1
|
Sharma A, Samtani H, Laxmi A. Molecular dialogue between light and temperature signalling in plants: from perception to thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:677-694. [PMID: 39167699 DOI: 10.1093/jxb/erae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Light and temperature are the two most variable environmental signals that regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signalling pathways converge and regulate plant development. This review outlines the diverse mechanisms of light and temperature perception, and downstream signalling, with an emphasis on their integration and interconnection. Recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signalling proteins under different light conditions, and circadian clock components at warm temperatures. Here, we comprehensively describe these studies and demonstrate their connection with plant developmental responses. We also explain how the gene signalling pathways of photomorphogenesis and thermomorphogenesis are interconnected with the heat stress response to mediate thermotolerance, revealing new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signalling molecules between light and temperature signalling pathways is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.
Collapse
Affiliation(s)
- Aishwarye Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Harsha Samtani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
2
|
Patnaik A, Mishra P, Dash A, Panigrahy M, Panigrahi KCS. Evolution of light-dependent functions of GIGANTEA. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:819-835. [PMID: 39499031 DOI: 10.1093/jxb/erae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
GIGANTEA (GI) is a multifaceted plant-specific protein that originated in a streptophyte ancestor. The current known functions of GI include circadian clock control, light signalling, flowering time regulation, stomata response, chloroplast biogenesis, accumulation of anthocyanin, chlorophyll, and starch, phytohormone signalling, senescence, and response to drought, salt, and oxidative stress. Six decades since its discovery, no functional domains have been defined, and its mechanism of action is still not well characterized. In this review, we explore the functional evolution of GI to distinguish between ancestral and more recently acquired roles. GI integrated itself into various existing signalling pathways of the circadian clock, blue light, photoperiod, and osmotic and oxidative stress response. It also evolved parallelly to acquire new functions for chloroplast accumulation, red light signalling, and anthocyanin production. In this review, we have encapsulated the known mechanisms of various biological functions of GI, and cast light on the evolution of GI in the plant lineage.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Priyanka Mishra
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Anish Dash
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Institute of Agricultural Sciences, Siksha 'O' Anusandhan University, Odisha 751003, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Khorda, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, India
| |
Collapse
|
3
|
Liu W, Jenkins GI. Recent advances in UV-B signalling: interaction of proteins with the UVR8 photoreceptor. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:873-881. [PMID: 38525857 PMCID: PMC11805588 DOI: 10.1093/jxb/erae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor mediates many plant responses to UV-B and short wavelength UV-A light. UVR8 functions through interactions with other proteins which lead to extensive changes in gene expression. Interactions with particular proteins determine the nature of the response to UV-B. It is therefore important to understand the molecular basis of these interactions: how are different proteins able to bind to UVR8 and how is differential binding regulated? This concise review highlights recent developments in addressing these questions. Key advances are discussed with regard to: identification of proteins that interact with UVR8; the mechanism of UVR8 accumulation in the nucleus; the photoactivation of UVR8 monomer; the structural basis of interaction between UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins; and the role of UVR8 phosphorylation in modulating interactions and responses to UV-B. Nevertheless, much remains to be understood, and the need to extend future research to the growing list of interactors is emphasized.
Collapse
Affiliation(s)
- Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gareth I Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
Mahapatra K, Dwivedi S, Mukherjee A, Pradhan AA, Rao KV, Singh D, Bhagavatula L, Datta S. Interplay of light and abscisic acid signaling to modulate plant development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:730-745. [PMID: 38660968 DOI: 10.1093/jxb/erae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Exogenous light cues and the phytohormone abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes regulation of germination and early seedling development, control of stomatal development and conductance, growth, and development of roots, buds, and branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors such as HY5, COP1, PIFs, and BBXs that integrate with ABA signaling components such as the PYL receptors and ABI5. In particular, ABI5 and PIF4 promoters are key 'hotspots' for integrating these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Ajar Anupam Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Kavuri Venkateswara Rao
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | | | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| |
Collapse
|
5
|
Job N, Dwivedi S, Lingwan M, Datta S. BBX22 enhances the accumulation of antioxidants to inhibit DNA damage and promotes DNA repair under high UV-B. PHYSIOLOGIA PLANTARUM 2025; 177:e70038. [PMID: 39780752 DOI: 10.1111/ppl.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B. Our metabolomics data indicated that BBX22 promotes the accumulation of antioxidants like ascorbic acid and proline. These antioxidants play a vital role in shielding plants exposed to high UV-B from the detrimental effects of Reactive Oxygen Species (ROS), including DNA damage. Additionally, BBX22 promotes DNA damage repair by inducing the expression of DNA repair genes like UVR1 and UVR3. BBX22 directly binds to the promoter of UVR1 to regulate its expression. Furthermore, BBX22 indirectly induces the expression of UVR1 and UVR3 by enhancing the binding of HY5 to their promoters. Together, these results suggest a multi-pronged role of BBX22 in protection against high-intensity UV-B. Enhancing BBX22 levels or its orthologs in different plant species can potentially offer DNA damage protection and tolerance against intense UV radiation.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
- Current address: Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| | - Maneesh Lingwan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
- Current address: Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India
| |
Collapse
|
6
|
Sun L, Li D, Ma C, Jiao B, Wang J, Zhao P, Dong F, Zhou S. Transcriptomic Analysis of Wheat Under Multi LED Light Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 14:46. [PMID: 39795306 PMCID: PMC11723344 DOI: 10.3390/plants14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date. In this study, we conducted a comprehensive transcriptome analysis to investigate the molecular mechanisms underlying wheat plants' response to varying light conditions. We identified 34 types of transcription factors (TFs) and highlighted the dynamic changes of key families such as WRKY, AP2/ERF, MYB, bHLH, and NAC, which play crucial roles in light-induced gene regulation. Additionally, this study revealed differential effects of blue and red light on the expression levels of genes related to hormones such as cytokinin (CK) and salicylic acid (SA) synthesis as well as significant changes in pathways such as flavonoid biosynthesis, circadian rhythms, chlorophyll synthesis, and flowering. Particularly, blue light upregulated genes involved in chlorophyll synthesis, contrasting with the downregulation observed under red light. Furthermore, blue light enhanced the expression of anthocyanin synthesis-related genes, such as CHS, underscoring its role in promoting anthocyanin accumulation. These findings provide valuable insights into how light quality impacts crop growth and development.
Collapse
Affiliation(s)
- Lei Sun
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Ding Li
- Dry-Land Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China
| | - Chunhong Ma
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Bo Jiao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jiao Wang
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Pu Zhao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Fushuang Dong
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Shuo Zhou
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
7
|
Hwang H, Lim Y, Oh MM, Choi H, Shim D, Song YH, Cho H. Spatiotemporal bifurcation of HY5-mediated blue-light signaling regulates wood development during secondary growth. Proc Natl Acad Sci U S A 2024; 121:e2407524121. [PMID: 39585973 PMCID: PMC11626169 DOI: 10.1073/pnas.2407524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Plants have evolved photoreceptors to optimize their development during primary growth, including germination, hypocotyl elongation, cotyledon opening, and root growth, allowing them to adapt to challenging light conditions. The light signaling transduction pathway during seedling establishment has been extensively studied, but little molecular evidence is available for light-regulated secondary growth, and how light regulates cambium-derived tissue production remains largely unexplored. Here, we show that CRYPTOCHROME (CRY)-dependent blue light signaling and the subsequent attenuation of ELONGATED HYPOCOTYL 5 (HY5) movement to hypocotyls are key inducers of xylem fiber differentiation in Arabidopsis thaliana. Using grafted chimeric plants and hypocotyl-specific transcriptome sequencing of light signaling mutants under controlled light conditions, we demonstrate that the perception of blue light by CRYs in shoots drives secondary cell wall (SCW) deposition at xylem fiber cells during the secondary growth of hypocotyls. We propose that HY5 is a blue light-responsive mobile protein that inhibits xylem fiber formation via direct transcriptional repression of NAC SECONDARY WALL THICKENING PROMOTING 3 (NST3). CRYs retain HY5 in the nucleus, impede its long-distance transport from leaf to hypocotyl, and they initiate NST3-driven SCW gene expression, thereby triggering xylem fiber production. Our findings shed light on the long-range CRYs-HY5-NST3 signaling cascade that shapes xylem fiber development, highlighting the activity of HY5 as a transcriptional repressor during secondary growth.
Collapse
Affiliation(s)
- Hyeona Hwang
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Yookyung Lim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Myung-Min Oh
- Department of Horticultural Science, Chungbuk National University, Cheongju28644, Korea
| | - Hyunmo Choi
- Department of Forest Bioresources, National Institute of Forest Science, Suwon16631, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon34134, Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul08826, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| |
Collapse
|
8
|
Zhang F, Sun M, Li D, You M, Yan J, Bai S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules 2024; 29:5133. [PMID: 39519780 PMCID: PMC11548012 DOI: 10.3390/molecules29215133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is a common species in the alpine meadows of the QTP, with high-stress resistance, large biomass, and high nutritional value. This species plays an important role in establishing artificial grasslands and improving degraded grasslands. In this study, UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes were subjected to simulated short-term (5 days, 10 days) and long-term (15 days, 20 days) UV-B radiation stress and the metabolite profiles evaluated to explore the mechanism underlying UV-B radiation resistance in E. sibiricus. A total of 699 metabolites were identified, including 11 primary metabolites such as lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and their derivatives, and organic oxygen compounds. Principal component analysis distinctly clustered the samples according to the cultivar, indicating that the two genotypes exhibit distinct response mechanisms to UV-B radiation stress. The results showed that 14 metabolites, including linoleic acid, LPC 18:2, xanthosine, and 23 metabolites, including 2-one heptamethoxyflavone, glycyrrhizin, and caffeic acid were differentially expressed under short-term and long-term UV-B radiation stress, respectively. Therefore, these compounds are potential biomarkers for evaluating E. sibiricus response to UV-B radiation stress. Allantoin specific and consistent expression was up-regulated in the UV-B radiation-tolerant genotype, thereby it can be used to identify varieties resistant to UV-B radiation. Different metabolic profiles and UV-B radiation response mechanisms were observed between the UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes. A model for the metabolic pathways and metabolic profiles was constructed for the two genotypes. This metabolomic study on the E. sibiricus response to UV-B radiation stress provides a reference for the breeding of new UV-B radiation-tolerant E. sibiricus cultivars.
Collapse
Affiliation(s)
- Fei Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Sun
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Daxu Li
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Minghong You
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Jiajun Yan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiqie Bai
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
9
|
Gaddam SR, Sharma A, Bhatia C, Trivedi PK. A network comprising ELONGATED HYPOCOTYL 5, microRNA397b, and auxin-associated factors regulates root hair growth in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1460-1474. [PMID: 38820143 DOI: 10.1093/plphys/kiae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type and light signaling mutants under light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 and PIN-FORMED 2 mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding reduced residual arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b-(RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signaling and other miRNA-mediated pathways.
Collapse
Affiliation(s)
- Subhash Reddy Gaddam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Ashish Sharma
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chitra Bhatia
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prabodh Kumar Trivedi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Neugart S, Steininger V, Fernandes C, Martínez-Abaigar J, Núñez-Olivera E, Schreiner M, Strid Å, Viczián A, Albert A, Badenes-Pérez FR, Castagna A, Dáder B, Fereres A, Gaberscik A, Gulyás Á, Gwynn-Jones D, Nagy F, Jones A, Julkunen-Tiitto R, Konstantinova N, Lakkala K, Llorens L, Martínez-Lüscher J, Nybakken L, Olsen J, Pascual I, Ranieri A, Regier N, Robson M, Rosenqvist E, Santin M, Turunen M, Vandenbussche F, Verdaguer D, Winkler B, Witzel K, Grifoni D, Zipoli G, Hideg É, Jansen MAK, Hauser MT. A synchronized, large-scale field experiment using Arabidopsis thaliana reveals the significance of the UV-B photoreceptor UVR8 under natural conditions. PLANT, CELL & ENVIRONMENT 2024; 47:4031-4047. [PMID: 38881245 DOI: 10.1111/pce.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.
Collapse
Affiliation(s)
- Susanne Neugart
- Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Viktoria Steininger
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | - Catarina Fernandes
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | | | | | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Åke Strid
- Department of Natural Sciences, School of Science and Technology, Örebro University, Örebro, Sweden
| | - András Viczián
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Beatriz Dáder
- Department of Agricultural Production, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, Spanish Council for Scientific Research, Madrid, Spain
| | - Alenka Gaberscik
- Department of Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Ágnes Gulyás
- Department of Climatology and Landscape Ecology, University of Szeged, Szeged, Hungary
| | - Dylan Gwynn-Jones
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Ferenc Nagy
- Institute of Plant Biology, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Alan Jones
- Earthwatch Europe, Oxford, UK
- Scion, New Zealand Forest Research Institute, Rotorua, New Zealand
| | | | - Nataliia Konstantinova
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| | - Kaisa Lakkala
- Finnish Meteorological Institute - Space and Earth Observation Centre, Sodankylä, Finland
| | - Laura Llorens
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Johann Martínez-Lüscher
- Plant Stress Physiology group (Associated Unit to EEAD, CSIC), BIOMA Institute for Biodiversity and the Environment, University of Navarra, Pamplona, Spain
| | - Line Nybakken
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn Olsen
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Inmaculada Pascual
- Plant Stress Physiology group (Associated Unit to EEAD, CSIC), BIOMA Institute for Biodiversity and the Environment, University of Navarra, Pamplona, Spain
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nicole Regier
- Earth and Environment Sciences, Forel Institute, Geneva University, Geneva, Switzerland
| | - Matthew Robson
- Organismal & Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
- National School of Forestry, University of Cumbria, Ambleside, UK
| | - Eva Rosenqvist
- Institute of Plant and Environmental Sciences, Crop Science, University of Copenhagen, Tåstrup, Denmark
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Minna Turunen
- Arctic Centre, University of Lapland, Rovaniemi, Finland
| | | | - Dolors Verdaguer
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Daniele Grifoni
- National Research Council, Institute of Bioeconomy, Sesto Fiorentino, Italy
- Laboratory of Monitoring and Environmental Modelling for the Sustainable Development (LaMMA Consortium), Sesto Fiorentino, Italy
| | - Gaetano Zipoli
- National Research Council Institute for Biometeorology, Sesto Fiorentino, Italy
| | - Éva Hideg
- Department of Plant Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Marcel A K Jansen
- Environmental Research Institute, School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
| | - Marie-Theres Hauser
- Department of Applied Genetics & Cell Biology, University of Natural Resources & Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Leonardelli M, Tissot N, Podolec R, Ares-Orpel F, Glauser G, Ulm R, Demarsy E. Photoreceptor-induced sinapate synthesis contributes to photoprotection in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1518-1533. [PMID: 38918833 PMCID: PMC11444301 DOI: 10.1093/plphys/kiae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Plants must balance light capture for photosynthesis with protection from potentially harmful ultraviolet (UV) radiation. Photoprotection is mediated by concerted action of photoreceptors, but the underlying molecular mechanisms are not fully understood. In this study, we provide evidence that UV RESISTANCE LOCUS 8 (UVR8) UV-B, phytochrome red, and cryptochrome blue-light photoreceptors converge on the induction of FERULIC ACID 5-HYDROXYLASE 1 (FAH1) that encodes a key enzyme in the phenylpropanoid biosynthesis pathway, leading to the accumulation of UV-absorbing sinapate esters in Arabidopsis (Arabidopsis thaliana). FAH1 induction depends on the basic leucine zipper transcription factors ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOG that function downstream of all 3 photoreceptors. Noticeably, mutants with hyperactive UVR8 signaling rescue fah1 UV sensitivity. Targeted metabolite profiling suggests that this phenotypic rescue is due to the accumulation of UV-absorbing metabolites derived from precursors of sinapate synthesis, namely, coumaroyl glucose and feruloyl glucose. Our genetic dissection of the phenylpropanoid pathway combined with metabolomic and physiological analyses show that both sinapate esters and flavonoids contribute to photoprotection with sinapates playing a major role for UV screening. Our findings indicate that photoreceptor-mediated regulation of FAH1 and subsequent accumulation of sinapate "sunscreen" compounds are key protective mechanisms to mitigate damage, preserve photosynthetic performance, and ensure plant survival under UV.
Collapse
Affiliation(s)
- Manuela Leonardelli
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Florence Ares-Orpel
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
12
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
13
|
Kim SO, Yun SR, Lee H, Jo J, Ahn DS, Kim D, Kosheleva I, Henning R, Kim J, Kim C, You S, Kim H, Lee SJ, Ihee H. Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities. Nat Commun 2024; 15:6287. [PMID: 39060271 PMCID: PMC11282289 DOI: 10.1038/s41467-024-50696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Understanding protein structure and kinetics under physiological conditions is crucial for elucidating complex biological processes. While time-resolved (TR) techniques have advanced to track molecular actions, their practical application in biological reactions is often confined to reversible photoreactions within limited experimental parameters due to inefficient sample utilization and inflexibility of experimental setups. Here, we introduce serial X-ray liquidography (SXL), a technique that combines time-resolved X-ray liquidography with a fixed target of serially arranged microchambers. SXL breaks through the previously mentioned barriers, enabling microgram-scale TR studies of both irreversible and reversible reactions of even a non-photoactive protein. We demonstrate its versatility in studying a wide range of biological reactions, highlighting its potential as a flexible and multi-dimensional assay framework for kinetic and structural characterization. Leveraging X-ray free-electron lasers and micro-focused X-ray pulses promises further enhancements in both temporal resolution and minimizing sample quantity. SXL offers unprecedented insights into the structural and kinetic landscapes of molecular actions, paving the way for a deeper understanding of complex biological processes.
Collapse
Affiliation(s)
- Seong Ok Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - So Ri Yun
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyosub Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Junbeom Jo
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Jungmin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changin Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seyoung You
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hanui Kim
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Jin Lee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Center for Advanced Reactions Dynamics (CARD), Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
14
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
15
|
Wang M, Song X, Wen Y, Zhong M, Zhang W, Luo C, Zhang Q. The wavelength dependence of oxygen-evolving complex inactivation in Zosteramarina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108739. [PMID: 38772168 DOI: 10.1016/j.plaphy.2024.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Zostera marina, a critical keystone marine angiosperm species in coastal seagrass meadows, possesses a photosensitive oxygen evolving complex (OEC). In harsh environments, the photoinactivation of the Z. marina OEC may lead to population declines. However, the factors underlying this photosensitivity remain unclear. Therefore, this study was undertaken to elucidate the elements contributing to Z. marina OEC photosensitivity. Our results demonstrated a gradual decrease in photosystem II performance towards shorter wavelengths, especially blue light and ultraviolet radiation. This phenomenon was characterized by a reduction in Fv/Fm and the rate of O2 evolution, as well as increased fluorescence at 0.3 ms on the OJIP curve. Furthermore, exposure to shorter light wavelengths and longer exposure durations significantly reduced the relative abundance of the OEC peripheral proteins, indicating OEC inactivation. Analyses of light-screening substances revealed that carotenoids, which increased most notably under 420 nm light, might primarily serve as thermal dissipators instead of efficient light filters. In contrast, anthocyanins reacted least to short-wavelength light, in terms of changes to both their content and the expression of genes related to their biosynthesis. Additionally, the levels of aromatically acylated anthocyanins remained consistent across blue-, white-, and red-light treatments. These findings suggest that OEC photoinactivation in Z. marina may be linked to inadequate protection against short-wavelength light, a consequence of insufficient synthesis and aromatic acylation modification of anthocyanins.
Collapse
Affiliation(s)
- Mengxin Wang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - XiuKai Song
- Shandong Marine Resource and Environment Research Institute, Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Yantai, 264006, PR China
| | - Yun Wen
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Mingyu Zhong
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Wenhao Zhang
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Chengying Luo
- Ocean School, Yantai University, Yantai, 264005, PR China
| | | |
Collapse
|
16
|
Chen YL, Zhong YB, Leung DWM, Yan XY, Ouyang MN, Ye YZ, Li SM, Peng XX, Liu EE. OsUVR8b, rather than OsUVR8a, plays a predominant role in rice UVR8-mediated UV-B response. PHYSIOLOGIA PLANTARUM 2024; 176:e14471. [PMID: 39129657 DOI: 10.1111/ppl.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
UV RESISTANCE LOCUS 8 (UVR8) has been identified in Arabidopsis thaliana as the receptor mediating responses to UV-B radiation. However, UVR8-mediated UV-B signaling pathways in rice, which possesses two proteins (UVR8a and UVR8b) with high identities to AtUVR8, remain largely unknown. Here, UVR8a/b were found to be predominantly expressed in rice leaves and leaf sheaths, while the levels of UVR8b transcript and UVR8b protein were both higher than those of UVR8a. Compared to wild-type (WT) plants, uvr8b and uvr8a uvr8b rice mutants exposed to UV-B showed reduced UV-B-induced growth inhibition and upregulation of CHS and HY5 transcripts alongside UV-B acclimation. However, uvr8a mutant was similar to WT plants and exhibited changes comparable with WT. Overexpressing OsUVR8a/b enhanced UV-B-induced growth inhibition and acclimation to UV-B. UV-B was able to enhance the interaction between E3 ubiquitin ligase OsCOP1 and OsUVR8a/b, whereas the interaction of the homologous protein of Arabidopsis REPRESSOR OF UV-B PHOTOMORPHOGENESIS2 (AtRUP2) in rice with OsUVR8a/b was independent of UV-B. Additionally, OsUVR8a/b proteins were also found in the nucleus and cytoplasm even in the absence of UV-B. The abundance of OsUVR8 monomer showed an invisible change in the leaves of rice seedlings transferred from white light to that supplemented with UV-B, even though UV-B was able to weaken the interactions between OsUVR8a and OsUVR8b homo and heterodimers. Therefore, both OsUVR8a and OsUVR8b, which have different localization and response patterns compared with AtUVR8, function in the response of rice to UV-B radiation, whereas OsUVR8b plays a predominant role in this process.
Collapse
Affiliation(s)
- Yu-Long Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - You-Bin Zhong
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - David W M Leung
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Xiao-Yu Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Meng-Ni Ouyang
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Yu-Zhen Ye
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Shi-Mei Li
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - Xin-Xiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| | - E-E Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
17
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
18
|
Li Y, Zhu J, Xu J, Zhang X, Xie Z, Li Z. Effect of cold stress on photosynthetic physiological characteristics and molecular mechanism analysis in cold-resistant cotton (ZM36) seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1396666. [PMID: 38803600 PMCID: PMC11128660 DOI: 10.3389/fpls.2024.1396666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Low temperature and cold damage seriously hinder the growth, development, and morphogenesis of cotton seedlings. However, the response mechanism of cotton seedlings under cold stress still lacks research. In this study, transcriptome sequencing, gas exchange parameters, and rapid chlorophyll fluorescence parameters were analyzed in leaves of cold-tolerant upland cotton variety "ZM36" under different temperature stress [25°C (T25, CK), 15°C (T15), 10°C (T10), and 4°C (T4)]. The results showed that the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), PSII potential maximum photochemical efficiency (Fv/Fm), and performance index (PIabs) of cotton leaves significantly decreased, and the intercellular CO2 concentration (Ci) and Fo/Fm significantly increased under cold stress. The transcriptome sequencing analysis showed that a total of 13,183 DEGs were involved in the response of cotton seedlings at each temperature point (T25, T15, T10, and T4), mainly involving five metabolic pathways-the phosphatidylinositol signaling system, photosynthesis, photosynthesis antenna protein, carbon fixation in photosynthetic organisms, and carotenoid synthesis. The 1,119 transcription factors were discovered among all the DEGs. These transcription factors involve 59 families, of which 15.8% of genes in the NAC family are upregulated. Through network regulatory analysis, the five candidate genes GhUVR8 (GH_A05G3668), GhPLATZ (GH_A09G2161), GhFAD4-1 (GH_A01G0758), GhNFYA1 (GH_A02G1336), and GhFAD4-2 (GH_D01G0766) were identified in response to cold stress. Furthermore, suppressing the expression level of GhPLATZ by virus-induced gene silencing led to the reduction of low temperature resistance, implying GhPLATZ as a positive regulator of low temperature tolerance. The findings of the study revealed a piece of the complex response mechanism of the cold-tolerant variety "ZM36" to different cold stresses and excavated key candidate genes for low temperature response, which provided support for accelerating the selection and breeding of cotton varieties with low temperature tolerance.
Collapse
Affiliation(s)
- Youzhong Li
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shihezi, Xinjiang, China
| | - Jincheng Zhu
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
- Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, China
| | - Jianwei Xu
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xianliang Zhang
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji, China
| | - Zongming Xie
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science/Xinjiang Production and Construction Group Key Laboratory of Crop Germplasm Enhancement and Gene Resources Utilization, Shihezi, Xinjiang, China
| | - Zhibo Li
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
19
|
Liu W, Giuriani G, Havlikova A, Li D, Lamont DJ, Neugart S, Velanis CN, Petersen J, Hoecker U, Christie JM, Jenkins GI. Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation. Nat Commun 2024; 15:1221. [PMID: 38336824 PMCID: PMC10858049 DOI: 10.1038/s41467-024-45575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Exposure of plants to ultraviolet-B (UV-B) radiation initiates transcriptional responses that modify metabolism, physiology and development to enhance viability in sunlight. Many of these regulatory responses to UV-B radiation are mediated by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). Following photoreception, UVR8 interacts directly with multiple proteins to regulate gene expression, but the mechanisms that control differential protein binding to initiate distinct responses are unknown. Here we show that UVR8 is phosphorylated at several sites and that UV-B stimulates phosphorylation at Serine 402. Site-directed mutagenesis to mimic Serine 402 phosphorylation promotes binding of UVR8 to REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins, which negatively regulate UVR8 action. Complementation of the uvr8 mutant with phosphonull or phosphomimetic variants suggests that phosphorylation of Serine 402 modifies UVR8 activity and promotes flavonoid biosynthesis, a key UV-B-stimulated response that enhances plant protection and crop nutritional quality. This research provides a basis to understand how UVR8 interacts differentially with effector proteins to regulate plant responses to UV-B radiation.
Collapse
Affiliation(s)
- Wei Liu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Giovanni Giuriani
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Anezka Havlikova
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dezhi Li
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Douglas J Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, Discovery Centre, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Susanne Neugart
- Department of Crop Sciences, Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, D-37075, Göttingen, Germany
| | - Christos N Velanis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Maths, Venables Building, The Open University, Walton Hall Campus, Milton Keynes, MK7 6AA, UK
| | - Jan Petersen
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, 07743, Jena, Germany
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Köln, 50923, Köln, Germany
| | - John M Christie
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gareth I Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
20
|
Stockenhuber R, Akiyama R, Tissot N, Milosavljevic S, Yamazaki M, Wyler M, Arongaus AB, Podolec R, Sato Y, Widmer A, Ulm R, Shimizu KK. UV RESISTANCE LOCUS 8-Mediated UV-B Response Is Required Alongside CRYPTOCHROME 1 for Plant Survival in Sunlight under Field Conditions. PLANT & CELL PHYSIOLOGY 2024; 65:35-48. [PMID: 37757822 PMCID: PMC10799719 DOI: 10.1093/pcp/pcad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
As sessile, photoautotrophic organisms, plants are subjected to fluctuating sunlight that includes potentially detrimental ultraviolet-B (UV-B) radiation. Experiments under controlled conditions have shown that the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) controls acclimation and tolerance to UV-B in Arabidopsis thaliana; however, its long-term impact on plant fitness under naturally fluctuating environments remain poorly understood. Here, we quantified the survival and reproduction of different Arabidopsis mutant genotypes under diverse field and laboratory conditions. We found that uvr8 mutants produced more fruits than wild type when grown in growth chambers under artificial low-UV-B conditions but not under natural field conditions, indicating a fitness cost in the absence of UV-B stress. Importantly, independent double mutants of UVR8 and the blue light photoreceptor gene CRYPTOCHROME 1 (CRY1) in two genetic backgrounds showed a drastic reduction in fitness in the field. Experiments with UV-B attenuation in the field and with supplemental UV-B in growth chambers demonstrated that UV-B caused the cry1 uvr8 conditional lethal phenotype. Using RNA-seq data of field-grown single and double mutants, we explicitly identified genes showing significant statistical interaction of UVR8 and CRY1 mutations in the presence of UV-B in the field. They were enriched in Gene Ontology categories related to oxidative stress, photoprotection and DNA damage repair in addition to UV-B response. Our study demonstrates the functional importance of the UVR8-mediated response across life stages in natura, which is partially redundant with that of cry1. Moreover, these data provide an integral picture of gene expression associated with plant responses under field conditions.
Collapse
Affiliation(s)
- Reinhold Stockenhuber
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Nicolas Tissot
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Stefan Milosavljevic
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Michele Wyler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich 8008, Switzerland
| | - Adriana B Arongaus
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Roman Podolec
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Yasuhiro Sato
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich 8092, Switzerland
| | - Roman Ulm
- Department of Plant Sciences, Section of Biology, Faculty of Sciences, University of Geneva, 30 Quai E. Ansermet, Geneva 1211, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva 1211, Switzerland
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama 244-0813, Japan
| |
Collapse
|
21
|
Yu Y, Wang S, Wang Z, Gao R, Lee J. Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations. Epigenetics 2023; 18:2211362. [PMID: 37196184 DOI: 10.1080/15592294.2023.2211362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Histones are subjected to extensive covalent modifications that affect inter-nucleosomal interactions as well as alter chromatin structure and DNA accessibility. Through switching the corresponding histone modifications, the level of transcription and diverse downstream biological processes can be regulated. Although animal systems are widely used in studying histone modifications, the signalling processes that occur outside the nucleus prior to histone modifications have not been well understood due to the limitations including non viable mutants, partial lethality, and infertility of survivors. Here, we review the benefits of using Arabidopsis thaliana as the model organism to study histone modifications and their upstream regulations. Similarities among histones and key histone modifiers such as the Polycomb group (PcG) and Trithorax group (TrxG) in Drosophila, Human, and Arabidopsis are examined. Furthermore, prolonged cold-induced vernalization system has been well-studied and revealed the relationship between the controllable environment input (duration of vernalization), its chromatin modifications of FLOWERING LOCUS C (FLC), following gene expression, and the corresponding phenotypes. Such evidence suggests that research on Arabidopsis can bring insights into incomplete signalling pathways outside of the histone box, which can be achieved through viable reverse genetic screenings based on the phenotypes instead of direct monitoring of histone modifications among individual mutants. The potential upstream regulators in Arabidopsis can provide cues or directions for animal research based on the similarities between them.
Collapse
Affiliation(s)
- Yang Yu
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Sihan Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Ziqin Wang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Renwei Gao
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Joohyun Lee
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
22
|
Chen J, Wu W, Ding X, Zhang D, Dai C, Pan H, Shi P, Wu C, Zhang J, Zhao J, Liao B, Qiu X, Huang Z. Genome-wide characterization of regulator of chromosome condensation 1 (RCC1) gene family in Artemisia annua L. revealed a conservation evolutionary pattern. BMC Genomics 2023; 24:692. [PMID: 37980503 PMCID: PMC10657572 DOI: 10.1186/s12864-023-09786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Artemisia annua is the major source for artemisinin production. The artemisinin content in A. annua is affected by different types of light especially the UV light. UVR8, a member of RCC1 gene family was found to be the UV-B receptor in plants. The gene structures, evolutionary history and expression profile of UVR8 or RCC1 genes remain undiscovered in A. annua. RESULTS Twenty-two RCC1 genes (AaRCC1) were identified in each haplotype genome of two diploid strains of A. annua, LQ-9 and HAN1. Varied gene structures and sequences among paralogs were observed. The divergence of most RCC1 genes occurred at 46.7 - 51 MYA which overlapped with species divergence of core Asteraceae during the Eocene, while no recent novel RCC1 members were found in A. annua genome. The number of RCC1 genes remained stable among eudicots and RCC1 genes underwent purifying selection. The expression profile of AaRCC1 is analogous to that of Arabidopsis thaliana (AtRCC1) when responding to environmental stress. CONCLUSIONS This study provided a comprehensive characterization of the AaRCC1 gene family and suggested that RCC1 genes were conserved in gene number, structures, constitution of amino acids and expression profiles among eudicots.
Collapse
Affiliation(s)
- Jieting Chen
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenguang Wu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoxia Ding
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Danchun Zhang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunyan Dai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hengyu Pan
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Peiqi Shi
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | | | - Jun Zhang
- Sunribio Co.Ltd, Shenzhen, 518101, China
| | | | - Baosheng Liao
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xiaohui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
23
|
Depaepe T, Vanhaelewyn L, Van Der Straeten D. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity. PLANT, CELL & ENVIRONMENT 2023; 46:3194-3205. [PMID: 37554043 DOI: 10.1111/pce.14680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
- Department of Agricultural Economics, Ghent University, Coupure Links 653 B-9000, Ghent, Belgium
| | | |
Collapse
|
24
|
Jan R, Kim N, Asaf S, Lubna, Asif S, Du XX, Kim EG, Jang YH, Kim KM. OsCM regulates rice defence system in response to UV light supplemented with drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:902-914. [PMID: 37641387 DOI: 10.1111/plb.13564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023]
Abstract
Studies on plant responses to combined abiotic stresses are very limited, especially in major crop plants. The current study evaluated the response of chorismate mutase overexpressor (OxCM) rice line to combined UV light and drought stress. The experiments were conducted in pots in a growth chamber, and data were assessed for gene expression, antioxidant and hormone regulation, flavonoid accumulation, phenotypic variation, and amino acid accumulation. Wild-type (WT) rice had reduced the growth and vigour, while transgenic rice maintained growth and vigour under combined UV light and drought stress. ROS and lipid peroxidation analysis revealed that chorismate mutase (OsCM) reduced oxidative stress mediated by ROS scavenging and reduced lipid peroxidation. The combined stresses reduced biosynthesis of total flavonoids, kaempferol and quercetin in WT plants, but increased significantly in plants with OxCM. Phytohormone analysis showed that SA was reduced by 50% in WT and 73% in transgenic plants, while ABA was reduced by 22% in WT plants but increased to 129% in transgenic plants. Expression of chorismate mutase regulates phenylalanine biosynthesis, UV light and drought stress-responsive genes, e.g., phenylalanine ammonia lyase (OsPAL), dehydrin (OsDHN), dehydration-responsive element-binding (OsDREB), ras-related protein 7 (OsRab7), ultraviolet-B resistance 8 (OsUVR8), WRKY transcription factor 89 (OsWRKY89) and tryptophan synthase alpha chain (OsTSA). Moreover, OsCM also increases accumulation of free amino acids (aspartic acid, glutamic acid, leucine, tyrosine, phenylalanine and proline) and sodium (Na), potassium (K), and calcium (Ca) ions in response to the combined stresses. Together, these results suggest that chorismate mutase expression induces physiological, biochemical and molecular changes that enhance rice tolerance to combined UV light and drought stresses.
Collapse
Affiliation(s)
- R Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| | - N Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - S Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - S Asif
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - X-X Du
- Biosafty Division, National Academy of Agriculture Science, Rural Development, Administration, Jeonju, South Korea
| | - E-G Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - Y-H Jang
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| | - K-M Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
25
|
McInnes KJ, van der Hooft JJJ, Sharma A, Herzyk P, Hundleby PAC, Schoonbeek HJ, Amtmann A, Ridout C, Jenkins GI. Overexpression of Brassica napus COMT1 in Arabidopsis heightens UV-B-mediated resistance to Plutella xylostella herbivory. Photochem Photobiol Sci 2023; 22:2341-2356. [PMID: 37505444 PMCID: PMC10509076 DOI: 10.1007/s43630-023-00455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
UV-B radiation regulates numerous morphogenic, biochemical and physiological responses in plants, and can stimulate some responses typically associated with other abiotic and biotic stimuli, including invertebrate herbivory. Removal of UV-B from the growing environment of various plant species has been found to increase their susceptibility to consumption by invertebrate pests, however, to date, little research has been conducted to investigate the effects of UV-B on crop susceptibility to field pests. Here, we report findings from a multi-omic and genetic-based study investigating the mechanisms of UV-B-stimulated resistance of the crop, Brassica napus (oilseed rape), to herbivory from an economically important lepidopteran specialist of the Brassicaceae, Plutella xylostella (diamondback moth). The UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8), was not found to mediate resistance to this pest. RNA-Seq and untargeted metabolomics identified components of the sinapate/lignin biosynthetic pathway that were similarly regulated by UV-B and herbivory. Arabidopsis mutants in genes encoding two enzymes in the sinapate/lignin biosynthetic pathway, CAFFEATE O-METHYLTRANSFERASE 1 (COMT1) and ELICITOR-ACTIVATED GENE 3-2 (ELI3-2), retained UV-B-mediated resistance to P. xylostella herbivory. However, the overexpression of B. napus COMT1 in Arabidopsis further reduced plant susceptibility to P. xylostella herbivory in a UV-B-dependent manner. These findings demonstrate that overexpression of a component of the sinapate/lignin biosynthetic pathway in a member of the Brassicaceae can enhance UV-B-stimulated resistance to herbivory from P. xylostella.
Collapse
Affiliation(s)
- Kirsty J McInnes
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Natural and Environmental Sciences, Newcastle University, King's Road, Newcastle, NE1 7RU, UK
| | - Justin J J van der Hooft
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
- Bioinformatics Group, Plant Sciences Group, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Ashutosh Sharma
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Pawel Herzyk
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Glasgow Polyomics, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | | | | | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Gareth I Jenkins
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
26
|
Spectral light quality regulates the morphogenesis, architecture, and flowering in pepper (Capsicum annuum L.). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112673. [PMID: 36889195 DOI: 10.1016/j.jphotobiol.2023.112673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Transparent plastic films with poor light transmittance seriously affect the mass composition of visible light in many greenhouses, which leads to the reduction of photosynthesis in vegetable crops. Understanding the regulatory mechanisms of monochromatic light in the vegetative and reproductive growth of vegetable crops is of great importance for the application of light-emitting diodes (LEDs) in the greenhouse. In this study, three monochromatic light treatments (red-, green- and blue-light) were simulated by using LEDs to explore light quality-dependent regulation from the stage of seedling to flowering in pepper (Capsicum annuum L.). The results showed that light quality-dependent regulation guides the growth and morphogenesis in pepper plants. Red- and blue-light played opposite roles in determining the plant height, stomatal density, axillary bud growth, photosynthetic characteristics, flowering time and hormone metabolism, while green light treatment resulted in taller plants and fewer branches, which was similar to the red-light treatment. The weighted correlation network analysis (WGCNA) based on mRNA-seq results revealed that the two modules named "MEred" and "MEmidnightblue" were positively correlated with red- and blue-light treatment, respectively, exhibiting high correlations with the traits such as plant hormone content, branching and flowering. Moreover, our results suggest that the light response factor ELONGATED HYPOCOTYL 5 (HY5) is essential for blue light-induced plant growth and development by regulating photosynthesis in pepper plants. Hence, this study uncovers crucial molecular mechanisms of how light quality determines the morphogenesis, architecture, and flowering in pepper plants, thus providing a basic concept of manipulating light quality to regulate pepper plant growth and flowering under greenhouse conditions.
Collapse
|
27
|
Santin M, Zeni V, Grassi A, Ricciardi R, Pieracci Y, Di Giovanni F, Panzani S, Frasconi C, Agnolucci M, Avio L, Turrini A, Giovannetti M, Ruffini Castiglione M, Ranieri A, Canale A, Lucchi A, Agathokleous E, Benelli G. Do changes in Lactuca sativa metabolic performance, induced by mycorrhizal symbionts and leaf UV-B irradiation, play a role towards tolerance to a polyphagous insect pest? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56207-56223. [PMID: 36917375 PMCID: PMC10121541 DOI: 10.1007/s11356-023-26218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Arianna Grassi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Filippo Di Giovanni
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, Siena, Italy
| | - Sofia Panzani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Christian Frasconi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Monica Ruffini Castiglione
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
- Department of Biology, University of Pisa, Via L. Ghini 13, 56126, Pisa, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Angelo Canale
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Center Nutrafood-Nutraceuticals and Food for Health, University of Pisa, 56124, Pisa, Italy
| | - Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Science & Technology (NUIST), Nanjing University of Information, Nanjing, 210044, China
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
28
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
29
|
An X, Zhao S, Luo X, Chen C, Liu T, Li W, Zou L, Sun C. Genome-wide identification and expression analysis of the regulator of chromosome condensation 1 gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1124905. [PMID: 36909424 PMCID: PMC9998523 DOI: 10.3389/fpls.2023.1124905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is the world's most widely cultivated crop and an important staple food for humans, accounting for one-fifth of calories consumed. Proteins encoded by the regulator of chromosome condensation 1 (RCC1) are highly conserved among eukaryotes and consist of seven repeated domains that fold into a seven-bladed propeller structure. In this study, a total of 76 RCC1 genes of bread wheat were identified via a genome-wide search, and their phylogenetic relationship, gene structure, protein-conserved domain, chromosome localization, conserved motif, and transcription factor binding sites were systematically analyzed using the bioinformatics approach to indicate the evolutionary and functional features of these genes. The expression patterns of 76 TaRCC1 family genes in wheat under various stresses were further analyzed, and RT-PCR verified that RCC1-3A (TraesCS3A02G362800), RCC1-3B (TraesCS3B02G395200), and RCC1-3D (TraesCS3D02G35650) were significantly induced by salt, cold, and drought stresses. Additionally, the co-expression network analysis and binding site prediction suggested that Myb-7B (TraesCS7B02G188000) and Myb-7D (TraesCS7D02G295400) may bind to the promoter of RCC1-3A/3B and upregulate their expression in response to abiotic stresses in wheat. The results have furthered our understanding of the wheat RCC1 family members and will provide important information for subsequent studies and the use of RCC1 genes in wheat.
Collapse
Affiliation(s)
- Xia An
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuqi Zhao
- Cotton and Wheat Research Institute, Huanggang Academy of Agricultural Sciences, Huanggang, China
| | - Xiahong Luo
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changli Chen
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tingting Liu
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenlue Li
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lina Zou
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chendong Sun
- The Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Hu Y, Rosado D, Lindbäck LN, Micko J, Pedmale UV. Cryptochromes and UBP12/13 deubiquitinases antagonistically regulate DNA damage response in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524001. [PMID: 36712126 PMCID: PMC9882212 DOI: 10.1101/2023.01.15.524001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cryptochromes (CRYs) are evolutionarily conserved blue-light receptors that evolved from bacterial photolyases that repair damaged DNA. Today, CRYs have lost their ability to repair damaged DNA; however, prior reports suggest that human CRYs can respond to DNA damage. Currently, the role of CRYs in the DNA damage response (DDR) is lacking, especially in plants. Therefore, we evaluated the role of plant CRYs in DDR along with UBP12/13 deubiquitinases, which interact with and regulate the CRY2 protein. We found that cry1cry2 was hypersensitive, while ubp12ubp13 was hyposensitive to UVC-induced DNA damage. Elevated UV-induced cyclobutane pyrimidine dimers (CPDs) and the lack of DNA repair protein RAD51 accumulation in cry1cry2 plants indicate that CRYs are required for DNA repair. On the contrary, CPD levels diminished and RAD51 protein levels elevated in plants lacking UBP12 and UBP13, indicating their role in DDR repression. Temporal transcriptomic analysis revealed that DDR-induced transcriptional responses were subdued in cry1cry2, but elevated in ubp12ubp13 compared to WT. Through transcriptional modeling of the time-course transcriptome, we found that genes quickly induced by UVC (15 min) are targets of CAMTA 1-3 transcription factors, which we found are required for DDR. This transcriptional regulation seems, however, diminished in the cry1cry2 mutant, indicating that CAMTAs are required for CRY2-mediated DDR. Furthermore, we observed enhanced CRY2-UBP13 interaction and formation of CRY2 nuclear speckles under UVC, suggesting that UVC activates CRY2 similarly to blue light. Together, our data reveal the temporal dynamics of the transcriptional events underlying UVC-induced genotoxicity and expand our knowledge of the role of CRY and UBP12/13 in DDR.
Collapse
Affiliation(s)
- Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Daniele Rosado
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Louise N. Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Julie Micko
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| |
Collapse
|
31
|
Wang L, Wang Y, Chang H, Ren H, Wu X, Wen J, Guan Z, Ma L, Qiu L, Yan J, Zhang D, Huang X, Yin P. RUP2 facilitates UVR8 redimerization via two interfaces. PLANT COMMUNICATIONS 2023; 4:100428. [PMID: 36065466 PMCID: PMC9860181 DOI: 10.1016/j.xplc.2022.100428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) exists as a homodimer in its inactive ground state. Upon UV-B exposure, UVR8 monomerizes and interacts with a downstream key regulator, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA (COP1/SPA) E3 ubiquitin ligase complex, to initiate UV-B signaling. Two WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion, completing the UVR8 photocycle. Here, we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8W285A complex (2.0 Å). RUP2 and UVR8W285A formed a heterodimer via two distinct interfaces, designated Interface 1 and 2. The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion. The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain. Disruption of Interface 2 impaired UV-B induced photomorphogenic development in Arabidopsis thaliana. Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization. Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8, marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.
Collapse
Affiliation(s)
- Lixia Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongfei Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinquan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jia Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Couée I. Interplay of Methodology and Conceptualization in Plant Abiotic Stress Signaling. Methods Mol Biol 2023; 2642:3-22. [PMID: 36944870 DOI: 10.1007/978-1-0716-3044-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Characterizing the mechanisms of plant sensitivity and reactivity to physicochemical cues related to abiotic stresses is of utmost importance for understanding plant-environment interactions, adaptations of the sessile lifestyle, and the evolutionary dynamics of plant species and populations. Moreover, plant communities are confronted with an environmental context of global change, involving climate changes, planetary pollutions of soils, waters and atmosphere, and additional anthropogenic changes. The mechanisms through which plants perceive abiotic stress stimuli and transduce stress perception into physiological responses constitute the primary line of interaction between the plant and the environment, and therefore between the plant and global changes. Understanding how plants perceive complex combinations of abiotic stress signals and transduce the resulting information into coordinated responses of abiotic stress tolerance is therefore essential for devising genetic, agricultural, and agroecological strategies that can ensure climate change resilience, global food security, and environmental protection. Discovery and characterization of sensing and signaling mechanisms of plant cells are usually carried out within the general framework of eukaryotic sensing and signal transduction. However, further progress depends on a close relationship between the conceptualization of sensing and signaling processes with adequate methodologies and techniques that encompass biochemical and biophysical approaches, cell biology, molecular biology, and genetics. The integration of subcellular and cellular analyses as well as the integration of in vitro and in vivo analyses are particularly important to evaluate the efficiency of sensing and signaling mechanisms in planta. Major progress has been made in the last 10-20 years with the caveat that cell-specific processes and in vivo processes still remain difficult to analyze and with the additional caveat that the range of plant models under study remains rather limited relatively to plant biodiversity and to the diversity of stress situations.
Collapse
Affiliation(s)
- Ivan Couée
- UMR 6553 ECOBIO (Ecosystems-Biodiversity-Evolution), Centre National de la Recherche Scientifique (CNRS), University of Rennes, Rennes, France.
| |
Collapse
|
33
|
Baroniya S, Jumrani K, Baroniya M, Guruprasad K, Landi M, Kataria S. Intraspecific variation in photosynthetic efficiency in soybean ( Glycine max L.) varieties towards solar ultraviolet radiations. PHOTOSYNTHETICA 2022; 61:203-214. [PMID: 39650673 PMCID: PMC11515822 DOI: 10.32615/ps.2022.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2024]
Abstract
In the current study, we used four soybean varieties PK-1029, PK-472, NRC-7, and Hardee to examine the effect of exclusion of solar UV radiation on photosynthetic efficiency and to test possible variety-dependent sensitivity to ambient UV (280-400 nm). Plants that were grown under UV exclusion filters had higher chlorophyll a and b, efficiencies of PSII and more active reaction centers indicated that PSII were substantially affected by solar UV radiation. The significant increase in net photosynthesis was linked to increased stomatal conductance and lower intercellular concentration of CO2 in UV-excluded plants. The exclusion of solar UV increased seed mass per plant in all soybean varieties as compared to the control; this indicates that ambient UV exclusions boost photosynthetic efficiency and improve soybean yield. The overall cumulative stress response index of four varieties implies that Hardee and PK-472 were more sensitive whereas NRC-7 and PK-1029 were resistant to ambient UV radiations.
Collapse
Affiliation(s)
- S.S. Baroniya
- SwaTukojirao Pawar Shaskiya Vigyan Mahavidyalaya, Dewas (M.P.), India
| | - K. Jumrani
- Division of Plant Physiology, Indian Institute of Soybean Research, Indore (M.P.), India
| | - M. Baroniya
- SwaTukojirao Pawar Shaskiya Vigyan Mahavidyalaya, Dewas (M.P.), India
| | - K.N. Guruprasad
- Sri Vaishnav Vidyapeeth Vishwavidyalaya, Indore (M.P.), India
| | - M. Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy
| | - S. Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore (M.P.), India
| |
Collapse
|
34
|
Chen Z, Dong Y, Huang X. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. STRESS BIOLOGY 2022; 2:51. [PMID: 37676395 PMCID: PMC10441900 DOI: 10.1007/s44154-022-00076-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 09/08/2023]
Abstract
Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that reaches the earth's surface, and affects plant survival and adaptation. How plants respond to UV-B light is regulated by the wavelength, intensity and duration of UV-B radiation, and is also regulated by photosynthetically active radiation perceived by phytochrome and cryptochrome photoreceptors. Non-damaging UV-B light promotes plant photomorphogenesis and UV-B acclimation which enhances plant tolerance against UV-B stress. However, high-level UV-B radiation induces DNA damage, generates reactive oxygen species (ROS) and impairs photosynthesis. Plants have evolved efficient mechanisms to utilize informational UV-B signal, and protect themselves from UV-B stress. UV RESISTANCE LOCUS8 (UVR8) is a conserved plant-specific UV-B photoreceptor. It interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate UV-B-specific light signaling and regulate UV-B responsive gene expression. A set of transcription factors such as ELONGATED HYPOCOTYL5 (HY5) function downstream of the UVR8-COP1 module to promote seedling de-etiolation for photomorphogenic development and biosynthesis of sunscreen flavonoids for UV-B stress tolerance. In addition to UVR8 signaling pathways, plants subjected to damaging UV-B radiation initiate stress protection and repair mechanisms through UVR8-independent pathways. In this review, we summarize the emerging mechanisms underlying UV-B stress acclimation and protection in plants, primarily revealed in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
35
|
Khristin MS, Smolova TN, Khorobrykh AA. Dimerization of the Free and Photosystem II-Associated PsbO Protein upon Irradiation with UV Light. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922060100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
36
|
Fang F, Lin L, Zhang Q, Lu M, Skvortsova MY, Podolec R, Zhang Q, Pi J, Zhang C, Ulm R, Yin R. Mechanisms of UV-B light-induced photoreceptor UVR8 nuclear localization dynamics. THE NEW PHYTOLOGIST 2022; 236:1824-1837. [PMID: 36089828 PMCID: PMC9825989 DOI: 10.1111/nph.18468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Light regulates the subcellular localization of plant photoreceptors, a key step in light signaling. Ultraviolet-B radiation (UV-B) induces the plant photoreceptor UV RESISTANCE LOCUS 8 (UVR8) nuclear accumulation, where it regulates photomorphogenesis. However, the molecular mechanism for the UV-B-regulated UVR8 nuclear localization dynamics is unknown. With fluorescence recovery after photobleaching (FRAP), cell fractionation followed by immunoblotting and co-immunoprecipitation (Co-IP) assays we tested the function of UVR8-interacting proteins including CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 in the regulation of UVR8 nuclear dynamics in Arabidopsis thaliana. We showed that UV-B-induced rapid UVR8 nuclear translocation is independent of COP1, which previously was shown to be required for UV-B-induced UVR8 nuclear accumulation. Instead, we provide evidence that the UV-B-induced UVR8 homodimer-to-monomer photo-switch and the concurrent size reduction of UVR8 enables its monomer nuclear translocation, most likely via free diffusion. Nuclear COP1 interacts with UV-B-activated UVR8 monomer, thereby promoting UVR8 nuclear retention. Conversely, RUP1and RUP2, whose expressions are induced by UV-B, inhibit UVR8 nuclear retention via attenuating the UVR8-COP1 interaction, allowing UVR8 to exit the nucleus. Collectively, our data suggest that UV-B-induced monomerization of UVR8 promotes its nuclear translocation via free diffusion. In the nucleus, COP1 binding promotes UVR8 monomer nuclear retention, which is counterbalanced by the major negative regulators RUP1 and RUP2.
Collapse
Affiliation(s)
- Fang Fang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Li Lin
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
- Key Laboratory of Urban Agriculture Ministry of AgricultureShanghai Jiao Tong UniversityShanghai200240China
- Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghai200240China
| | - Qianwen Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Mariya Y. Skvortsova
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH‐1211Geneva 4Switzerland
| | - Qinyun Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Jiahao Pi
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Chunli Zhang
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaCH‐1211Geneva 4Switzerland
| | - Ruohe Yin
- School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan Road, Minhang DistrictShanghai200240China
- Key Laboratory of Urban Agriculture Ministry of AgricultureShanghai Jiao Tong UniversityShanghai200240China
- Joint Center for Single Cell BiologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
37
|
Liu M, Sun W, Ma Z, Guo C, Chen J, Wu Q, Wang X, Chen H. Integrated network analyses identify MYB4R1 neofunctionalization in the UV-B adaptation of Tartary buckwheat. PLANT COMMUNICATIONS 2022; 3:100414. [PMID: 35923114 PMCID: PMC9700134 DOI: 10.1016/j.xplc.2022.100414] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A hallmark of adaptive evolution is innovation in gene function, which is associated with the development of distinct roles for genes during plant evolution; however, assessing functional innovation over long periods of time is not trivial. Tartary buckwheat (Fagopyrum tataricum) originated in the Himalayan region and has been exposed to intense UV-B radiation for a long time, making it an ideal species for studying novel UV-B response mechanisms in plants. Here, we developed a workflow to obtain a co-functional network of UV-B responses using data from more than 10,000 samples in more than 80 projects with multi-species and multi-omics data. Dissecting the entire network revealed that flavonoid biosynthesis was most significantly related to the UV-B response. Importantly, we found that the regulatory factor MYB4R1, which resides at the core of the network, has undergone neofunctionalization. In vitro and in vivo experiments demonstrated that MYB4R1 regulates flavonoid and anthocyanin accumulation in response to UV-B in buckwheat by binding to L-box motifs in the FtCHS, FtFLS, and FtUFGT promoters. We used deep learning to develop a visual discrimination model of buckwheat flavonoid content based on natural populations exposed to global UV-B radiation. Our study highlights the critical role of gene neofunctionalization in UV-B adaptation.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaocheng Guo
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiyin Wang
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China.
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
38
|
Carranco R, Prieto‐Dapena P, Almoguera C, Jordano J. A seed-specific transcription factor, HSFA9, anticipates UV-B light responses by mimicking the activation of the UV-B receptor in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1439-1452. [PMID: 35811570 PMCID: PMC9540186 DOI: 10.1111/tpj.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Sunflower heat shock factor A9 (HSFA9, hereafter A9) is a transcription factor involved in seed desiccation tolerance and longevity. A9 also links the regulation of seed maturation with that of seedling photomorphogenesis through visible light receptors. Analyses in transgenic Nicotiana tabacum (tobacco) indicated that A9 also affects responses mediated by NtUVR8, the receptor of ultraviolet light B (UV-B). We compared the effects of A9 and UV-B illumination on the nuclear localization of GFP-NtUVR8 in Nicotiana benthamiana leaves. We also used co-immunoprecipitation and limited proteolysis for analyzing the interaction between A9 and NtUVR8. We found that A9, by binding to NtUVR8, induced structural changes that resulted in enhancing the nuclear localization of NtUVR8 by hindering its nuclear export. The localization of UVR8 is crucial for receptor activation and function in Arabidopsis, where UV-B-activated nuclear UVR8 binds the E3 ubiquitin ligase COP1, leading to enhanced UV-B responses and photoprotection. A9 similarly activated NtUVR8 by enhancing COP1 binding without UV-B light. Seedlings and dark-germinated seeds that overexpress A9 showed primed UV-B light stress protection. Our results unveil a UV-B-independent activation mechanism and a role for UVR8 in plant seeds that might contribute to early stress protection, facilitating seedling establishment.
Collapse
Affiliation(s)
- Raúl Carranco
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| | - Pilar Prieto‐Dapena
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| | - Concepción Almoguera
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| | - Juan Jordano
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS‐CSIC)SevillaSpain
| |
Collapse
|
39
|
Job N, Lingwan M, Masakapalli SK, Datta S. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. PLANT PHYSIOLOGY 2022; 189:2467-2480. [PMID: 35511140 PMCID: PMC9342961 DOI: 10.1093/plphys/kiac195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
UV-B radiation acts as a developmental cue and a stress factor for plants, depending on dose. Activation of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) in a UV RESISTANCE LOCUS 8 (UVR8)-dependent manner leads to the induction of a broad set of genes under UV-B. However, the underlying molecular mechanisms regulating this process are less understood. Here, we use molecular, biochemical, genetic, and metabolomic tools to identify the B-BOX transcription factor B-BOX PROTEIN 11 (BBX11) as a component of the molecular response to UV-B in Arabidopsis (Arabidopsis thaliana). BBX11 expression is induced by UV-B in a dose-dependent manner. Under low UV-B, BBX11 regulates hypocotyl growth suppression, whereas it protects plants exposed to high UV-B radiation by promoting the accumulation of photo-protective phenolics and antioxidants, and inducing DNA repair genes. Our genetic studies indicate that BBX11 regulates hypocotyl elongation under UV-B partially dependent on HY5. Overexpression of BBX11 can partially rescue the high UV-B sensitivity of hy5, suggesting that HY5-mediated UV-B stress tolerance is partially dependent on BBX11. HY5 regulates the UV-B-mediated induction of BBX11 by directly binding to its promoter. BBX11 reciprocally regulates the mRNA and protein levels of HY5. We report here the role of a BBX11-HY5 feedback loop in regulating photomorphogenesis and stress tolerance under UV-B.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
40
|
SaRCC1, a Regulator of Chromosome Condensation 1 (RCC1) Family Protein Gene from Spartina alterniflora, Negatively Regulates Salinity Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23158172. [PMID: 35897748 PMCID: PMC9332369 DOI: 10.3390/ijms23158172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
A regulator of chromosome condensation 1 (RCC1) family protein has been functionally characterized to be involved in various cellular processes. In this study, one RCC1 gene named SaRCC1 was cloned from the full-length cDNA library of Spartinaalterniflora. The open reading frame (ORF) of SaRCC1 was 1440 bp, and it encoded 479 amino acids with a calculated molecular mass of 51.65 kDa. Multiple amino acid sequence alignments showed that SaRCC1 had high identity with other plant RCC1s, and the phylogenetic analysis indicated that SaRCC1 had a closer affinity to Zea mays RCC1 family protein (ZmRCC1). SaRCC1 gene was induced under salt stress conditions, and its encoded protein was located in peroxisome. In order to further investigate the function of SaRCC1, transgenic Arabidopsis plants ectopically both sense-overexpressing and antisense-overexpressing SaRCC1 were generated. SaRCC1-overexpressing lines exhibited an increased salt and ABA hypersensitivity and reduced resistance to salinity stress. On the other hand, the transcripts of some stress-responsive genes in the SaRCC1 transgenic plants were affected in response to salinity stress. Our results provide evidence for the involvement of SaRCC1, negatively regulating salt stress responses by affecting stress-related gene expression in Arabidopsis.
Collapse
|
41
|
Liao X, Jenkins GI. Cysteines have a role in conformation of the UVR8 photoreceptor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:583-594. [PMID: 35608127 PMCID: PMC9546227 DOI: 10.1111/tpj.15841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor mediates plant responses to Ultraviolet-B (UV-B) wavelengths. The UVR8 dimer dissociates into monomers following UV-B photoreception, a process accompanied by conformational changes that facilitate interaction of UVR8 with proteins that initiate responses. However, the importance of particular amino acids in maintaining UVR8 conformation and modulating protein interactions is poorly understood. Here we examine the roles of cysteine amino acids C231 and C335 in UVR8 structure and function. UVR8C231S,C335S mutant protein forms dimers and monomerizes similarly to wild-type UVR8. UVR8C231S,C335S interacts with CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) in plants to initiate photomorphogenic responses to UV-B, although the interaction is weaker when examined in yeast two-hybrid assays. Similarly, the interaction of UVR8C231S,C335S with REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins is weaker in both plants and yeast compared with wild-type UVR8. Re-dimerization of UVR8 in plants, which is mediated by RUP proteins, occurs with reduced efficiency in UVR8C231S,C335S . Fluorescence resonance energy transfer analysis indicates that UVR8C231S,C335S has an altered conformation in plants, in that the N- and C-termini appear closer together, which may explain the altered protein interactions.
Collapse
Affiliation(s)
- Xinyang Liao
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower BuildingUniversity of GlasgowGlasgowG12 8QQUK
| | - Gareth I. Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower BuildingUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
42
|
Podolec R, Wagnon TB, Leonardelli M, Johansson H, Ulm R. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:422-439. [PMID: 35555928 PMCID: PMC9541035 DOI: 10.1111/tpj.15806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/01/2023]
Abstract
Plants undergo photomorphogenic development in the presence of light. Photomorphogenesis is repressed by the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), which binds to substrates through their valine-proline (VP) motifs. The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor senses UV-B and inhibits COP1 through the cooperative binding of its own VP motif and photosensing core to COP1, thereby preventing COP1 binding to substrates, including the basic leucine zipper (bZIP) transcriptional regulator ELONGATED HYPOCOTYL 5 (HY5). As a key promoter of visible light and UV-B photomorphogenesis, HY5 requires coregulators for its function. The B-box family transcription factors BBX20-BBX22 were recently described as HY5 rate-limiting coactivators under red light, but their role in UVR8 signaling was unknown. Here we describe a hypermorphic bbx21-3D mutant with enhanced photomorphogenesis, carrying a proline-to-leucine mutation at position 314 in the VP motif that impairs the interaction with and regulation by COP1. We show that BBX21 and BBX22 are UVR8-dependently stabilized after UV-B exposure, which is counteracted by a repressor induced by HY5/BBX activity. bbx20 bbx21 bbx22 mutants under UV-B are impaired in hypocotyl growth inhibition, photoprotective pigment accumulation and the expression of several HY5-dependent genes under continuous UV-B, but the immediate induction of marker genes after exposure to UV-B remains surprisingly rather unaffected. We conclude that BBX20-BBX22 contribute to HY5 activity in a subset of UV-B responses, but that additional, presently unknown, coactivators for HY5 are functional in early UVR8 signaling.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| | - Timothée B. Wagnon
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Manuela Leonardelli
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
| | - Henrik Johansson
- Institute of Biology/Applied GeneticsDahlem Centre of Plant Sciences (DCPS), Freie Universität BerlinBerlinGermany
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of SciencesUniversity of GenevaCH‐1211Geneva 4Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3)University of GenevaGenevaSwitzerland
| |
Collapse
|
43
|
Bagging Strategy and Identification of Coloring Mode of ‘Xinqihong’ Pear. Int J Mol Sci 2022; 23:ijms23137310. [PMID: 35806309 PMCID: PMC9266653 DOI: 10.3390/ijms23137310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
‘Xinqihong’ is a recently selected and well-colored red pear (Pyrus bretschneideri Rehd.) cultivar that is popular in the marketplace owing to the bright red color and high quality of the fruit. The red pigmentation is strongly associated with the light signal. However, its responses to bagging treatment and to light exposure after shading are unknown. In this study, the fruit were treated with three types of fruit bags. ’Xinqihong’ fruit colored rapidly in response to light stimulation. A white fruit bag was optimal for bagging of ‘Xinqihong’ fruit. To ensure satisfactory red pigmentation, the fruit required exposure to 30 days of light after bag removal. A transcriptome analysis was conducted to screen light-signal-related genes and identify their possible functions. PbCRY1 activated the promoter of PbHY5.2 and enhanced its expression. PbHY5.2 activated the promoter activity of PbUFGT and induced anthocyanin synthesis, and also showed self-activation characteristics. Both PbCRY2 and PbPHY1 induced anthocyanin accumulation. Thus, blue-light receptors played an important role in anthocyanin synthesis. This study provides a theoretical basis for the bagging cultivation of new varieties of ‘Xinqihong’, and lays a foundation for the study of the mechanisms of red pear fruit coloring in response to light signals.
Collapse
|
44
|
Drought and UV Radiation Stress Tolerance in Rice Is Improved by Overaccumulation of Non-Enzymatic Antioxidant Flavonoids. Antioxidants (Basel) 2022; 11:antiox11050917. [PMID: 35624781 PMCID: PMC9137601 DOI: 10.3390/antiox11050917] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Drought and ultraviolet radiation (UV radiation) are the coexisting environmental factors that negatively affect plant growth and development via oxidative damage. Flavonoids are reactive, scavenging oxygen species (ROS) and UV radiation-absorbing compounds generated under stress conditions. We investigated the biosynthesis of kaempferol and quercetin in wild and flavanone 3-hydroxylase (F3H) overexpresser rice plants when drought and UV radiation stress were imposed individually and together. Phenotypic variation indicated that both kinds of stress highly reduced rice plant growth parameters in wild plants as compared to transgenic plants. When combined, the stressors adversely affected rice plant growth parameters more than when they were imposed individually. Overaccumulation of kaempferol and quercetin in transgenic plants demonstrated that both flavonoids were crucial for enhanced tolerance to such stresses. Oxidative activity assays showed that kaempferol and quercetin overaccumulation with strong non-enzymatic antioxidant activity mitigated the accumulation of ROS under drought and UV radiation stress. Lower contents of salicylic acid (SA) in transgenic plants indicated that flavonoid accumulation reduced stress, which led to the accumulation of low levels of SA. Transcriptional regulation of the dehydrin (DHN) and ultraviolet-B resistance 8 (UVR8) genes showed significant increases in transgenic plants compared to wild plants under stress. Taken together, these results confirm the usefulness of kaempferol and quercetin in enhancing tolerance to both drought and UV radiation stress.
Collapse
|
45
|
Yang G, Zhang C, Dong H, Liu X, Guo H, Tong B, Fang F, Zhao Y, Yu Y, Liu Y, Lin L, Yin R. Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21-SlHY5 transcription factor module in UV-B signaling. THE PLANT CELL 2022; 34:2038-2055. [PMID: 35188198 PMCID: PMC9048894 DOI: 10.1093/plcell/koac064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
In tomato (Solanum lycopersicum) and other plants, the photoreceptor UV-RESISTANCE LOCUS 8 regulates plant UV-B photomorphogenesis by modulating the transcription of many genes, the majority of which depends on the transcription factor ELONGATED HYPOCOTYL 5 (HY5). HY5 transcription is induced and then rapidly attenuated by UV-B. However, neither the transcription factors that activate HY5 transcription nor the mechanism for its attenuation during UV-B signaling is known. Here, we report that the tomato B-BOX (BBX) transcription factors SlBBX20 and SlBBX21 interact with SlHY5 and bind to the SlHY5 promoter to activate its transcription. UV-B-induced SlHY5 expression and SlHY5-controlled UV-B responses are normal in slbbx20 and slbbx21 single mutants, but strongly compromised in the slbbx20 slbbx21 double mutant. Surprisingly, UV-B responses are also compromised in lines overexpressing SlBBX20 or SlBBX21. Both SlHY5 and SlBBX20 bind to G-box1 in the SlHY5 promoter. SlHY5 outcompetes SlBBX20 for binding to the SlHY5 promoter in vitro, and inhibits the association of SlBBX20 with the SlHY5 promoter in vivo. Overexpressing 35S:SlHY5-FLAG in the WT background inhibits UV-B-induced endogenous SlHY5 expression. Together, our results reveal the critical role of the SlBBX20/21-SlHY5 module in activating the expression of SlHY5, the gene product of which inhibits its own gene transcription under UV-B, forming an autoregulatory negative feedback loop that balances SlHY5 transcription in plants.
Collapse
Affiliation(s)
- Guoqian Yang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunli Zhang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaxi Dong
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaorui Liu
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huicong Guo
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boqin Tong
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Fang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyang Zhao
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunji Yu
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Liu
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Lin
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruohe Yin
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
46
|
Zioutopoulou A, Patitaki E, O’Donnell L, Kaiserli E. Low Fluence Ultraviolet-B Promotes Ultraviolet Resistance 8-Modulated Flowering in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:840720. [PMID: 35432431 PMCID: PMC9009151 DOI: 10.3389/fpls.2022.840720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Ultraviolet-B (UV-B) irradiation (280-320 nm) is an integral part of sunlight and a pivotal environmental cue that triggers various plant responses, from photoprotection to photomorphogenesis and metabolic processes. UV-B is perceived by ULTRAVIOLET RESISTANCE 8 (UVR8), which orchestrates UV-B signal transduction and transcriptional control of UV-B-responsive genes. However, there is limited information on the molecular mechanism underlying the UV-B- and UVR8-dependent regulation of flowering time in plants. Here, we investigate the role of UV-B and UVR8 in photoperiodic flowering in Arabidopsis thaliana. Our findings suggest that UV-B controls photoperiodic flowering in an ecotype-specific manner and that UVR8 acts as a negative regulator of UV-B-induced flowering. Overall, our research shows that UV-B modulates flowering initiation through the action of UVR8 at the transcriptional level.
Collapse
|
47
|
Sun Y, Wang B, Ren J, Zhou Y, Han Y, Niu S, Zhang Y, Shi Y, Zhou J, Yang C, Ma X, Liu X, Luo Y, Jin C, Luo J. OsbZIP18, a Positive Regulator of Serotonin Biosynthesis, Negatively Controls the UV-B Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23063215. [PMID: 35328636 PMCID: PMC8949417 DOI: 10.3390/ijms23063215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 01/30/2023] Open
Abstract
Serotonin (5-hydroxytryptamine) plays an important role in many developmental processes and biotic/abiotic stress responses in plants. Although serotonin biosynthetic pathways in plants have been uncovered, knowledge of the mechanisms of serotonin accumulation is still limited, and no regulators have been identified to date. Here, we identified the basic leucine zipper transcription factor OsbZIP18 as a positive regulator of serotonin biosynthesis in rice. Overexpression of OsbZIP18 strongly induced the levels of serotonin and its early precursors (tryptophan and tryptamine), resulting in stunted growth and dark-brown phenotypes. A function analysis showed that OsbZIP18 activated serotonin biosynthesis genes (including tryptophan decarboxylase 1 (OsTDC1), tryptophan decarboxylase 3 (OsTDC3), and tryptamine 5-hydroxylase (OsT5H)) by directly binding to the ACE-containing or G-box cis-elements in their promoters. Furthermore, we demonstrated that OsbZIP18 is induced by UV-B stress, and experiments using UV-B radiation showed that transgenic plants overexpressing OsbZIP18 exhibited UV-B stress-sensitive phenotypes. Besides, exogenous serotonin significantly exacerbates UV-B stress of OsbZIP18_OE plants, suggesting that the excessive accumulation of serotonin may be responsible for the sensitivity of OsbZIP18_OE plants to UV-B stress. Overall, we identified a positive regulator of serotonin biosynthesis and demonstrated that UV-B-stress induced serotonin accumulation, partly in an OsbZIP18-dependent manner.
Collapse
Affiliation(s)
- Yangyang Sun
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Bi Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Junxia Ren
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yutong Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yu Han
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shuying Niu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuanyuan Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuheng Shi
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China;
| | - Xuemin Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden;
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuehua Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Cheng Jin
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (C.J.); (J.L.)
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; (Y.S.); (B.W.); (J.R.); (Y.Z.); (Y.H.); (S.N.); (Y.Z.); (Y.S.); (J.Z.); (X.L.); (Y.L.)
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Correspondence: (C.J.); (J.L.)
| |
Collapse
|
48
|
Li X, Liang T, Liu H. How plants coordinate their development in response to light and temperature signals. THE PLANT CELL 2022; 34:955-966. [PMID: 34904672 PMCID: PMC8894937 DOI: 10.1093/plcell/koab302] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 05/12/2023]
Abstract
Light and temperature change constantly under natural conditions and profoundly affect plant growth and development. Light and warmer temperatures promote flowering, higher light intensity inhibits hypocotyl and petiole elongation, and warmer temperatures promote hypocotyl and petiole elongation. Moreover, exogenous light and temperature signals must be integrated with endogenous signals to fine-tune phytohormone metabolism and plant morphology. Plants perceive and respond to light and ambient temperature using common sets of factors, such as photoreceptors and multiple light signal transduction components. These highly structured signaling networks are critical for plant survival and adaptation. This review discusses how plants respond to variable light and temperature conditions using common elements to coordinate their development. Future directions for research on light and temperature signaling pathways are also discussed.
Collapse
Affiliation(s)
- Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tong Liang
- Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Author for correspondence:
| |
Collapse
|
49
|
Supplemental UV-B Exposure Influences the Biomass and the Content of Bioactive Compounds in Linum usitatissimum L. Sprouts and Microgreens. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interest in the pre-harvest ultraviolet-B (UV-B) exposure of crops in indoor cultivation has grown consistently, though very little is known about its influence on the nutraceutical quality of microgreens. Flaxseeds constitute a valuable oilseed species, mostly appreciated for their nutritional properties and the presence of health-promoting compounds. Therefore, although scarcely studied, flaxseed sprouts and microgreens might constitute a high-quality food product to be included in a healthy diet. This study aims to unravel the effects of pre-harvest ultraviolet-B irradiation on the nutritional and nutraceutical quality of flaxseed sprouts and microgreens grown under artificial conditions. The UV-B irradiation decreased the biomass and stem length of microgreens. However, the content of total phenolics and flavonoids and the antioxidant capacity were strongly enhanced by the UV-B treatment in both sprouts and microgreens. Among photosynthetic pigments, chlorophyll a, violaxanthin, antheraxanthin, and lutein in sprouts were reduced by the treatment, while chlorophyll b increased in microgreens. In conclusion, our results showed that growing flaxseed sprouts and microgreens in controlled conditions with supplemental UV-B exposure might increase their nutritional and nutraceutical quality, as well as their antioxidant capacity, making them high-quality functional foods.
Collapse
|
50
|
Martínez-Silvestre KE, Santiz-Gómez JA, Luján-Hidalgo MC, Ruiz-Lau N, Sánchez-Roque Y, Gutiérrez-Miceli FA. Effect of UV-B Radiation on Flavonoids and Phenols Accumulation in Tempisque ( Sideroxylon capiri Pittier) Callus. PLANTS (BASEL, SWITZERLAND) 2022; 11:473. [PMID: 35214805 PMCID: PMC8875756 DOI: 10.3390/plants11040473] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Tempisque (Sideroxylon capiri Pittier) is classified as a threatened species and has been reported with a high content of phenols and flavonoids in the leaves. The use of abiotic elicitors such as radiation has been reported due to the changes it produces in the metabolism of plants by activating their defense mechanisms and increasing the biosynthesis of bioactive compounds with antioxidant capacity such as phenols and flavonoids. Therefore, the aim of this work was to evaluate the effect of UV-B radiation on growth parameters and the synthesis of bioactive compounds in in vitro culture of tempisque callus. For the callus induction, we used thidiazuron (TDZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) at 0, 0.5 and 1 mg/L. Calluses were exposed to UV-B radiation (0, 1, 2, 3 and 4 h/day) for two and four weeks. The highest callus formation index was obtained with TDZ and 2,4-D at 1 mg/mL. The greatest increase in the concentration of phenols and flavonoids was detected in the fourth week with 4 h of exposure per day. The highest concentrations of quercetin (230 µg/g dry weight), kaempferol (235 µg/g dry weight) and gallic acid (240 µg/g dry weight) were found in callus obtained from leaves explants.
Collapse
Affiliation(s)
- Karina E. Martínez-Silvestre
- Tecnológico Nacional de México, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (K.E.M.-S.); (J.A.S.-G.); (M.C.L.-H.)
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (K.E.M.-S.); (J.A.S.-G.); (M.C.L.-H.)
| | - María Celina Luján-Hidalgo
- Tecnológico Nacional de México, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (K.E.M.-S.); (J.A.S.-G.); (M.C.L.-H.)
| | - Nancy Ruiz-Lau
- Cátedra CONACYT—Tecnológico Nacional de México-Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Tuxtla Gutiérrez 29050, Chiapas, Mexico;
| | - Yazmin Sánchez-Roque
- Dirección de Ingeniería Agroindustrial, Universidad Politécnica de Chiapas, Carretera Tuxtla Gutiérrez-Portillo Zaragoza Km 21+500, Colonia Las Brisas, Suchiapa 29150, Chiapas, Mexico;
| | - Federico A. Gutiérrez-Miceli
- Tecnológico Nacional de México, División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km 1080, Tuxtla Gutiérrez 29050, Chiapas, Mexico; (K.E.M.-S.); (J.A.S.-G.); (M.C.L.-H.)
| |
Collapse
|