1
|
Sheu J, Seyler S, Fazlul Karim Rasel AKM, Hayes MA. Enhanced Green Fluorescent Protein Streaming Dielectrophoresis in Insulator-Based Microfluidic Devices. Electrophoresis 2024. [PMID: 39523919 DOI: 10.1002/elps.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
There is tantalizing evidence that proteins can be accurately and selectively manipulated by higher order electric field effects within microfluidic devices. The accurate and precise manipulation of proteins in these platforms promises to disrupt and revolutionize many fields, most notably analytical biochemistry. Several lines of experimental evidence suggest much higher forces are generated compared to those calculated from traditional theories and those higher forces arise from subtle structural features of the proteins providing selectivity. New theories reflect some of the experimental evidence in the magnitude of the force predicted and inclusion of subtle structural features absent in traditional continuum theory. Unfortunately, the experimental evidence is largely exploratory in nature and lacks one or more important elements that prevents a clear interpretation and comparison to not only the other existing data, but also quantitative comparison to the evolving theoretical descriptions. Here, a clear and interpretable experimental system is presented that quantitatively determines the dielectrophoretic susceptibility of unlabeled, unaggregated native-structure protein molecules that are exposed to modest electric fields (105-106 V/m) for short periods of time (∼5 ms) without significant increases in local concentration. The platform uses sub-nanogram quantities of protein, the probed volume upon determination is a few picoliters, and the total analysis time is 10 s.
Collapse
Affiliation(s)
- Jerry Sheu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - Sean Seyler
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Wu M, Liao W. Machine Learning-Empowered Real-Time Acoustic Trapping: An Enabling Technique for Increasing MRI-Guided Microbubble Accumulation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6342. [PMID: 39409397 PMCID: PMC11478462 DOI: 10.3390/s24196342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Acoustic trap, using ultrasound interference to ensnare bioparticles, has emerged as a versatile tool for life sciences due to its non-invasive nature. Bolstered by magnetic resonance imaging's advances in sensing acoustic interference and tracking drug carriers (e.g., microbubble), acoustic trap holds promise for increasing MRI-guided microbubbles (MBs) accumulation in target microvessels, improving drug carrier concentration. However, accurate trap generation remains challenging due to complex ultrasound propagation in tissues. Moreover, the MBs' short lifetime demands high computation efficiency for trap position adjustments based on real-time MRI-guided carrier monitoring. To this end, we propose a machine learning-based model to modulate the transducer array. Our model delivers accurate prediction of both time-of-flight (ToF) and pressure amplitude, achieving low average prediction errors for ToF (-0.45 µs to 0.67 µs, with only a few isolated outliers) and amplitude (-0.34% to 1.75%). Compared with the existing methods, our model enables rapid prediction (<10 ms), achieving a four-order of magnitude improvement in computational efficiency. Validation results based on different transducer sizes and penetration depths support the model's adaptability and potential for future ultrasound treatments.
Collapse
Affiliation(s)
- Mengjie Wu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Wentao Liao
- Medical Imaging Center, Shenzhen Hospital of Southern Medical University, Shenzhen 518005, China;
| |
Collapse
|
3
|
Zavatski S, Martin OJF. Visual and Quantitative Analysis of the Trapping Volume in Dielectrophoresis of Nanoparticles. NANO LETTERS 2024; 24:10305-10312. [PMID: 39133749 PMCID: PMC11342383 DOI: 10.1021/acs.nanolett.4c02903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Nanoparticle manipulation requires careful analysis of the forces at play. Unfortunately, traditional force measurement techniques based on the particle velocity do not provide sufficient resolution, while balancing approaches involving counteracting forces are often cumbersome. Here, we demonstrate that a nanoparticle dielectrophoretic response can be quantitatively studied by a straightforward visual delineation of the dielectrophoretic trapping volume. We reveal this volume by detecting the width of the region depleted of gold nanoparticles by the dielectrophoretic force. Comparison of the measured widths for various nanoparticle sizes with numerical simulations obtained by solving the particle-conservation equation shows excellent agreement, thus providing access to the particle physical properties, such as polarizability and size. These findings can be further extended to investigate various types of nano-objects, including bio- and molecular aggregates, and offer a robust characterization tool that can enhance the control of matter at the nanoscale.
Collapse
Affiliation(s)
- Siarhei Zavatski
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology
Laboratory (NAM), Swiss Federal Institute
of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
4
|
Gimsa J, Radai MM. The System's Point of View Applied to Dielectrophoresis in Plate Capacitor and Pointed-versus-Pointed Electrode Chambers. MICROMACHINES 2023; 14:670. [PMID: 36985077 PMCID: PMC10053818 DOI: 10.3390/mi14030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The DEP force is usually calculated from the object's point of view using the interaction of the object's induced dipole moment with the inducing field. Recently, we described the DEP behavior of high- and low-conductive 200-µm 2D spheres in a square 1 × 1-mm chamber with a plane-versus-pointed electrode configuration from the system's point of view. Here we extend our previous considerations to the plane-versus-plane and pointed-versus-pointed electrode configurations. The trajectories of the sphere center and the corresponding DEP forces were calculated from the gradient of the system's overall energy dissipation for given starting points. The dissipation's dependence on the sphere's position in the chamber is described by the numerical "conductance field", which is the DC equivalent of the capacitive charge-work field. While the plane-versus-plane electrode configuration is field-gradient free without an object, the presence of the highly or low-conductive spheres generates structures in the conductance fields, which result in very similar DEP trajectories. For both electrode configurations, the model describes trajectories with multiple endpoints, watersheds, and saddle points, very high attractive and repulsive forces in front of pointed electrodes, and the effect of mirror charges. Because the model accounts for inhomogeneous objectpolarization by inhomogeneous external fields, the approach allows the modeling of the complicated interplay of attractive and repulsive forces near electrode surfaces and chamber edges. Non-reversible DEP forces or asymmetric magnitudes for the highly and low-conductive spheres in large areas of the chamber indicate the presence of higher-order moments, mirror charges, etc.
Collapse
Affiliation(s)
- Jan Gimsa
- Department of Biophysics, University of Rostock, Gertrudenstr. 11A, 18057 Rostock, Germany
| | - Michal M. Radai
- Independent Researcher, HaPrachim 19, Ra’anana 4339963, Israel
| |
Collapse
|
5
|
Riccardi M, Martin OJF. Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers. Chem Rev 2023; 123:1680-1711. [PMID: 36719985 PMCID: PMC9951227 DOI: 10.1021/acs.chemrev.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 02/02/2023]
Abstract
Electromagnetic forces and torques enable many key technologies, including optical tweezers or dielectrophoresis. Interestingly, both techniques rely on the same physical process: the interaction of an oscillating electric field with a particle of matter. This work provides a unified framework to understand this interaction both when considering fields oscillating at low frequencies─dielectrophoresis─and high frequencies─optical tweezers. We draw useful parallels between these two techniques, discuss the different and often unstated assumptions they are based upon, and illustrate key applications in the fields of physical and analytical chemistry, biosensing, and colloidal science.
Collapse
Affiliation(s)
- Marco Riccardi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015Lausanne, Switzerland
| |
Collapse
|
6
|
Zavatski S, Bandarenka H, Martin OJF. Protein Dielectrophoresis with Gradient Array of Conductive Electrodes Sheds New Light on Empirical Theory. Anal Chem 2023; 95:2958-2966. [PMID: 36692365 PMCID: PMC9909730 DOI: 10.1021/acs.analchem.2c04708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dielectrophoresis (DEP) is a versatile tool for the precise microscale manipulation of a broad range of substances. To unleash the full potential of DEP for the manipulation of complex molecular-sized particulates such as proteins requires the development of appropriate theoretical models and their comprehensive experimental verification. Here, we construct an original DEP platform and test the Hölzel-Pethig empirical model for protein DEP. Three different proteins are studied: lysozyme, BSA, and lactoferrin. Their molecular Clausius-Mossotti function is obtained by detecting their trapping event via the measurement of the fluorescence intensity to identify the minimum electric field gradient required to overcome dispersive forces. We observe a significant discrepancy with published theoretical data and, after a very careful analysis to rule out experimental errors, conclude that more sophisticated theoretical models are required for the response of molecular entities in DEP fields. The developed experimental platform, which includes arrays of sawtooth metal electrode pairs with varying gaps and produces variations of the electric field gradient, provides a versatile tool that can broaden the utilization of DEP for molecular entities.
Collapse
Affiliation(s)
- Siarhei Zavatski
- Nanophotonics
and Metrology Laboratory (NAM), Swiss Federal
Institute of Technology Lausanne (EPFL), Lausanne1015, Switzerland,,
| | - Hanna Bandarenka
- The
Polytechnic School, Arizona State University, Mesa, Arizona85212, United States
| | - Olivier J. F. Martin
- Nanophotonics
and Metrology Laboratory (NAM), Swiss Federal
Institute of Technology Lausanne (EPFL), Lausanne1015, Switzerland,
| |
Collapse
|
7
|
Domke KF, Aragonès AC. Playing catch and release with single molecules: mechanistic insights into plasmon-controlled nanogaps. NANOSCALE 2023; 15:497-506. [PMID: 36394540 DOI: 10.1039/d2nr05448e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-molecule (SM) detection is essential for investigating processes at the molecular level. Nanogap-based detection approaches have proven to be highly accurate SM capture and detection platforms in the last decade. Unfortunately, these approaches face several inherent drawbacks, such as short detection times and the effects of Brownian motion, that can hinder molecular capture. Nanogap-based SM detection approaches have been successfully coupled to optical-based setups to exploit nearfield-assisted trapping to overcome these drawbacks and thus improve SM capture and detection. Here we present the first mechanistic study of nearfield effects on SM capture and release in nanogaps, using unsupervised machine learning methods based on hidden Markov models. We show that the nearfield strength can manipulate the kinetics of the SM capture and release processes. With increasing field strength, the rate constant of the capture kinetics increase while the release kinetics decrease, favouring the former over the latter. As a result, the SM capture state is more likely and more stable than the release state above a specific threshold nearfild strength. We have also estimated the decrease in the capture free-energy profile and the increase in the release profiles to be around 5 kJ mol-1 for the laser powers employed, ranging from laser-OFF conditions to 11 mW μm-2. We envisage that our findings can be combined with the electrocatalytic capabilities of the (nearfield) nanogap to develop next-generation molecular nanoreactors. This approach will open the door to highly efficient SM catalysis with precise extended monitoring timescales facilitated through the longer residence times of the reactant trapped inside the nanogap.
Collapse
Affiliation(s)
- Katrin F Domke
- University of Duisburg-Essen, Faculty of Chemistry, Universitätsstr. 5, 45141 Essen, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Albert C Aragonès
- Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Marti i Franquès 1, 08028, Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTC), Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Prüfer M, Wenger C, Bier FF, Laux EM, Hölzel R. Activity of AC electrokinetically immobilized horseradish peroxidase. Electrophoresis 2022; 43:1920-1933. [PMID: 35904497 DOI: 10.1002/elps.202200073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Dielectrophoresis (DEP) is an AC electrokinetic effect mainly used to manipulate cells. Smaller particles, like virions, antibodies, enzymes, and even dye molecules can be immobilized by DEP as well. In principle, it was shown that enzymes are active after immobilization by DEP, but no quantification of the retained activity was reported so far. In this study, the activity of the enzyme horseradish peroxidase (HRP) is quantified after immobilization by DEP. For this, HRP is immobilized on regular arrays of titanium nitride ring electrodes of 500 nm diameter and 20 nm widths. The activity of HRP on the electrode chip is measured with a limit of detection of 60 fg HRP by observing the enzymatic turnover of Amplex Red and H2 O2 to fluorescent resorufin by fluorescence microscopy. The initial activity of the permanently immobilized HRP equals up to 45% of the activity that can be expected for an ideal monolayer of HRP molecules on all electrodes of the array. Localization of the immobilizate on the electrodes is accomplished by staining with the fluorescent product of the enzyme reaction. The high residual activity of enzymes after AC field induced immobilization shows the method's suitability for biosensing and research applications.
Collapse
Affiliation(s)
- Mareike Prüfer
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| | - Christian Wenger
- IHP GmbH - Leibniz Institute for Innovative Microelectronics, Frankfurt/Oder, Germany
| | - Frank F Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Eva-Maria Laux
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| | - Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam-Golm, Germany
| |
Collapse
|
9
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
10
|
Gimsa J, Radai MM. Dielectrophoresis from the System's Point of View: A Tale of Inhomogeneous Object Polarization, Mirror Charges, High Repelling and Snap-to-Surface Forces and Complex Trajectories Featuring Bifurcation Points and Watersheds. MICROMACHINES 2022; 13:mi13071002. [PMID: 35888819 PMCID: PMC9323334 DOI: 10.3390/mi13071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Microscopic objects change the apparent permittivity and conductivity of aqueous systems and thus their overall polarizability. In inhomogeneous fields, dielectrophoresis (DEP) increases the overall polarizability of the system by moving more highly polarizable objects or media to locations with a higher field. The DEP force is usually calculated from the object’s point of view using the interaction of the object’s induced dipole or multipole moments with the inducing field. Recently, we were able to derive the DEP force from the work required to charge suspension volumes with a single object moving in an inhomogeneous field. The capacitance of the volumes was described using Maxwell−Wagner’s mixing equation. Here, we generalize this system’s-point-of-view approach describing the overall polarizability of the whole DEP system as a function of the position of the object with a numerical “conductance field”. As an example, we consider high- and low conductive 200 µm 2D spheres in a square 1 × 1 mm chamber with plain-versus-pointed electrode configuration. For given starting points, the trajectories of the sphere and the corresponding DEP forces were calculated from the conductance gradients. The model describes watersheds; saddle points; attractive and repulsive forces in front of the pointed electrode, increased by factors >600 compared to forces in the chamber volume where the classical dipole approach remains applicable; and DEP motions with and against the field gradient under “positive DEP” conditions. We believe that our approach can explain experimental findings such as the accumulation of viruses and proteins, where the dipole approach cannot account for sufficiently high holding forces to defeat Brownian motion.
Collapse
Affiliation(s)
- Jan Gimsa
- Department of Biophysics, University of Rostock, Gertrudenstr. 11A, 18057 Rostock, Germany
- Correspondence: ; Tel.: +49-381-6020; Fax: +49-381-6022
| | - Michal M. Radai
- Independent Researcher, HaPrachim 19, Ra’anana 4339963, Israel;
| |
Collapse
|
11
|
Stanke S, Wenger C, Bier FF, Hölzel R. AC electrokinetic immobilization of influenza virus. Electrophoresis 2022; 43:1309-1321. [DOI: 10.1002/elps.202100324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Sandra Stanke
- Fraunhofer Institute for Cell Therapy and Immunology Branch Bioanalytics and Bioprocesses (IZI‐BB) Potsdam‐Golm Germany
- Institute of Biochemistry and Biology University of Potsdam Potsdam‐Golm Germany
| | - Christian Wenger
- IHP – Leibnizinstitut für innovative Mikroelektronik Frankfurt/Oder Germany
- Brandenburg University of Technology Cottbus–Senftenberg Cottbus Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology University of Potsdam Potsdam‐Golm Germany
| | - Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology Branch Bioanalytics and Bioprocesses (IZI‐BB) Potsdam‐Golm Germany
| |
Collapse
|
12
|
Carlson CA, Udad XS, Owen Q, Amin-Patel AP, Chang WJ, Woehl JC. DC corral trapping of single nanoparticles and macromolecules in solution. J Chem Phys 2022; 156:164201. [PMID: 35489994 DOI: 10.1063/5.0087039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Progress in sorting, separating, and characterizing ever smaller amounts of chemical and biological material depends on the availability of methods for the controlled interaction with nanoscale and molecular-size objects. Here, we report on the reversible, tunable trapping of single DNA molecules and other charged micro- and nanoparticles in aqueous solution using a direct-current (DC) corral trap setup. The trap consists of a circular, non-conductive void in a metal-coated surface that, when charged, generates an electrostatic potential well in the proximate solution. Our results demonstrate that stable, nanoscale confinement of charged objects is achievable over extended periods of time, that trap stiffness is controlled by the applied voltage, and that simultaneous trapping of multiple objects is feasible. The approach shows great promise for lab-on-a-chip systems and biomedical applications due to its simplicity, scalability, selectivity, and the capability to manipulate single DNA molecules in standard buffer solutions.
Collapse
Affiliation(s)
- Christine A Carlson
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Xavier S Udad
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Quintus Owen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Alaknanda P Amin-Patel
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Woo-Jin Chang
- Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jörg C Woehl
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
13
|
Yamazaki T, Niinomi H, Kimura Y. Feasibility of Control of Particle Assembly by Dielectrophoresis in Liquid-Cell Transmission Electron Microscopy. Microscopy (Oxf) 2022; 71:231-237. [PMID: 35459948 PMCID: PMC9340798 DOI: 10.1093/jmicro/dfac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022] Open
Abstract
Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita 19 Nishi 8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hiromasa Niinomi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita 19 Nishi 8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
14
|
Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proc Natl Acad Sci U S A 2022; 119:2112812119. [PMID: 35074874 PMCID: PMC8812571 DOI: 10.1073/pnas.2112812119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Detection of molecular interactions is the foundation for many important biotechnology applications in society and industry, such as drug discovery, diagnostics, and DNA sequencing. This report describes a broadly applicable platform for detecting molecular interactions at the single-molecule scale, in real-time, label-free, and potentially highly multiplexable fashion, using single-molecule sensors on a highly scalable semiconductor sensor array chip. Such chips are both practically manufacturable in the near term, and have a durable long-term scaling roadmap, thus providing an ideal way to bring the power of modern chip technology to the broad area of biosensing. This work also realizes a 50-year-old scientific vision of integrating single molecules into electronic chips to achieve the ultimate miniaturization of electronics. For nearly 50 years, the vision of using single molecules in circuits has been seen as providing the ultimate miniaturization of electronic chips. An advanced example of such a molecular electronics chip is presented here, with the important distinction that the molecular circuit elements play the role of general-purpose single-molecule sensors. The device consists of a semiconductor chip with a scalable array architecture. Each array element contains a synthetic molecular wire assembled to span nanoelectrodes in a current monitoring circuit. A central conjugation site is used to attach a single probe molecule that defines the target of the sensor. The chip digitizes the resulting picoamp-scale current-versus-time readout from each sensor element of the array at a rate of 1,000 frames per second. This provides detailed electrical signatures of the single-molecule interactions between the probe and targets present in a solution-phase test sample. This platform is used to measure the interaction kinetics of single molecules, without the use of labels, in a massively parallel fashion. To demonstrate broad applicability, examples are shown for probe molecule binding, including DNA oligos, aptamers, antibodies, and antigens, and the activity of enzymes relevant to diagnostics and sequencing, including a CRISPR/Cas enzyme binding a target DNA, and a DNA polymerase enzyme incorporating nucleotides as it copies a DNA template. All of these applications are accomplished with high sensitivity and resolution, on a manufacturable, scalable, all-electronic semiconductor chip device, thereby bringing the power of modern chips to these diverse areas of biosensing.
Collapse
|
15
|
Vu KHP, Lee MC, Blankenburg GH, Chang YJ, Chu ML, Erbe A, Lesser-Rojas L, Chen YR, Chou CF. Time-Evolved SERS Signatures of DEP-Trapped Aβ and Zn 2+Aβ Peptides Revealed by a Sub-10 nm Electrode Nanogap. Anal Chem 2021; 93:16320-16329. [PMID: 34817990 DOI: 10.1021/acs.analchem.1c01521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) has become highly relevant in aging societies, yet the fundamental molecular basis for AD is still poorly understood. New tools to study the undergoing structural conformation changes of amyloid beta (Aβ) peptides, the pathogenic hallmark of AD, could play a crucial role in the understanding of the underlying mechanisms of misfolding and cytotoxicity of this peptide. It has been recently reported that Zn2+ interacts with Aβ and changes its aggregation pathway away from less harmful fibrillar forms to more toxic species. Here, we present a versatile platform based on a set of sub-10 nm nanogap electrodes for the manipulation and sensing of biomolecules in the physiological condition at a low copy number, where molecules are trapped via dielectrophoresis (DEP) across the nanogap, which also serves as a surface-enhanced Raman spectroscopy hotspot. In this study, we demonstrate that our electrode nanogap platform can be used to study the structural difference between Aβ40 and ZnAβ40 peptides at different aggregation stages in the physiologically relevant concentration and in solution phase. The Raman spectroscopic signatures of the DEP-captured neuropeptides prove the device to be attractive as a label-free bioanalytical tool.
Collapse
Affiliation(s)
- Katrin H P Vu
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.,Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ming-Che Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Gerhard H Blankenburg
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Department of Physics, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Ming-Lee Chu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Leonardo Lesser-Rojas
- Research Center for Atomic, Nuclear and Molecular Sciences, San Pedro de Montes de Oca, San Jose 11501, Costa Rica.,School of Physics, University of Costa Rica, San Pedro de Montes de Oca, San Jose 11501, Costa Rica
| | - Yun-Ru Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C.,Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| |
Collapse
|
16
|
Thermally active nanoparticle clusters enslaved by engineered domain wall traps. Nat Commun 2021; 12:5813. [PMID: 34608137 PMCID: PMC8490384 DOI: 10.1038/s41467-021-25931-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
Abstract
The stable assembly of fluctuating nanoparticle clusters on a surface represents a technological challenge of widespread interest for both fundamental and applied research. Here we demonstrate a technique to stably confine in two dimensions clusters of interacting nanoparticles via size-tunable, virtual magnetic traps. We use cylindrical Bloch walls arranged to form a triangular lattice of ferromagnetic domains within an epitaxially grown ferrite garnet film. At each domain, the magnetic stray field generates an effective harmonic potential with a field tunable stiffness. The experiments are combined with theory to show that the magnetic confinement is effectively harmonic and pairwise interactions are of dipolar nature, leading to central, strictly repulsive forces. For clusters of magnetic nanoparticles, the stationary collective states arise from the competition between repulsion, confinement and the tendency to fill the central potential well. Using a numerical simulation model as a quantitative map between the experiments and theory we explore the field-induced crystallization process for larger clusters and unveil the existence of three different dynamical regimes. The present method provides a model platform for investigations of the collective phenomena emerging when strongly confined nanoparticle clusters are forced to move in an idealized, harmonic-like potential.
Collapse
|
17
|
Jiang X, Zhou Y, Chen Y, Shao Y, Feng J. Etching-Engineered Low-Voltage Dielectrophoretic Nanotweezers for Trapping of Single Molecules. Anal Chem 2021; 93:12549-12555. [PMID: 34514774 DOI: 10.1021/acs.analchem.1c01818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the functions of biomolecules at the single-molecule level is crucial due to their important and diverse roles in cell regulation. Recently, nanotweezers made of dual carbon nanoelectrodes have been developed for single-cell biopsies by applying a high alternating voltage. However, high electric voltage can induce Joule heating, water electrolysis, and other side effects on cell activity, which may be unfavorable for cellular applications. Here, we report a low-voltage nanotweezer for trapping of single DNA molecules using etching-engineered nanoelectrodes which effectively reduce the minimum trapping voltage by six times. Meanwhile, the low-voltage nanotweezer displays an improved trapping stiffness. Based on the finite element method simulations, we attribute the mechanism for the low-voltage nanotweezers to the increase in spatial heterogeneity and nonuniformity of electric field by etching of quartz near the nanoelectrodes. This work opens a new dimension for noninvasive single-molecule manipulation in solution and potential applications in single-cell biopsies.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuan Zhou
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Velmanickam L, Jayasooriya V, Vemuri MS, Tida UR, Nawarathna D. Recent advances in dielectrophoresis toward biomarker detection: A summary of studies published between 2014 and 2021. Electrophoresis 2021; 43:212-231. [PMID: 34453855 DOI: 10.1002/elps.202100194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Dielectrophoresis is a well-understood phenomenon that has been widely utilized in biomedical applications. Recent advancements in miniaturization have contributed to the development of dielectrophoretic-based devices for a wide variety of biomedical applications. In particular, the integration of dielectrophoresis with microfluidics, fluorescence, and electrical impedance has produced devices and techniques that are attractive for screening and diagnosing diseases. This review article summarizes the recent utility of dielectrophoresis in assays of biomarker detection. Common screening and diagnostic biomarkers, such as cellular, protein, and nucleic acid, are discussed. Finally, the potential use of recent developments in machine learning approaches toward improving biomarker detection performance is discussed. This review article will be useful for researchers interested in the recent utility of dielectrophoresis in the detection of biomarkers and for those developing new devices to address current gaps in dielectrophoretic biomarker detection.
Collapse
Affiliation(s)
| | - Vidura Jayasooriya
- Department of Electrical and Electronic Engineering, University of SriJayewardenepura, Jayewardenepura, Sri Lanka
| | - Madhava Sarma Vemuri
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, USA
| | - Umamaheswara Rao Tida
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, USA
| | - Dharmakeerthi Nawarathna
- Department of Electrical and Computer Engineering, North Dakota State University, Fargo, North Dakota, USA.,Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
19
|
Waskasi MM, Lazaric A, Heyden M. Solvent-mediated forces in protein dielectrophoresis. Electrophoresis 2021; 42:2060-2069. [PMID: 34302698 DOI: 10.1002/elps.202100087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022]
Abstract
DEP is an established method to manipulate micrometer-sized particles, but standard continuum theories predict only negligible effects for nanometer-sized proteins despite contrary experimental evidence. A theoretical description of protein DEP needs to consider details on the molecular scale. Previous work toward this goal addressed the role of orientational polarization of static protein dipole moments for dielectrophoretic effects, which successfully predicts the general magnitude of dielectrophoretic forces on proteins but does not readily explain negative DEP forces observed for proteins in some experiments. However, contributions to the protein chemical potential due to protein-water interactions have not yet been considered in this context. Here, we utilize atomistic molecular dynamics simulations to evaluate polarization-induced changes in the protein solvation free energy, which result in a solvent-mediated contribution to dielectrophoretic forces. We quantify solvent-mediated dielectrophoretic forces for two proteins and a small peptide in water, which follow expectations for protein-water dipole-dipole interactions. The magnitude of solvent-mediated dielectrophoretic forces exceeds predictions of nonmolecular continuum theories, but plays a minor role for the total dielectrophoretic force for the simulated proteins due to dominant contributions from the orientational polarization of their static protein dipoles. However, we extrapolate that solvent-mediated contributions to negative protein DEP forces will become increasingly relevant for multidomain proteins, complexes and aggregates with large protein-water interfaces, as well as for high electric field frequencies, which provides a potential mechanism for corresponding experimental observations of negative protein DEP.
Collapse
Affiliation(s)
- Morteza M Waskasi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
20
|
Padhy P, Zaman MA, Jensen MA, Hesselink L. Dynamically controlled dielectrophoresis using resonant tuning. Electrophoresis 2021; 42:1079-1092. [PMID: 33599974 PMCID: PMC8122061 DOI: 10.1002/elps.202000328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Electrically polarizable micro- and nanoparticles and droplets can be trapped using the gradient electric field of electrodes. But the spatial profile of the resultant dielectrophoretic force is fixed once the electrode structure is defined. To change the force profile, entire complex lab-on-a-chip systems must be re-fabricated with modified electrode structures. To overcome this problem, we propose an approach for the dynamic control of the spatial profile of the dielectrophoretic force by interfacing the trap electrodes with a resistor and an inductor to form a resonant resistor-inductor-capacitor (RLC) circuit. Using a dielectrophoretically trapped water droplet suspended in silicone oil, we show that the resonator amplitude, detuning, and linewidth can be continuously varied by changing the supply voltage, supply frequency, and the circuit resistance to obtain the desired trap depth, range, and stiffness. We show that by proper tuning of the resonator, the trap range can be extended without increasing the supply voltage, thus preventing sensitive samples from exposure to high electric fields at the stable trapping position. Such unprecedented dynamic control of dielectrophoretic forces opens avenues for the tunable active manipulation of sensitive biological and biochemical specimen in droplet microfluidic devices used for single-cell and biochemical reaction analysis.
Collapse
Affiliation(s)
- Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Nanogap dielectrophoresis combined with buffer exchange for detecting protein binding to trapped bioparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Liu Y, Hayes MA. Orders-of-Magnitude Larger Force Demonstrated for Dielectrophoresis of Proteins Enabling High-Resolution Separations Based on New Mechanisms. Anal Chem 2020; 93:1352-1359. [DOI: 10.1021/acs.analchem.0c02763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yameng Liu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Mark A. Hayes
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
23
|
Antunez-Vela S, Perez-Gonzalez VH, De Peña AC, Lentz CJ, Lapizco-Encinas BH. Simultaneous Determination of Linear and Nonlinear Electrophoretic Mobilities of Cells and Microparticles. Anal Chem 2020; 92:14885-14891. [DOI: 10.1021/acs.analchem.0c03525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofia Antunez-Vela
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey NL 64849, Mexico
| | - Victor H. Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey NL 64849, Mexico
| | - Adriana Coll De Peña
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Cody J. Lentz
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| |
Collapse
|
24
|
An Approach to Ring Resonator Biosensing Assisted by Dielectrophoresis: Design, Simulation and Fabrication. MICROMACHINES 2020; 11:mi11110954. [PMID: 33105846 PMCID: PMC7690605 DOI: 10.3390/mi11110954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The combination of extreme miniaturization with a high sensitivity and the potential to be integrated in an array form on a chip has made silicon-based photonic microring resonators a very attractive research topic. As biosensors are approaching the nanoscale, analyte mass transfer and bonding kinetics have been ascribed as crucial factors that limit their performance. One solution may be a system that applies dielectrophoretic forces, in addition to microfluidics, to overcome the diffusion limits of conventional biosensors. Dielectrophoresis, which involves the migration of polarized dielectric particles in a non-uniform alternating electric field, has previously been successfully applied to achieve a 1000-fold improved detection efficiency in nanopore sensing and may significantly increase the sensitivity in microring resonator biosensing. In the current work, we designed microring resonators with integrated electrodes next to the sensor surface that may be used to explore the effect of dielectrophoresis. The chip design, including two different electrode configurations, electric field gradient simulations, and the fabrication process flow of a dielectrohoresis-enhanced microring resonator-based sensor, is presented in this paper. Finite element method (FEM) simulations calculated for both electrode configurations revealed ∇E2 values above 1017 V2m−3 around the sensing areas. This is comparable to electric field gradients previously reported for successful interactions with larger molecules, such as proteins and antibodies.
Collapse
|
25
|
Chalklen T, Jing Q, Kar-Narayan S. Biosensors Based on Mechanical and Electrical Detection Techniques. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5605. [PMID: 33007906 PMCID: PMC7584018 DOI: 10.3390/s20195605] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Biosensors are powerful analytical tools for biology and biomedicine, with applications ranging from drug discovery to medical diagnostics, food safety, and agricultural and environmental monitoring. Typically, biological recognition receptors, such as enzymes, antibodies, and nucleic acids, are immobilized on a surface, and used to interact with one or more specific analytes to produce a physical or chemical change, which can be captured and converted to an optical or electrical signal by a transducer. However, many existing biosensing methods rely on chemical, electrochemical and optical methods of identification and detection of specific targets, and are often: complex, expensive, time consuming, suffer from a lack of portability, or may require centralised testing by qualified personnel. Given the general dependence of most optical and electrochemical techniques on labelling molecules, this review will instead focus on mechanical and electrical detection techniques that can provide information on a broad range of species without the requirement of labelling. These techniques are often able to provide data in real time, with good temporal sensitivity. This review will cover the advances in the development of mechanical and electrical biosensors, highlighting the challenges and opportunities therein.
Collapse
Affiliation(s)
| | - Qingshen Jing
- Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, UK;
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, Cambridge CB3 0FS, UK;
| |
Collapse
|
26
|
Benhal P, Quashie D, Kim Y, Ali J. Insulator Based Dielectrophoresis: Micro, Nano, and Molecular Scale Biological Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5095. [PMID: 32906803 PMCID: PMC7570478 DOI: 10.3390/s20185095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
Insulator based dielectrophoresis (iDEP) is becoming increasingly important in emerging biomolecular applications, including particle purification, fractionation, and separation. Compared to conventional electrode-based dielectrophoresis (eDEP) techniques, iDEP has been demonstrated to have a higher degree of selectivity of biological samples while also being less biologically intrusive. Over the past two decades, substantial technological advances have been made, enabling iDEP to be applied from micro, to nano and molecular scales. Soft particles, including cell organelles, viruses, proteins, and nucleic acids, have been manipulated using iDEP, enabling the exploration of subnanometer biological interactions. Recent investigations using this technique have demonstrated a wide range of applications, including biomarker screening, protein folding analysis, and molecular sensing. Here, we review current state-of-art research on iDEP systems and highlight potential future work.
Collapse
Affiliation(s)
- Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yoontae Kim
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
27
|
Rabbani MT, Schmidt CF, Ros A. Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes. Anal Chem 2020; 92:8901-8908. [PMID: 32447955 DOI: 10.1021/acs.analchem.0c00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) possess unique physical, optical, and electrical properties with great potential for future nanoscale device applications. Common synthesis procedures yield SWNTs with large length polydispersity and varying chirality. Electrical and optical applications of SWNTs often require specific lengths, but the preparation of SWNTs with the desired length is still challenging. Insulator-based dielectrophoresis (iDEP) integrated into a microfluidic device has the potential to separate SWNTs by length. Semiconducting SWNTs of varying length suspended with sodium deoxycholate (NaDOC) show unique dielectrophoretic properties at low frequencies (<1 kHz) that were exploited here using an iDEP-based microfluidic constriction sorter device for length-based sorting. Specific migration directions in the constriction sorter were induced for long SWNTs (≥1000 nm) with negative dielectrophoretic properties compared to short (≤300 nm) SWNTs with positive dielectrophoretic properties. We report continuous fractionation conditions for length-based iDEP migration of SWNTs, and we characterize the dynamics of migration of SWNTs in the microdevice using a finite element model. Based on the length and dielectrophoretic characteristics, sorting efficiencies for long and short SWNTs recovered from separate channels of the constriction sorter amounted to >90% and were in excellent agreement with a numerical model for the sorting process.
Collapse
Affiliation(s)
- Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.,Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany
| | - Christoph F Schmidt
- Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany.,Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
28
|
Lorenz M, Weber AP, Baune M, Thöming J, Pesch GR. Aerosol classification by dielectrophoresis: a theoretical study on spherical particles. Sci Rep 2020; 10:10617. [PMID: 32606445 PMCID: PMC7327003 DOI: 10.1038/s41598-020-67628-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
The possibilities and limitations using dielectrophoresis (DEP) for the dry classification of spherical aerosol particles was evaluated at low concentrations in a theoretical study. For an instrument with the geometry of concentric cylinders (similar to cylindrical DMA), the dependencies of target particle diameter \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_{{\text {P}}}^*$$\end{document}dP∗, resolution, and yield of the DEP classification on residence time, applied electric field strength, and pressure of the carrier gas were investigated. Further, the diffusion influence on the classification was considered. It was found that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_{{\text {P}}}^*$$\end{document}dP∗ scales with the mean gas flow velocity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u_{{\text {gas}}}$$\end{document}ugas, classifier length L, and electric field strength E as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_{{\text {P}}}^*\propto (u_{{\text {gas}}}/L)^{0.5}E^{-1}$$\end{document}dP∗∝(ugas/L)0.5E-1. The resolution of the classification depends on the particle diameter and scales proportionally to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d_{{\text {P}}}^*}^{1.3}$$\end{document}dP∗1.3. It is constrained by the flow ratio \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β (i.e., sheath gas to aerosol flow), electrode diameters, and applied electric field strength. The classification yield increases with the ratio of the width of the extended outlet slit \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s_{{\text {e}}}$$\end{document}se to the diffusion induced broadening \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sigma _z$$\end{document}σz. As expected, resolution and yield exhibit opposite dependencies on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s_{{\text {e}}}/\sigma _z$$\end{document}se/σz. Our simulations show that DEP classification can principally cover a highly interesting particle size range from 100 nm to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${10}\,\upmu \hbox {m}$$\end{document}10μm while being directly particle size-selective and particle charge independent.
Collapse
Affiliation(s)
- Malte Lorenz
- Faculty of Production Engineering, Chemical Process Engineering (CVT), University of Bremen, Bremen, Germany
| | - Alfred P Weber
- Institute of Particle Technology, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| | - Michael Baune
- Faculty of Production Engineering, Chemical Process Engineering (CVT), University of Bremen, Bremen, Germany
| | - Jorg Thöming
- Faculty of Production Engineering, Chemical Process Engineering (CVT), University of Bremen, Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany
| | - Georg R Pesch
- Faculty of Production Engineering, Chemical Process Engineering (CVT), University of Bremen, Bremen, Germany. .,MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany.
| |
Collapse
|
29
|
Hayes MA. Dielectrophoresis of proteins: experimental data and evolving theory. Anal Bioanal Chem 2020; 412:3801-3811. [PMID: 32314000 PMCID: PMC7250158 DOI: 10.1007/s00216-020-02623-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
The ability to selectively move and trap proteins is core to their effective use as building blocks and for their characterization. Analytical and preparative strategies for proteins have been pursued and modeled for nearly a hundred years, with great advances and success. Core to all of these studies is the separation, isolation, purification, and concentration of pure homogeneous fractions of a specific protein in solution. Processes to accomplish this useful solution include biphasic equilibrium (chromatographies, extractions), mechanical, bulk property, chemical equilibria, and molecular recognition. Ultimately, the goal of all of these is to physically remove all non-like protein molecules-to the finest detail: all atoms in the full three-dimensional structure being identical down the chemical bond and bulk structure chirality. One strategy which has not been effectively pursued is exploiting the higher order subtle electrical properties of the protein-solvent system. The advent of microfluidic systems has enabled the use of very high electric fields and well-defined gradients such that extremely high resolution separations of protein mixtures are possible. These advances and recognition of these capabilities have caused a re-evaluation of the underlying theoretical models and they were found to be inadequate. New theoretical descriptions are being considered which align more closely to the total forces present and the subtlety of differences between similar proteins. These are focused on the interfacial area between the protein and hydrating solvent molecules, as opposed to the macroscale assumptions of homogeneous solutions and particles. This critical review examines all data which has been published that place proteins in electric field gradients which induce collection of those proteins, demonstrating a force greater than dispersive effects or countering forces. Evolving theoretical constructs are presented and discussed, and a general estimate of future capabilities using the higher order effects and the high fields and precise gradients of microfluidic systems is discussed. Graphical abstract.
Collapse
Affiliation(s)
- Mark A Hayes
- School of Molecular Sciences, Arizona State University, Mail Stop 1604, Tempe, AZ, 85287, USA.
| |
Collapse
|
30
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
31
|
Hölzel R, Pethig R. Protein Dielectrophoresis: I. Status of Experiments and an Empirical Theory. MICROMACHINES 2020; 11:E533. [PMID: 32456059 PMCID: PMC7281080 DOI: 10.3390/mi11050533] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/04/2022]
Abstract
The dielectrophoresis (DEP) data reported in the literature since 1994 for 22 different globular proteins is examined in detail. Apart from three cases, all of the reported protein DEP experiments employed a gradient field factor ∇Em2 that is much smaller (in some instances by many orders of magnitude) than the ~4 1021 V2/m3 required, according to current DEP theory, to overcome the dispersive forces associated with Brownian motion. This failing results from the macroscopic Clausius-Mossotti (CM) factor being restricted to the range 1.0 > CM > -0.5. Current DEP theory precludes the protein's permanent dipole moment (rather than the induced moment) from contributing to the DEP force. Based on the magnitude of the β-dispersion exhibited by globular proteins in the frequency range 1 kHz-50 MHz, an empirically derived molecular version of CM is obtained. This factor varies greatly in magnitude from protein to protein (e.g., ~37,000 for carboxypeptidase; ~190 for phospholipase) and when incorporated into the basic expression for the DEP force brings most of the reported protein DEP above the minimum required to overcome dispersive Brownian thermal effects. We believe this empirically-derived finding validates the theories currently being advanced by Matyushov and co-workers.
Collapse
Affiliation(s)
- Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam-Golm, Germany;
| | - Ronald Pethig
- School of Engineering, Institute for Integrated Micro and Nanosystems, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JF, UK
| |
Collapse
|
32
|
AC electrokinetic immobilization of organic dye molecules. Anal Bioanal Chem 2020; 412:3859-3870. [PMID: 32125465 PMCID: PMC7235070 DOI: 10.1007/s00216-020-02480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/02/2022]
Abstract
The application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule’s functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.e., to the electrode tips and edges. In addition to dielectrophoresis and AC electrokinetic flow, molecular scale interactions and electrophoresis at short time scales are discussed as further mechanisms leading to migration and immobilization of the molecules. Graphical Abstract ![]()
Collapse
|
33
|
Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes. MICROMACHINES 2020; 11:mi11030255. [PMID: 32121163 PMCID: PMC7143313 DOI: 10.3390/mi11030255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Bloodstream infection with Candida fungal cells remains one of the most life-threatening complications among hospitalized patients around the world. Although most of the cases are still due to Candida albicans, the rising incidence of infections caused by other Candida strains that may not respond to traditional anti-fungal treatments merits the development of a method for species-specific isolation of Candida. To this end, here we present the characterization of the dielectrophoresis (DEP) response of Candida albicans, Candida tropicalis and Candida parapsilosis. We complement such characterization with a study of the Candida cells morphology. The Candida strains exhibited subtle differences in their morphology and dimensions. All the Candida strains exhibited positive DEP in the range 10-500 kHz, although the strength of the DEP response was different for each Candida strain at different frequencies. Only Candida tropicalis showed positive DEP at 750 kHz. The current results show potential for manipulation and enrichment of a specific Candida strain at specific DEP conditions towards aiding in the rapid identification of Candida strains to enable the effective and timely treatment of Candida infections.
Collapse
|
34
|
Stergar J, Osterman N. Thermophoretic tweezers for single nanoparticle manipulation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1126-1133. [PMID: 32802715 PMCID: PMC7404219 DOI: 10.3762/bjnano.11.97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 05/11/2023]
Abstract
We present the trapping and manipulation of a single nano-object in an aqueous medium by optically induced temporally varying temperature gradients. By real-time object tracking and control of the position of the heating laser focus, we can precisely employ thermophoretic drift to oppose the random diffusive motion. As a result, a nano-object is confined in a micrometer-sized trap. Numerical modeling gives a quantitative prediction of the effect. Traps can be dynamically created and relocated, which we demonstrate by the controlled independent manipulation of two nanoparticles.
Collapse
Affiliation(s)
- Jošt Stergar
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia
- J. Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Natan Osterman
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia
- J. Stefan Institute, Jamova 39, Ljubljana, Slovenia
| |
Collapse
|
35
|
Sonker M, Kim D, Egatz-Gomez A, Ros A. Separation Phenomena in Tailored Micro- and Nanofluidic Environments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:475-500. [PMID: 30699038 DOI: 10.1146/annurev-anchem-061417-125758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Separations of bioanalytes require robust, effective, and selective migration phenomena. However, due to the complexity of biological matrices such as body fluids or tissue, these requirements are difficult to achieve. The separations field is thus constantly evolving to develop suitable methods to separate biomarkers and fractionate biospecimens for further interrogation of biomolecular content. Advances in the field of microfabrication allow the tailored generation of micro- and nanofluidic environments. These can be exploited to induce interactions and dynamics of biological species with the corresponding geometrical features, which in turn can be capitalized for novel separation approaches. This review provides an overview of several unique separation applications demonstrated in recent years in tailored micro- and nanofluidic environments. These include electrokinetic methods such as dielectrophoresis and electrophoresis, but also rather nonintuitive ratchet separation mechanisms, continuous flow separations, and fractionations such as deterministic lateral displacement, as well as methods employing entropic forces for separation.
Collapse
Affiliation(s)
- Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
36
|
Li J, Hill EH, Lin L, Zheng Y. Optical Nanoprinting of Colloidal Particles and Functional Structures. ACS NANO 2019; 13:3783-3795. [PMID: 30875190 PMCID: PMC6482071 DOI: 10.1021/acsnano.9b01034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent advances in chemical sciences have enabled the tailorable synthesis of colloidal particles with variable composition, size, shape, and properties. Building superstructures with colloidal particles as building blocks is appealing for the fabrication of functional metamaterials and nanodevices. Optical nanoprinting provides a versatile platform to print various particles into arbitrary configurations with nanometric precision. In this review, we summarize recent progress in optical nanoprinting of colloidal particles and its related applications. Diverse techniques based on different physical mechanisms, including optical forces, light-controlled electric fields, optothermal effects, laser-directed thermocapillary flows, and photochemical reactions, are discussed in detail. With its flexible and versatile capabilities, optical nanoprinting will find promising applications in numerous fields such as nanophotonics, energy, microelectronics, and nanomedicine.
Collapse
Affiliation(s)
- Jingang Li
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric H. Hill
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Linhan Lin
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
37
|
Pethig R. Limitations of the Clausius-Mossotti function used in dielectrophoresis and electrical impedance studies of biomacromolecules. Electrophoresis 2019; 40:2575-2583. [PMID: 30861572 DOI: 10.1002/elps.201900057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 01/08/2023]
Abstract
Dielectrophoresis (DEP) studies have progressed from the microscopic scale of cells and bacteria, through the mesoscale of virions to the molecular scale of DNA and proteins. The Clausius-Mossotti function, based on macroscopic electrostatics, is invariably employed in the analyses of all these studies. The limitations of this practice are explored, with the conclusion that it should be abandoned for the DEP study of proteins and modified for native DNA. For macromolecular samples in general, a DEP theory that incorporates molecular-scale interactions and the influence of permanent dipoles is more appropriate. Experimental ways to test these conclusions are proposed.
Collapse
Affiliation(s)
- Ronald Pethig
- School of Engineering, Institute for Integrated Micro and Nanosystems, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
38
|
Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes. Sci Rep 2018; 8:14942. [PMID: 30297764 PMCID: PMC6175930 DOI: 10.1038/s41598-018-33329-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/01/2022] Open
Abstract
Dielectrophoresis (DEP) is usually effective close to the electrode surface. Several techniques have been developed to overcome its drawbacks and to enhance dielectrophoretic particle capture. Here we present a simple technique of superimposing alternating current DEP (high-frequency signals) and electroosmosis (EO; low-frequency signals) between two coplanar electrodes (gap: 25 μm) using a lab-made voltage adder for rapid and selective concentration of bacteria, viruses, and proteins, where we controlled the voltages and frequencies of DEP and EO separately. This signal superimposition technique enhanced bacterial capture (Escherichia coli K-12 against 1-μm-diameter polystyrene beads) more selectively (>99%) and rapidly (~30 s) at lower DEP (5 Vpp) and EO (1.2 Vpp) potentials than those used in the conventional DEP capture studies. Nanometer-sized MS2 viruses and troponin I antibody proteins were also concentrated using the superimposed signals, and significantly more MS2 and cTnI-Ab were captured using the superimposed signals than the DEP (10 Vpp) or EO (2 Vpp) signals alone (p < 0.035) between the two coplanar electrodes and at a short exposure time (1 min). This technique has several advantages, such as simplicity and low cost of electrode fabrication, rapid and large collection without electrolysis.
Collapse
|
39
|
Efrat Y, Tayar AM, Daube SS, Levy M, Bar-Ziv RH. Electric-Field Manipulation of a Compartmentalized Cell-Free Gene Expression Reaction. ACS Synth Biol 2018; 7:1829-1833. [PMID: 30036485 DOI: 10.1021/acssynbio.8b00160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct electric-field manipulation of gene expression reactions would simplify the design of biochemical networks by replacing complex biomolecular interactions with push-button operations. Here, we applied a localized electric field gradient at megahertz frequency to manipulate a cell-free gene-expression reaction in a DNA compartment on a chip. We broke the spatial symmetry of a homogeneous reaction in the compartment by creating a trap for macromolecules in a region of maximal field intensity localized 50 μm from immobilized DNA. Free of biochemical regulation, we demonstrated protein synthesis oscillations by on/off switching of the electric field. In response to the field, ribosomes, RNA polymerases, and nascent RNA and proteins accumulated in the trap, and were then depleted from the DNA region where gene expression occurred. The resulting reduction in the rate of protein synthesis recovered back to steady-state when the field was off. The combination of electric field with compartmentalized cell-free gene expression reactions creates a simple, label-free approach for controlling biomolecules in space and time, opening possibilities for hybrid biological systems with a bioelectronic interface based on minimal biological parts design.
Collapse
Affiliation(s)
- Yuval Efrat
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexandra M. Tayar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shirley S. Daube
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roy H. Bar-Ziv
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
40
|
Kamata M, Taguchi Y, Nagasaka Y. Design of an optofluidic diffusion sensor by transient grating using dielectrophoresis. OPTICS EXPRESS 2018; 26:16970-16983. [PMID: 30119514 DOI: 10.1364/oe.26.016970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An optofluidic diffusion sensor using laser-induced dielectrophoresis in a device with a sputtered a-Si:H layer is presented. Diffusion sensors enabling high-speed measurement have important potential uses as bio-sensors and for quantitative analysis of nano-sized products. The present sensor was developed for measurement in a few seconds by optic observations of the sample diffusion from transient grating formed by laser-induced dielectrophoresis. As a photoconductive layer for the proposed device, we used a sputtered a-Si:H film. The optical (refractive index and extinction coefficient), structural (Raman and IR spectroscopy), and optoelectronic properties of this film, as well as its applicability to the proposed device are characterized. Nano-sized beads were measured by the fabricated device, and its performance as a diffusion sensor was validated.
Collapse
|
41
|
Shi L, Rana A, Esfandiari L. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Sci Rep 2018; 8:6751. [PMID: 29712935 PMCID: PMC5928082 DOI: 10.1038/s41598-018-25026-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
An insulator-based dielectrophoresis (iDEP) is a label-free method that has been extensively utilized for manipulation of nanoparticles, cells, and biomolecules. Here, we present a new iDEP approach that can rapidly trap nanoparticles at the close proximity of a glass nanopipette’s tip by applying 10 V/cm direct current (DC) across the pipette’s length. The trapping mechanism was systemically studied using both numerical modeling and experimental observations. The results showed that the particle trapping was determined to be controlled by three dominant electrokinetic forces including dielectrophoretic, electrophoretic and electroosmotic force. Furthermore, the effect of the ionic strength, the pipette’s geometry, and the applied electric field on the entrapment efficiency was investigated. To show the application of our device in biomedical sciences, we demonstrated the successful entrapment of fluorescently tagged liposomes and unlabeled plasma-driven exosomes from the PBS solution. Also, to illustrate the selective entrapment capability of our device, 100 nm liposomes were extracted from the PBS solution containing 500 nm polystyrene particles at the tip of the pipette as the voltage polarity was reversed.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States
| | - Ankit Rana
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States. .,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States.
| |
Collapse
|
42
|
Electrode-based AC electrokinetics of proteins: A mini-review. Bioelectrochemistry 2018; 120:76-82. [DOI: 10.1016/j.bioelechem.2017.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
|
43
|
Kim D, Luo J, Arriaga EA, Ros A. Deterministic Ratchet for Sub-micrometer (Bio)particle Separation. Anal Chem 2018; 90:4370-4379. [PMID: 29506379 DOI: 10.1021/acs.analchem.7b03774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Resolving the heterogeneity of particle populations by size is important when the particle size is a signature of abnormal biological properties leading to disease. Accessing size heterogeneity in the sub-micrometer regime is particularly important to resolve populations of subcellular species or diagnostically relevant bioparticles. Here, we demonstrate a ratchet migration mechanism capable of separating sub-micrometer sized species by size and apply it to biological particles. The phenomenon is based on a deterministic ratchet effect, is realized in a microfluidic device, and exhibits fast migration allowing separation in tens of seconds. We characterize this phenomenon extensively with the aid of a numerical model allowing one to predict the speed and resolution of this method. We further demonstrate the deterministic ratchet migration with two sub-micrometer sized beads as model system experimentally as well as size-heterogeneous mouse liver mitochondria and liposomes as model system for other organelles. We demonstrate excellent agreement between experimentally observed migration and the numerical model.
Collapse
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Jinghui Luo
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Edgar A Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Alexandra Ros
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| |
Collapse
|
44
|
Rabbani M, Schmidt CF, Ros A. Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis. Anal Chem 2017; 89:13235-13244. [PMID: 29131586 PMCID: PMC5749884 DOI: 10.1021/acs.analchem.7b03105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) offer unique electrical and optical properties. Common synthesis processes yield SWNTs with large length polydispersity (several tens of nanometers up to centimeters) and heterogeneous electrical and optical properties. Applications often require suitable selection and purification. Dielectrophoresis is one manipulation method for separating SWNTs based on dielectric properties and geometry. Here, we present a study of surfactant and single-stranded DNA-wrapped SWNTs suspended in aqueous solutions manipulated by insulator-based dielectrophoresis (iDEP). This method allows us to manipulate SWNTs with the help of arrays of insulating posts in a microfluidic device around which electric field gradients are created by the application of an electric potential to the extremities of the device. Semiconducting SWNTs were imaged during dielectrophoretic manipulation with fluorescence microscopy making use of their fluorescence emission in the near IR. We demonstrate SWNT trapping at low-frequency alternating current (AC) electric fields with applied potentials not exceeding 1000 V. Interestingly, suspended SWNTs showed both positive and negative dielectrophoresis, which we attribute to their ζ potential and the suspension properties. Such behavior agrees with common theoretical models for nanoparticle dielectrophoresis. We further show that the measured ζ potentials and suspension properties are in excellent agreement with a numerical model predicting the trapping locations in the iDEP device. This study is fundamental for the future application of low-frequency AC iDEP for technological applications of SWNTs.
Collapse
Affiliation(s)
- Mohammad
Towshif Rabbani
- Third
Institute of Physics−Biophysics, Department of Physics, University of Göttingen, 37077 Göttingen, Germany
- School
of Molecular Sciences, Arizona State University, Tempe 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe 85287, United
States
| | - Christoph F. Schmidt
- Third
Institute of Physics−Biophysics, Department of Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Alexandra Ros
- School
of Molecular Sciences, Arizona State University, Tempe 85287, United States
- Center
for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe 85287, United
States
| |
Collapse
|
45
|
Demirörs AF, Crassous JJ. Colloidal assembly and 3D shaping by dielectrophoretic confinement. SOFT MATTER 2017; 13:3182-3189. [PMID: 28397927 DOI: 10.1039/c7sm00422b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For decades, scientists and engineers have strived to design means of assembling colloids into ordered structures. By now, the literature is quite peppered with reports of colloidal assemblies. However, the available methods can assemble only a narrow range of structures or are applicable to specific types of colloids. There are still only few generic methods that would lead to arbitrary colloidal arrays or would shape colloidal assemblies into predesigned structures. Here, we first discuss in detail how to spatially control the assembly and crystallization of colloids through the balance of dielectrophoretic and dipolar forces. Furthermore, we demonstrate how to flexibly program and shape arrays of 3D microstructures that can be permanently affixed by in situ UV polymerization and calcination by using two facing similar or distinct micro-fabricated electrodes.
Collapse
Affiliation(s)
- Ahmet Faik Demirörs
- Complex Materials, Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, 8093, Zürich, Switzerland.
| | | |
Collapse
|
46
|
Pesch GR, Du F, Baune M, Thöming J. Influence of geometry and material of insulating posts on particle trapping using positive dielectrophoresis. J Chromatogr A 2017; 1483:127-137. [DOI: 10.1016/j.chroma.2016.12.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023]
|
47
|
Barik A, Chen X, Oh SH. Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes. NANO LETTERS 2016; 16:6317-6324. [PMID: 27602796 DOI: 10.1021/acs.nanolett.6b02690] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate nanogap electrodes for rapid, parallel, and ultralow-power trapping of nanoparticles. Our device pushes the limit of dielectrophoresis by shrinking the separation between gold electrodes to sub-10 nm, thereby creating strong trapping forces at biases as low as the 100 mV ranges. Using high-throughput atomic layer lithography, we manufacture sub-10 nm gaps between 0.8 mm long gold electrodes and pattern them into individually addressable parallel electronic traps. Unlike pointlike junctions made by electron-beam lithography or larger micron-gap electrodes that are used for conventional dielectrophoresis, our sub-10 nm gold nanogap electrodes provide strong trapping forces over a mm-scale trapping zone. Importantly, our technology solves the key challenges associated with traditional dielectrophoresis experiments, such as high voltages that cause heat generation, bubble formation, and unwanted electrochemical reactions. The strongly enhanced fields around the nanogap induce particle-transport speed exceeding 10 μm/s and enable the trapping of 30 nm polystyrene nanoparticles using an ultralow bias of 200 mV. We also demonstrate rapid electronic trapping of quantum dots and nanodiamond particles on arrays of parallel traps. Our sub-10 nm gold nanogap electrodes can be combined with plasmonic sensors or nanophotonic circuitry, and their low-power electronic operation can potentially enable high-density integration on a chip as well as portable biosensing.
Collapse
Affiliation(s)
- Avijit Barik
- Department of Electrical and Computer Engineering and ‡Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Xiaoshu Chen
- Department of Electrical and Computer Engineering and ‡Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering and ‡Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
48
|
Sharma A, Han CH, Jang J. Rapid electrical immunoassay of the cardiac biomarker troponin I through dielectrophoretic concentration using imbedded electrodes. Biosens Bioelectron 2016; 82:78-84. [DOI: 10.1016/j.bios.2016.03.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/08/2016] [Accepted: 03/22/2016] [Indexed: 12/31/2022]
|
49
|
Henning-Knechtel A, Wiens M, Lakatos M, Heerwig A, Ostermaier F, Haufe N, Mertig M. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:948-956. [PMID: 27547612 PMCID: PMC4979641 DOI: 10.3762/bjnano.7.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures.
Collapse
Affiliation(s)
- Anja Henning-Knechtel
- Physikalische Chemie, Mess- und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Matthew Wiens
- Physikalische Chemie, Mess- und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Chemistry, University of Alberta, Edmonton, T6G2G2, Canada
| | - Mathias Lakatos
- Physikalische Chemie, Mess- und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Heerwig
- Physikalische Chemie, Mess- und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| | - Frieder Ostermaier
- Physikalische Chemie, Mess- und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany
| | - Nora Haufe
- Physikalische Chemie, Mess- und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| | - Michael Mertig
- Physikalische Chemie, Mess- und Sensortechnik, Technische Universität Dresden, 01062 Dresden, Germany
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany
| |
Collapse
|
50
|
Islam M, Natu R, Larraga-Martinez MF, Martinez-Duarte R. Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis. BIOMICROFLUIDICS 2016; 10:033107. [PMID: 27375816 PMCID: PMC4912558 DOI: 10.1063/1.4954310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 05/12/2023]
Abstract
Here, we report on an enrichment protocol using carbon electrode dielectrophoresis to isolate and purify a targeted cell population from sample volumes up to 4 ml. We aim at trapping, washing, and recovering an enriched cell fraction that will facilitate downstream analysis. We used an increasingly diluted sample of yeast, 10(6)-10(2) cells/ml, to demonstrate the isolation and enrichment of few cells at increasing flow rates. A maximum average enrichment of 154.2 ± 23.7 times was achieved when the sample flow rate was 10 μl/min and yeast cells were suspended in low electrically conductive media that maximizes dielectrophoresis trapping. A COMSOL Multiphysics model allowed for the comparison between experimental and simulation results. Discussion is conducted on the discrepancies between such results and how the model can be further improved.
Collapse
Affiliation(s)
- Monsur Islam
- Mechanical Engineering Department, Clemson University , Clemson, South Carolina 29631, USA
| | - Rucha Natu
- Mechanical Engineering Department, Clemson University , Clemson, South Carolina 29631, USA
| | | | | |
Collapse
|