1
|
Agelii H, Jakobsson ELS, De Santis E, Elfrink G, Mandl T, Marklund EG, Caleman C. Dipole orientation of hydrated gas phase proteins. Phys Chem Chem Phys 2025; 27:10939-10948. [PMID: 40237075 DOI: 10.1039/d5cp00073d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the aerosolization of single proteins from solution, the proteins may be covered by a layer of water. This is relevant to consider in sample delivery for single particle imaging (SPI) with X-ray free-electron lasers. Previous studies suggest that the presence of a 3 Å water layer stabilizes the molecular structure and decreases structural heterogeneity which is important since it facilitates the structure determination in SPI. It has also been shown that SPI would benefit from the possibility of controlling the particle orientation in the interaction region. It has been proposed that such control would be possible by applying a DC electric field that interacts with the intrinsic dipole of the particle. This study investigates how SPI experiments, including dipole orientation, would be affected by the presence of a hydration layer covering the proteins. We investigated this by performing classical MD simulations of a globular protein in gas phase interacting with an external electric field. Two hydration levels were used: a fully desolvated molecule and one with a water layer corresponding to 3 Å covering the proteins surface. Our simulations show that a water layer enables the molecules to orient at lower field amplitudes, and on shorter time scales, as compared to the desolvated case. We also see a marginally larger stability of the molecular structure in the hydrated case at field strengths below 2 V nm-1. The presence of a water layer, in combination with an electric field, also tend to stabilize the dipole axis significantly within the molecular structure.
Collapse
Affiliation(s)
- Harald Agelii
- Department of Physics and Astronomy, Uppsala University, Box 257, SE-75120 Uppsala, Sweden.
| | - Ellen L S Jakobsson
- Department of Physics and Astronomy, Uppsala University, Box 257, SE-75120 Uppsala, Sweden.
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden.
| | - Emiliano De Santis
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden.
- Department of Physics, University of Rome Tor Vergata and Istituto Nazionale di Fisica Nucleare, Rome 00133, Italy
| | - Gideon Elfrink
- Department of Physics and Astronomy, Uppsala University, Box 257, SE-75120 Uppsala, Sweden.
| | - Thomas Mandl
- Department of Physics and Astronomy, Uppsala University, Box 257, SE-75120 Uppsala, Sweden.
- University of Applied Sciences Technikum Wien, A-1200 Wien, Austria
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden.
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 257, SE-75120 Uppsala, Sweden.
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
2
|
Giannetti G, Matsumura F, Caporaletti F, Micha D, Koenderink GH, Ilie IM, Bonn M, Woutersen S, Giubertoni G. Water and Collagen: A Mystery Yet to Unfold. Biomacromolecules 2025; 26:2784-2799. [PMID: 40208305 PMCID: PMC12076498 DOI: 10.1021/acs.biomac.4c01735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Collagen is the most abundant protein in the human body and plays an essential role in determining the mechanical properties of the tissues. Both as a monomeric protein and in fibrous assemblies, collagen interacts with its surrounding molecules, in particular with water. Interestingly, while it is well established that the interaction with water strongly influences the molecular and mechanical properties of collagen and its assemblies, the underlying mechanisms remain largely unknown. Here, we review the research conducted over the past 30 years on the interplay between water and collagen and its relevance for tissue properties. We discuss the water-collagen interaction on relevant time- and length scales, ranging from the vital role of water in stabilizing the characteristic triple helix structure to the negative impact of dehydration on the mechanical properties of tissues. A better understanding of the water-collagen interaction will help to unravel the effect of mutations and defective collagen production in collagen-related diseases and to pinpoint the key design features required to synthesize collagen-based biomimetic tissues with tailored mechanical properties.
Collapse
Affiliation(s)
- Guido Giannetti
- University
of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| | | | - Federico Caporaletti
- Laboratory
of Polymer and Soft Matter Dynamics, Experimental Soft Matter and
Thermal Physics (EST), Université
libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Dimitra Micha
- Amsterdam
University Medical Centers (UMC), Vrije
Universiteit Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Gijsje H. Koenderink
- Department
of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HC Delft, The Netherlands
| | - Ioana Mariuca Ilie
- Van ’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van ’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Giulia Giubertoni
- Van ’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Banari A, Samanta AK, Munke A, Laugks T, Bajt S, Grünewald K, Marlovits TC, Küpper J, Maia FRNC, Chapman HN, Oberthür D, Seuring C. Advancing time-resolved structural biology: latest strategies in cryo-EM and X-ray crystallography. Nat Methods 2025:10.1038/s41592-025-02659-6. [PMID: 40312512 DOI: 10.1038/s41592-025-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/11/2025] [Indexed: 05/03/2025]
Abstract
Structural biology offers a window into the functionality of molecular machines in health and disease. A fundamental challenge lies in capturing both the high-resolution structural details and dynamic changes that are essential for function. The high-resolution methods of X-ray crystallography and electron cryo-microscopy (cryo-EM) are mainly used to study ensembles of static conformations but can also capture crucial dynamic transition states. Here, we review the latest strategies and advancements in time-resolved structural biology with a focus on capturing dynamic changes. We describe recent technology developments for time-resolved sample preparation and delivery in the cryo-EM and X-ray fields and explore how these technologies could mutually benefit each other to advance our understanding of biology at the molecular and atomic scales.
Collapse
Affiliation(s)
- Amir Banari
- Centre for Structural Systems Biology, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Amit K Samanta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Anna Munke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Tim Laugks
- Centre for Structural Systems Biology, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Saša Bajt
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Microbial and Molecular Sciences, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Jochen Küpper
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Henry N Chapman
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Carolin Seuring
- Centre for Structural Systems Biology, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
- Department of Chemistry, Universität Hamburg, Hamburg, Germany.
- Department of Structural Cell Biology of Viruses, Leibniz Institute of Virology, Hamburg, Germany.
| |
Collapse
|
4
|
Mous S, Hunter MS, Poitevin F, Boutet S, Gee LB. Macromolecular crystallography and biology at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:548-566. [PMID: 40266725 PMCID: PMC12067347 DOI: 10.1107/s1600577525002735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
The Linac Coherent Light Source (LCLS) has significantly impacted the field of biology by providing advanced capabilities for probing the structure and dynamics of biological molecules with high precision. The ultrashort coherent X-ray pulses from the LCLS have enabled ultrafast, time-resolved, serial femtosecond crystallography that is inaccessible at conventional synchrotron light sources. Since the facility's founding, scientists have captured detailed insights into biological processes at atomic resolution and fundamental timescales. The ability to observe these processes in real time and under conditions closely resembling their natural state is transforming our approach to studying biochemical mechanisms and developing new medical and energy applications. This work recounts some of the history of the LCLS, advances in biological research enabled by the LCLS, key biological areas that have been impacted and how the LCLS has helped to unravel complex biological phenomena in these fields.
Collapse
Affiliation(s)
- Sandra Mous
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Mark S. Hunter
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Frédéric Poitevin
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Sébastien Boutet
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Leland B. Gee
- Linac Coherent Light SourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| |
Collapse
|
5
|
Miao J. Computational microscopy with coherent diffractive imaging and ptychography. Nature 2025; 637:281-295. [PMID: 39780004 DOI: 10.1038/s41586-024-08278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/23/2024] [Indexed: 01/11/2025]
Abstract
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations. Here, I review the innovative developments in CDI and ptychography, which achieve exceptional imaging capabilities across nine orders of magnitude in length scales, from resolving atomic structures in materials at sub-ångstrom resolution to quantitative phase imaging of centimetre-sized tissues, using the same principle and similar computational algorithms. These methods have been applied to determine the 3D atomic structures of crystal defects and amorphous materials, visualize oxygen vacancies in high-temperature superconductors and capture ultrafast dynamics. They have also been used for nanoscale imaging of magnetic, quantum and energy materials, nanomaterials, integrated circuits and biological specimens. By harnessing fourth-generation synchrotron radiation, X-ray-free electron lasers, high-harmonic generation, electron microscopes, optical microscopes, cutting-edge detectors and deep learning, CDI and ptychography are poised to make even greater contributions to multidisciplinary sciences in the years to come.
Collapse
Affiliation(s)
- Jianwei Miao
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Chen NJ, Yeh CH, Cao HY, Chen NC, Chen CJ, Chen CY, Tsai YW, Lin JM, Huang YS, Hsiao CN, Chen CC. High-resolution imaging of organic and inorganic nanoparticles at nanometre-scale resolution by X-ray ensemble diffraction microscopy. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:217-224. [PMID: 39692723 PMCID: PMC11708854 DOI: 10.1107/s1600577524010567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Coherent diffraction microscopy (CDM) is a robust direct imaging method due to its unique 2D/3D phase retrieval capacity. Nonetheless, its resolution faces limitations due to a diminished signal-to-noise ratio (SNR) in high-frequency regions. Addressing this challenge, X-ray ensemble diffraction microscopy (XEDM) emerges as a viable solution, ensuring an adequate SNR in high-frequency regions and effectively surmounting resolution constraints. In this article, two experiments were conducted to underscore XEDM's superior spatial resolution capabilities. These experiments employed 55 nm-sized silicon-gold nanoparticles (NPs) and 19 nm-sized nodavirus-like particles (NV-LPs) on the coherent X-ray scattering beamline of the Taiwan Photon Source. The core-shell density distribution of the silicon-gold NPs was successfully obtained with a radial resolution of 3.4 nm per pixel, while NV-LPs in solution were reconstructed at a radial resolution of 1.3 nm per pixel. The structural information was directly retrieved from the diffraction intensities without prior knowledge and was subsequently confirmed through transmission electron microscopy.
Collapse
Affiliation(s)
- Ning-Jung Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Chia-Hui Yeh
- Department of PhysicsNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Huai-Yu Cao
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Nai-Chi Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chun-Jung Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Chun-Yu Chen
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Yi-Wei Tsai
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Jhih-Min Lin
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | - Yu-Shan Huang
- National Synchrotron Radiation Research CenterHsinchu30076Taiwan
| | | | - Chien-Chun Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
- Taiwan Instrument Research Institute, Hsinchu30076, Taiwan
| |
Collapse
|
7
|
Schultze S, Grubmüller H. Bayesian electron density determination from sparse and noisy single-molecule X-ray scattering images. SCIENCE ADVANCES 2024; 10:eadp4425. [PMID: 39454013 PMCID: PMC11506165 DOI: 10.1126/sciadv.adp4425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/16/2024] [Indexed: 10/27/2024]
Abstract
Single molecule x-ray scattering experiments using free-electron lasers hold the potential to resolve biomolecular structures and structural ensembles. However, molecular electron density determination has so far not been achieved because of low photon counts, high noise levels, and low hit rates. Most approaches therefore focus on large specimen like entire viruses, which scatter sufficiently many photons to allow orientation determination of each image. Small specimens like proteins, however, scatter too few photons for the molecular orientations to be determined. Here, we present a rigorous Bayesian approach to overcome these limitations, additionally taking into account intensity fluctuations, beam polarization, irregular detector shapes, incoherent scattering, and background scattering. We demonstrate using synthetic scattering images that electron density determination of small proteins is possible in this extreme high noise Poisson regime. Tests on published virus data achieved the detector-limited resolution of 9 nm, using only 0.01% of the available photons per image.
Collapse
Affiliation(s)
- Steffen Schultze
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Helmut Grubmüller
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| |
Collapse
|
8
|
Wollter A, Ekeberg T. Coherent X-ray diffraction imaging of single particles: background impact on 3D reconstruction. J Appl Crystallogr 2024; 57:1384-1391. [PMID: 39387090 PMCID: PMC11460378 DOI: 10.1107/s1600576724006101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/23/2024] [Indexed: 10/12/2024] Open
Abstract
Coherent diffractive imaging with X-ray free-electron lasers could enable structural studies of macromolecules at room temperature. This type of experiment could provide a means to study structural dynamics on the femtosecond timescale. However, the diffraction from a single protein is weak compared with the incoherent scattering from background sources, which negatively affects the reconstruction analysis. This work evaluates the effects of the presence of background on the analysis pipeline. Background measurements from the European X-ray Free-Electron Laser were combined with simulated diffraction patterns and treated by a standard reconstruction procedure, including orientation recovery with the expand, maximize and compress algorithm and 3D phase retrieval. Background scattering did have an adverse effect on the estimated resolution of the reconstructed density maps. Still, the reconstructions generally worked when the signal-to-background ratio was 0.6 or better, in the momentum transfer shell of the highest reconstructed resolution. The results also suggest that the signal-to-background requirement increases at higher resolution. This study gives an indication of what is possible at current setups at X-ray free-electron lasers with regards to expected background strength and establishes a target for experimental optimization of the background.
Collapse
Affiliation(s)
- August Wollter
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 75124Uppsala, Sweden
| | - Tomas Ekeberg
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 75124Uppsala, Sweden
| |
Collapse
|
9
|
Jiao Z, Geng Z, Ding W. A predicted model-aided one-step classification-multireconstruction algorithm for X-ray free-electron laser single-particle imaging. IUCRJ 2024; 11:891-900. [PMID: 39194258 PMCID: PMC11364030 DOI: 10.1107/s2052252524007851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Ultrafast, high-intensity X-ray free-electron lasers can perform diffraction imaging of single protein molecules. Various algorithms have been developed to determine the orientation of each single-particle diffraction pattern and reconstruct the 3D diffraction intensity. Most of these algorithms rely on the premise that all diffraction patterns originate from identical protein molecules. However, in actual experiments, diffraction patterns from multiple different molecules may be collected simultaneously. Here, we propose a predicted model-aided one-step classification-multireconstruction algorithm that can handle mixed diffraction patterns from various molecules. The algorithm uses predicted structures of different protein molecules as templates to classify diffraction patterns based on correlation coefficients and determines orientations using a correlation maximization method. Tests on simulated data demonstrated high accuracy and efficiency in classification and reconstruction.
Collapse
Affiliation(s)
- Zhichao Jiao
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
10
|
Chen H, Dzhigaev D, Björling A, Westermeier F, Lyubomirskiy M, Stuckelberger M, Wallentin J. Correcting angular distortions in Bragg coherent X-ray diffraction imaging. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1308-1316. [PMID: 39116009 PMCID: PMC11371051 DOI: 10.1107/s1600577524006507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Bragg coherent X-ray diffraction imaging (BCDI) has emerged as a powerful technique for strain imaging and morphology reconstruction of nanometre-scale crystals. However, BCDI often suffers from angular distortions that appear during data acquisition, caused by radiation pressure, heating or imperfect scanning stages. This limits the applicability of BCDI, in particular for small crystals and high-flux X-ray beams. Here, we present a pre-processing algorithm that recovers the 3D datasets from the BCDI dataset measured under the impact of large angular distortions. We systematically investigate the performance of this method for different levels of distortion and find that the algorithm recovers the correct angles for distortions up to 16.4× (1640%) the angular step size dθ = 0.004°. We also show that the angles in a continuous scan can be recovered with high accuracy. As expected, the correction provides marked improvements in the subsequent phase retrieval.
Collapse
Affiliation(s)
- Huaiyu Chen
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund University22100LundSweden
| | - Dmitry Dzhigaev
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund University22100LundSweden
| | | | | | | | | | - Jesper Wallentin
- Synchrotron Radiation Research and NanoLund, Department of PhysicsLund University22100LundSweden
| |
Collapse
|
11
|
Jiao Z, He Y, Fu X, Zhang X, Geng Z, Ding W. A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging. IUCRJ 2024; 11:602-619. [PMID: 38904548 PMCID: PMC11220885 DOI: 10.1107/s2052252524004858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Ultra-intense, ultra-fast X-ray free-electron lasers (XFELs) enable the imaging of single protein molecules under ambient temperature and pressure. A crucial aspect of structure reconstruction involves determining the relative orientations of each diffraction pattern and recovering the missing phase information. In this paper, we introduce a predicted model-aided algorithm for orientation determination and phase retrieval, which has been tested on various simulated datasets and has shown significant improvements in the success rate, accuracy and efficiency of XFEL data reconstruction.
Collapse
Affiliation(s)
- Zhichao Jiao
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Yao He
- Research Instrument ScientistNew York University Abu DhabiAbu DhabiUnited Arab Emirates
| | - Xingke Fu
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Xin Zhang
- The University of Hong KongHong Kong SARPeople’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy Physics, Chinese Academy of SciencesBeijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Laboratory of Soft Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
12
|
Shen Z, Xavier PL, Bean R, Bielecki J, Bergemann M, Daurer BJ, Ekeberg T, Estillore AD, Fangohr H, Giewekemeyer K, Karnevskiy M, Kirian RA, Kirkwood H, Kim Y, Koliyadu JCP, Lange H, Letrun R, Lübke J, Mall A, Michelat T, Morgan AJ, Roth N, Samanta AK, Sato T, Sikorski M, Schulz F, Vagovic P, Wollweber T, Worbs L, Maia F, Horke DA, Küpper J, Mancuso AP, Chapman HN, Ayyer K, Loh ND. Resolving Nonequilibrium Shape Variations among Millions of Gold Nanoparticles. ACS NANO 2024; 18:15576-15589. [PMID: 38810115 PMCID: PMC11191741 DOI: 10.1021/acsnano.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles, exhibiting functionally relevant structural heterogeneity, are at the forefront of cutting-edge research. Now, high-throughput single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) creates opportunities for recovering the shape distributions of millions of particles that exhibit functionally relevant structural heterogeneity. To realize this potential, three challenges have to be overcome: (1) simultaneous parametrization of structural variability in real and reciprocal spaces; (2) efficiently inferring the latent parameters of each SPI measurement; (3) scaling up comparisons between 105 structural models and 106 XFEL-SPI measurements. Here, we describe how we overcame these three challenges to resolve the nonequilibrium shape distributions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the degree of asymmetry in these particles, discover a relatively stable "shape envelope" among nanoparticles, discern finite-size effects related to shape-controlling surfactants, and extrapolate nanoparticles' shapes to their idealized thermodynamic limit. Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from anecdotally interesting to statistically meaningful.
Collapse
Affiliation(s)
- Zhou Shen
- Department
of Physics, National University of Singapore, 117551 Singapore
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
| | - Paul Lourdu Xavier
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- European
XFEL, 22869 Schenefeld, Germany
| | | | | | | | - Benedikt J. Daurer
- Center
for
BioImaging Sciences, National University
of Singapore, 117557 Singapore
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, U.K.
| | - Tomas Ekeberg
- Department
of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Armando D. Estillore
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | | | | | - Richard A. Kirian
- Department
of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | | | | | | | - Holger Lange
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Institute
of Physics and Astronomy, Universität
Potsdam, Karl-Liebknecht-Str.
24, 14476 Potsdam, Germany
| | | | - Jannik Lübke
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Abhishek Mall
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
| | | | - Andrew J. Morgan
- University
of Melbourne, Physics, Melbourne, VIC 3010, Australia
| | - Nils Roth
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Amit K. Samanta
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | | | - Florian Schulz
- Institute
of Nanostructure and Solid State Physics, University of Hamburg, 22761 Hamburg, Germany
| | - Patrik Vagovic
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- European
XFEL, 22869 Schenefeld, Germany
| | - Tamme Wollweber
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
| | - Lena Worbs
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Filipe Maia
- Department
of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- NERSC,
Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Alfred Horke
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Radboud
University Institute for Molecules and Materials, 6525 AJ Nijmegen, The Netherlands
| | - Jochen Küpper
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - Adrian P. Mancuso
- European
XFEL, 22869 Schenefeld, Germany
- Diamond
Light Source, Harwell Campus, Didcot OX11 0DE, U.K.
- Department
of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Henry N. Chapman
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Department
of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Kartik Ayyer
- Max Planck
Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for
Free-Electron Laser Science, 22761, Hamburg, Germany
- The Hamburg
Center for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
| | - N. Duane Loh
- Department
of Physics, National University of Singapore, 117551 Singapore
- Center
for
BioImaging Sciences, National University
of Singapore, 117557 Singapore
| |
Collapse
|
13
|
Hwang J, Kim S, Lee SY, Park E, Shin J, Lee JH, Kim MJ, Kim S, Park SY, Jang D, Eom I, Kim S, Song C, Kim KS, Nam D. Development of the multiplex imaging chamber at PAL-XFEL. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:469-477. [PMID: 38517754 DOI: 10.1107/s1600577524001218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
Various X-ray techniques are employed to investigate specimens in diverse fields. Generally, scattering and absorption/emission processes occur due to the interaction of X-rays with matter. The output signals from these processes contain structural information and the electronic structure of specimens, respectively. The combination of complementary X-ray techniques improves the understanding of complex systems holistically. In this context, we introduce a multiplex imaging instrument that can collect small-/wide-angle X-ray diffraction and X-ray emission spectra simultaneously to investigate morphological information with nanoscale resolution, crystal arrangement at the atomic scale and the electronic structure of specimens.
Collapse
Affiliation(s)
- Junha Hwang
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sejin Kim
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sung Yun Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Eunyoung Park
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaeyong Shin
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jae Hyuk Lee
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Myong Jin Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seonghan Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sang Youn Park
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dogeun Jang
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Intae Eom
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sangsoo Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Changyong Song
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kyung Sook Kim
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Daewoong Nam
- Photon Science Center, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
14
|
Berberich TB, Molodtsov SL, Kurta RP. A workflow for single-particle structure determination via iterative phasing of rotational invariants in fluctuation X-ray scattering. J Appl Crystallogr 2024; 57:324-343. [PMID: 38596737 PMCID: PMC11001396 DOI: 10.1107/s1600576724000992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 04/11/2024] Open
Abstract
Fluctuation X-ray scattering (FXS) offers a complementary approach for nano- and bioparticle imaging with an X-ray free-electron laser (XFEL), by extracting structural information from correlations in scattered XFEL pulses. Here a workflow is presented for single-particle structure determination using FXS. The workflow includes procedures for extracting the rotational invariants from FXS patterns, performing structure reconstructions via iterative phasing of the invariants, and aligning and averaging multiple reconstructions. The reconstruction pipeline is implemented in the open-source software xFrame and its functionality is demonstrated on several simulated structures.
Collapse
Affiliation(s)
- Tim B. Berberich
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- I. Institute of Theoretical Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany
| | - Serguei L. Molodtsov
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg, Germany
- Center for Efficient High Temperature Processes and Materials Conversion (ZeHS), TU Bergakademie Freiberg, Winklerstrasse 5, 09599 Freiberg, Germany
| | | |
Collapse
|
15
|
Wollter A, De Santis E, Ekeberg T, Marklund EG, Caleman C. Enhanced EMC-Advantages of partially known orientations in x-ray single particle imaging. J Chem Phys 2024; 160:114108. [PMID: 38506290 DOI: 10.1063/5.0188772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Single particle imaging of proteins in the gas phase with x-ray free-electron lasers holds great potential to study fast protein dynamics, but is currently limited by weak and noisy data. A further challenge is to discover the proteins' orientation as each protein is randomly oriented when exposed to x-rays. Algorithms such as the expand, maximize, and compress (EMC) exist that can solve the orientation problem and reconstruct the three-dimensional diffraction intensity space, given sufficient measurements. If information about orientation were known, for example, by using an electric field to orient the particles, the reconstruction would benefit and potentially reach better results. We used simulated diffraction experiments to test how the reconstructions from EMC improve with particles' orientation to a preferred axis. Our reconstructions converged to correct maps of the three-dimensional diffraction space with fewer measurements if biased orientation information was considered. Even for a moderate bias, there was still significant improvement. Biased orientations also substantially improved the results in the case of missing central information, in particular in the case of small datasets. The effects were even more significant when adding a background with 50% the strength of the averaged diffraction signal photons to the diffraction patterns, sometimes reducing the data requirement for convergence by a factor of 10. This demonstrates the usefulness of having biased orientation information in single particle imaging experiments, even for a weaker bias than what was previously known. This could be a key component in overcoming the problems with background noise that currently plague these experiments.
Collapse
Affiliation(s)
- August Wollter
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Husargatan 3, 75124 Uppsala, Sweden
| | - Emiliano De Santis
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Tomas Ekeberg
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Husargatan 3, 75124 Uppsala, Sweden
| | - Erik G Marklund
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, DE-22607 Hamburg, Germany
| |
Collapse
|
16
|
Rafie-Zinedine S, Varma Yenupuri T, Worbs L, Maia FRNC, Heymann M, Schulz J, Bielecki J. Enhancing electrospray ionization efficiency for particle transmission through an aerodynamic lens stack. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:222-232. [PMID: 38306300 PMCID: PMC10914161 DOI: 10.1107/s1600577524000158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
This work investigates the performance of the electrospray aerosol generator at the European X-ray Free Electron Laser (EuXFEL). This generator is, together with an aerodynamic lens stack that transports the particles into the X-ray interaction vacuum chamber, the method of choice to deliver particles for single-particle coherent diffractive imaging (SPI) experiments at the EuXFEL. For these experiments to be successful, it is necessary to achieve high transmission of particles from solution into the vacuum interaction region. Particle transmission is highly dependent on efficient neutralization of the charged aerosol generated by the electrospray mechanism as well as the geometry in the vicinity of the Taylor cone. We report absolute particle transmission values for different neutralizers and geometries while keeping the conditions suitable for SPI experiments. Our findings reveal that a vacuum ultraviolet ionizer demonstrates a transmission efficiency approximately seven times greater than the soft X-ray ionizer used previously. Combined with an optimized orifice size on the counter electrode, we achieve >40% particle transmission from solution into the X-ray interaction region. These findings offer valuable insights for optimizing electrospray aerosol generator configurations and data rates for SPI experiments.
Collapse
Affiliation(s)
- Safi Rafie-Zinedine
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Lena Worbs
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), 75124 Uppsala, Sweden
| | - Michael Heymann
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
17
|
Yenupuri TV, Rafie-Zinedine S, Worbs L, Heymann M, Schulz J, Bielecki J, Maia FRNC. Helium-electrospray improves sample delivery in X-ray single-particle imaging experiments. Sci Rep 2024; 14:4401. [PMID: 38388562 PMCID: PMC10883998 DOI: 10.1038/s41598-024-54605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Imaging the structure and observing the dynamics of isolated proteins using single-particle X-ray diffractive imaging (SPI) is one of the potential applications of X-ray free-electron lasers (XFELs). Currently, SPI experiments on isolated proteins are limited by three factors: low signal strength, limited data and high background from gas scattering. The last two factors are largely due to the shortcomings of the aerosol sample delivery methods in use. Here we present our modified electrospray ionization (ESI) source, which we dubbed helium-ESI (He-ESI). With it, we increased particle delivery into the interaction region by a factor of 10, for 26 nm-sized biological particles, and decreased the gas load in the interaction chamber corresponding to an 80% reduction in gas scattering when compared to the original ESI. These improvements have the potential to significantly increase the quality and quantity of SPI diffraction patterns in future experiments using He-ESI, resulting in higher-resolution structures.
Collapse
Affiliation(s)
- Tej Varma Yenupuri
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 75124, Uppsala, Sweden
| | - Safi Rafie-Zinedine
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany
| | - Lena Worbs
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 75124, Uppsala, Sweden
| | - Michael Heymann
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany
| | | | - Johan Bielecki
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, 75124, Uppsala, Sweden.
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
18
|
Ekeberg T, Assalauova D, Bielecki J, Boll R, Daurer BJ, Eichacker LA, Franken LE, Galli DE, Gelisio L, Gumprecht L, Gunn LH, Hajdu J, Hartmann R, Hasse D, Ignatenko A, Koliyadu J, Kulyk O, Kurta R, Kuster M, Lugmayr W, Lübke J, Mancuso AP, Mazza T, Nettelblad C, Ovcharenko Y, Rivas DE, Rose M, Samanta AK, Schmidt P, Sobolev E, Timneanu N, Usenko S, Westphal D, Wollweber T, Worbs L, Xavier PL, Yousef H, Ayyer K, Chapman HN, Sellberg JA, Seuring C, Vartanyants IA, Küpper J, Meyer M, Maia FRNC. Observation of a single protein by ultrafast X-ray diffraction. LIGHT, SCIENCE & APPLICATIONS 2024; 13:15. [PMID: 38216563 PMCID: PMC10786860 DOI: 10.1038/s41377-023-01352-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes. This was first demonstrated on biological samples a decade ago on the giant mimivirus. Since then, a large collaboration has been pushing the limit of the smallest sample that can be imaged. The ability to capture snapshots on the timescale of atomic vibrations, while keeping the sample at room temperature, may allow probing the entire conformational phase space of macromolecules. Here we show the first observation of an X-ray diffraction pattern from a single protein, that of Escherichia coli GroEL which at 14 nm in diameter is the smallest biological sample ever imaged by X-rays, and demonstrate that the concept of diffraction before destruction extends to single proteins. From the pattern, it is possible to determine the approximate orientation of the protein. Our experiment demonstrates the feasibility of ultrafast imaging of single proteins, opening the way to single-molecule time-resolved studies on the femtosecond timescale.
Collapse
Affiliation(s)
- Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Dameli Assalauova
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Benedikt J Daurer
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - Lutz A Eichacker
- University of Stavanger, Centre Organelle Research, Richard-Johnsensgate 4, 4021, Stavanger, Norway
| | - Linda E Franken
- Leibniz Institute for Experimental Virology (HPI), Centre for Structural Systems Biology, Notkestraße 85, 22607, Hamburg, Germany
| | - Davide E Galli
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, via Celoria 16, 20133, Milano, Italy
| | - Luca Gelisio
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Lars Gumprecht
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
| | - Laura H Gunn
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | | | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Alexandr Ignatenko
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jayanath Koliyadu
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Olena Kulyk
- ELI Beamlines/IoP Institute of Physics AS CR, v.v.i., Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Ruslan Kurta
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Markus Kuster
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Wolfgang Lugmayr
- Multi-User CryoEM Facility, Centre for Structural Systems Biology, Notkestr.85, 22607, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Jannik Lübke
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Tommaso Mazza
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Carl Nettelblad
- Division of Scientific Computing, Science for Life Laboratory, Department of Information Technology, Uppsala University, Box 337, SE-75105, Uppsala, Sweden
| | | | | | - Max Rose
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Amit K Samanta
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
| | | | - Egor Sobolev
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Sergey Usenko
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Tamme Wollweber
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Lena Worbs
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Paul Lourdu Xavier
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Hazem Yousef
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Kartik Ayyer
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jonas A Sellberg
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Carolin Seuring
- Multi-User CryoEM Facility, Centre for Structural Systems Biology, Notkestr.85, 22607, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, 20146, Hamburg, Germany
| | - Ivan A Vartanyants
- Deutsches Electronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, DESY, 22607, Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden.
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Takayama Y, Nakasako M. Similarity score for screening phase-retrieved maps in X-ray diffraction imaging - characterization in reciprocal space. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:95-112. [PMID: 38054944 PMCID: PMC10833420 DOI: 10.1107/s1600577523009827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
X-ray diffraction imaging (XDI) is utilized for visualizing the structures of non-crystalline particles in material sciences and biology. In the structural analysis, phase-retrieval (PR) algorithms are applied to the diffraction amplitude data alone to reconstruct the electron density map of a specimen particle projected along the direction of the incident X-rays. However, PR calculations may not lead to good convergence because of a lack of diffraction patterns in small-angle regions and Poisson noise in X-ray detection. Therefore, the PR calculation is still a bottleneck for the efficient application of XDI in the structural analyses of non-crystalline particles. For screening maps from hundreds of trial PR calculations, we have been using a score and measuring the similarity between a pair of retrieved maps. Empirically, probable maps approximating the particle structures gave a score smaller than a threshold value, but the reasons for the effectiveness of the score are still unclear. In this study, the score is characterized in terms of the phase differences between the structure factors of the retrieved maps, the usefulness of the score in screening the maps retrieved from experimental diffraction patterns is demonstrated, and the effective resolution of similarity-score-selected maps is discussed.
Collapse
Affiliation(s)
- Yuki Takayama
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Sayo-gun, Hyogo 679-5148, Japan
- Synchrotron Radiation Research Center, Hyogo Science and Technology Association, 1-490-2 Kouto, Shingu, Tatsuno, Hyogo 679-5148, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Masayoshi Nakasako
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Sayo-gun, Hyogo 679-5148, Japan
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
20
|
Round A, Jungcheng E, Fortmann-Grote C, Giewekemeyer K, Graceffa R, Kim C, Kirkwood H, Mills G, Round E, Sato T, Pascarelli S, Mancuso A. Characterization of Biological Samples Using Ultra-Short and Ultra-Bright XFEL Pulses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:141-162. [PMID: 38507205 DOI: 10.1007/978-3-031-52193-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The advent of X-ray Free Electron Lasers (XFELs) has ushered in a transformative era in the field of structural biology, materials science, and ultrafast physics. These state-of-the-art facilities generate ultra-bright, femtosecond-long X-ray pulses, allowing researchers to delve into the structure and dynamics of molecular systems with unprecedented temporal and spatial resolutions. The unique properties of XFEL pulses have opened new avenues for scientific exploration that were previously considered unattainable. One of the most notable applications of XFELs is in structural biology. Traditional X-ray crystallography, while instrumental in determining the structures of countless biomolecules, often requires large, high-quality crystals and may not capture highly transient states of proteins. XFELs, with their ability to produce diffraction patterns from nanocrystals or even single particles, have provided solutions to these challenges. XFEL has expanded the toolbox of structural biologists by enabling structural determination approaches such as Single Particle Imaging (SPI) and Serial X-ray Crystallography (SFX). Despite their remarkable capabilities, the journey of XFELs is still in its nascent stages, with ongoing advancements aimed at improving their coherence, pulse duration, and wavelength tunability.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Kim
- European XFEL, Schenefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhao W, Miyashita O, Nakano M, Tama F. Structure determination using high-order spatial correlations in single-particle X-ray scattering. IUCRJ 2024; 11:92-108. [PMID: 38096036 PMCID: PMC10833384 DOI: 10.1107/s2052252523009831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024]
Abstract
Single-particle imaging using X-ray free-electron lasers (XFELs) is a promising technique for observing nanoscale biological samples under near-physiological conditions. However, as the sample's orientation in each diffraction pattern is unknown, advanced algorithms are required to reconstruct the 3D diffraction intensity volume and subsequently the sample's density model. While most approaches perform 3D reconstruction via determining the orientation of each diffraction pattern, a correlation-based approach utilizes the averaged spatial correlations of diffraction intensities over all patterns, making it well suited for processing experimental data with a poor signal-to-noise ratio of individual patterns. Here, a method is proposed to determine the 3D structure of a sample by analyzing the double, triple and quadruple spatial correlations in diffraction patterns. This ab initio method can reconstruct the basic shape of an irregular unsymmetric 3D sample without requiring any prior knowledge of the sample. The impact of background and noise on correlations is investigated and corrected to ensure the success of reconstruction under simulated experimental conditions. Additionally, the feasibility of using the correlation-based approach to process incomplete partial diffraction patterns is demonstrated. The proposed method is a variable addition to existing algorithms for 3D reconstruction and will further promote the development and adoption of XFEL single-particle imaging techniques.
Collapse
Affiliation(s)
- Wenyang Zhao
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Miki Nakano
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Florence Tama
- Computational Structural Biology Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
22
|
Yoshida S, Harada K, Uezu S, Takayama Y, Nakasako M. Protocol using similarity score and improved shrink-wrap algorithm for better convergence of phase-retrieval calculation in X-ray diffraction imaging. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:113-128. [PMID: 38054945 PMCID: PMC10833425 DOI: 10.1107/s1600577523009864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
In X-ray diffraction imaging (XDI), electron density maps of a targeted particle are reconstructed computationally from the diffraction pattern alone using phase-retrieval (PR) algorithms. However, the PR calculations sometimes fail to yield realistic electron density maps that approximate the structure of the particle. This occurs due to the absence of structure amplitudes at and near the zero-scattering angle and the presence of Poisson noise in weak diffraction patterns. Consequently, the PR calculation becomes a bottleneck for XDI structure analyses. Here, a protocol to efficiently yield realistic maps is proposed. The protocol is based on the empirical observation that realistic maps tend to yield low similarity scores, as suggested in our prior study [Sekiguchi et al. (2017), J. Synchrotron Rad. 24, 1024-1038]. Among independently and concurrently executed PR calculations, the protocol modifies all maps using the electron-density maps exhibiting low similarity scores. This approach, along with a new protocol for estimating particle shape, improved the probability of obtaining realistic maps for diffraction patterns from various aggregates of colloidal gold particles, as compared with PR calculations performed without the protocol. Consequently, the protocol has the potential to reduce computational costs in PR calculations and enable efficient XDI structure analysis of non-crystalline particles using synchrotron X-rays and X-ray free-electron laser pulses.
Collapse
Affiliation(s)
- Syouyo Yoshida
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| | - Kosei Harada
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| | - So Uezu
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| | - Yuki Takayama
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayogun, Hyogo, Japan
| |
Collapse
|
23
|
Verdaguer N, Ferrer-Orta C, Garriga D. X-Ray Crystallography of Viruses. Subcell Biochem 2024; 105:135-169. [PMID: 39738946 DOI: 10.1007/978-3-031-65187-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX). Landmarks of the structure determination of viral particles, such as the ones from the first animal viruses or from the first membrane-containing viruses, have often been associated with methodological breakthroughs in X-ray crystallography.In recent years, the advent of new detectors with fast frame rate, high sensitivity, and low-noise background has changed the way MX data is collected, enabling new types of studies at X-ray free-electron laser and synchrotron facilities. In parallel, a very high degree of automation has been established at most MX synchrotron beamlines, allowing the screening of large number of crystals with very high throughputs. This has proved crucial for fragment-based drug design projects, of special relevance for the identification of new antiviral drugs.This change in the usage of X-ray crystallography is also mirrored in the recent advances in cryo-electron microscopy (cryo-EM), which can nowadays produce macromolecule structures at resolutions comparable to those obtained by MX. Since this technique is especially amenable for large protein assemblies, cryo-EM has progressively turned into the favored technique to study the structure of large viral particles at high resolution.In this chapter, we present the common ground of proteins and virus crystallography with an emphasis in the peculiarities of virus-related studies.
Collapse
Affiliation(s)
- Núria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain.
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Damià Garriga
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Vorovitch MF, Samygina VR, Pichkur E, Konarev PV, Peters G, Khvatov EV, Ivanova AL, Tuchynskaya KK, Konyushko OI, Fedotov AY, Armeev G, Shaytan KV, Kovalchuk MV, Osolodkin DI, Egorov AM, Ishmukhametov AA. Preparation and characterization of inactivated tick-borne encephalitis virus samples for single-particle imaging at the European XFEL. Acta Crystallogr D Struct Biol 2024; 80:44-59. [PMID: 38164954 DOI: 10.1107/s2059798323010562] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 1012 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses. Tick-borne encephalitis virus (TBEV) represents an attractive model system for the development of enveloped virus purification and concentration protocols, given the availability of large amounts of inactivated virus material provided by vaccine-manufacturing facilities. Here, the development of a TBEV vaccine purification and concentration scheme is presented combined with a quality-control protocol that allows substantial amounts of highly concentrated non-aggregated suspension to be obtained. Preliminary single-particle imaging experiments were performed for this sample at the European XFEL, showing distinct diffraction patterns.
Collapse
Affiliation(s)
- Mikhail F Vorovitch
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| | | | - Evgeny Pichkur
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | | | - Georgy Peters
- NRC `Kurchatov Insitute', Moscow 123182, Russian Federation
| | - Evgeny V Khvatov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alla L Ivanova
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Ksenia K Tuchynskaya
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Olga I Konyushko
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Anton Y Fedotov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Grigory Armeev
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Konstantin V Shaytan
- Department of Biology, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | | | - Dmitry I Osolodkin
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Alexey M Egorov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| | - Aydar A Ishmukhametov
- FSASI `Chumakov FSC R&D IBP RAS' (Institute of Poliomyelitis), Moscow 108819, Russian Federation
| |
Collapse
|
25
|
E J, Stransky M, Shen Z, Jurek Z, Fortmann-Grote C, Bean R, Santra R, Ziaja B, Mancuso AP. Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser. Sci Rep 2023; 13:16359. [PMID: 37773512 PMCID: PMC10541445 DOI: 10.1038/s41598-023-43298-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
The noise caused by sample heterogeneity (including sample solvent) has been identified as one of the determinant factors for a successful X-ray single-particle imaging experiment. It influences both the radiation damage process that occurs during illumination as well as the scattering patterns captured by the detector. Here, we investigate the impact of water layer thickness and radiation damage on orientation recovery from diffraction patterns of the nitrogenase iron protein. Orientation recovery is a critical step for single-particle imaging. It enables to sort a set of diffraction patterns scattered by identical particles placed at unknown orientations and assemble them into a 3D reciprocal space volume. The recovery quality is characterized by a "disconcurrence" metric. Our results show that while a water layer mitigates protein damage, the noise generated by the scattering from it can introduce challenges for orientation recovery and is anticipated to cause problems in the phase retrieval process to extract the desired protein structure. Compared to these disadvantageous effects due to the thick water layer, the effects of radiation damage on the orientation recovery are relatively small. Therefore, minimizing the amount of residual sample solvent should be considered a crucial step in improving the fidelity and resolution of X-ray single-particle imaging experiments.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Michal Stransky
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Zhou Shen
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Zoltan Jurek
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
| | | | - Richard Bean
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607, Hamburg, Germany
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
26
|
Choi S, Im SW, Huh JH, Kim S, Kim J, Lim YC, Kim RM, Han JH, Kim H, Sprung M, Lee SY, Cha W, Harder R, Lee S, Nam KT, Kim H. Strain and crystallographic identification of the helically concaved gap surfaces of chiral nanoparticles. Nat Commun 2023; 14:3615. [PMID: 37330546 PMCID: PMC10276881 DOI: 10.1038/s41467-023-39255-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Identifying the three-dimensional (3D) crystal plane and strain-field distributions of nanocrystals is essential for optical, catalytic, and electronic applications. However, it remains a challenge to image concave surfaces of nanoparticles. Here, we develop a methodology for visualizing the 3D information of chiral gold nanoparticles ≈ 200 nm in size with concave gap structures by Bragg coherent X-ray diffraction imaging. The distribution of the high-Miller-index planes constituting the concave chiral gap is precisely determined. The highly strained region adjacent to the chiral gaps is resolved, which was correlated to the 432-symmetric morphology of the nanoparticles and its corresponding plasmonic properties are numerically predicted from the atomically defined structures. This approach can serve as a comprehensive characterization platform for visualizing the 3D crystallographic and strain distributions of nanoparticles with a few hundred nanometers, especially for applications where structural complexity and local heterogeneity are major determinants, as exemplified in plasmonics.
Collapse
Affiliation(s)
- Sungwook Choi
- Department of Physics, Sogang University, Seoul, 04107, Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02481, Korea
| | - Sungwon Kim
- Department of Physics, Sogang University, Seoul, 04107, Korea
| | - Jaeseung Kim
- Department of Physics, Sogang University, Seoul, 04107, Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, 22607, Germany
| | - Su Yong Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Korea
| | - Wonsuk Cha
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Ross Harder
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science & Technology, Korea University, Seoul, 02481, Korea
- Department of Integrative Energy Engineering and KU Photonics Center, Korea University, Seoul, 02481, Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Korea.
| | - Hyunjung Kim
- Department of Physics, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
27
|
Nakano M, Miyashita O, Tama F. Molecular size dependence on achievable resolution from XFEL single-particle 3D reconstruction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:024101. [PMID: 36942031 PMCID: PMC10024609 DOI: 10.1063/4.0000175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 05/03/2023]
Abstract
Single-particle analysis using x-ray free-electron lasers (XFELs) is a novel method for obtaining structural information of samples in a state close to nature. In particular, it is suitable for observing the inner structure of large biomolecules by taking advantage of the high transmittance of x-rays. However, systematic studies on the resolution achievable for large molecules are lacking. In this study, the molecular size dependence of the resolution of a three-dimensional (3D) structure resulting from XFEL single-particle reconstruction is evaluated using synthetic data. Evidently, 3D structures of larger molecules can be restored with higher detail (defined relative to the molecular sizes) than smaller ones; however, reconstruction with high absolute resolution (defined in nm-1) is challenging. Our results provide useful information for the experimental design of 3D structure reconstruction using coherent x-ray diffraction patterns of single-particles.
Collapse
Affiliation(s)
- Miki Nakano
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
28
|
Colombo A, Dold S, Kolb P, Bernhardt N, Behrens P, Correa J, Düsterer S, Erk B, Hecht L, Heilrath A, Irsig R, Iwe N, Jordan J, Kruse B, Langbehn B, Manschwetus B, Martinez F, Meiwes-Broer KH, Oldenburg K, Passow C, Peltz C, Sauppe M, Seel F, Tanyag RMP, Treusch R, Ulmer A, Walz S, Fennel T, Barke I, Möller T, von Issendorff B, Rupp D. Three-dimensional femtosecond snapshots of isolated faceted nanostructures. SCIENCE ADVANCES 2023; 9:eade5839. [PMID: 36812315 PMCID: PMC9946342 DOI: 10.1126/sciadv.ade5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The structure and dynamics of isolated nanosamples in free flight can be directly visualized via single-shot coherent diffractive imaging using the intense and short pulses of x-ray free-electron lasers. Wide-angle scattering images encode three-dimensional (3D) morphological information of the samples, but its retrieval remains a challenge. Up to now, effective 3D morphology reconstructions from single shots were only achieved via fitting with highly constrained models, requiring a priori knowledge about possible geometries. Here, we present a much more generic imaging approach. Relying on a model that allows for any sample morphology described by a convex polyhedron, we reconstruct wide-angle diffraction patterns from individual silver nanoparticles. In addition to known structural motives with high symmetries, we retrieve imperfect shapes and agglomerates that were not previously accessible. Our results open unexplored routes toward true 3D structure determination of single nanoparticles and, ultimately, 3D movies of ultrafast nanoscale dynamics.
Collapse
Affiliation(s)
- Alessandro Colombo
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Dold
- European XFEL GmbH, 22869 Schenefeld, Germany
| | - Patrice Kolb
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Nils Bernhardt
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Patrick Behrens
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jonathan Correa
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Linos Hecht
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Heilrath
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Robert Irsig
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Norman Iwe
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Jakob Jordan
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Björn Kruse
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Bruno Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | | | - Karl-Heinz Meiwes-Broer
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Kevin Oldenburg
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | | | - Christian Peltz
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Mario Sauppe
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Fabian Seel
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Rico Mayro P. Tanyag
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Saida Walz
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Thomas Fennel
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
| | - Ingo Barke
- Institute of Physics, University of Rostock, 18057 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18051 Rostock, Germany
| | - Thomas Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Bernd von Issendorff
- Department of Physics, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Materials Research Center, University of Freiburg, 79104 Freiburg, Germany
| | - Daniela Rupp
- Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
- Max Born Institute, 12489 Berlin, Germany
| |
Collapse
|
29
|
Zimmermann J, Beguet F, Guthruf D, Langbehn B, Rupp D. Finding the semantic similarity in single-particle diffraction images using self-supervised contrastive projection learning. NPJ COMPUTATIONAL MATERIALS 2023; 9:24. [PMID: 38666059 PMCID: PMC11041688 DOI: 10.1038/s41524-023-00966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/10/2023] [Indexed: 04/28/2024]
Abstract
Single-shot coherent diffraction imaging of isolated nanosized particles has seen remarkable success in recent years, yielding in-situ measurements with ultra-high spatial and temporal resolution. The progress of high-repetition-rate sources for intense X-ray pulses has further enabled recording datasets containing millions of diffraction images, which are needed for the structure determination of specimens with greater structural variety and dynamic experiments. The size of the datasets, however, represents a monumental problem for their analysis. Here, we present an automatized approach for finding semantic similarities in coherent diffraction images without relying on human expert labeling. By introducing the concept of projection learning, we extend self-supervised contrastive learning to the context of coherent diffraction imaging and achieve a dimensionality reduction producing semantically meaningful embeddings that align with physical intuition. The method yields substantial improvements compared to previous approaches, paving the way toward real-time and large-scale analysis of coherent diffraction experiments at X-ray free-electron lasers.
Collapse
Affiliation(s)
| | | | | | | | - Daniela Rupp
- ETH Zürich, Zürich, Switzerland
- Max-Born-Institut, Berlin, Germany
| |
Collapse
|
30
|
Assalauova D, Vartanyants IA. The structure of tick-borne encephalitis virus determined at X-ray free-electron lasers. Simulations. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:24-34. [PMID: 36601923 PMCID: PMC9814066 DOI: 10.1107/s1600577522011341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The study of virus structures by X-ray free-electron lasers (XFELs) has attracted increased attention in recent decades. Such experiments are based on the collection of 2D diffraction patterns measured at the detector following the application of femtosecond X-ray pulses to biological samples. To prepare an experiment at the European XFEL, the diffraction data for the tick-borne encephalitis virus (TBEV) was simulated with different parameters and the optimal values were identified. Following the necessary steps of a well established data-processing pipeline, the structure of TBEV was obtained. In the structure determination presented, a priori knowledge of the simulated virus orientations was used. The efficiency of the proposed pipeline was demonstrated.
Collapse
Affiliation(s)
- Dameli Assalauova
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ivan A. Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
31
|
E J, Kim Y, Bielecki J, Sikorski M, de Wijn R, Fortmann-Grote C, Sztuk-Dambietz J, Koliyadu JCP, Letrun R, Kirkwood HJ, Sato T, Bean R, Mancuso AP, Kim C. Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:064101. [PMID: 36411869 PMCID: PMC9675053 DOI: 10.1063/4.0000169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 05/15/2023]
Abstract
The unprecedented intensity of x-ray free-electron laser sources has enabled single-particle x-ray diffraction imaging (SPI) of various biological specimens in both two-dimensional projection and three dimensions (3D). The potential of studying protein dynamics in their native conditions, without crystallization or chemical staining, has encouraged researchers to aim for increasingly higher resolutions with this technique. The currently achievable resolution of SPI is limited to the sub-10 nanometer range, mainly due to background effects, such as instrumental noise and parasitic scattering from the carrier gas used for sample delivery. Recent theoretical studies have quantified the effects of x-ray pulse parameters, as well as the required number of diffraction patterns to achieve a certain resolution, in a 3D reconstruction, although the effects of detector noise and the random particle orientation in each diffraction snapshot were not taken into account. In this work, we show these shortcomings and address limitations on achievable image resolution imposed by the adaptive gain integrating pixel detector noise.
Collapse
Affiliation(s)
- Juncheng E
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Y. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Bielecki
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M. Sikorski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. de Wijn
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | - R. Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - T. Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - C. Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Author to whom correspondence should be addressed:
| |
Collapse
|
32
|
Abstract
Viruses are the most abundant biological entities on Earth, and yet, they have not received enough consideration in astrobiology. Viruses are also extraordinarily diverse, which is evident in the types of relationships they establish with their host, their strategies to store and replicate their genetic information and the enormous diversity of genes they contain. A viral population, especially if it corresponds to a virus with an RNA genome, can contain an array of sequence variants that greatly exceeds what is present in most cell populations. The fact that viruses always need cellular resources to multiply means that they establish very close interactions with cells. Although in the short term these relationships may appear to be negative for life, it is evident that they can be beneficial in the long term. Viruses are one of the most powerful selective pressures that exist, accelerating the evolution of defense mechanisms in the cellular world. They can also exchange genetic material with the host during the infection process, providing organisms with capacities that favor the colonization of new ecological niches or confer an advantage over competitors, just to cite a few examples. In addition, viruses have a relevant participation in the biogeochemical cycles of our planet, contributing to the recycling of the matter necessary for the maintenance of life. Therefore, although viruses have traditionally been excluded from the tree of life, the structure of this tree is largely the result of the interactions that have been established throughout the intertwined history of the cellular and the viral worlds. We do not know how other possible biospheres outside our planet could be, but it is clear that viruses play an essential role in the terrestrial one. Therefore, they must be taken into account both to improve our understanding of life that we know, and to understand other possible lives that might exist in the cosmos.
Collapse
Affiliation(s)
- Ignacio de la Higuera
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, OR, United States
| | - Ester Lázaro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, Spain
| |
Collapse
|
33
|
Colombo A, Zimmermann J, Langbehn B, Möller T, Peltz C, Sander K, Kruse B, Tümmler P, Barke I, Rupp D, Fennel T. The Scatman: an approximate method for fast wide-angle scattering simulations. J Appl Crystallogr 2022; 55:1232-1246. [PMID: 36249495 PMCID: PMC9533759 DOI: 10.1107/s1600576722008068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Single-shot coherent diffraction imaging (CDI) is a powerful approach to characterize the structure and dynamics of isolated nanoscale objects such as single viruses, aerosols, nanocrystals and droplets. Using X-ray wavelengths, the diffraction images in CDI experiments usually cover only small scattering angles of a few degrees. These small-angle patterns represent the magnitude of the Fourier transform of the 2D projection of the sample's electron density, which can be reconstructed efficiently but lacks any depth information. In cases where the diffracted signal can be measured up to scattering angles exceeding ∼10°, i.e. in the wide-angle regime, some 3D morphological information of the target is contained in a single-shot diffraction pattern. However, the extraction of the 3D structural information is no longer straightforward and defines the key challenge in wide-angle CDI. So far, the most convenient approach relies on iterative forward fitting of the scattering pattern using scattering simulations. Here the Scatman is presented, an approximate and fast numerical tool for the simulation and iterative fitting of wide-angle scattering images of isolated samples. Furthermore, the open-source software implementation of the Scatman algorithm, PyScatman, is published and described in detail. The Scatman approach, which has already been applied in previous work for forward-fitting-based shape retrieval, adopts the multi-slice Fourier transform method. The effects of optical properties are partially included, yielding quantitative results for small, isolated and weakly interacting samples. PyScatman is capable of computing wide-angle scattering patterns in a few milliseconds even on consumer-level computing hardware, potentially enabling new data analysis schemes for wide-angle coherent diffraction experiments.
Collapse
Affiliation(s)
- Alessandro Colombo
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Julian Zimmermann
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Bruno Langbehn
- Institute for Optics and Atomic Physics, Technical University Berlin, 10623 Berlin, Germany
| | - Thomas Möller
- Institute for Optics and Atomic Physics, Technical University Berlin, 10623 Berlin, Germany
| | - Christian Peltz
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Katharina Sander
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Björn Kruse
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Paul Tümmler
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
| | - Ingo Barke
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| | - Daniela Rupp
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Thomas Fennel
- Institute for Physics, University of Rostock, 18059 Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
34
|
Kingston RL, Millane RP. A general method for directly phasing diffraction data from high-solvent-content protein crystals. IUCRJ 2022; 9:648-665. [PMID: 36071801 PMCID: PMC9438493 DOI: 10.1107/s2052252522006996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
A procedure is described for direct phase determination in protein crystallography, applicable to crystals with high solvent content. The procedure requires only the diffraction data and an estimate of the solvent content as input. Direct phase determination is treated as a constraint satisfaction problem, in which an image is sought that is consistent with both the diffraction data and generic constraints on the density distribution in the crystal. The problem is solved using an iterative projection algorithm, the Difference Map algorithm, which has good global convergence properties, and can locate the correct solution without any initial phase information. Computational efficiency is improved by breaking the problem down into two stages; initial approximation of the molecular envelope at low resolution, followed by subsequent phase determination using all of the data. The molecular envelope is continually updated during the phase determination step. At both stages, the algorithm is initiated with many different and random phase sets, which are evolved subject to the constraints. A clustering procedure is used to identify consistent results across multiple runs, which are then averaged to generate consensus envelopes or phase sets. The emergence of highly consistent phase sets is diagnostic of success. The effectiveness of the procedure is demonstrated by application to 42 known structures of solvent fraction 0.60-0.85. The procedure works robustly at intermediate resolutions (1.9-3.5 Å) but is strongly dependent on crystal solvent content, only working routinely with solvent fractions greater than 0.70.
Collapse
Affiliation(s)
- Richard Lawrence Kingston
- School of Biological Sciences, University of Auckland, 3a Symonds St, Auckland City, Auckland 1010, New Zealand
| | - Rick P. Millane
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
35
|
Asi H, Dasgupta B, Nagai T, Miyashita O, Tama F. A hybrid approach to study large conformational transitions of biomolecules from single particle XFEL diffraction data. Front Mol Biosci 2022; 9:913860. [PMID: 36660427 PMCID: PMC9846856 DOI: 10.3389/fmolb.2022.913860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 01/06/2023] Open
Abstract
X-ray free-electron laser (XFEL) is the latest generation of the X-ray source that could become an invaluable technique in structural biology. XFEL has ultrashort pulse duration, extreme peak brilliance, and high spatial coherence, which could enable the observation of the biological molecules in near nature state at room temperature without crystallization. However, for biological systems, due to their low diffraction power and complexity of sample delivery, experiments and data analysis are not straightforward, making it extremely challenging to reconstruct three-dimensional (3D) structures from single particle XFEL data. Given the current limitations to the amount and resolution of the data from such XFEL experiments, we propose a new hybrid approach for characterizing biomolecular conformational transitions by using a single 2D low-resolution XFEL diffraction pattern in combination with another known conformation. In our method, we represent the molecular structure with a coarse-grained model, the Gaussian mixture model, to describe large conformational transitions from low-resolution XFEL data. We obtain plausible 3D structural models that are consistent with the XFEL diffraction pattern by deforming an initial structural model to maximize the similarity between the target pattern and the simulated diffraction patterns from the candidate models. We tested the proposed algorithm on two biomolecules of different sizes with different complexities of conformational transitions, adenylate kinase, and elongation factor 2, using synthetic XFEL data. The results show that, with the proposed algorithm, we can successfully describe the conformational transitions by flexibly fitting the coarse-grained model of one conformation to become consistent with an XFEL diffraction pattern simulated from another conformation. In addition, we showed that the incident beam orientation has some effect on the accuracy of the 3D structure modeling and discussed the reasons for the inaccuracies for certain orientations. The proposed method could serve as an alternative approach for retrieving information on 3D conformational transitions from the XFEL diffraction patterns to interpret experimental data. Since the molecules are represented by Gaussian kernels and no atomic structure is needed in principle, such a method could also be used as a tool to seek initial models for 3D reconstruction algorithms.
Collapse
Affiliation(s)
- Han Asi
- Department of Physics, Nagoya University, Nagoya, Japan
| | - Bhaskar Dasgupta
- Division of Biological Data Science, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro City, Japan
| | - Tetsuro Nagai
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, Kobe, Japan,*Correspondence: Osamu Miyashita, ; Florence Tama,
| | - Florence Tama
- Department of Physics, Nagoya University, Nagoya, Japan,RIKEN Center for Computational Science, Kobe, Japan,Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan,*Correspondence: Osamu Miyashita, ; Florence Tama,
| |
Collapse
|
36
|
Peck A, Chang HY, Dujardin A, Ramalingam D, Uervirojnangkoorn M, Wang Z, Mancuso A, Poitevin F, Yoon CH. Skopi: a simulation package for diffractive imaging of noncrystalline biomolecules. J Appl Crystallogr 2022; 55:1002-1010. [PMID: 35974743 PMCID: PMC9348890 DOI: 10.1107/s1600576722005994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
X-ray free-electron lasers (XFELs) have the ability to produce ultra-bright femtosecond X-ray pulses for coherent diffraction imaging of biomolecules. While the development of methods and algorithms for macromolecular crystallography is now mature, XFEL experiments involving aerosolized or solvated biomolecular samples offer new challenges in terms of both experimental design and data processing. Skopi is a simulation package that can generate single-hit diffraction images for reconstruction algorithms, multi-hit diffraction images of aggregated particles for training machine learning classifiers using labeled data, diffraction images of randomly distributed particles for fluctuation X-ray scattering algorithms, and diffraction images of reference and target particles for holographic reconstruction algorithms. Skopi is a resource to aid feasibility studies and advance the development of algorithms for noncrystalline experiments at XFEL facilities.
Collapse
Affiliation(s)
- Ariana Peck
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hsing-Yin Chang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Antoine Dujardin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Deeban Ramalingam
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Monarin Uervirojnangkoorn
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Zhaoyou Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adrian Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Frédéric Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
37
|
Villalta A, Schmitt A, Estrozi LF, Quemin ERJ, Alempic JM, Lartigue A, Pražák V, Belmudes L, Vasishtan D, Colmant AMG, Honoré FA, Couté Y, Grünewald K, Abergel C. The giant mimivirus 1.2 Mb genome is elegantly organized into a 30-nm diameter helical protein shield. eLife 2022; 11:e77607. [PMID: 35900198 PMCID: PMC9512402 DOI: 10.7554/elife.77607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.
Collapse
Affiliation(s)
- Alejandro Villalta
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Alain Schmitt
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Leandro F Estrozi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS)GrenobleFrance
| | - Emmanuelle RJ Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
| | - Jean-Marie Alempic
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Audrey Lartigue
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Lucid Belmudes
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Agathe MG Colmant
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Flora A Honoré
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGEGrenobleFrance
| | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology (HPI), University of HamburgHamburgGermany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Chantal Abergel
- Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B)MarseilleFrance
| |
Collapse
|
38
|
Tokuhisa A, Akinaga Y, Terayama K, Okamoto Y, Okuno Y. Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network. J Chem Inf Model 2022; 62:3352-3364. [PMID: 35820663 PMCID: PMC9326892 DOI: 10.1021/acs.jcim.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Femtosecond X-ray pulse lasers are promising probes for
the elucidation
of the multiconformational states of biomolecules because they enable
snapshots of single biomolecules to be observed as coherent diffraction
images. Multi-image processing using an X-ray free-electron laser
has proven to be a successful structural analysis method for viruses.
However, the performance of single-particle analysis (SPA) for flexible
biomolecules with sizes ≤100 nm remains difficult. Owing to
the multiconformational states of biomolecules and noisy character
of diffraction images, diffraction image improvement by multi-image
processing is often ineffective for such molecules. Herein, a single-image
super-resolution (SR) model was constructed using an SR convolutional
neural network (SRCNN). Data preparation was performed in silico to
consider the actual observation situation with unknown molecular orientations
and the fluctuation of molecular structure and incident X-ray intensity.
It was demonstrated that the trained SRCNN model improved the single-particle
diffraction image quality, corresponding to an observed image with
an incident X-ray intensity (approximately three to seven times higher
than the original X-ray intensity), while retaining the individuality
of the diffraction images. The feasibility of SPA for flexible biomolecules
with sizes ≤100 nm was dramatically increased by introducing
the SRCNN improvement at the beginning of the various structural analysis
schemes.
Collapse
Affiliation(s)
- Atsushi Tokuhisa
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinobu Akinaga
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,VINAS Co., Ltd., Keihan Dojima Bldg., Dojima 2 1 31, Kita-ku, Osaka 530-0003, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Yuji Okamoto
- Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Center for Cluster Development and Coordination, Foundation for Biomedical Research and Innovation at Kobe, 6-3-5, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
39
|
Low-dose shift- and rotation-invariant diffraction recognition imaging. Sci Rep 2022; 12:11202. [PMID: 35778504 PMCID: PMC9249920 DOI: 10.1038/s41598-022-15486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022] Open
Abstract
A low-dose imaging technique which uses recognition rather than recording of a full high-resolution image is proposed. A structural hypothesis is verified by probing the object with only a few particles (photons, electrons). Each scattered particle is detected in the far field and its position on the detector is analysed by applying Bayesian statistics. Already a few detected particles are sufficient to confirm a structural hypothesis at a probability exceeding 95%. As an example, the method is demonstrated as an application in optical character recognition, where a hand-written number is recognized from a set of different written numbers. In other provided examples, the structural hypothesis of a single macromolecule is recognized from a diffraction pattern acquired at an extremely low radiation dose, less than one X-ray photon or electron per Å2, thus leaving the macromolecule practically without any radiation damage. The proposed principle of low-dose recognition can be utilized in various applications, ranging from optical character recognition and optical security elements to recognizing a certain protein or its conformation.
Collapse
|
40
|
Stransky M, Jurek Z, Santra R, Mancuso AP, Ziaja B. Tree-Code Based Improvement of Computational Performance of the X-ray-Matter-Interaction Simulation Tool XMDYN. Molecules 2022; 27:molecules27134206. [PMID: 35807452 PMCID: PMC9267930 DOI: 10.3390/molecules27134206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, we report on incorporating for the first time tree-algorithm based solvers into the molecular dynamics code, XMDYN. XMDYN was developed to describe the interaction of ultrafast X-ray pulses with atomic assemblies. It is also a part of the simulation platform, SIMEX, developed for computational single-particle imaging studies at the SPB/SFX instrument of the European XFEL facility. In order to improve the XMDYN performance, we incorporated the existing tree-algorithm based Coulomb solver, PEPC, into the code, and developed a dedicated tree-algorithm based secondary ionization solver, now also included in the XMDYN code. These extensions enable computationally efficient simulations of X-ray irradiated large atomic assemblies, e.g., large protein systems or viruses that are of strong interest for ultrafast X-ray science. The XMDYN-based preparatory simulations can now guide future single-particle-imaging experiments at the free-electron-laser facility, EuXFEL.
Collapse
Affiliation(s)
- Michal Stransky
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany;
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
- Correspondence: (M.S.); (Z.J.)
| | - Zoltan Jurek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Correspondence: (M.S.); (Z.J.)
| | - Robin Santra
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany;
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia
| | - Beata Ziaja
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany;
| |
Collapse
|
41
|
Zhuang Y, Awel S, Barty A, Bean R, Bielecki J, Bergemann M, Daurer BJ, Ekeberg T, Estillore AD, Fangohr H, Giewekemeyer K, Hunter MS, Karnevskiy M, Kirian RA, Kirkwood H, Kim Y, Koliyadu J, Lange H, Letrun R, Lübke J, Mall A, Michelat T, Morgan AJ, Roth N, Samanta AK, Sato T, Shen Z, Sikorski M, Schulz F, Spence JCH, Vagovic P, Wollweber T, Worbs L, Xavier PL, Yefanov O, Maia FRNC, Horke DA, Küpper J, Loh ND, Mancuso AP, Chapman HN, Ayyer K. Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging. IUCRJ 2022; 9:204-214. [PMID: 35371510 PMCID: PMC8895023 DOI: 10.1107/s2052252521012707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 06/12/2023]
Abstract
One of the outstanding analytical problems in X-ray single-particle imaging (SPI) is the classification of structural heterogeneity, which is especially difficult given the low signal-to-noise ratios of individual patterns and the fact that even identical objects can yield patterns that vary greatly when orientation is taken into consideration. Proposed here are two methods which explicitly account for this orientation-induced variation and can robustly determine the structural landscape of a sample ensemble. The first, termed common-line principal component analysis (PCA), provides a rough classification which is essentially parameter free and can be run automatically on any SPI dataset. The second method, utilizing variation auto-encoders (VAEs), can generate 3D structures of the objects at any point in the structural landscape. Both these methods are implemented in combination with the noise-tolerant expand-maximize-compress (EMC) algorithm and its utility is demonstrated by applying it to an experimental dataset from gold nanoparticles with only a few thousand photons per pattern. Both discrete structural classes and continuous deformations are recovered. These developments diverge from previous approaches of extracting reproducible subsets of patterns from a dataset and open up the possibility of moving beyond the study of homogeneous sample sets to addressing open questions on topics such as nanocrystal growth and dynamics, as well as phase transitions which have not been externally triggered.
Collapse
Affiliation(s)
- Yulong Zhuang
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | - Salah Awel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | | | - Benedikt J. Daurer
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
| | - Tomas Ekeberg
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Armando D. Estillore
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Hans Fangohr
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
- University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | - Holger Lange
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute of Physical Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | | | - Jannik Lübke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Abhishek Mall
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Andrew J. Morgan
- Department of Physics, University of Melbourne, Victoria 3010, Australia
| | - Nils Roth
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Amit K. Samanta
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Zhou Shen
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
| | - Marcin Sikorski
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Florian Schulz
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute of Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Patrik Vagovic
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Tamme Wollweber
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Lena Worbs
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - P. Lourdu Xavier
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Filipe R. N. C. Maia
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel A. Horke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, 20146 Hamburg, Germany
| | - N. Duane Loh
- Center for Bio-Imaging Sciences, National University of Singapore, 117557, Singapore
- Department of Physics, National University of Singapore, 117551, Singapore
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Henry N. Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Kartik Ayyer
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22761 Hamburg, Germany
- Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
42
|
Bellisario A, Maia FRNC, Ekeberg T. Noise reduction and mask removal neural network for X-ray single-particle imaging. J Appl Crystallogr 2022; 55:122-132. [PMID: 35145358 PMCID: PMC8805166 DOI: 10.1107/s1600576721012371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022] Open
Abstract
Free-electron lasers could enable X-ray imaging of single biological macromolecules and the study of protein dynamics, paving the way for a powerful new imaging tool in structural biology, but a low signal-to-noise ratio and missing regions in the detectors, colloquially termed 'masks', affect data collection and hamper real-time evaluation of experimental data. In this article, the challenges posed by noise and masks are tackled by introducing a neural network pipeline that aims to restore diffraction intensities. For training and testing of the model, a data set of diffraction patterns was simulated from 10 900 different proteins with molecular weights within the range of 10-100 kDa and collected at a photon energy of 8 keV. The method is compared with a simple low-pass filtering algorithm based on autocorrelation constraints. The results show an improvement in the mean-squared error of roughly two orders of magnitude in the presence of masks compared with the noisy data. The algorithm was also tested at increasing mask width, leading to the conclusion that demasking can achieve good results when the mask is smaller than half of the central speckle of the pattern. The results highlight the competitiveness of this model for data processing and the feasibility of restoring diffraction intensities from unknown structures in real time using deep learning methods. Finally, an example is shown of this preprocessing making orientation recovery more reliable, especially for data sets containing very few patterns, using the expansion-maximization-compression algorithm.
Collapse
Affiliation(s)
- Alfredo Bellisario
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R. N. C. Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|
43
|
Eliah Dawod I, Tîmneanu N, Mancuso AP, Caleman C, Grånäs O. Imaging of femtosecond bond breaking and charge dynamics in ultracharged peptides. Phys Chem Chem Phys 2021; 24:1532-1543. [PMID: 34939631 DOI: 10.1039/d1cp03419g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray free-electrons lasers have revolutionized the method of imaging biological macromolecules such as proteins, viruses and cells by opening the door to structural determination of both single particles and crystals at room temperature. By utilizing high intensity X-ray pulses on femtosecond timescales, the effects of radiation damage can be reduced. Achieving high resolution structures will likely require knowledge of how radiation damage affects the structure on an atomic scale, since the experimentally obtained electron densities will be reconstructed in the presence of radiation damage. Detailed understanding of the expected damage scenarios provides further information, in addition to guiding possible corrections that may need to be made to obtain a damage free reconstruction. In this work, we have quantified the effects of ionizing photon-matter interactions using first principles molecular dynamics. We utilize density functional theory to calculate bond breaking and charge dynamics in three ultracharged molecules and two different structural conformations that are important to the structural integrity of biological macromolecules, comparing to our previous studies on amino acids. The effects of the ultracharged states and subsequent bond breaking in real space are studied in reciprocal space using coherent diffractive imaging of an ensemble of aligned biomolecules in the gas phase.
Collapse
Affiliation(s)
- Ibrahim Eliah Dawod
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany
| | - Nicusor Tîmneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| | - Adrian P Mancuso
- European XFEL, Holzkoppel 4, DE-22869 Schenefeld, Germany.,Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden. .,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, DE-22607 Hamburg, Germany
| | - Oscar Grånäs
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
| |
Collapse
|
44
|
In a flash of light: X-ray free electron lasers meet native mass spectrometry. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 39:89-99. [PMID: 34906329 DOI: 10.1016/j.ddtec.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 01/02/2023]
Abstract
During the last years, X-ray free electron lasers (XFELs) have emerged as X-ray sources of unparalleled brightness, delivering extreme amounts of photons in femtosecond pulses. As such, they have opened up completely new possibilities in drug discovery and structural biology, including studying high resolution biomolecular structures and their functioning in a time resolved manner, and diffractive imaging of single particles without the need for their crystallization. In this perspective, we briefly review the operation of XFELs, their immediate uses for drug discovery and focus on the potentially revolutionary single particle diffractive imaging technique and the challenges which remain to be overcome to fully realize its potential to provide high resolution structures without the need for crystallization, freezing or the need to keep proteins stable at extreme concentrations for long periods of time. As the issues have been to a large extent sample delivery related, we outline a way for native mass spectrometry to overcome these and enable so far impossible research with a potentially huge impact on structural biology and drug discovery, such as studying structures of transient intermediate species in viral life cycles or during functioning of molecular machines.
Collapse
|
45
|
Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. FRONTIERS IN BIOINFORMATICS 2021; 1:788308. [PMID: 36303748 PMCID: PMC9580929 DOI: 10.3389/fbinf.2021.788308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
The functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction. Although crystallography approach can report the conformation of a macromolecule with the position of each atom accurately defined in it, the exploration of structural polymorphism and interpreting biological function in terms of crystal structures is largely constrained by the crystal packing. An alternative approach to studying the macromolecule of interest in solution is thus desirable. With the advancement of instrumentation and computational methods for image analysis and reconstruction, cryo-electron microscope (cryo-EM) has been transformed to be able to produce “in solution” structures of macromolecules routinely with resolutions comparable to crystallography but without the need of crystals. Since the sample preparation of single-particle cryo-EM allows for all forms co-existing in solution to be simultaneously frozen, the image data contain rich information as to structural polymorphism. The ensemble of structure information can be subsequently disentangled through three-dimensional (3D) classification analyses. In this review, we highlight important examples of protein structural polymorphism in relation to allostery, subunit cooperativity and function plasticity recently revealed by cryo-EM analyses, and review recent developments in 3D classification algorithms including neural network/deep learning approaches that would enable cryo-EM analyese in this regard. Finally, we brief the frontier of cryo-EM structure determination of RNA molecules where resolving the structural polymorphism is at dawn.
Collapse
Affiliation(s)
- Wei-Hau Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- *Correspondence: Wei-Hau Chang,
| | | | - Hsin-Hung Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Chi Chung
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - I-Ping Tu
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
46
|
Worbs L, Roth N, Lübke J, Estillore AD, Xavier PL, Samanta AK, Küpper J. Optimizing the geometry of aerodynamic lens injectors for single-particle coherent diffractive imaging of gold nanoparticles. J Appl Crystallogr 2021; 54:1730-1737. [PMID: 34963765 PMCID: PMC8662975 DOI: 10.1107/s1600576721009973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Single-particle X-ray diffractive imaging (SPI) of small (bio-)nanoparticles (NPs) requires optimized injectors to collect sufficient diffraction patterns to allow for the reconstruction of the NP structure with high resolution. Typically, aerodynamic lens-stack injectors are used for NP injection. However, current injectors were developed for larger NPs (>100 nm), and their ability to generate high-density NP beams suffers with decreasing NP size. Here, an aerodynamic lens-stack injector with variable geometry and a geometry-optimization procedure are presented. The optimization for 50 nm gold-NP (AuNP) injection using a numerical-simulation infrastructure capable of calculating the carrier-gas flow and the particle trajectories through the injector is also introduced. The simulations were experimentally validated using spherical AuNPs and sucrose NPs. In addition, the optimized injector was compared with the standard-installation 'Uppsala injector' for AuNPs. Results for these heavy particles showed a shift in the particle-beam focus position rather than a change in beam size, which results in a lower gas background for the optimized injector. Optimized aerodynamic lens-stack injectors will allow one to increase NP beam density, reduce the gas background, discover the limits of current injectors and contribute to structure determination of small NPs using SPI.
Collapse
Affiliation(s)
- Lena Worbs
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nils Roth
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jannik Lübke
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Armando D. Estillore
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - P. Lourdu Xavier
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Amit K. Samanta
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
47
|
Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser. Sci Rep 2021; 11:17976. [PMID: 34504156 PMCID: PMC8429720 DOI: 10.1038/s41598-021-97142-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
Collapse
|
48
|
Burton-Smith RN, Murata K. Cryo-Electron Microscopy of the Giant Viruses. Microscopy (Oxf) 2021; 70:477-486. [PMID: 34490462 DOI: 10.1093/jmicro/dfab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
High resolution study of the giant viruses presents one of the latest challenges in cryo-electron microscopy of viruses. Too small for light microscopy, but too large for easy study at high resolution by electron microscopy, they range in size from ~0.2-2 μm, from high symmetry icosahedral viruses such as Paramecium burseria Chlorella virus 1 to asymmetric forms like Tupanvirus or Pithovirus. To attain high resolution, two strategies exist to study these large viruses by cryo-EM: firstly, increasing the acceleration voltage of the electron microscope to improve sample penetration and overcome the limitations imposed by electro-optical physics at lower voltages, and secondly the method of "block-based reconstruction" pioneered by Michael G. Rossmann and his collaborators, which resolves the latter limitation through an elegant leveraging of high symmetry, but cannot overcome sample penetration limitations. In addition, more recent advances in both computational capacity and image processing also yield assistance in studying the giant viruses. Especially, the inclusion of Ewald sphere correction can provide large improvements in attainable resolutions for 300 kV electron microscopes. Despite this, the study of giant viruses remains a significant challenge.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
49
|
Li X, Inhester L, Robatjazi SJ, Erk B, Boll R, Hanasaki K, Toyota K, Hao Y, Bomme C, Rudek B, Foucar L, Southworth SH, Lehmann CS, Kraessig B, Marchenko T, Simon M, Ueda K, Ferguson KR, Bucher M, Gorkhover T, Carron S, Alonso-Mori R, Koglin JE, Correa J, Williams GJ, Boutet S, Young L, Bostedt C, Son SK, Santra R, Rolles D, Rudenko A. Pulse Energy and Pulse Duration Effects in the Ionization and Fragmentation of Iodomethane by Ultraintense Hard X Rays. PHYSICAL REVIEW LETTERS 2021; 127:093202. [PMID: 34506178 DOI: 10.1103/physrevlett.127.093202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/24/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The interaction of intense femtosecond x-ray pulses with molecules sensitively depends on the interplay between multiple photoabsorptions, Auger decay, charge rearrangement, and nuclear motion. Here, we report on a combined experimental and theoretical study of the ionization and fragmentation of iodomethane (CH_{3}I) by ultraintense (∼10^{19} W/cm^{2}) x-ray pulses at 8.3 keV, demonstrating how these dynamics depend on the x-ray pulse energy and duration. We show that the timing of multiple ionization steps leading to a particular reaction product and, thus, the product's final kinetic energy, is determined by the pulse duration rather than the pulse energy or intensity. While the overall degree of ionization is mainly defined by the pulse energy, our measurement reveals that the yield of the fragments with the highest charge states is enhanced for short pulse durations, in contrast to earlier observations for atoms and small molecules in the soft x-ray domain. We attribute this effect to a decreased charge transfer efficiency at larger internuclear separations, which are reached during longer pulses.
Collapse
Affiliation(s)
- X Li
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - L Inhester
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - S J Robatjazi
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - B Erk
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - R Boll
- Max Planck Institute for Nuclear Physics, Heidelberg, Germany
- European XFEL, Schenefeld, Germany
| | - K Hanasaki
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - K Toyota
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Y Hao
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Institute of Theoretical Physics and Department of Physics, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - C Bomme
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - B Rudek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - L Foucar
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - S H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - C S Lehmann
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - B Kraessig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
| | - T Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Paris, France
| | - M Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, Paris, France
| | - K Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - K R Ferguson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - M Bucher
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - T Gorkhover
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin, Germany
| | - S Carron
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - R Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - J E Koglin
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - J Correa
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - G J Williams
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
- NSLS-II, Brookhaven National Laboratory, Upton New York, USA
| | - S Boutet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - L Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois, USA
| | - C Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, USA
- Paul Scherrer Institut, Villigen-PSI, Villigen, Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - S-K Son
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - R Santra
- Center for Free-Electron Laser Science, DESY, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - D Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - A Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
50
|
Tiwari SP, Tama F, Miyashita O. Protocol for Retrieving Three-Dimensional Biological Shapes for a Few XFEL Single-Particle Diffraction Patterns. J Chem Inf Model 2021; 61:4108-4119. [PMID: 34357759 DOI: 10.1021/acs.jcim.1c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
X-ray free-electron laser (XFEL) scattering promises to probe single biomolecular complexes without crystallization, enabling the study of biomolecular structures under near-physiological conditions at room temperature. However, such structural determination of biomolecules is extremely challenging thus far. In addition to the large numbers of diffraction patterns required, the orientation of each diffraction pattern needs to be accurately estimated and the missing phase information needs to be recovered for three-dimensional (3D) structure reconstruction. Given the current limitations to the amount and resolution of the data available from single-particle XFEL scattering experiments, we propose an alternative approach to find plausible 3D biological shapes from a limited number of diffraction patterns to serve as a starting point for further analyses. In our proposed strategy, small sets of input (e.g., five) XFEL diffraction patterns were matched against a library of diffraction patterns simulated from 1628 electron microscopy (EM) models to find potential matching 3D models that are consistent with the input diffraction patterns. This approach was tested for three example cases: EMD-3457 (Thermoplasma acidophilum 20S proteasome), EMD-5141 (Escherichia coli 70S ribosome complex), and EMD-5152 (budding yeast Nup84 complex). We observed that choosing the best strategy to define matching regions on the diffraction patterns is critical for identifying correctly matching diffraction patterns. While increasing the number of input diffraction patterns improved the matches in some cases, we found that the resulting matches are more dependent on the uniqueness or complexity of the shape as captured in the individual input diffraction patterns and the availability of a similar 3D biological shape in the search library. The protocol could be useful for finding candidate models for a limited amount of low-resolution data, even when insufficient for reconstruction, performing a quick exploration of new data upon collection, and the analysis of the conformational heterogeneity of the particle of interest as captured within the diffraction patterns.
Collapse
Affiliation(s)
- Sandhya P Tiwari
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Florence Tama
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan.,Graduate School of Science, Department of Physics, Nagoya University, Nagoya, Aichi 464-8601, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Osamu Miyashita
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|