJ, Li C, Yan X, Wang J, Chow GM, Tsymbal EY, Tian H, Chen J. Atomic-Scale Control of Magnetism at the Titanite-Manganite Interfaces. NANO LETTERS 2019; 19:3057-3065. [PMID: 30964306 DOI: 10.1021/acs.nanolett.9b00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Complex oxide thin-film heterostructures often exhibit magnetic properties different from those known for bulk constituents. This is due to the altered local structural and electronic environment at the interfaces, which affects the exchange coupling and magnetic ordering. The emergent magnetism at oxide interfaces can be controlled by ferroelectric polarization and has a strong effect on spin-dependent transport properties of oxide heterostructures, including magnetic and ferroelectric tunnel junctions. Here, using prototype La2/3Sr1/3MnO3/BaTiO3 heterostructures, we demonstrate that ferroelectric polarization of BaTiO3 controls the orbital hybridization and magnetism at heterointerfaces. We observe changes in the enhanced orbital occupancy and significant charge redistribution across the heterointerfaces, affecting the spin and orbital magnetic moments of the interfacial Mn and Ti atoms. Importantly, we find that the exchange coupling between Mn and Ti atoms across the interface is tuned by ferroelectric polarization from ferromagnetic to antiferromagnetic. Our findings provide a viable route to electrically control complex magnetic configurations at artificial multiferroic interfaces, taking a step toward low-power spintronics.
Collapse
Affiliation(s)
- Han Wang
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| | - Xiao Chi
- Department of Physics , National University of Singapore , 2 Science Drive 3 , 117542 Singapore
- Singapore Synchrotron Light Source (SSLS) , National University of Singapore , 117603 Singapore
| | - ZhongRan Liu
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - HerngYau Yoong
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| | - LingLing Tao
- Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience , University of Nebraska , Lincoln , Nebraska 68588-0299 , United States
| | - JuanXiu Xiao
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| | - Rui Guo
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| | - JingXian Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - ZhiLi Dong
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Ping Yang
- Singapore Synchrotron Light Source (SSLS) , National University of Singapore , 117603 Singapore
| | - Cheng-Jun Sun
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - ChangJian Li
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| | - XiaoBing Yan
- College of Electron and Information Engineering , Hebei University , Baoding 071002 , China
| | - John Wang
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| | - Gan Moog Chow
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience , University of Nebraska , Lincoln , Nebraska 68588-0299 , United States
| | - He Tian
- Center of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jingsheng Chen
- Department of Materials Science and Engineering , National University of Singapore , 117575 Singapore
| |
Collapse
|
23
|
Yi D, Yu P, Chen YC, Lee HH, He Q, Chu YH, Ramesh R. Tailoring Magnetoelectric Coupling in BiFeO 3 /La 0.7 Sr 0.3 MnO 3 Heterostructure through the Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806335. [PMID: 30663174 DOI: 10.1002/adma.201806335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Electric field control of magnetism ultimately opens up the possibility of reducing energy consumption of memory and logic devices. Electric control of magnetization and exchange bias are demonstrated in all-oxide heterostructures of BiFeO3 (BFO) and La0.7 Sr0.3 MnO3 (LSMO). However, the role of the polar heterointerface on magnetoelectric (ME) coupling is not fully explored. Here, the ME coupling in BFO/LSMO heterostructures with two types of interfaces, achieved by exploiting the interface engineering at the atomic scale, is investigated. It is shown that both magnetization and exchange bias are reversibly controlled by switching the ferroelectric polarization of BFO. Intriguingly, distinctly different modulation behaviors that depend on the interfacial atomic sequence are observed. These results provide new insights into the underlying physics of ME coupling in the model system. This study highlights that designing interface at the atomic scale is of general importance for functional spintronic devices.
Collapse
Affiliation(s)
- Di Yi
- Department of Materials Science and Engineering and Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Pu Yu
- State Key Laboratory for Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yi-Chun Chen
- Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hsin-Hua Lee
- Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Qing He
- Department of Physics, Durham University, Durham, DH1 3LE, UK
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering and Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
24
|
Tian S, Wang C, Zhou Y, Li X, Gao P, Wang J, Feng Y, Yao X, Ge C, He M, Bai X, Yang G, Jin K. Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO 3 Ultrathin Films via Bi Nonstoichiometry. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43792-43801. [PMID: 30474948 DOI: 10.1021/acsami.8b15703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exploring and manipulating domain configurations in ferroelectric thin films are of critical importance for the design and fabrication of ferroelectric heterostructures with a novel functional performance. In this study, BiFeO3 (BFO) ultrathin films with various Bi/Fe ratios from excess Bi to deficient Bi have been grown on (La0.7Sr0.3)MnO3 (LSMO)-covered SrTiO3 substrates by a laser molecular beam epitaxy system. Atomic force microscopy and piezoresponse force microscopy measurements show that both the surface morphology and ferroelectric polarization of the films are relevant to Bi nonstoichiometry. More significantly, a Bi-excess thin film shows an upward (from substrate to film surface) uniform ferroelectric polarization, whereas a Bi-deficient thin film exhibits a downward uniform polarization, which means the as-grown polarization of BFO thin films can be controlled by changing the Bi contents. Atomic-scale structural and chemical characterizations and second-harmonic generation measurements reveal that two different kinds of structural distortions and interface atomic configurations in the BFO/LSMO heterostructures can be induced by the change of Bi nonstoichiometry, leading to the two opposite as-grown ferroelectric polarizations. It has also been revealed that the band gap of BFO thin films can be modulated via Bi nonstoichiometry. These results demonstrate that Bi nonstoichiometry plays a key role on the ferroelectric domain states and physical properties of BFO thin films and also open a new avenue to manipulate the structure and ferroelectric domain states in BFO thin films.
Collapse
Affiliation(s)
- Shilu Tian
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Can Wang
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| | - Yong Zhou
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaomei Li
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics , Peking University , Beijing 100871 , China
| | - Jiesu Wang
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yu Feng
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xiaokang Yao
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chen Ge
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Meng He
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
| | - Xuedong Bai
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guozhen Yang
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Kuijuan Jin
- Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Songshan Lake Materials Laboratory , Dongguan , Guangdong 523808 , China
| |
Collapse
|
25
|
Xu Z, Hu S, Wu R, Wang JO, Wu T, Chen L. Strain-Enhanced Charge Transfer and Magnetism at a Manganite/Nickelate Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30803-30810. [PMID: 30130085 DOI: 10.1021/acsami.8b06949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The strain effect on charge transfer in correlated oxide La0.8Sr0.2MnO3/NdNiO3 (LSMO/NNO) heterostructures is investigated. This is achieved by carefully tailoring the strain on the two layers using various substrates. In contrast to bare LSMO films, the strain dependence of the enhanced magnetic moment of the LSMO/NNO bilayers strongly suggests that the charge transfer can be controlled via strain engineering in complex oxide heterostructures. Furthermore, our study also reveals that the coercive field, exchange bias, and conductivity are dramatically affected by the strain-modulated charge transfer in LSMO/NNO heterostructures. Our work thus points out a new path to control electronic states in oxide heterostructures to advance the use of interfaces in oxide-based electronics.
Collapse
Affiliation(s)
- Zedong Xu
- Department of Physics , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Songbai Hu
- Department of Physics , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Rui Wu
- Laboratory of Synchrotron Radiation , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100039 , China
| | - Jia-Ou Wang
- Laboratory of Synchrotron Radiation , Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100039 , China
| | - Tom Wu
- School of Materials Science and Engineering , UNSW Australia , Sydney , New South Wales 2052 , Australia
| | - Lang Chen
- Department of Physics , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
26
|
Huang BC, Yu P, Chu YH, Chang CS, Ramesh R, Dunin-Borkowski RE, Ebert P, Chiu YP. Atomically Resolved Electronic States and Correlated Magnetic Order at Termination Engineered Complex Oxide Heterointerfaces. ACS NANO 2018; 12:1089-1095. [PMID: 29384356 DOI: 10.1021/acsnano.7b06004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We map electronic states, band gaps, and interface-bound charges at termination-engineered BiFeO3/La0.7Sr0.3MnO3 interfaces using atomically resolved cross-sectional scanning tunneling microscopy. We identify a delicate interplay of different correlated physical effects and relate these to the ferroelectric and magnetic interface properties tuned by engineering the atomic layer stacking sequence at the interfaces. This study highlights the importance of a direct atomically resolved access to electronic interface states for understanding the intriguing interface properties in complex oxides.
Collapse
Affiliation(s)
- Bo-Chao Huang
- Department of Physics, National Taiwan University , Taipei 106, Taiwan
- Institute of Physics, Academia Sinica , Taipei 105, Taiwan
| | - Pu Yu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, and Collaborative Innovation Center of Quantum Matter , Beijing 100084, China
- RIKEN Center for Emergent Matter Science (CEMS) , Wako, Saitama 351-0198, Japan
| | - Y H Chu
- Institute of Physics, Academia Sinica , Taipei 105, Taiwan
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 300, Taiwan
| | | | - Ramamoorthy Ramesh
- Department of Physics, University of California , Berkeley, California 94720, United States
| | | | - Philipp Ebert
- Peter Grünberg Institut, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | - Ya-Ping Chiu
- Department of Physics, National Taiwan University , Taipei 106, Taiwan
- Institute of Physics, Academia Sinica , Taipei 105, Taiwan
| |
Collapse
|
27
|
Zhou G, Yan Z, Bai Y, Zang J, Quan Z, Qi S, Xu X. Exchange Bias Effect and Orbital Reconstruction in (001)-Oriented LaMnO 3/LaNiO 3 Superlattices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39855-39862. [PMID: 29057645 DOI: 10.1021/acsami.7b14503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Paramagnetic LaNiO3 (LNO)-based heterostructures have been attracting the attention of researches, especially since the interesting exchange bias (EB) effect has been observed in (111)-oriented LaMnO3 (LMO)/LNO superlattices (SLs). However, this effect is not expected to occur in the (001) direction SLs. In this paper, we report the observation of an unexpected EB effect in (001)-oriented (LMO)3/(LNO)t SLs. The orbits of interfacial Mn/Ni ions preferentially occupy the strain-stabilized x2 - y2 in ultrathin LNO layers [t ≤ 4 unit cells (u.c.)]. Conversely, as the LNO layer becomes thicker (t ≥ 6 u.c.), the EB effect is absent, and the orbits are reconstructed to form the 3z2 - r2 preferential occupancy. The absence of the EB in thicker LNO-based SLs is attributed to the interfacial charge transfer suppressed by orbital reconstruction as a consequence of the increasing LNO thickness. In the thinner LNO-based SLs, the larger charge transfer results in stronger localized magnetic moments for the cause of the EB effect. These results provide a useful interpretation of the relationship between macroscopic magnetic properties and the microscopic electronic structure in oxide-based heterostructures.
Collapse
Affiliation(s)
- Guowei Zhou
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology , Linfen 041004, China
| | - Zhi Yan
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004, China
| | - Yuhao Bai
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology , Linfen 041004, China
| | - Julu Zang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004, China
| | - Zhiyong Quan
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology , Linfen 041004, China
| | - Shifei Qi
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology , Linfen 041004, China
| | - Xiaohong Xu
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education , Linfen 041004, China
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology , Linfen 041004, China
| |
Collapse
|
28
|
Yi D, Lu N, Chen X, Shen S, Yu P. Engineering magnetism at functional oxides interfaces: manganites and beyond. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443004. [PMID: 28745614 DOI: 10.1088/1361-648x/aa824d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The family of transition metal oxides (TMOs) is a large class of magnetic materials that has been intensively studied due to the rich physics involved as well as the promising potential applications in next generation electronic devices. In TMOs, the spin, charge, orbital and lattice are strongly coupled, and significant advances have been achieved to engineer the magnetism by different routes that manipulate these degrees of freedom. The family of manganites is a model system of strongly correlated magnetic TMOs. In this review, using manganites thin films and the heterostructures in conjunction with other TMOs as model systems, we review the recent progress of engineering magnetism in TMOs. We first discuss the role of the lattice that includes the epitaxial strain and the interface structural coupling. Then we look into the role of charge, focusing on the interface charge modulation. Having demonstrated the static effects, we continue to review the research on dynamical control of magnetism by electric field. Next, we review recent advances in heterostructures comprised of high T c cuprate superconductors and manganites. Following that, we discuss the emergent magnetic phenomena at interfaces between 3d TMOs and 5d TMOs with strong spin-orbit coupling. Finally, we provide our outlook for prospective future directions.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials and Applied Physics Department, Stanford University, Stanford, CA 94305, United States of America
| | | | | | | | | |
Collapse
|
29
|
Zang J, Zhou G, Bai Y, Quan Z, Xu X. The Exchange Bias of LaMnO 3/LaNiO 3 Superlattices Grown along Different Orientations. Sci Rep 2017; 7:10557. [PMID: 28874786 PMCID: PMC5585352 DOI: 10.1038/s41598-017-11386-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/23/2017] [Indexed: 12/04/2022] Open
Abstract
With the goal of observing and explaining the unexpected exchange bias effect in paramagnetic LaNiO3-based superlattices, a wide range of theoretical and experimental research has been published. Within the scope of this work, we have grown high-quality epitaxial LaMnO3(n)-LaNiO3(n) (LMO/LNO) superlattices (SLs) along (001)-, (110)-, and (111)-oriented SrTiO3 substrates. The exchange bias effect is observed in all cases, regardless of growth orientation of the LMO/LNO SLs. As a result of a combination of a number of synchrotron based x-ray spectroscopy measurements, this effect is attributed to the interfacial charge transfer from Mn to Ni ions that induces localized magnetic moments to pin the ferromagnetic LMO layer. The interaction per area between interfacial Mn and Ni ions is nearly consistent and has no effect on charge transfer for different orientations. The discrepant charge transfer and orbital occupancy can be responsible for the different magnetic properties in LMO/LNO superlattices. Our experimental results present a promising advancement in understanding the origin of magnetic properties along different directions in these materials.
Collapse
Affiliation(s)
- Julu Zang
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen, 041004, China
| | - Guowei Zhou
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen, 041004, China.,Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology, Linfen, 041004, China
| | - Yuhao Bai
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology, Linfen, 041004, China
| | - Zhiyong Quan
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen, 041004, China.,Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology, Linfen, 041004, China
| | - Xiaohong Xu
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen, 041004, China. .,Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Techonology, Linfen, 041004, China.
| |
Collapse
|
30
|
Interface-induced spontaneous positive and conventional negative exchange bias effects in bilayer La 0.7Sr 0.3MnO 3/Eu 0.45Sr 0.55MnO 3 heterostructures. Sci Rep 2017; 7:6919. [PMID: 28761051 PMCID: PMC5537235 DOI: 10.1038/s41598-017-07033-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/21/2017] [Indexed: 11/25/2022] Open
Abstract
We report zero-field-cooled spontaneous-positive and field-cooled conventional-negative exchange bias effects in epitaxial bilayer composed of La0.7Sr0.3MnO3 (LSMO) with ferromagnetic (FM) and Eu0.45Sr0.55MnO3 (ESMO) with A-type antiferromagnetic (AF) heterostructures respectively. A temperature dependent magnetization study of LSMO/ESMO bilayers grown on SrTiO3 (001) manifest FM ordering (TC) of LSMO at ~320 K, charge/orbital ordering of ESMO at ~194 K and AF ordering (TN) of ESMO at ~150 K. The random field Ising model has demonstrated an interesting observation of inverse dependence of exchange bias effect on AF layer thickness due to the competition between FM-AF interface coupling and AF domain wall energy. The isothermally field induced unidirectional exchange anisotropy formed at the interface of FM-LSMO layer and the kinetically phase-arrested magnetic phase obtained from the metamagnetic AF-ESMO layer could be responsible for the spontaneous exchange bias effect. Importantly, no magnetic poling is needed, as necessary for the applications. The FM-AF interface exchange interaction has been ascribed to the AF coupling with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum {J}_{ex}\vec{{S}_{{\rm{FM}}}}\cdot \vec{{S}_{{\rm{AF}}}}$$\end{document}∑JexSFM⃗⋅SAF⃗ (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${J}_{ex}\approx {J}_{AF}$$\end{document}Jex≈JAF, coupling constant between AF spins) for the spontaneous positive hysteresis loop shift, and the field-cooled conventional exchange bias has been attributed to the ferromagnetically exchanged interface with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${J}_{ex}\approx {J}_{F}$$\end{document}Jex≈JF (coupling constant between FM spins).
Collapse
|
31
|
Wang Y, Zhao H, Zhang L, Chen J, Xing X. PbTiO3-based perovskite ferroelectric and multiferroic thin films. Phys Chem Chem Phys 2017; 19:17493-17515. [DOI: 10.1039/c7cp01347g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferroelectric thin films, especially PbTiO3-based perovskite thin films which possess robust spontaneous electrical polarization, are widely investigated and applied in various devices.
Collapse
Affiliation(s)
- Yilin Wang
- Department of Physical Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Hanqing Zhao
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- China
| | - Linxing Zhang
- Department of Physical Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Jun Chen
- Department of Physical Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Xianran Xing
- Department of Physical Chemistry
- University of Science and Technology Beijing
- Beijing 100083
- China
| |
Collapse
|
32
|
Wang JS, Jin KJ, Guo HZ, Gu JX, Wan Q, He X, Li XL, Xu XL, Yang GZ. Evolution of structural distortion in BiFeO 3 thin films probed by second-harmonic generation. Sci Rep 2016; 6:38268. [PMID: 27905565 PMCID: PMC5131282 DOI: 10.1038/srep38268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films.
Collapse
Affiliation(s)
- Jie-Su Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui-Juan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
| | - Hai-Zhong Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun-Xing Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Wan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Long Li
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiu-Lai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guo-Zhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
| |
Collapse
|
33
|
Emerging magnetism and anomalous Hall effect in iridate-manganite heterostructures. Nat Commun 2016; 7:12721. [PMID: 27596572 PMCID: PMC5025866 DOI: 10.1038/ncomms12721] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
Strong Coulomb repulsion and spin–orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials. Whilst superlattices containing thin films of 5d transition metal oxides are expected to yield strong interfacial coupling, only weak effects have been observed. Here, the authors report strong coupling between 3d SrMnO3 and 5d SrIrO3 due to the interplay of strong Coulomb and spin orbit interactions.
Collapse
|
34
|
Zheng D, Jin C, Li P, Wang L, Feng L, Mi W, Bai H. Orbital Reconstruction Enhanced Exchange Bias in La0.6Sr0.4MnO3/Orthorhombic YMnO3 Heterostructures. Sci Rep 2016; 6:24568. [PMID: 27090614 PMCID: PMC4836304 DOI: 10.1038/srep24568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/29/2016] [Indexed: 11/12/2022] Open
Abstract
The exchange bias in ferromagnetic/multiferroic heterostructures is usually considered to originate from interfacial coupling. In this work, an orbital reconstruction enhanced exchange bias was discovered. As La0.6Sr0.4MnO3 (LSMO) grown on YMnO3 (YMO) suffers a tensile strain (a > c), the doubly degenerate eg orbital splits into high energy 3z2 − r2 and low energy x2 − y2 orbitals, which makes electrons occupy the localized x2 − y2 orbital and leads to the formation of antiferromagnetic phase in LSMO. The orbital reconstruction induced antiferromagnetic phase enhances the exchange bias in the LSMO/YMO heterostructures, lightening an effective way for electric-field modulated magnetic moments in multiferroic magnetoelectric devices.
Collapse
Affiliation(s)
- Dongxing Zheng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Peng Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Liyan Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Liefeng Feng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Haili Bai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
35
|
Dynamic in situ observation of voltage-driven repeatable magnetization reversal at room temperature. Sci Rep 2016; 6:23696. [PMID: 27029464 PMCID: PMC4814776 DOI: 10.1038/srep23696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/08/2016] [Indexed: 11/08/2022] Open
Abstract
Purely voltage-driven, repeatable magnetization reversal provides a tantalizing potential for the development of spintronic devices with a minimum amount of power consumption. Substantial progress has been made in this subject especially on magnetic/ferroelectric heterostructures. Here, we report the in situ observation of such phenomenon in a NiFe thin film grown directly on a rhombohedral Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PMN-PT) ferroelectric crystal. Under a cyclic voltage applied perpendicular to the PMN-PT without a magnetic field, the local magnetization of NiFe can be repetitively reversed through an out-of-plane excursion and then back into the plane. Using phase field simulations we interpret magnetization reversal as a synergistic effect of the metastable ferroelastic switching in the PMN-PT and an electrically rotatable local exchange bias field arising from the heterogeneously distributed NiO clusters at the interface.
Collapse
|
36
|
Hong X. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:103003. [PMID: 26881391 DOI: 10.1088/0953-8984/28/10/103003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.
Collapse
Affiliation(s)
- Xia Hong
- Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
37
|
Ju C, Yang JC, Luo C, Shafer P, Liu HJ, Huang YL, Kuo HH, Xue F, Luo CW, He Q, Yu P, Arenholz E, Chen LQ, Zhu J, Lu X, Chu YH. Anomalous Electronic Anisotropy Triggered by Ferroelastic Coupling in Multiferroic Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:876-883. [PMID: 26640119 DOI: 10.1002/adma.201502743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/06/2015] [Indexed: 06/05/2023]
Abstract
The ferroelastic strain coupling in multiferroic heterostructures is explored aiming at novel physical effects and fascinating functionality. Ferroelastic domain walls in manganites induced by a stripe BiFeO3 template can modulate the electronic transfer and sufficiently block the magnetic ordering, creating a vast anisotropy. The findings suggest the great importance of ferroelastic strain engineering in material modifications.
Collapse
Affiliation(s)
- Changcheng Ju
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation, Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jan-Chi Yang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Cheng Luo
- Department of Electrophysics, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heng-Jui Liu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yen-Lin Huang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ho-Hung Kuo
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Fei Xue
- Department of Materials and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Chih-Wei Luo
- Department of Electrophysics, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Qing He
- Department of Physics, Durham University, Durham, DH1 3LE, UK
| | - Pu Yu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Long-Qing Chen
- Department of Materials and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jinsong Zhu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation, Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiaomei Lu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation, Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Ying-Hao Chu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
38
|
Ferroelectric Metal in Tetragonal BiCoO3/BiFeO3 Bilayers and Its Electric Field Effect. Sci Rep 2016; 6:20591. [PMID: 26839049 PMCID: PMC4738338 DOI: 10.1038/srep20591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 11/11/2022] Open
Abstract
By first-principles calculations we investigate the electronic structure of tetragonal BiCoO3/BiFeO3 bilayers with different terminations. The multiferroic insulator BiCoO3 and BiFeO3 transform into metal in all of three models. Particularly, energetically favored model CoO2-BiO exhibits ferroelectric metallic properties, and external electric field enhances the ferroelectric displacements significantly. The metallic character is mainly associated to eg electrons, while t2g electrons are responsible for ferroelectric properties. Moreover, the strong hybridization between eg and O p electrons around Fermi level provides conditions to the coexistence of ferroelectric and metallic properties. These special behaviors of electrons are influenced by the interfacial electronic reconstruction with formed Bi-O electrovalent bond, which breaks OA-Fe/Co-OB coupling partially. Besides, the external electric field reverses spin polarization of Fe/Co ions efficiently, even reaching 100%.
Collapse
|
39
|
Trassin M. Low energy consumption spintronics using multiferroic heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:033001. [PMID: 26703387 DOI: 10.1088/0953-8984/28/3/033001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.
Collapse
Affiliation(s)
- Morgan Trassin
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich
| |
Collapse
|
40
|
Hu JM, Chen LQ, Nan CW. Multiferroic Heterostructures Integrating Ferroelectric and Magnetic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:15-39. [PMID: 26551616 DOI: 10.1002/adma.201502824] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Multiferroic heterostructures can be synthesized by integrating monolithic ferroelectric and magnetic materials, with interfacial coupling between electric polarization and magnetization, through the exchange of elastic, electric, and magnetic energy. Although the nature of the interfaces remains to be unraveled, such cross coupling can be utilized to manipulate the magnetization (or polarization) with an electric (or magnetic) field, known as a converse (or direct) magnetoelectric effect. It can be exploited to significantly improve the performance of or/and add new functionalities to many existing or emerging devices such as memory devices, tunable microwave devices, sensors, etc. The exciting technological potential, along with the rich physical phenomena at the interface, has sparked intensive research on multiferroic heterostructures for more than a decade. Here, we summarize the most recent progresses in the fundamental principles and potential applications of the interface-based magnetoelectric effect in multiferroic heterostructures, and present our perspectives on some key issues that require further study in order to realize their practical device applications.
Collapse
Affiliation(s)
- Jia-Mian Hu
- State Key Laboratory of New Ceramics and Fine Processing and School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Long-Qing Chen
- State Key Laboratory of New Ceramics and Fine Processing and School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing and School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
41
|
Feng L, Yang S, Lin Y, Zhang D, Huang W, Zhao W, Yin Y, Dong S, Li X. Effects of Interface Layers and Domain Walls on the Ferroelectric-Resistive Switching Behavior of Au/BiFeO3/La0.6Sr0.4MnO3 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26036-26042. [PMID: 26554671 DOI: 10.1021/acsami.5b10210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The electric field effects on the electric and magnetic properties in multiferroic heterostructures are important for not only understanding the mechanisms of certain novel physical phenomena occurring at heterointerfaces but also offering a route for promising spintronic applications. Using the Au/BiFeO3/La0.6Sr0.4MnO3 (Au/BFO/LSMO) multiferroic heterostructure as a model system, we investigated the ferroelectric-resistive switching (RS) behaviors of the heterostructure. Via the manipulation of the BFO ferroelectric polarizations, the nonvolatile tristate of RS is observed, which is closely related to the Au/BFO and BFO/LSMO interface layers and the highly conducting BFO domain walls (DWs). More interestingly, according to the magnetic field dependence of the RS behavior, the negative magnetoresistance effect of the third resistance state, corresponding to the abnormal current peak in current-pulse voltage hysteresis near the electric coercive field, is also observed at room temperature, which mainly arises from the possible oxygen vacancy accumulation and Fe ion valence variation in the DWs.
Collapse
Affiliation(s)
- Lei Feng
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Shengwei Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Yue Lin
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Dalong Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Weichuan Huang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Wenbo Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Yuewei Yin
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Sining Dong
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Xiaoguang Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China , Hefei 230026, P. R. China
- Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093, P. R. China
| |
Collapse
|
42
|
Liu Y, Ke X. Interfacial magnetism in complex oxide heterostructures probed by neutrons and x-rays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:373003. [PMID: 26328474 DOI: 10.1088/0953-8984/27/37/373003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces are under intensive investigation, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.
Collapse
Affiliation(s)
- Yaohua Liu
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
43
|
Abstract
We demonstrate the microscopic role of oxygen vacancies spatially confined within nanometer inter-spacing (about 1 nm) in BiFeO3, using resonant soft X-ray scattering techniques and soft X-ray spectroscopy measurements. Such vacancy confinements and total number of vacancy are controlled by substitution of Ca(2+) for Bi(3+) cation. We found that by increasing the substitution, the in-plane orbital bands of Fe(3+) cations are reconstructed without any redox reaction. It leads to a reduction of the hopping between Fe atoms, forming a localized valence band, in particular Fe 3d-electronic structure, around the Fermi level. This band localization causes to decrease the conductivity of the doped BiFeO3 system.
Collapse
|
44
|
Vertical Interface Induced Dielectric Relaxation in Nanocomposite (BaTiO3)1-x:(Sm2O3)x Thin Films. Sci Rep 2015; 5:11335. [PMID: 26061829 PMCID: PMC4462142 DOI: 10.1038/srep11335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/22/2015] [Indexed: 11/13/2022] Open
Abstract
Vertical interfaces in vertically aligned nanocomposite thin films have been approved to be an effective method to manipulate functionalities. However, several challenges with regard to the understanding on the physical process underlying the manipulation still remain. In this work, because of the ordered interfaces and large interfacial area, heteroepitaxial (BaTiO3)1-x:(Sm2O3)x thin films have been fabricated and used as a model system to investigate the relationship between vertical interfaces and dielectric properties. Due to a relatively large strain generated at the interfaces, vertical interfaces between BaTiO3 and Sm2O3 are revealed to become the sinks to attract oxygen vacancies. The movement of oxygen vacancies is confined at the interfaces and hampered by the misfit dislocations, which contributed to a relaxation behavior in (BaTiO3)1-x:(Sm2O3)x thin films. This work represents an approach to further understand that how interfaces influence on dielectric properties in oxide thin films.
Collapse
|
45
|
Feng N, Mi W, Wang X. First principles prediction of interfacial magnetoelectric coupling in tetragonal La2/3Sr1/3MnO3/BiFeO3 multiferroic superlattices. Phys Chem Chem Phys 2015; 17:13647-53. [PMID: 25940540 DOI: 10.1039/c5cp01857a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure and magnetic properties of the tetragonal La2/3Sr1/3MnO3/BiFeO3 multiferroic superlattices with different interfacial terminations have been studied by first-principles calculations. Our results for all the models of the tetragonal La2/3Sr1/3MnO3/BiFeO3 superlattices exhibit a metallic electronic structure. More importantly, we find that the magnetoelectric coupling can be realized in the tetragonal La2/3Sr1/3MnO3/BiFeO3 heterostructures by means of exchange bias, which can be attributed to the interfacial exchange coupling. These findings are useful for magnetoelectrically controlled spintronic devices.
Collapse
Affiliation(s)
- Nan Feng
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072, China.
| | | | | |
Collapse
|
46
|
Feng N, Mi W, Wang X, Cheng Y, Schwingenschlögl U. Superior Properties of Energetically Stable La(2/3)Sr(1/3)MnO(3)/Tetragonal BiFeO3 Multiferroic Superlattices. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10612-10616. [PMID: 25928202 DOI: 10.1021/acsami.5b02436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moments in the La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectrically controlled spintronic devices.
Collapse
Affiliation(s)
- Nan Feng
- †Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072, China
| | - Wenbo Mi
- †Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072, China
| | | | - Yingchun Cheng
- §Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- ∥PSE Division, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
47
|
Vaz CAF, Walker FJ, Ahn CH, Ismail-Beigi S. Intrinsic interfacial phenomena in manganite heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:123001. [PMID: 25721578 DOI: 10.1088/0953-8984/27/12/123001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.
Collapse
Affiliation(s)
- C A F Vaz
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | |
Collapse
|
48
|
Xu Q, Sheng Y, Khalid M, Cao Y, Wang Y, Qiu X, Zhang W, He M, Wang S, Zhou S, Li Q, Wu D, Zhai Y, Liu W, Wang P, Xu YB, Du J. Magnetic interactions in BiFe₀.₅Mn₀.₅O₃ films and BiFeO₃/BiMnO₃ superlattices. Sci Rep 2015; 5:9093. [PMID: 25766744 PMCID: PMC4357900 DOI: 10.1038/srep09093] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/18/2015] [Indexed: 12/04/2022] Open
Abstract
The clear understanding of exchange interactions between magnetic ions in substituted BiFeO3 is the prerequisite for the comprehensive studies on magnetic properties. BiFe0.5Mn0.5O3 films and BiFeO3/BiMnO3 superlattices have been fabricated by pulsed laser deposition on (001) SrTiO3 substrates. Using piezoresponse force microscopy (PFM), the ferroelectricity at room temperature has been inferred from the observation of PFM hysteresis loops and electrical writing of ferroelectric domains for both samples. Spin glass behavior has been observed in both samples by temperature dependent magnetization curves and decay of thermo-remnant magnetization with time. The magnetic ordering has been studied by X-ray magnetic circular dichroism measurements, and Fe-O-Mn interaction has been confirmed to be antiferromagnetic (AF). The observed spin glass in BiFe0.5Mn0.5O3 films has been attributed to cluster spin glass due to Mn-rich ferromagnetic (FM) clusters in AF matrix, while spin glass in BiFeO3/BiMnO3 superlattices is due to competition between AF Fe-O-Fe, AF Fe-O-Mn and FM Mn-O-Mn interactions in the well ordered square lattice with two Fe ions in BiFeO3 layer and two Mn ions in BiMnO3 layer at interfaces.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Physics, Southeast University, Nanjing 211189, China
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Yan Sheng
- Department of Physics, Southeast University, Nanjing 211189, China
| | - M. Khalid
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - Yanqiang Cao
- Department of Materials Science and Engineering, Nanjing University, Nanjing 210008, China
| | - Yutian Wang
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - Xiangbiao Qiu
- Department of Materials Science and Engineering, Nanjing University, Nanjing 210008, China
| | - Wen Zhang
- Department of Physics, Southeast University, Nanjing 211189, China
| | - Maocheng He
- Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shuangbao Wang
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - Qi Li
- Department of Physics, Southeast University, Nanjing 211189, China
| | - Di Wu
- Department of Materials Science and Engineering, Nanjing University, Nanjing 210008, China
| | - Ya Zhai
- Department of Physics, Southeast University, Nanjing 211189, China
| | - Wenqing Liu
- York-Nanjing Joint Centre, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Peng Wang
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Y. B. Xu
- York-Nanjing Joint Centre, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jun Du
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
49
|
Sung KD, Lee TK, Jung JH. Intriguing photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates. NANOSCALE RESEARCH LETTERS 2015; 10:125. [PMID: 25852417 PMCID: PMC4385218 DOI: 10.1186/s11671-015-0824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/17/2015] [Indexed: 06/04/2023]
Abstract
To date, electric fields have been widely used to control the magnetic properties of BiFeO3-based antiferromagnet/ferromagnet heterostructures through application of an exchange bias. To extend the applicability of exchange bias, however, an alternative mechanism to electric fields is required. Here, we report the photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on an SrTiO3 substrate. Through an ex situ pulsed laser deposition technique, we successfully synthesized epitaxial BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates. By measuring magnetoresistance under light illumination, we investigated the effect of light illumination on resistance, exchange bias, and coercive field in BiFeO3/La2/3Sr1/3MnO3 thin films. After illumination of red and blue lights, the exchange bias was sharply reduced compared to that measured in the dark. With increasing light intensity, the exchange bias under red and blue lights initially decreased to zero and then appeared again. It is possible to reasonably explain these behaviors by considering photo-injection from SrTiO3 and the photo-conductivity of La2/3Sr1/3MnO3. This study may provide a fundamental understanding of the mechanism underlying photo-controlled exchange bias, which is significant for the development of new functional spintronic devices.
Collapse
Affiliation(s)
- Kil Dong Sung
- Department of Physics, Inha University, Incheon, 402-751 Republic of Korea
| | - Tae Kwon Lee
- Department of Physics, Inha University, Incheon, 402-751 Republic of Korea
| | - Jong Hoon Jung
- Department of Physics, Inha University, Incheon, 402-751 Republic of Korea
| |
Collapse
|
50
|
Bruno FY, Grisolia MN, Visani C, Valencia S, Varela M, Abrudan R, Tornos J, Rivera-Calzada A, Ünal AA, Pennycook SJ, Sefrioui Z, Leon C, Villegas JE, Santamaria J, Barthélémy A, Bibes M. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping. Nat Commun 2015; 6:6306. [PMID: 25686532 DOI: 10.1038/ncomms7306] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/15/2015] [Indexed: 11/09/2022] Open
Abstract
At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO(3) (LFO) and ferromagnetic La(0.7)Sr(0.3)MnO(3) (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show that the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.
Collapse
Affiliation(s)
- F Y Bruno
- Unité Mixte de Physique CNRS/Thales, 1 Avenue A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - M N Grisolia
- Unité Mixte de Physique CNRS/Thales, 1 Avenue A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - C Visani
- Unité Mixte de Physique CNRS/Thales, 1 Avenue A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - S Valencia
- Helmholtz-Zentrum-Berlin für Materialen und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - M Varela
- 1] GFMC, Departamento Física Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense de Madrid, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain [3] Materials Science &Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R Abrudan
- 1] Helmholtz-Zentrum-Berlin für Materialen und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany [2] Institut für Experimentalphysik/Festkörperphysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - J Tornos
- 1] GFMC, Departamento Física Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense de Madrid, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - A Rivera-Calzada
- 1] GFMC, Departamento Física Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense de Madrid, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - A A Ünal
- Helmholtz-Zentrum-Berlin für Materialen und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - S J Pennycook
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Z Sefrioui
- 1] GFMC, Departamento Física Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense de Madrid, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - C Leon
- 1] GFMC, Departamento Física Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense de Madrid, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - J E Villegas
- Unité Mixte de Physique CNRS/Thales, 1 Avenue A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - J Santamaria
- 1] GFMC, Departamento Física Aplicada III, Universidad Complutense Madrid, 28040 Madrid, Spain [2] Laboratorio de Heteroestructuras con aplicación en Spintronica, Unidad Asociada CSIC/Universidad Complutense de Madrid, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - A Barthélémy
- Unité Mixte de Physique CNRS/Thales, 1 Avenue A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| | - M Bibes
- Unité Mixte de Physique CNRS/Thales, 1 Avenue A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|