1
|
Camenzind T, Aguilar-Trigueros CA, Heuck MK, Maerowitz-McMahan S, Rillig MC, Cornwell WK, Powell JR. Progressing beyond colonization strategies to understand arbuscular mycorrhizal fungal life history. THE NEW PHYTOLOGIST 2024; 244:752-759. [PMID: 39229862 DOI: 10.1111/nph.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Knowledge of differential life-history strategies in arbuscular mycorrhizal (AM) fungi is relevant for understanding the ecology of this group and its potential role in sustainable agriculture and carbon sequestration. At present, AM fungal life-history theories often focus on differential investment into intra- vs extraradical structures among AM fungal taxa, and its implications for plant benefits. With this Viewpoint we aim to expand these theories by integrating a mycocentric economics- and resource-based life-history framework. As in plants, AM fungal carbon and nutrient demands are stoichiometrically coupled, though uptake of these elements is spatially decoupled. Consequently, investment in morphological structures for carbon vs nutrient uptake is not in competition. We argue that understanding the ecology and evolution of AM fungal life-history trade-offs requires increased focus on variation among structures foraging for the same element, that is within intra- or extraradical structures (in our view a 'horizontal' axis), not just between them ('vertical' axis). Here, we elaborate on this argument and propose a range of plausible life-history trade-offs that could lead to the evolution of strategies in AM fungi, providing testable hypotheses and creating opportunities to explain AM fungal co-existence, and the context-dependent effects of AM fungi on plant growth and soil carbon dynamics.
Collapse
Affiliation(s)
- Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Carlos A Aguilar-Trigueros
- Department of Biological and Environmental Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Meike K Heuck
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Solomon Maerowitz-McMahan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Altensteinstr. 6, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany
| | - Will K Cornwell
- Ecology and Evolution Research Centre, School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
2
|
Andrino A, Guggenberger G, Kernchen S, Mikutta R, Sauheitl L, Boy J. Production of Organic Acids by Arbuscular Mycorrhizal Fungi and Their Contribution in the Mobilization of Phosphorus Bound to Iron Oxides. FRONTIERS IN PLANT SCIENCE 2021; 12:661842. [PMID: 34335645 PMCID: PMC8320662 DOI: 10.3389/fpls.2021.661842] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/15/2021] [Indexed: 05/22/2023]
Abstract
Most plants living in tropical acid soils depend on the arbuscular mycorrhizal (AM) symbiosis for mobilizing low-accessible phosphorus (P), due to its strong bonding by iron (Fe) oxides. The roots release low-molecular-weight organic acids (LMWOAs) as a mechanism to increase soil P availability by ligand exchange or dissolution. However, little is known on the LMWOA production by AM fungi (AMF), since most studies conducted on AM plants do not discriminate on the LMWOA origin. This study aimed to determine whether AMF release significant amounts of LMWOAs to liberate P bound to Fe oxides, which is otherwise unavailable for the plant. Solanum lycopersicum L. plants mycorrhized with Rhizophagus irregularis were placed in a bicompartmental mesocosm, with P sources only accessible by AMF. Fingerprinting of LMWOAs in compartments containing free and goethite-bound orthophosphate (OP or GOE-OP) and phytic acid (PA or GOE-PA) was done. To assess P mobilization via AM symbiosis, P content, photosynthesis, and the degree of mycorrhization were determined in the plant; whereas, AM hyphae abundance was determined using lipid biomarkers. The results showing a higher shoot P content, along with a lower N:P ratio and a higher photosynthetic capacity, may be indicative of a higher photosynthetic P-use efficiency, when AM plants mobilized P from less-accessible sources. The presence of mono-, di-, and tricarboxylic LMWOAs in compartments containing OP or GOE-OP and phytic acid (PA or GOE-PA) points toward the occurrence of reductive dissolution and ligand exchange/dissolution reactions. Furthermore, hyphae grown in goethite loaded with OP and PA exhibited an increased content of unsaturated lipids, pointing to an increased membrane fluidity in order to maintain optimal hyphal functionality and facilitate the incorporation of P. Our results underpin the centrality of AM symbiosis in soil biogeochemical processes, by highlighting the ability of the AMF and accompanying microbiota in releasing significant amounts of LMWOAs to mobilize P bound to Fe oxides.
Collapse
Affiliation(s)
- Alberto Andrino
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| | - Georg Guggenberger
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| | - Sarmite Kernchen
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Robert Mikutta
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Leopold Sauheitl
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
3
|
Etesami H, Jeong BR, Glick BR. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate-Solubilizing Bacteria, and Silicon to P Uptake by Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:699618. [PMID: 34276750 PMCID: PMC8280758 DOI: 10.3389/fpls.2021.699618] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran, Iran
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21+ Program), Graduate School, Gyeongsang National University, Jinju, South Korea
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
4
|
van't Padje A, Werner GDA, Kiers ET. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt 'crashes' and 'booms' of resource availability. THE NEW PHYTOLOGIST 2021; 229:2933-2944. [PMID: 33124078 PMCID: PMC7898638 DOI: 10.1111/nph.17055] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 05/06/2023]
Abstract
Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market. However, it is unknown if or how fungi can control phosphorus value when exposed to abrupt changes in their trade environment. We mimicked an economic 'crash', manually severing part of the fungal network (Rhizophagus irregularis) to restrict resource access, and an economic 'boom' through phosphorus additions. We quantified trading strategies over a 3-wk period using a recently developed technique that allowed us to tag rock phosphate with fluorescing quantum dots of three different colours. We found that the fungus: compensated for resource loss in the 'crash' treatment by transferring phosphorus from alternative pools closer to the host root (Daucus carota); and stored the surplus nutrients in the 'boom' treatment until root demand increased. By mediating from where, when and how much phosphorus was transferred to the host, the fungus successfully controlled resource value.
Collapse
Affiliation(s)
- Anouk van't Padje
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Gijsbert D. A. Werner
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Netherlands Scientific Council for Government PolicyBuitenhof 34The Hague2513 AHthe Netherlands
| | - E. Toby Kiers
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| |
Collapse
|
5
|
Windisch S, Sommermann L, Babin D, Chowdhury SP, Grosch R, Moradtalab N, Walker F, Höglinger B, El-Hasan A, Armbruster W, Nesme J, Sørensen SJ, Schellenberg I, Geistlinger J, Smalla K, Rothballer M, Ludewig U, Neumann G. Impact of Long-Term Organic and Mineral Fertilization on Rhizosphere Metabolites, Root-Microbial Interactions and Plant Health of Lettuce. Front Microbiol 2021; 11:597745. [PMID: 33519736 PMCID: PMC7838544 DOI: 10.3389/fmicb.2020.597745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 11/13/2022] Open
Abstract
Fertilization management can affect plant performance and soil microbiota, involving still poorly understood rhizosphere interactions. We hypothesized that fertilization practice exerts specific effects on rhizodeposition with consequences for recruitment of rhizosphere microbiota and plant performance. To address this hypothesis, we conducted a minirhizotron experiment using lettuce as model plant and field soils with contrasting properties from two long-term field experiments (HUB-LTE: loamy sand, DOK-LTE: silty loam) with organic and mineral fertilization history. Increased relative abundance of plant-beneficial arbuscular mycorrhizal fungi and fungal pathotrophs were characteristic of the rhizospheres in the organically managed soils (HU-org; BIODYN2). Accordingly, defense-related genes were systemically expressed in shoot tissues of the respective plants. As a site-specific effect, high relative occurrence of the fungal lettuce pathogen Olpidium sp. (76-90%) was recorded in the rhizosphere, both under long-term organic and mineral fertilization at the DOK-LTE site, likely supporting Olpidium infection due to a lower water drainage potential compared to the sandy HUB-LTE soils. However, plant growth depressions and Olpidium infection were exclusively recorded in the BIODYN2 soil with organic fertilization history. This was associated with a drastic (87-97%) reduction in rhizosphere abundance of potentially plant-beneficial microbiota (Pseudomonadaceae, Mortierella elongata) and reduced concentrations of the antifungal root exudate benzoate, known to be increased in presence of Pseudomonas spp. In contrast, high relative abundance of Pseudomonadaceae (Gammaproteobacteria) in the rhizosphere of plants grown in soils with long-term mineral fertilization (61-74%) coincided with high rhizosphere concentrations of chemotactic dicarboxylates (succinate, malate) and a high C (sugar)/N (amino acid) ratio, known to support the growth of Gammaproteobacteria. This was related with generally lower systemic expression of plant defense genes as compared with organic fertilization history. Our results suggest a complex network of belowground interactions among root exudates, site-specific factors and rhizosphere microbiota, modulating the impact of fertilization management with consequences for plant health and performance.
Collapse
Affiliation(s)
- Saskia Windisch
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Loreen Sommermann
- Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Doreen Babin
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | | | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Narges Moradtalab
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Frank Walker
- Central Chemical-Analytical Laboratory, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Birgit Höglinger
- Central Chemical-Analytical Laboratory, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Abbas El-Hasan
- Department of Phytopathology, Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Wolfgang Armbruster
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Joseph Nesme
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ingo Schellenberg
- Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Jörg Geistlinger
- Institute of Bioanalytical Sciences (IBAS), Anhalt University of Applied Sciences, Bernburg, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genet Biol 2021; 147:103517. [PMID: 33434644 DOI: 10.1016/j.fgb.2021.103517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.
Collapse
|
7
|
Pepe A, Giovannetti M, Sbrana C. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. MYCORRHIZA 2020; 30:589-600. [PMID: 32533256 DOI: 10.1007/s00572-020-00972-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with plant roots, facilitating mineral nutrient transfer from soil to hosts through large networks of extraradical hyphae. Limited data are available on the fungal structures (appressoria) connecting soil- to root-based mycelium, in relation to plant nutrition. Two in vivo systems were set up using three AMF, Funneliformis mosseae, Funneliformis coronatus and Rhizoglomus irregulare, grown in symbiosis with Cichorium intybus. The assessment of plant P content, number of appressoria, diameter of their subtending hyphae and length of colonized roots allowed calculation of the total cross-section area of appressorium-subtending hyphae, which differed among the three AMF and was correlated with plant P contents and with extraradical mycelium density. A conservative evaluation of P fluxes from soil- to plant-based hyphae occurring through appressoria gave values ranging from 1.7 to 4.2 × 10-8 mol cm-2 s-1 (moles per total cross-section area of the appressorium subtending hyphae per time elapsed), depending on AMF identity. This work suggests that, beyond intraradical colonization and extraradical mycelium extent, connections between extraradical and intraradical fungal mycelium through appressoria are important for mycorrhizal plant nutrition, as appressorium structural traits and density can be related to P transfer mediated by AMF.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology, Pisa Unit, 56124, Pisa, Italy.
| |
Collapse
|
8
|
The Mycorrhizal Donor Plant (MDP) In Vitro Culture System for the Efficient Colonization of Whole Plants. Methods Mol Biol 2020; 2146:19-31. [PMID: 32415592 DOI: 10.1007/978-1-0716-0603-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mycorrhizal donor plant (MDP) in vitro culture system allows the fast and homogeneous colonization of a wide range of photosynthetically active plants. Here we detailed the setup of the system and its potential applications for basic studies as well as mass production and applied purposes.
Collapse
|
9
|
Sato T, Hachiya S, Inamura N, Ezawa T, Cheng W, Tawaraya K. Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. MYCORRHIZA 2019; 29:599-605. [PMID: 31745622 DOI: 10.1007/s00572-019-00923-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi increase phosphate (P) uptake by plants. Organic phosphate comprises 30-80% of total P in most agricultural soils. Some plants can utilize organic phosphate by secreting acid phosphatase (ACP) from their roots, especially under low P conditions. Although secretion of ACP from extraradical hyphae of AM fungi has been reported, the specific factors that affect the secretion of ACP are unknown. The objective of the present study was to investigate whether secretion of ACP from extraradical hyphae is induced by low P conditions. First, specimens of Allium fistulosum were either inoculated with the AM fungus Rhizophagus clarus strain CK001 or remained uninoculated and were grown in soil with 0.5 g P2O5 kg-1 soil or without P fertilization using two-compartment pots. Soil solution was collected using mullite ceramic tubes 45 days after sowing. The soil solution was analyzed for ACP activity by using p-nitrophenylphosphate. Second, Ri T-DNA transformed roots (i.e., hairy roots) of Linum usitatissimum inoculated with R. clarus were grown on solid minimal media with two P levels applied (3 and 30 μM P) using two-compartment Petri dishes under in vitro conditions. Hyphal exudates, extraradical hyphae, and hairy roots were collected and analyzed for ACP activity. ACP activity in the soil solution of the hyphal compartment in the A. fistulosum inoculation treatment was higher without P fertilization than with P fertilization. AM colonization also was higher without P fertilization than with P fertilization. In the in vitro two-compartment culture, ACP activity of hyphal exudates and extraradical hyphae were higher under the 3-μM treatment than under the 30-μM treatment. These findings suggest that the secretion of ACP from the extraradical hyphae of R. clarus into the hyphosphere is promoted under low P conditions.
Collapse
Affiliation(s)
- Takumi Sato
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Shihomi Hachiya
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Nozomi Inamura
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Weiguo Cheng
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Keitaro Tawaraya
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan.
| |
Collapse
|
10
|
Ferrol N, Azcón-Aguilar C, Pérez-Tienda J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:441-447. [PMID: 30824024 DOI: 10.1016/j.plantsci.2018.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 05/23/2023]
Abstract
Phosphorus (P) is a poorly available macronutrient essential for plant growth and development and consequently for successful crop yield and ecosystem productivity. To cope with P limitations plants have evolved strategies for enhancing P uptake and/or improving P efficiency use. The universal 450-million-yr-old arbuscular mycorrhizal (AM) (fungus-root) symbioses are one of the most successful and widespread strategies to maximize access of plants to available P. AM fungi biotrophically colonize the root cortex of most plant species and develop an extraradical mycelium which overgrows the nutrient depletion zone of the soil surrounding plant roots. This hyphal network is specialized in the acquisition of low mobility nutrients from soil, particularly P. During the last years, molecular biology techniques coupled to novel physiological approaches have provided fascinating contributions to our understanding of the mechanisms of symbiotic P transport. Mycorrhiza-specific plant phosphate transporters, which are required not only for symbiotic P transfer but also for maintenance of the symbiosis, have been identified. The present review provides an overview of the contribution of AM fungi to plant P acquisition and an update of recent findings on the physiological, molecular and regulatory mechanisms of P transport in the AM symbiosis.
Collapse
Affiliation(s)
- Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain.
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
11
|
Bedini A, Mercy L, Schneider C, Franken P, Lucic-Mercy E. Unraveling the Initial Plant Hormone Signaling, Metabolic Mechanisms and Plant Defense Triggering the Endomycorrhizal Symbiosis Behavior. FRONTIERS IN PLANT SCIENCE 2018; 9:1800. [PMID: 30619390 PMCID: PMC6304697 DOI: 10.3389/fpls.2018.01800] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi establish probably one of the oldest mutualistic relationships with the roots of most plants on earth. The wide distribution of these fungi in almost all soil ecotypes and the broad range of host plant species demonstrate their strong plasticity to cope with various environmental conditions. AM fungi elaborate fine-tuned molecular interactions with plants that determine their spread within root cortical tissues. Interactions with endomycorrhizal fungi can bring various benefits to plants, such as improved nutritional status, higher photosynthesis, protection against biotic and abiotic stresses based on regulation of many physiological processes which participate in promoting plant performances. In turn, host plants provide a specific habitat as physical support and a favorable metabolic frame, allowing uptake and assimilation of compounds required for the life cycle completion of these obligate biotrophic fungi. The search for formal and direct evidences of fungal energetic needs raised strong motivated projects since decades, but the impossibility to produce AM fungi under axenic conditions remains a deep enigma and still feeds numerous debates. Here, we review and discuss the initial favorable and non-favorable metabolic plant context that may fate the mycorrhizal behavior, with a focus on hormone interplays and their links with mitochondrial respiration, carbon partitioning and plant defense system, structured according to the action of phosphorus as a main limiting factor for mycorrhizal symbiosis. Then, we provide with models and discuss their significances to propose metabolic targets that could allow to develop innovations for the production and application of AM fungal inocula.
Collapse
Affiliation(s)
| | | | | | - Philipp Franken
- Department of Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Leibniz-Institut für Gemüse- und Zierpflanzenbau Großbeeren/Erfurt, Großbeeren, Germany
| | | |
Collapse
|
12
|
Lanfranco L, Fiorilli V, Gutjahr C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2018; 220:1031-1046. [PMID: 29806959 DOI: 10.1111/nph.15230] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1031 I. Introduction 1031 II. Interkingdom communication enabling symbiosis 1032 III. Nutritional and regulatory roles for key metabolites in the AM symbiosis 1035 IV. The plant-fungus genotype combination determines the outcome of the symbiosis 1039 V. Perspectives 1039 Acknowledgements 1041 References 1041 SUMMARY: The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on an efficient and multifactorial communication system for partner recognition, and on a fine-tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional integration. Besides strigolactones, N-acetylglucosamine-derivatives released by the plant were recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi (AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF genomes and transcriptomes contain a battery of putative effector genes that may have conserved and AMF- or host plant-specific functions. Nutrient exchange is the key feature of AM symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and first insights into the regulatory mechanisms of root colonization in accordance with nutrient transfer and status were obtained. The recent discovery of the dependency of AMF on fatty acid transfer from the host has offered a convincing explanation for their obligate biotrophism. Novel studies highlighted the importance of plant and fungal genotypes for the outcome of the symbiosis. These findings open new perspectives for fundamental research and application of AMF in agriculture.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Torino, Italy
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354, Freising, Germany
| |
Collapse
|
13
|
Calonne-Salmon M, Plouznikoff K, Declerck S. The arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 increases the phosphorus uptake and biomass of Medicago truncatula, a benzo[a]pyrene-tolerant plant species. MYCORRHIZA 2018; 28:761-771. [PMID: 30121903 DOI: 10.1007/s00572-018-0861-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/08/2018] [Indexed: 05/14/2023]
Abstract
The accumulation of phosphorus (P) in plants increases their biomass and resistance/tolerance to organic pollutants. Both characteristics are mandatory for the utilization of plants in phytoremediation. Arbuscular mycorrhizal (AM) fungi improve plant P nutrition, and thus growth. However, only a few studies have focused on the dynamics of inorganic P (Pi) uptake in AM fungal-colonized plants in the presence of organic pollutants. Indeed, most of the results so far were obtained after harvesting the plants, thus by evaluating P concentration and content at a single time point. Here, we investigated the effects of the AM fungus Rhizophagus irregularis MUCL 41833 on the short-term Pi uptake dynamics of Medicago truncatula plants grown in the presence of benzo[a]pyrene (B[a]P), a polyaromatic hydrocarbon (PAH) frequently found in polluted soils. The study was conducted using a non-destructive circulatory semi-hydroponic cultivation system to investigate the short-term Pi depletion from a nutrient solution and as a corollary, the Pi uptake by the AM fungal-colonized and non-colonized plants. The growth, P concentration, and content of plants were also evaluated at harvest. The presence of B[a]P neither impacted the development of the AM fungus in the roots nor the plant growth and Pi uptake, suggesting a marked tolerance of both organisms to B[a]P pollution. A generally higher Pi uptake coupled with a higher accumulation of P in shoots and roots was noticed in AM fungal-colonized plants as compared to the non-colonized controls, irrespective of the presence or absence of B[a]P. Therefore, fungal-colonized plants showed the best growth. Furthermore, the beneficial effect provided by the presence of the AM fungus in roots was similar in presence or absence of B[a]P, thus opening the door for potential utilization in phytomanagement of PAH-polluted soils.
Collapse
Affiliation(s)
- Maryline Calonne-Salmon
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud, 2 box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| | - Katia Plouznikoff
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud, 2 box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud, 2 box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Campos P, Borie F, Cornejo P, López-Ráez JA, López-García Á, Seguel A. Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping? FRONTIERS IN PLANT SCIENCE 2018; 9:752. [PMID: 29922321 PMCID: PMC5996197 DOI: 10.3389/fpls.2018.00752] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are major crops cultivated around the world, thus playing a crucial role on human diet. Remarkably, the growing human population requires a significant increase in agricultural production in order to feed everybody. In this context, phosphorus (P) management is a key factor as it is component of organic molecules such as nucleic acids, ATP and phospholipids, and it is the most abundant macronutrient in biomass after nitrogen (N), although being one of the scarcest elements in the lithosphere. In general, P fertilization has low efficiency, as only a fraction of the applied P is acquired by roots, leaving a substantial amount to be accumulated in soil as not readily available P. Breeding for P-efficient cultivars is a relatively low cost alternative and can be done through two mechanisms: i) improving P use efficiency (PUE), and/or ii) P acquisition efficiency (PAE). PUE is related to the internal allocation/mobilization of P, and is usually represented by the amount of P accumulated per biomass. PAE relies on roots ability to acquire P from the soil, and is commonly expressed as the relative difference of P acquired under low and high P availability conditions. In this review, plant adaptations related to improved PAE are described, with emphasis on arbuscular mycorrhizal (AM) symbiosis, which is generally accepted to enhance plant P acquisition. A state of the art (1980-2018) of AM growth responses and P uptake in wheat and barley is made to discuss about the commonly accepted growth promoting effect and P increased uptake by AM fungi and the contrasting evidence about the generally accepted lack of positive responses in both plant species. Finally, the mechanisms by which AM symbiosis can affect wheat and barley PAE are discussed, highlighting the importance of considering AM functional diversity on future studies and the necessity to improve PAE definition by considering the carbon trading between all the directly related PAE traits and its return to the host plant.
Collapse
Affiliation(s)
- Pedro Campos
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Juan A. López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro López-García
- Section Ecology and Evolution, Biological Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alex Seguel
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
15
|
Birgander J, Rousk J, Olsson PA. Warmer winters increase the rhizosphere carbon flow to mycorrhizal fungi more than to other microorganisms in a temperate grassland. GLOBAL CHANGE BIOLOGY 2017; 23:5372-5382. [PMID: 28675677 DOI: 10.1111/gcb.13803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
A decisive set of steps in the terrestrial carbon (C) cycle is the fixation of atmospheric C by plants and the subsequent C-transfer to rhizosphere microorganisms. With climate change winters are expected to become milder in temperate ecosystems. Although the rate and pathways of rhizosphere C input to soil could be impacted by milder winters, the responses remain unknown. To address this knowledge-gap, a winter-warming experiment was established in a seminatural temperate grassland to follow the C flow from atmosphere, via the plants, to different groups of soil microorganisms. In situ 13 CO2 pulse labelling was used to track C into signature fatty acids of microorganisms. The winter warming did not result in any changes in biomass of any of the groups of microorganisms. However, the C flow from plants to arbuscular mycorrhizal (AM) fungi, increased substantially by winter warming. Saprotrophic fungi also received large amounts of plant-derived C-indicating a higher importance for the turnover of rhizosphere C than biomass estimates would suggest-still, this C flow was unaffected by winter warming. AM fungi was the only microbial group positively affected by winter warming-the group with the closest connection to plants. Winter warming resulted in higher plant productivity earlier in the season, and this aboveground change likely induced plant nutrient limitation in warmed plots, thus stimulating the plant dependence on, and C allocation to, belowground nutrient acquisition. The preferential C allocation to AM fungi was at the expense of C flow to other microbial groups, which were unaffected by warming. Our findings imply that warmer winters may shift rhizosphere C-fluxes to become more AM fungal-dominated. Surprisingly, the stimulated rhizosphere C flow was matched by increased microbial turnover, leading to no accumulation of soil microbial biomass.
Collapse
Affiliation(s)
- Johanna Birgander
- Department of Biology and Biodiversity, Lund University, Lund, Sweden
| | - Johannes Rousk
- Department of Biology and Microbial Ecology, Lund University, Lund, Sweden
| | - Pål Axel Olsson
- Department of Biology and Biodiversity, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. PLANT & CELL PHYSIOLOGY 2017; 58:1003-1017. [PMID: 28387868 DOI: 10.1093/pcp/pcx044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/17/2017] [Indexed: 05/21/2023]
Abstract
Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Annegret Kohler
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Annette Niehl
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Claire Veneault-Fourrey
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
17
|
Bago B, Cano C, Azcón-Aguilar C, Samson J, Coughlan AP, Piché Y. Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Bert Bago
- Centro de Investigaciones sobre Desertificación (CSIC/ UV/GV), Camí de la Marjal s/n, 46470 Albal (Valencia), Spain
| | | | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), calle Profesor Albareda 1, 18008 Granada, Spain
| | | | | | - Yves Piché
- Centre de Recherche en Biologie Forestière (CRBF), Pavillon Charles-Eugène-Marchand, Université Laval, Québec, G1K 7P4 Canada
| |
Collapse
|
18
|
Carrino-Kyker SR, Kluber LA, Petersen SM, Coyle KP, Hewins CR, DeForest JL, Smemo KA, Burke DJ. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests. FEMS Microbiol Ecol 2016; 92:fiw024. [DOI: 10.1093/femsec/fiw024] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/02/2016] [Indexed: 01/10/2023] Open
|
19
|
Corrêa A, Cruz C, Ferrol N. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. MYCORRHIZA 2015; 25:499-515. [PMID: 25681010 DOI: 10.1007/s00572-015-0627-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/15/2015] [Indexed: 05/23/2023]
Abstract
Many studies have established that arbuscular mycorrhizal fungi transfer N to the host plant. However, the role and importance of arbuscular mycorrhiza (AM) in plant N nutrition is still uncertain, as are the C/N interactions within the symbiosis. Published reports provide differing, and often contradictory, results that are difficult to combine in a coherent framework. This review explores questions such as: What makes the difference between a positive and a negative effect of AM on plant N nutrition? Is the mycorrhizal N response (MNR) correlated to the mycorrhizal growth response (MGR), and how or under which conditions? Is the MNR effect on plant growth C mediated? Is plant C investment on fungal growth related to N needs or N benefit? How is the N for C trade between symbionts regulated? The patternless nature of current knowledge is made evident, and possible reasons for this are discussed.
Collapse
Affiliation(s)
- A Corrêa
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - C Cruz
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - N Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
20
|
Engelmoer DJP, Kiers ET. Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network. THE NEW PHYTOLOGIST 2015; 205:1485-1491. [PMID: 25297948 DOI: 10.1111/nph.13086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) can form complex networks in the soil that connect different host plants. Previous studies have focused on the effects of these networks on individual hosts and host communities. However, very little is known about how different host species affect the success of the fungal network itself. Given the potentially strong selection pressure against hosts that invest in a fungal network which benefits their competitors, we predict that the presence of multiple host species negatively affects the growth of the extraradical network. We designed an experiment using an in vitro culture approach to investigate the effect of different hosts (carrot, chichory and medicago) on the formation of a common mycelial network. In vitro root cultures, each inoculated with their own fungal network, were grown in a double split plate design with two host compartments and a common central compartment where fungal networks could form. We found that the size of fungal networks differs depending on the social environment of the host. When host species were propagated in a mixed species environment, the fungal abundance was significantly reduced compared to monoculture predictions. Our work demonstrates how host-to-host conflict can influence the abundance of the fungal partner.
Collapse
Affiliation(s)
- Daniel J P Engelmoer
- Department of Ecological Sciences, Faculty of Earth and Life sciences, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - E Toby Kiers
- Department of Ecological Sciences, Faculty of Earth and Life sciences, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Mechri B, Attia F, Tekaya M, Cheheb H, Hammami M. Colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Glomus sp. modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1217-1220. [PMID: 25014256 DOI: 10.1016/j.jplph.2014.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
The influence of arbuscular mycorrhizal (AM) fungi colonization on photosynthesis, mineral nutrition, the amount of phospholipids and glycolipids in the leaves of olive (Olea europaea L.) trees was investigated. After six months of growth, the rate of photosynthesis, carboxylation efficiency, transpiration and stomatal conductance in mycorrhizal (M) plants was significantly higher than that of non-mycorrhizal (NM) plants. The inoculation treatment increased the foliar P and Mg but not N. The amount of glycolipids in the leaves of M plants was significantly higher than that of NM plants. However, the amount of phospholipids in the leaves of M plants was not significantly different to that in the leaves of NM plants. Also, we observed a significant increase in the level of α-linolenic acid (C18:3ω3) in glycolipids of M plants. This work supports the view that increased glycolipids level in the leaves of M plants could be involved, at least in part, in the beneficial effects of mycorrhizal colonization on photosynthesis performance of olive trees. To our knowledge, this is the first report on the effect of AM fungi on the amount of glycolipids in the leaves of mycorrhizal plants.
Collapse
Affiliation(s)
- Beligh Mechri
- Laboratoire de Biochimie, USCR Spectrométrie de Masse, LR-NAFS/LR12ES05 Nutrition-aliments fonctionnels et santé vasculaire, Faculté de Médecine, université de Monastir, 5019 Monastir, Tunisia.
| | - Faouzi Attia
- Equipe Recherches Agronomiques, Agronutrition, 3 avenue de l'Orchidée, Parc Activestre, Carbonne 31390, France
| | - Meriem Tekaya
- Laboratoire de Biochimie, USCR Spectrométrie de Masse, LR-NAFS/LR12ES05 Nutrition-aliments fonctionnels et santé vasculaire, Faculté de Médecine, université de Monastir, 5019 Monastir, Tunisia
| | - Hechmi Cheheb
- Institut de l'Olivier, Unité Spécialisée de Sousse, Rue Ibn Khaldoun, B.P.: 14, 4061 Sousse, Tunisia
| | - Mohamed Hammami
- Laboratoire de Biochimie, USCR Spectrométrie de Masse, LR-NAFS/LR12ES05 Nutrition-aliments fonctionnels et santé vasculaire, Faculté de Médecine, université de Monastir, 5019 Monastir, Tunisia
| |
Collapse
|
22
|
Olsson O, Olsson PA, Hammer EC. Phosphorus and carbon availability regulate structural composition and complexity of AM fungal mycelium. MYCORRHIZA 2014; 24:443-451. [PMID: 24435931 DOI: 10.1007/s00572-014-0557-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
The regulation of the structural composition and complexity of the mycelium of arbuscular mycorrhizal (AM) fungi is not well understood due to their obligate biotrophic nature. The aim of this study was to investigate the structure of extraradical mycelium at high and low availability of carbon (C) to the roots and phosphorus (P) to the fungus. We used monoxenic cultures of the AM fungus Rhizophagus irregularis (formerly Glomus intraradices) with transformed carrot roots as the host in a cultivation system including a root-free compartment into which the extraradical mycelium could grow. We found that high C availability increased hyphal length and spore production and anastomosis formation within individual mycelia. High P availability increased the formation of branched absorbing structures and reduced spore production and the overall length of runner hyphae. The complexity of the mycelium, as indicated by its fractal dimensions, increased with both high C and P availability. The results indicate that low P availability induces a growth pattern that reflects foraging for both P and C. Low C availability to AM roots could still support the explorative development of the mycelium when P availability was low. These findings help us to better understand the development of AM fungi in ecosystems with high P input and/or when plants are subjected to shading, grazing or any management practice that reduces the photosynthetic ability of the plant.
Collapse
Affiliation(s)
- Ola Olsson
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | | | | |
Collapse
|
23
|
Calonne M, Fontaine J, Tisserant B, Dupré de Boulois H, Grandmougin-Ferjani A, Declerck S, Lounès-Hadj Sahraoui A. Polyaromatic hydrocarbons impair phosphorus transport by the arbuscular mycorrhizal fungus Rhizophagus irregularis. CHEMOSPHERE 2014; 104:97-104. [PMID: 24287265 DOI: 10.1016/j.chemosphere.2013.10.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 05/11/2023]
Abstract
Phosphate uptake by plant roots is mainly mediated by arbuscular mycorrhizal fungi (AMF). However, the impact on phosphorus (P) transport of polycyclic aromatic hydrocarbons (PAH), persistent organic pollutants widely found in altered soils, is not known up today. Here, we monitored the Rhizophagus irregularis fungal growth and the fungal P transport ability from the extraradical mycelium to the host transformed chicory roots in the presence of anthracene and benzo[a]pyrene (B[a]P) and the combination of both PAH, under in vitro conditions. Firstly, our findings showed that PAH have detrimental effect on the fungal growth. The combination of both PAH was more toxic than each of the PAH individually due to synergistic effects. Secondly, PAH affected the P transport by the fungus from the medium to the roots. This was evidenced by either the decrease in (33)P quantity transported in the roots as well as the decrease in acid phosphatase activity in the mycorrhizal roots. Moreover, the fungal alkaline phosphatase activities remained constant in the extraradical mycelium as well as in the roots in the absence and in the presence of PAH. The GintPT and GiALP (encoding a P transporter and an alkaline phosphatase respectively) gene expressions were also found to be similar in the extraradical mycelium treated with PAH or not (control). These findings suggested that the P uptake by R. irregularis was not affected by PAH but probably the transport from the extraradical mycelium to the intraradical mycelium.
Collapse
Affiliation(s)
- Maryline Calonne
- Univ Lille Nord de France, F-59000 Lille, France; Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), F-62228 Calais, France
| | - Joël Fontaine
- Univ Lille Nord de France, F-59000 Lille, France; Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), F-62228 Calais, France
| | - Benoît Tisserant
- Univ Lille Nord de France, F-59000 Lille, France; Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), F-62228 Calais, France
| | - Hervé Dupré de Boulois
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Louvain-la-Neuve, Belgium
| | - Anne Grandmougin-Ferjani
- Univ Lille Nord de France, F-59000 Lille, France; Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), F-62228 Calais, France
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Louvain-la-Neuve, Belgium
| | - Anissa Lounès-Hadj Sahraoui
- Univ Lille Nord de France, F-59000 Lille, France; Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), F-62228 Calais, France.
| |
Collapse
|
24
|
Lalaymia I, Declerck S, Cranenbrouck S. Cryopreservation of in vitro-produced Rhizophagus species has minor effects on their morphology, physiology, and genetic stability. MYCORRHIZA 2013; 23:675-682. [PMID: 23689831 DOI: 10.1007/s00572-013-0506-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/05/2013] [Indexed: 06/02/2023]
Abstract
Cryogenic storage is considered to be the most convenient method to maintain phenotypic and genetic stability of organisms. A cryopreservation technique based on encapsulation-drying of in vitro-produced arbuscular mycorrhizal fungi has been developed at the Glomeromycota In Vitro Collection. In this study, we investigated fungal morphology (i.e., number and size of spores, number of branched absorbing structures (BAS), hyphal length, and number of anastomosis per hyphal length), activity of acid phosphatase and alkaline phosphatase in extraradical hyphae, and variation in amplified fragment length polymorphism (AFLP) profiles of in vitro-produced isolates of five Rhizophagus species maintained by cryopreservation for 6 months at -130 °C and compared to the same isolates preserved at 27 °C. Isolates were stable after 6 months cryopreservation. Comparing isolates, the number of BAS increased significantly in one isolate, and hyphal length decreased significantly in another isolate. No other morphological variable was impacted by the mode of preservation. Phosphatase activities in extraradical hyphae and AFLP profiles were not influenced by cryopreservation. These findings indicate that cryopreservation at -130 °C of encapsulated-dried and in vitro-produced Rhizophagus isolates (i.e., Rhizophagus irregularis, Rhizophagus fasciculatus, Rhizophagus diaphanous, and two undefined isolates) is a suitable alternative for their long-term preservation.
Collapse
Affiliation(s)
- Ismahen Lalaymia
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Croix du Sud 2, bte L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
25
|
Engelmoer DJP, Behm JE, Toby Kiers E. Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance. Mol Ecol 2013; 23:1584-1593. [PMID: 24050702 DOI: 10.1111/mec.12451] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/13/2013] [Accepted: 07/08/2013] [Indexed: 02/02/2023]
Abstract
The root microbiome is composed of an incredibly diverse microbial community that provides services to the plant. A major question in rhizosphere research is how species in root microbiome communities interact with each other and their host. In the nutrient mutualism between host plants and arbuscular mycorrhizal fungi (AMF), competition often leads to certain species dominating host colonization, with the outcome being dependent on environmental conditions. In the past, it has been difficult to quantify the abundance of closely related species and track competitive interactions in different regions of the rhizosphere, specifically within and outside the host. Here, we used an artificial root system (in vitro root organ cultures) to investigate intraradical (within the root) and extraradical (outside the root) competitive interactions between two closely related AMF species, Rhizophagus irregularis and Glomus aggregatum, under different phosphorus availabilities. We found that competitive interactions between AMF species reduced overall fungal abundance. R. irregularis was consistently the most abundant symbiont for both intraradical and extraradical colonization. Competition was the most intense for resources within the host, where both species negatively affected each other's abundance. We found the investment ratio (i.e. extraradical abundance/intraradical abundance) shifted for both species depending on whether competitors were present or not. Phosphorus availability did not change the outcome of these interactions. Our results suggest that studies on competitive interactions should focus on intraradical colonization dynamics and consider how changes in investment ratio are mediated by fungal species interactions.
Collapse
Affiliation(s)
- Daniel J P Engelmoer
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | | | | |
Collapse
|
26
|
Blanke V, Bassin S, Volk M, Fuhrer J. Nitrogen deposition effects on subalpine grassland: The role of nutrient limitations and changes in mycorrhizal abundance. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1016/j.actao.2012.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 2011; 333:880-2. [PMID: 21836016 DOI: 10.1126/science.1208473] [Citation(s) in RCA: 852] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants and their arbuscular mycorrhizal fungal symbionts interact in complex underground networks involving multiple partners. This increases the potential for exploitation and defection by individuals, raising the question of how partners maintain a fair, two-way transfer of resources. We manipulated cooperation in plants and fungal partners to show that plants can detect, discriminate, and reward the best fungal partners with more carbohydrates. In turn, their fungal partners enforce cooperation by increasing nutrient transfer only to those roots providing more carbohydrates. On the basis of these observations we conclude that, unlike many other mutualisms, the symbiont cannot be "enslaved." Rather, the mutualism is evolutionarily stable because control is bidirectional, and partners offering the best rate of exchange are rewarded.
Collapse
Affiliation(s)
- E Toby Kiers
- Institute of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Debiane D, Calonne M, Fontaine J, Laruelle F, Grandmougin-Ferjani A, Lounes-Hadj Sahraoui A. Lipid content disturbance in the arbuscular mycorrhizal, Glomus irregulare grown in monoxenic conditions under PAHs pollution. Fungal Biol 2011; 115:782-92. [DOI: 10.1016/j.funbio.2011.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/13/2011] [Accepted: 06/07/2011] [Indexed: 11/27/2022]
|
29
|
Olsson PA, Hammer EC, Pallon J, van Aarle IM, Wallander H. Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol 2011; 115:643-8. [DOI: 10.1016/j.funbio.2011.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/21/2011] [Accepted: 03/26/2011] [Indexed: 11/29/2022]
|
30
|
De Jaeger N, de la Providencia IE, de Boulois HD, Declerck S. Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 2011; 77:558-67. [PMID: 21609342 DOI: 10.1111/j.1574-6941.2011.01135.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Trichoderma sp. is a biocontrol agent active against plant pathogens via mechanisms such as mycoparasitism. Recently, it was demonstrated that Trichoderma harzianum was able to parasitize the mycelium of an arbuscular mycorrhizal (AM) fungus, thus affecting its viability. Here, we question whether this mycoparasitism may reduce the capacity of Glomus sp. to transport phosphorus ((33)P) to its host plant in an in vitro culture system. (33)P was measured in the plant and in the fungal mycelium in the presence/absence of T. harzianum. The viability and metabolic activity of the extraradical mycelium was measured via succinate dehydrogenase and alkaline phosphatase staining. Our study demonstrated an increased uptake of (33)P by the AM fungus in the presence of T. harzianum, possibly related to a stress reaction caused by mycoparasitism. In addition, the disruption of AM extraradical hyphae in the presence of T. harzianum affected the (33)P translocation within the AM fungal mycelium and consequently the transfer of (33)P to the host plant. The effects of T. harzianum on Glomus sp. may thus impact the growth and function of AM fungi and also indirectly plant performance by influencing the source-sink relationship between the two partners of the symbiosis.
Collapse
Affiliation(s)
- Nathalie De Jaeger
- Earth and Life Institute, Mycology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
31
|
Gabriel-Neumann E, Neumann G, Leggewie G, George E. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:911-9. [PMID: 21382646 DOI: 10.1016/j.jplph.2010.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 11/18/2010] [Accepted: 11/20/2010] [Indexed: 05/08/2023]
Abstract
The sucrose transporter SUT1 functions in phloem loading of photoassimilates in solanaceous plant species. In the present study, wildtype and transgenic potato plants with either constitutive overexpression or antisense inhibition of SUT1 were grown under high or low phosphorus (P) fertilization levels in the presence or absence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices. At a low soil P fertilization level, the extent of AM fungal root colonization was not different among the genotypes. In all plants, the AM symbiosis contributed significantly to P uptake under these conditions. In response to a high soil P fertilization level, all genotypes showed a decrease in AM fungal root colonization, indicating that the expression level of SUT1 does not constitute a major mechanism of control over AM development in response to the soil P availability. However, plants with overexpression of SUT1 showed a higher extent of AM fungal root colonization compared with the other genotypes when the soil P availability was high. Whether an increased symbiotic C supply, alterations in the phytohormonal balance, or a decreased synthesis of antimicrobial compounds was the major cause for this effect requires further investigation. In plants with impaired phloem loading, a low C status of plant sink tissues did apparently not negatively affect plant C supply to the AM symbiosis. It is possible that, at least during vegetative and early generative growth, source rather than sink tissues exert control over amounts of C supplied to AM fungi.
Collapse
Affiliation(s)
- Elke Gabriel-Neumann
- Department of Aridland Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | | | | |
Collapse
|
32
|
Hammer EC, Pallon J, Wallander H, Olsson PA. Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 2011; 76:236-44. [PMID: 21223336 DOI: 10.1111/j.1574-6941.2011.01043.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The exchange of carbohydrates and mineral nutrients in the arbuscular mycorrhizal (AM) symbiosis must be controlled by both partners in order to sustain an evolutionarily stable mutualism. Plants downregulate their carbon (C) flow to the fungus when nutrient levels are sufficient, while the mechanism controlling fungal nutrient transfer is unknown. Here, we show that the fungus accumulates nutrients when connected to a host that is of less benefit to the fungus, indicating a potential of the fungus to control the transfer of nutrients. We used a monoxenic in vitro model of root organ cultures associated with Glomus intraradices, in which we manipulated the C availability to the plant. We found that G. intraradices accumulated up to seven times more nutrients in its spores, and up to nine times more in its hyphae, when the C pool available to the associated roots was halved. The strongest effect was found for phosphorus (P), considered to be the most important nutrient in the AM symbiosis. Other elements such as potassium and chorine were also accumulated, but to a lesser extent, while no accumulation of iron or manganese was found. Our results suggest a functional linkage between C and P exchange.
Collapse
Affiliation(s)
- Edith C Hammer
- Microbial Ecology, Department of Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
33
|
Altomare C, Tringovska I. Beneficial Soil Microorganisms, an Ecological Alternative for Soil Fertility Management. SUSTAINABLE AGRICULTURE REVIEWS 2011. [DOI: 10.1007/978-94-007-1521-9_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Lekberg Y, Hammer EC, Olsson PA. Plants as resource islands and storage units - adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol Ecol 2010; 74:336-45. [DOI: 10.1111/j.1574-6941.2010.00956.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
35
|
Gyuricza V, Thiry Y, Wannijn J, Declerck S, Dupré de Boulois H. Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environ Microbiol 2010; 12:2180-9. [PMID: 21966912 DOI: 10.1111/j.1462-2920.2009.02118.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Common mycorrhizal networks of arbuscular mycorrhizal fungi have been reported to transfer cesium between plants. However, a direct hyphae-mediated transfer (via cytoplasm/protoplasm) cannot be distinguished from an indirect transfer. Indeed, cesium released by the roots of the donor plant can be taken up by the receiver plant or fungal hyphae. In the present study, Medicago truncatula plants were connected by a common mycorrhizal network and Prussian Blue (ammonium-ferric-hexacyano ferrate) was added in the growth medium to adsorb the released radiocesium. A direct transfer of radiocesium to roots and shoots of the receiver plant was clearly demonstrated for the first time. Even though this transfer was quantitatively low, it suggested that shared mycorrhizal networks could contribute to the redistribution of this radionuclide in the environment, which otherwise would be restricted both in time and space. This finding may also help to understand the behaviour of its chemical analogue, potassium.
Collapse
Affiliation(s)
- Veronika Gyuricza
- Université catholique de Louvain, Unité de Microbiologie, Croix du Sud 3, 1348 Louvain-Neuve, Belgium
| | | | | | | | | |
Collapse
|
36
|
Hijikata N, Murase M, Tani C, Ohtomo R, Osaki M, Ezawa T. Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2010; 186:285-289. [PMID: 20409186 DOI: 10.1111/j.1469-8137.2009.03168.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Nowaki Hijikata
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589 Japan
| | | | | | | | | | | |
Collapse
|
37
|
Nygren CMR, Rosling A. Localisation of phosphomonoesterase activity in ectomycorrhizal fungi grown on different phosphorus sources. MYCORRHIZA 2009; 19:197-204. [PMID: 19139930 DOI: 10.1007/s00572-008-0223-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/22/2008] [Indexed: 05/27/2023]
Abstract
Phosphorus (P) is a major limiting nutrient for plants in boreal forest ecosystems where a substantial part of the total P is sequestered in organic compounds. Some ectomycorrhizal (ECM) fungi are known to produce phosphomonoesterases, enzymes that degrade organic P sources. Here, we test 16 ECM species for this enzymatic activity by growing them on media containing orthophosphate, phytic acid or apatite. A method with an overlay gel that determined both phosphomonoesterase activity and its spatial distribution was developed. The phosphomonoesterase activity was not significantly higher when growing on organic P; conversely some isolates only produced measurable enzyme activity when grown on apatite. Species-specific variations with respect to phosphomonoesterase activity as well as growth responses to different substrates were found. The production of phosphomonoesterases was found to be widespread in ECM fungi and the enzyme activity did not need induction by organic P. The enzyme activity was highest in the central parts of the mycelia, potentially reflecting breakdown and recycling of phospholipids from old hyphae or potentially higher mycelial density.
Collapse
Affiliation(s)
- C M R Nygren
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07, Uppsala, Sweden.
| | - A Rosling
- Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07, Uppsala, Sweden
| |
Collapse
|
38
|
Délano-Frier JP, Tejeda-Sartorius M. Unraveling the network: Novel developments in the understanding of signaling and nutrient exchange mechanisms in the arbuscular mycorrhizal symbiosis. PLANT SIGNALING & BEHAVIOR 2008; 3:936-44. [PMID: 19513196 PMCID: PMC2633739 DOI: 10.4161/psb.6789] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhhiza (AM) symbiosis involves an intricate network of signaling and biochemical pathways designed to ensure that a beneficial relationship is established between the plant and fungal partners as a result of a mutual nutrient exchange. Emerging data has been recently published to explain why the relationship is not always fair, as observed in prevalent parasitic AM relationships in which the plant host receives no phosphorus (P) in exchange for carbon (C) delivered to the fungus. The theory behind this unorthodox view of the AM relationship, together with the description of other recent developments in nutrient mobilization as well as in key aspects of the bi-directional signaling that culminates in the symbiotic association, is the subject of this review.
Collapse
Affiliation(s)
- John Paul Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas; Cinvestav-Campus Guanajuato; Irapuato, Guanajuato México
| | | |
Collapse
|
39
|
Olsson PA, Hammer EC, Wallander H, Pallon J. Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Environ Microbiol 2008; 74:4144-8. [PMID: 18469133 PMCID: PMC2446498 DOI: 10.1128/aem.00376-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 05/04/2008] [Indexed: 11/20/2022] Open
Abstract
We investigated element accumulation in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal spores and mycelia growing in monoxenic cultures were analyzed. The elemental composition was quantified using particle-induced X-ray emission (PIXE) in combination with scanning transmission ion microscopy. In the spores, Ca and Fe were associated mainly with the spore wall, while P and K showed patchy distributions and their concentrations were correlated. Excess of P in the hyphal growth medium increased the P and Si concentrations in spores and increased the K/Ca ratio in spores. Increased P availability decreased the concentration of Zn and Mn in spores. We concluded that the availability of P influences the uptake and accumulation of several elements in spores. It is demonstrated that PIXE analysis is a powerful tool for quantitative analysis of elemental accumulation in fungal mycelia.
Collapse
Affiliation(s)
- Pål Axel Olsson
- Department of Plant Ecology and Systematics, Ecology Building, Lund University, SE-223 62 Lund, Sweden.
| | | | | | | |
Collapse
|
40
|
Cavagnaro TR, Langley AJ, Jackson LE, Smukler SM, Koch GW. Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:228-235. [PMID: 32688777 DOI: 10.1071/fp07281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 03/13/2008] [Indexed: 06/11/2023]
Abstract
The effects of colonisation of roots by arbuscular mycorrhizal fungi (AMF) on soil respiration, plant growth, nutrition, and soil microbial communities were assessed using a mycorrhiza-defective tomato (Solanum lycopersicum L.) mutant and its mycorrhizal wild-type progenitor. Plants were grown in rhizocosms in an automated respiration monitoring system over the course of the experiment (79 days). Soil respiration was similar in the two tomato genotypes, and between P treatments with plants. Mycorrhizal colonisation increased P and Zn content and decreased root biomass, but did not affect aboveground plant biomass. Soil microbial biomass C and soil microbial communities based on phospholipid fatty acid (PLFA) analysis were similar across all treatments, suggesting that the two genotypes differed little in their effect on soil activity. Although approximately similar amounts of C may have been expended belowground in both genotypes, they may have differed in the relative C allocation to root construction v. respiration. Further, net soil respiration did not differ between the two tomato genotypes, but root dry weight was lower in mycorrhizal roots, and respiration of mycorrhizal roots per unit dry weight was higher than nonmycorrhizal roots. This indicates that the AM contribution to soil respiration may indeed be significant, and nutrient uptake per unit C expenditure belowground in this experiment appeared to be higher in mycorrhizal plants.
Collapse
Affiliation(s)
- Timothy R Cavagnaro
- School of Biological Sciences and Australian Centre for Biodiversity, Monash University, Clayton, Vic. 3800, Australia
| | - Adam J Langley
- Smithsonian Environmental Research Centre, Edgewater, MD 21037, USA
| | - Louise E Jackson
- Department of Land, Air and Water Resources, University of California Davis, One Shields Avenue, Davis, CA 95616-8627, USA
| | - Sean M Smukler
- Department of Land, Air and Water Resources, University of California Davis, One Shields Avenue, Davis, CA 95616-8627, USA
| | - George W Koch
- National Institute for Climatic Change Research, Box 5640, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
41
|
|
42
|
van Aarle IM, Viennois G, Amenc LK, Tatry MV, Luu DT, Plassard C. Fluorescent in situ RT-PCR to visualise the expression of a phosphate transporter gene from an ectomycorrhizal fungus. MYCORRHIZA 2007; 17:487-494. [PMID: 17520293 DOI: 10.1007/s00572-007-0127-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 03/14/2007] [Indexed: 05/15/2023]
Abstract
Expression of a mycorrhizal fungal-specific phosphate (P) transporter gene (HcPT1) was studied in mycelium of the ectomycorrhizal fungus Hebeloma cylindrosporum, by in situ reverse transcriptase polymerase chain reaction using amplification of complementary DNA sequences. The expression of HcPT1 was visualised under two different P treatments. Mycelium was transferred to liquid medium with or without P and incubated for 5 days. Under P starvation, mycelium growth and vitality was reduced and the expression of HcPT1 up regulated. Enzyme-labelled fluorescent substrate was used to detect gene expression in situ with epi-fluorescence microscopy and to visualise it at the level of the individual hyphae both in starved and non-starved hyphae. Up-regulation of HcPT1 was observed as a more intense fluorescent signal and from the larger proportion of hyphae that showed expression.
Collapse
Affiliation(s)
- Ingrid M van Aarle
- Biogéochimie du Sol et de la Rhizosphère, UMR 1222 INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 1, France
| | - Gaëlle Viennois
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 INRA/CNRS/SupAgro/UM II, 2 Place Viala, 34060, Montpellier Cedex 1, France
| | - Laurie K Amenc
- Biogéochimie du Sol et de la Rhizosphère, UMR 1222 INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 1, France
| | - Marie-Violaine Tatry
- Biogéochimie du Sol et de la Rhizosphère, UMR 1222 INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 1, France
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 INRA/CNRS/SupAgro/UM II, 2 Place Viala, 34060, Montpellier Cedex 1, France
| | - Doan T Luu
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 INRA/CNRS/SupAgro/UM II, 2 Place Viala, 34060, Montpellier Cedex 1, France
| | - Claude Plassard
- Biogéochimie du Sol et de la Rhizosphère, UMR 1222 INRA/SupAgro, 2 Place Viala, 34060, Montpellier Cedex 1, France.
| |
Collapse
|
43
|
Schaarschmidt S, González MC, Roitsch T, Strack D, Sonnewald U, Hause B. Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. PLANT PHYSIOLOGY 2007. [PMID: 17416641 DOI: 10.1104/pp.107.096446] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less is known about the regulatory function of carbon availability on AM formation. Here the effect of enhanced levels of hexoses in the root, the main form of carbohydrate used by the fungus, on AM formation was analyzed. Modulation of the root carbohydrate status was performed by expressing genes encoding a yeast (Saccharomyces cerevisiae)-derived invertase, which was directed to different subcellular locations. Using tobacco (Nicotiana tabacum) alcc::wINV plants, the yeast invertase was induced in the whole root system or in root parts. Despite increased hexose levels in these roots, we did not detect any effect on the colonization with Glomus intraradices analyzed by assessment of fungal structures and the level of fungus-specific palmitvaccenic acid, indicative for the fungal carbon supply, or the plant phosphate content. Roots of Medicago truncatula, transformed to express genes encoding an apoplast-, cytosol-, or vacuolar-located yeast-derived invertase, had increased hexose-to-sucrose ratios compared to beta-glucuronidase-transformed roots. However, transformations with the invertase genes did not affect mycorrhization. These data suggest the carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. In contrast, tobacco rolC::ppa plants with defective phloem loading and tobacco pyk10::InvInh plants with decreased acid invertase activity in roots exhibited a diminished mycorrhization.
Collapse
|
44
|
Schaarschmidt S, González MC, Roitsch T, Strack D, Sonnewald U, Hause B. Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. PLANT PHYSIOLOGY 2007; 143:1827-40. [PMID: 17416641 PMCID: PMC1851815 DOI: 10.1104/pp.106.096446] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 02/01/2007] [Indexed: 05/08/2023]
Abstract
The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less is known about the regulatory function of carbon availability on AM formation. Here the effect of enhanced levels of hexoses in the root, the main form of carbohydrate used by the fungus, on AM formation was analyzed. Modulation of the root carbohydrate status was performed by expressing genes encoding a yeast (Saccharomyces cerevisiae)-derived invertase, which was directed to different subcellular locations. Using tobacco (Nicotiana tabacum) alcc::wINV plants, the yeast invertase was induced in the whole root system or in root parts. Despite increased hexose levels in these roots, we did not detect any effect on the colonization with Glomus intraradices analyzed by assessment of fungal structures and the level of fungus-specific palmitvaccenic acid, indicative for the fungal carbon supply, or the plant phosphate content. Roots of Medicago truncatula, transformed to express genes encoding an apoplast-, cytosol-, or vacuolar-located yeast-derived invertase, had increased hexose-to-sucrose ratios compared to beta-glucuronidase-transformed roots. However, transformations with the invertase genes did not affect mycorrhization. These data suggest the carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. In contrast, tobacco rolC::ppa plants with defective phloem loading and tobacco pyk10::InvInh plants with decreased acid invertase activity in roots exhibited a diminished mycorrhization.
Collapse
|
45
|
Valentine AJ, Kleinert A. Respiratory responses of arbuscular mycorrhizal roots to short-term alleviation of P deficiency. MYCORRHIZA 2007; 17:137-143. [PMID: 17216500 DOI: 10.1007/s00572-006-0093-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 11/24/2006] [Indexed: 05/13/2023]
Abstract
Arbuscular mycorrhizal (AM) root respiration can impose a respiratory sink on host reserves under low P conditions, but it is not known how AM roots respond to short-term supply of sufficient P. Therefore, the effect of P stress alleviation on the respiration of AM roots was investigated in 5-week-old tomato plants. Plants were inoculated with Glomus mosseae in sand culture and grown hydroponically in a low P (2 microM) nutrient medium for 3 weeks. P stress was alleviated by the supply of 2 mM P for 72 h. With P stress alleviation, the improved root P status coincided with a decline in AM fungal activity and a reduction in root CO2 and O2 fluxes of the AM plants. During P stress alleviation, the AM roots had lower concentrations of organic acids, derived from root-zone CO2 assimilation, in their root exudates. These results show that short-term alleviation of low P conditions in AM roots rapidly affects AM fungal symbiont activity, AM root respiration, and root-zone CO2-derived organic acid metabolism.
Collapse
Affiliation(s)
- A J Valentine
- Department of Horticulture, Applied Sciences Faculty, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000, South Africa.
| | - A Kleinert
- Department of Horticulture, Applied Sciences Faculty, Cape Peninsula University of Technology, P.O. Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
46
|
Javot H, Pumplin N, Harrison MJ. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. PLANT, CELL & ENVIRONMENT 2007; 30:310-322. [PMID: 17263776 DOI: 10.1111/j.1365-3040.2006.01617.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In response to the colonization by arbuscular mycorrhizal (AM) fungi, plants reprioritize their phosphate (Pi)-uptake strategies to take advantage of nutrient transfer via the fungus. The mechanisms underlying Pi transport are beginning to be understood, and recently, details of the regulation of plant and fungal Pi transporters in the AM symbiosis have been revealed. This review summarizes recent advances in this area and explores current data and hypotheses of how the plant Pi status affects the symbiosis. Finally, suggestions of an interrelationship of Pi and nitrogen (N) in the AM symbiosis are discussed.
Collapse
Affiliation(s)
- Hélène Javot
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Nathan Pumplin
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14850, USA
| |
Collapse
|
47
|
Stewart LI, Jabaji-Hare S, Driscoll BT. Effects of external phosphate concentration on glucose-6-phosphate dehydrogenase gene expression in the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 2006; 52:823-30. [PMID: 17110974 DOI: 10.1139/w06-038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific primers were developed to amplify a 227 bp segment of the arbuscular mycorrhizal fungus Glomus intraradices gene encoding glucose-6-phosphate dehydrogenase (G6PDH), an enzyme involved in the pentose phosphate pathway. G6PDH gene expression was measured by real-time quantitative reverse transcriptase – polymerase chain reaction in response to phosphorus (P) concentrations in the growth medium of colonized transformed carrot roots. We investigated the effects of different P concentration treatments on carbon (C) metabolism within the intraradical mycelia of G. intraradices. The results showed a significant (P = 0.017) down-regulation of G6PDH expression in the intraradical mycelia of G. intraradices cultures grown in high P than low P conditions but no significant difference in regulation in excessive P concentrations when compared with the low P or high P concentrations. These results indicate that a reduction in the C flow from the host could be occurring as a result of elevated P and that a decrease in fungal G6PDH gene expression occurs, but not in the short term (less than 2 h). Reduced C flow from the host could lead to reduced fungal growth and root colonization, as was observed under high soil P conditions.Key words: arbuscular mycorrhizal fungi, phosphorus, nutrient uptake, glucose-6-phosphate dehydrogenase, gene expression.
Collapse
Affiliation(s)
- L I Stewart
- Microbiology Unit, Department of Natural Resources Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | | |
Collapse
|
48
|
Olsson PA, Hansson MC, Burleigh SH. Effect of P availability on temporal dynamics of carbon allocation and glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl Environ Microbiol 2006; 72:4115-20. [PMID: 16751522 PMCID: PMC1489668 DOI: 10.1128/aem.02154-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 03/22/2006] [Indexed: 11/20/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi depend on a C supply from the plant host and simultaneously provide phosphorus to the colonized plant. We therefore evaluated the influence of external P on C allocation in monoxenic Daucus carota-Glomus intraradices cultures in an AM symbiosis. Fungal hyphae proliferated from a solid minimal medium containing colonized roots into a C-free liquid minimal medium with high or low P availability. Roots and hyphae were harvested periodically, and the flow of C from roots to fungus was measured by isotope labeling. We also measured induction of a G. intraradices high-affinity P transporter to estimate fungal P demand. The prevailing hypothesis is that high P availability reduces mycorrhizal fungal growth, but we found that C flow to the fungus was initially highest at the high P level. Only at later harvests, after 100 days of in vitro culture, were C flow and fungal growth limited at high P availability. Thus, AM fungi can benefit initially from P-enriched environments in terms of plant C allocation. As expected, the P transporter induction was significantly greater at low P availability and greatest in very young mycelia. We found no direct link between C flow to the fungus and the P transporter transcription level, which indicates that a good C supply is not essential for induction of the high-affinity P transporter. We describe a mechanism by which P regulates symbiotic C allocation, and we discuss how this mechanism may have evolved in a competitive environment.
Collapse
Affiliation(s)
- Pål Axel Olsson
- Department of Ecology, Ecology Building, Lund University, SE 223 62 Lund, Sweden.
| | | | | |
Collapse
|
49
|
|
50
|
Olsson PA, Burleigh SH, van Aarle IM. The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2005; 168:677-86. [PMID: 16313649 DOI: 10.1111/j.1469-8137.2005.01532.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The influence of external nitrogen (N) on carbon (C) allocation and processes related to phosphorus (P) metabolism were studied in monoxenic arbuscular mycorrhiza (AM) cultures of Daucus carota. Fungal hyphae of Glomus intraradices proliferated from colonized roots growing on solid medium into C-free liquid minimal medium with two different N and P levels. Furthermore, we exposed the colonized roots to high or low N availability and then studied the mycelial development. Roots were provided with (13)C-glucose in order to follow the C allocation. The mycelium was analysed for phosphatase activity and transcription levels of two nutrient regulated genes. High N availability to the monoxenic AM root reduced the C allocation to the AM fungus while N availability to the mycelium was important for the upregulation of the fungal inorganic phosphorus (Pi)-transporter GiPT. We found that N availability can regulate nutritional processes in arbuscular mycorrhiza. We conclude that negative impacts of N on AM abundance are caused by reduced C allocation from the plant. Upregulation of the fungal Pi-transporter GiPT indicated that increased N availability might induce P limitation in the mycelium.
Collapse
Affiliation(s)
- Pål Axel Olsson
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden. ,se
| | | | | |
Collapse
|