1
|
Xu P, Zhong Y, Xu A, Liu B, Zhang Y, Zhao A, Yang X, Ming M, Cao F, Fu F. Application of Developmental Regulators for Enhancing Plant Regeneration and Genetic Transformation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1272. [PMID: 38732487 PMCID: PMC11085514 DOI: 10.3390/plants13091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fangfang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (P.X.); (Y.Z.); (A.X.); (B.L.); (Y.Z.); (A.Z.); (X.Y.); (M.M.); (F.C.)
| |
Collapse
|
2
|
Fizikova A, Subcheva E, Kozlov N, Tvorogova V, Samarina L, Lutova L, Khlestkina E. Agrobacterium Transformation of Tea Plants ( Camellia sinensis (L.) KUNTZE): A Small Experiment with Great Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:675. [PMID: 38475520 DOI: 10.3390/plants13050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Tea has historically been one of the most popular beverages, and it is currently an economically significant crop cultivated in over 50 countries. The Northwestern Caucasus is one of the northernmost regions for industrial tea cultivation worldwide. The domestication of the tea plant in this region took approximately 150 years, during which plantations spreading from the Ozurgeti region in northern Georgia to the southern city of Maykop in Russia. Consequently, tea plantations in the Northern Caucasus can serve as a source of unique genotypes with exceptional cold tolerance. Tea plants are known to be recalcitrant to Agrobacterium-mediated transfection. Research into optimal transfection and regeneration methodologies, as well as the identification of tea varieties with enhanced transformation efficiency, is an advanced strategy for improving tea plant culture. The aim of this study was to search for the optimal Agrobacterium tumefaciens-mediated transfection protocol for the Kolkhida tea variety. As a result of optimizing the transfection medium with potassium phosphate buffer at the stages of pre-inoculation, inoculation and co-cultivation, the restoration of normal morphology and improvement in the attachment of Agrobacterium cells to the surface of tea explants were observed by scanning electron microscopy. And an effective method of high-efficiency Agrobacteria tumefaciens-mediated transfection of the best local tea cultivar, Kolkhida, was demonstrated for the first time.
Collapse
Affiliation(s)
- Anastasia Fizikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 2/28, Yana Fabritsiusa Street, 354002 Sochi, Russia
| | - Elena Subcheva
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
| | - Nikolay Kozlov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Varvara Tvorogova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Lidia Samarina
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 2/28, Yana Fabritsiusa Street, 354002 Sochi, Russia
| | - Ludmila Lutova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Elena Khlestkina
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), B. Morskaya Street, 42-44, 190000 St. Petersburg, Russia
| |
Collapse
|
3
|
Ochatt SJ. Less Frequently Used Growth Regulators in Plant Tissue Culture. Methods Mol Biol 2024; 2827:109-143. [PMID: 38985266 DOI: 10.1007/978-1-0716-3954-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Plant growth regulators are routinely added to in vitro culture media to foster the growth and differentiation of the cells, tissues, and organs. However, while the literature on usage of the more common auxins, cytokinins, gibberellins, abscisic acid, and ethylene is vast, other compounds that also have shown a growth-regulating activity have not been studied as frequently. Such substances are also capable of modulating the responses of plant cells and tissues in vitro by regulating their growth, differentiation, and regeneration competence, but also by enhancing their responses toward biotic and abiotic stress agents and improving the production of secondary metabolites of interest. This chapter will discuss the in vitro effects of several of such less frequently added plant growth regulators, including brassinosteroids (BRS), strigolactones (SLs), phytosulfokines (PSKs), methyl jasmonate, salicylic acid (SA), sodium nitroprusside (SNP), hydrogen sulfite, various plant growth retardants and inhibitors (e.g., ancymidol, uniconazole, flurprimidol, paclobutrazol), and polyamines.
Collapse
Affiliation(s)
- Sergio J Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
4
|
Ramakrishnan M, Zhou M, Ceasar SA, Ali DJ, Maharajan T, Vinod KK, Sharma A, Ahmad Z, Wei Q. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. PLANT CELL REPORTS 2023; 42:1845-1873. [PMID: 37792027 DOI: 10.1007/s00299-023-03071-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
KEY MESSAGE This review discusses the epigenetic changes during somatic embryo (SE) development, highlights the genes and miRNAs involved in the transition of somatic cells into SEs as a result of epigenetic changes, and draws insights on biotechnological opportunities to study SE development. Somatic embryogenesis from somatic cells occurs in a series of steps. The transition of somatic cells into somatic embryos (SEs) is the most critical step under genetic and epigenetic regulations. Major regulatory genes such as SERK, WUS, BBM, FUS3/FUSA3, AGL15, and PKL, control SE steps and development by turning on and off other regulatory genes. Gene transcription profiles of somatic cells during SE development is the result of epigenetic changes, such as DNA and histone protein modifications, that control and decide the fate of SE formation. Depending on the type of somatic cells and the treatment with plant growth regulators, epigenetic changes take place dynamically. Either hypermethylation or hypomethylation of SE-related genes promotes the transition of somatic cells. For example, the reduced levels of DNA methylation of SERK and WUS promotes SE initiation. Histone modifications also promote SE induction by regulating SE-related genes in somatic cells. In addition, miRNAs contribute to the various stages of SE by regulating the expression of auxin signaling pathway genes (TIR1, AFB2, ARF6, and ARF8), transcription factors (CUC1 and CUC2), and growth-regulating factors (GRFs) involved in SE formation. These epigenetic and miRNA functions are unique and have the potential to regenerate bipolar structures from somatic cells when a pluripotent state is induced. However, an integrated overview of the key regulators involved in SE development and downstream processes is lacking. Therefore, this review discusses epigenetic modifications involved in SE development, SE-related genes and miRNAs associated with epigenetics, and common cis-regulatory elements in the promoters of SE-related genes. Finally, we highlight future biotechnological opportunities to alter epigenetic pathways using the genome editing tool and to study the transition mechanism of somatic cells.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamassery, Kochi, 683104, Kerala, India
| | | | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration On Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
5
|
Wu G, Wei X, Wang X, Wei Y. Changes and transcriptome regulation of endogenous hormones during somatic embryogenesis in Ormosia henryi Prain. FRONTIERS IN PLANT SCIENCE 2023; 14:1121259. [PMID: 37077643 PMCID: PMC10106752 DOI: 10.3389/fpls.2023.1121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Introduction Ormosia henryi is a rare and endangered plant growing in southern China. Somatic embryo culture is an effective measure for the rapid propagation of O. henryi. It has not been reported how regulatory genes induce somatic embryogenesis by regulating endogenous hormone changes during the process of somatic embryogenesis in O. henryi. Methods In this study, we analysed the endogenous hormone levels and transcriptome data of nonembryogenic callus (NEC), embryogenic callus (EC), globular embryo (GE) and cotyledon embryo (CE) in O. henryi. Results The results showed that the indole-3-acetic acid (IAA) content was higher and the cytokinins (CKs) content was lower in EC than in NEC, and the gibberellins (GAs) and abscisic acid (ABA) contents were significantly higher in NEC than in EC. The contents of IAA, CKs, GAs and ABA increased significantly with EC development. The expression patterns of differentially expressed genes (DEGs) involved in the biosynthesis and signal transduction of auxin (AUX) (YUCCA and SAUR), CKs (B-ARR), GAs (GA3ox, GA20ox, GID1 and DELLA) and ABA (ZEP, ABA2, AAO3, CYP97A3, PYL and ABF) were consistent with the levels of endogenous hormones during somatic embryogenesis (SE). In this study, 316 different transcription factors (TFs) regulating phytohormones were detected during SE. AUX/IAA were downregulated in the process of EC formation and GE differentiation into CE, but other TFs were upregulated and downregulated. Conclusion Therefore, we believe that relatively high IAA content and low CKs, GAs and ABA contents contribute to EC formation. The differential expression of AUX, CKs, GAs and ABA biosynthesis and signal transduction genes affected the endogenous hormone levels at different stages of SE in O. henryi. The downregulated expression of AUX/IAA inhibited NEC induction, promoted EC formation and GE differentiation into CE.
Collapse
Affiliation(s)
- Gaoyin Wu
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
- College of Life Science, Guizhou Normal University, Guiyang, Guizhou, China
- *Correspondence: Wei Xiaoli, ; Wu Gaoyin,
| | - Xiaoli Wei
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
- *Correspondence: Wei Xiaoli, ; Wu Gaoyin,
| | - Xiao Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Yi Wei
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Zhou R, Wang Y, Zhang X, Jia F, Liu Y. Cloning and expression analysis of SERK1 gene in Diospyros lotus. Open Life Sci 2022; 17:1296-1308. [PMID: 36249531 PMCID: PMC9518663 DOI: 10.1515/biol-2022-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/04/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Somatic embryogenesis receptor-like kinases (SERKs), a subfamily of receptor-like kinases, play important roles in response to abiotic stresses in addition to apomictic reproductive development in numerous plant species. The purpose of the present work was to determine if an ortholog of the SERK gene is present in the Diospyros lotus genome, isolate it and analyze its expression during embryogeny and abiotic stress. An ortholog of the SERK gene was isolated from the D. lotus genome, and designated as DlSERK1. The physical and chemical properties, protein structure, and evolutionary relationship of the DlSERK1 protein were analyzed by bioinformatics methods, and the expression of DlSERK1 gene during embryonic development and under low-temperature, salt, and drought stresses was examined through real-time quantitative PCR analysis. DlSERK1 contained 1,881 bp open reading frame encoding 626 amino acids, with a molecular mass of 69.18 kDa and pI of 5.34. DlSERK1 had strong hydrophilic property, signal peptide cleavage sites, and two transmembrane regions, indicating that DlSERK1 is a secretory protein. The secondary structure of DlSERK1 was consistent with the tertiary structure, both of which were dominated by random curls and alpha-helices. DlSERK1 had the typical structure of SERK proteins, and harbored multiple phosphorylation and glycosylation sites. Quantitative analysis showed that DlSERK1 was expressed during the embryonic development period, and the highest expression level was at 10 days post-flowering. The DlSERK1 expression level was down-regulated under low-temperature stress and up-regulated under drought and salt stresses. Our study showed that DlSERK1 was expressed in embryo development and could respond to low-temperature, drought, and salt stresses, which lays a foundation for further research on the function of SERK1 in the apomixis growth and development of environmental adaptation in D. lotus.
Collapse
Affiliation(s)
- Ruijin Zhou
- School of Horticulture and Landscape Architecture, Henan Province Engineering Research Centers of Horticultural Plant Research Utilization and Germplasm Enhancement, Henan Institute of Science and Technology, No. 90, East Section of Hualan Avenue, Hongqi District, Xinxiang, Henan 453003, China
| | - Yingying Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Xiaona Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Fengqin Jia
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yunli Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| |
Collapse
|
7
|
Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, RN C, Samynathan R. Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biol Futur 2022; 73:259-277. [DOI: 10.1007/s42977-022-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
|
8
|
Li Y, Jiao C, Wei Z, Chai S, Jia H, Gao M, Allison J, Li Z, Song CB, Wang X. Analysis of Grapevine's Somatic Embryogenesis Receptor Kinase (SERK) Gene Family: VqSERK3/BAK1 Overexpression Enhances Disease Resistance. PHYTOPATHOLOGY 2022; 112:1081-1092. [PMID: 34698542 DOI: 10.1094/phyto-04-21-0136-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The somatic embryogenesis receptor kinase (SERK) gene family has been intensively studied in several plant species. Here we confirmed the existence of five SERK genes in grapevine (Chinese wild grapevine Vitis quinquangularis) and named them VqSERK1, VqSERK2, VqSERK3, VqSERK4, and VqSERK5. Analysis of the predicted structures of these SERK proteins revealed they include a signal peptide domain, a leucine zipper domain, a Ser-Pro-Pro domain, a single transmembrane domain, different leucine-rich repeats, and an intracellular kinase activity domain. The SERK genes of grapevine showed different gene expression patterns when treated with powdery mildew (Erysiphe necator) and hormones (salicylic acid, jasmonic acid, abscisic acid, and ethylene). Subcellular localization assays confirmed that VqSERK family proteins localized to the cell membrane. Moreover, we cloned the SERK3/BAK1 gene from the Chinese wild grapevine V. quinquangularis clone 'Shang-24'. Heterologous VqSERK3/BAK1 expression in the Arabidopsis bak1-4 mutant lines restored control of cell death, increased resistance to powdery mildew, and strengthened stomatal immunity. Our work may provide the foundation for further studies of SERK genes for pathogen resistance and hormone treatment in grapevine.
Collapse
Affiliation(s)
- Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhenjiang Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shengyue Chai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hui Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jessica Allison
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, U.S.A
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chang-Bing Song
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, P.R. China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
9
|
Growth modulation by nitric oxide donor sodium nitroprusside in in vitro plant tissue cultures – A review. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Elhiti M, Stasolla C. Transduction of Signals during Somatic Embryogenesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:178. [PMID: 35050066 PMCID: PMC8779037 DOI: 10.3390/plants11020178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the explants respond to inductive signals (mostly plant growth regulators, PRGs), and de-differentiate into embryogenic cells. Such cells, "canalized" into the embryogenic developmental pathway, are able to generate embryos comparable in structure and physiology to their in vivo counterparts. Genomic and transcriptomic studies have identified several pathways governing the initial stages of the embryogenic process. In this review, the authors emphasize the importance of the developmental signals required for the progression of embryo development, starting with the de-differentiation of somatic cells and culminating with tissue patterning during the formation of the embryo body. The action and interaction of PGRs are highlighted, along with the participation of master regulators, mostly transcription factors (TFs), and proteins involved in stress responses and the signal transduction required for the initiation of the embryogenic process.
Collapse
Affiliation(s)
- Mohamed Elhiti
- Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
11
|
Wu G, Li W, Tian N, Wang X, Wu W, Zheng S. Cloning and functional identification of setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1). Gene 2021; 813:146119. [PMID: 34902513 DOI: 10.1016/j.gene.2021.146119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Plant somatic embryogenesis receptor-like kinases (SERK), members of leucine-rich repeat receptor-like kinases (LRR-RLKs) subfamily, are widely involved in plant growth, development and innate immunity. In this study, the setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1) was cloned by gateway technology, and transferred into a brasssinosteroid (BR) receptor mutant of Arabidopsis thaliana WS2 (bri1-5). After BL treatment, the transgenic plants could partially restore the phenotype of bri1-5. After Pst DC3000 treatment, the CFU value of SiSERK1 overexpression plant pathogen was between WS2 and bri1-5. Stomatal opening and plant height were also between them. Therefore, it is speculated that SiSERK1 gene is involved in BR signaling pathway and can improve the resistance of bri1-5 to Pst DC3000 through SA and NHP mediated systemic acquired resistance (SAR).
Collapse
Affiliation(s)
- Guofan Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China.
| | - Wenbo Li
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Nongfu Tian
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xin Wang
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wangze Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Sheng Zheng
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
12
|
Synthetic Strigolactone GR24 Improves Arabidopsis Somatic Embryogenesis through Changes in Auxin Responses. PLANTS 2021; 10:plants10122720. [PMID: 34961192 PMCID: PMC8704308 DOI: 10.3390/plants10122720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Somatic embryogenesis in Arabidopsis encompasses an induction phase requiring auxin as the inductive signal to promote cellular dedifferentiation and formation of the embryogenic tissue, and a developmental phase favoring the maturation of the embryos. Strigolactones (SLs) have been categorized as a novel group of plant hormones based on their ability to affect physiological phenomena in plants. The study analyzed the effects of synthetic strigolactone GR24, applied during the induction phase, on auxin response and formation of somatic embryos. The expression level of two SL biosynthetic genes, MOREAXILLARY GROWTH 3 and 4 (MAX3 and MAX4), which are responsible for the conversion of carotene to carotenal, increased during the induction phase of embryogenesis. Arabidopsis mutant studies indicated that the somatic embryo number was inhibited in max3 and max4 mutants, and this effect was reversed by applications of GR24, a synthetic strigolactone, and exacerbated by TIS108, a SL biosynthetic inhibitor. The transcriptional studies revealed that the regulation of GR24 and TIS108 on somatic embryogenesis correlated with changes in expression of AUXIN RESPONSIVE FACTORs 5, 8, 10, and 16, known to be required for the production of the embryogenic tissue, as well as the expression of WUSCHEL (WUS) and Somatic Embryogenesis Receptor-like Kinase 1 (SERK1), which are markers of cell dedifferentiation and embryogenic tissue formation. Collectively, this work demonstrated the novel role of SL in enhancing the embryogenic process in Arabidopsis and its requirement for inducing the expression of genes related to auxin signaling and production of embryogenic tissue.
Collapse
|
13
|
Hesami M, Naderi R, Tohidfar M, Yoosefzadeh-Najafabadi M. Development of support vector machine-based model and comparative analysis with artificial neural network for modeling the plant tissue culture procedures: effect of plant growth regulators on somatic embryogenesis of chrysanthemum, as a case study. PLANT METHODS 2020; 16:112. [PMID: 32817755 PMCID: PMC7424974 DOI: 10.1186/s13007-020-00655-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/08/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Optimizing the somatic embryogenesis protocol can be considered as the first and foremost step in successful gene transformation studies. However, it is usually difficult to achieve an optimized embryogenesis protocol due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a novel computational approach, such as machine learning algorithms for this aim. In the present study, two machine learning algorithms, including Multilayer Perceptron (MLP) as an artificial neural network (ANN) and support vector regression (SVR), were employed to model somatic embryogenesis of chrysanthemum, as a case study, and compare their prediction accuracy. RESULTS The results showed that SVR (R2 > 0.92) had better performance accuracy than MLP (R2 > 0.82). Moreover, the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was also applied for the optimization of the somatic embryogenesis and the results showed that the highest embryogenesis rate (99.09%) and the maximum number of somatic embryos per explant (56.24) can be obtained from a medium containing 9.10 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 4.70 μM kinetin (KIN), and 18.73 μM sodium nitroprusside (SNP). According to our results, SVR-NSGA-II was able to optimize the chrysanthemum's somatic embryogenesis accurately. CONCLUSIONS SVR-NSGA-II can be employed as a reliable and applicable computational methodology in future plant tissue culture studies.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON Canada
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agriculture, University of Tehran, Karaj, Iran
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Science and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran
| | | |
Collapse
|
14
|
Genes, proteins and other networks regulating somatic embryogenesis in plants. J Genet Eng Biotechnol 2020; 18:31. [PMID: 32661633 PMCID: PMC7359197 DOI: 10.1186/s43141-020-00047-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022]
Abstract
Background Somatic embryogenesis (SE) is an intricate molecular and biochemical process principally based on cellular totipotency and a model in studying plant development. In this unique embryo-forming process, the vegetative cells acquire embryogenic competence under cellular stress conditions. The stress caused by plant growth regulators (PGRs), nutrient, oxygenic, or other signaling elements makes cellular reprogramming and transforms vegetative cells into embryos through activation/deactivation of a myriad of genes and transcriptional networks. Hundreds of genes have been directly linked to zygotic and somatic embryogeneses; some of them like SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE (SERK), LEAFY COTYLEDON (LEC), BABYBOOM (BBM), and AGAMOUS-LIKE 15 (AGL15) are very important and are part of molecular network. Main text (observation) This article reviews various genes/orthologs isolated from different plants; encoded proteins and their possible role in regulating somatic embryogenesis of plants have been discussed. The role of SERK in regulating embryogenesis is also summarized. Different SE-related proteins identified through LC–MS at various stages of embryogenesis are also described; a few proteins like 14-3-3, chitinase, and LEA are used as potential SE markers. These networks are interconnected in a complicated manner, posing challenges for their complete elucidation. Conclusions The various gene networks and factors controlling somatic embryogenesis have been discussed and presented. The roles of stress, PGRs, and other signaling elements have been discussed. In the last two-to-three decades’ progress, the challenges ahead and its future applications in various fields of research have been highlighted. The review also presents the need of high throughput, innovative techniques, and sensitive instruments in unraveling the mystery of SE.
Collapse
|
15
|
Ghai D, Alok A, Himani, Upadhyay SK, Sembi JK. Genome wide characterization of the SERK/SERL gene family in Phalaenopsis equestris, Dendrobium catenatum and Apostasia shenzhenica (Orchidaceae). Comput Biol Chem 2020; 85:107210. [PMID: 32062377 DOI: 10.1016/j.compbiolchem.2020.107210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Somatic embryogenesis receptor kinases (SERKs) play a significant role in morphogenesis, stress/defense and signal transduction. In the present study, we have identified two SERK and 11 SERK-like (SERL) genes in Phalaenopsis equestris, two SERK and 11 SERL genes in Dendrobium catenatum, and one SERK and eight SERL genes in Apostasia shenzhenica genome. Characterization of the SERK proteins revealed the presence of a signal peptide, a leucine zipper, five leucine-rich repeats (LRRs), a serine proline proline (SPP) motif, a transmembrane region, a kinase domain, and a C-terminus. Most of the SERK/SERL proteins were characterized with similar physicochemical properties. The presence of transmembrane region predicted their membranous localization. Tertiary structure prediction of all the five identified SERK proteins had sequence identity with BAK1 protein of Arabidopsis thaliana. Generally, all the SERK/SERL genes shared similar gene architecture and intron phasing. Gene ontology analysis indicated the role of SERKs in receptor and ATP binding, signal transduction, and protein phosphorylation. Phylogenetic analysis revealed the clustering of SERKs and SERLs in distinct clades. Expression of SERKs in reproductive tissues like floral bud, floral stalk, whole flower and pollen was reported to be higher than their expression in vegetative tissues with an exception of PeSERK1 and DcSERK1 which showed higher expression in leaves and roots, respectively. Likewise, a higher expression of AsSERK1 was observed in tubers. However, lower expression of SERLs was observed in majority of tissues studied irrespective of their vegetative or reproductive origin. This work paves way for future studies involving functional characterization of SERK/SERLs and their potential role in embryogenesis/organogenesis as an aid to regeneration and multiplication of endangered orchids.
Collapse
Affiliation(s)
- Devina Ghai
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Anshu Alok
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Himani
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - S K Upadhyay
- Department of Botany, Panjab University, Chandigarh-160014, India
| | - Jaspreet K Sembi
- Department of Botany, Panjab University, Chandigarh-160014, India.
| |
Collapse
|
16
|
Mwando E, Angessa TT, Han Y, Li C. Salinity tolerance in barley during germination- homologs and potential genes. J Zhejiang Univ Sci B 2020; 21:93-121. [PMID: 32115909 PMCID: PMC7076347 DOI: 10.1631/jzus.b1900400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
17
|
Luan A, He Y, Xie T, Chen C, Mao Q, Wang X, Li C, Ding Y, Lin W, Liu C, Xia J, He J. Identification of an Embryonic Cell-Specific Region within the Pineapple SERK1 Promoter. Genes (Basel) 2019; 10:E883. [PMID: 31683990 PMCID: PMC6896011 DOI: 10.3390/genes10110883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Plant tissue culture methods, such as somatic embryogenesis, are attractive alternatives to traditional breeding methods for plant propagation. However, they often suffer from limited efficiency. Somatic embryogenesis receptor kinase (SERK)1 is a marker gene of early somatic embryogenesis in several plants, including pineapple. It can be selectively induced and promotes a key step in somatic embryogenesis. We investigated the embryonic cell-specific transcriptional regulation of AcSERK1 by constructing a series of vectors carrying the GUS(Beta-glucuronidase) reporter gene under the control of different candidate cis-regulatory sequences. These vectors were transfected into both embryonic and non-embryonic callus, and three immature embryo stages and the embryonic-specific activity of the promoter fragments was analyzed. We found that the activity of the regulatory sequence of AcSERK1 lacking -983 nt ~-880 nt, which included the transcription initiation site, was significantly reduced in the embryonic callus of pineapple, accompanied by the loss of embryonic cell-specific promoter activity. Thus, this fragment is an essential functional segment with highly specific promoter activity for embryonic cells, and it is active only from the early stages of somatic embryo development to the globular embryo stage. This study lays the foundation for identifying mechanisms that enhance the efficiency of somatic embryogenesis in pineapple and other plants.
Collapse
Affiliation(s)
- Aiping Luan
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Science, Haikou City 571101, China.
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Tao Xie
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Chengjie Chen
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Qi Mao
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
- College of Agricultural, Guangdong Ocean University, Zhanjiang City 524088, China.
| | - Xiaoshuang Wang
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Chuhao Li
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Yaqi Ding
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Wenqiu Lin
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Chaoyang Liu
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Jingxian Xia
- College of Horticulture, South China Agricultural University, Guangzhou City 510642, China.
| | - Junhu He
- Tropical Crops Genetic Resources Institute of Chinese Academy of Tropical Agricultural Science, Haikou City 571101, China.
| |
Collapse
|
18
|
Rose RJ. Somatic Embryogenesis in the Medicago truncatula Model: Cellular and Molecular Mechanisms. FRONTIERS IN PLANT SCIENCE 2019; 10:267. [PMID: 30984208 PMCID: PMC6447896 DOI: 10.3389/fpls.2019.00267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 02/19/2019] [Indexed: 05/02/2023]
Abstract
Medicago truncatula is now widely regarded as a legume model where there is an increasing range of genomic resources. Highly regenerable lines have been developed from the wild-type Jemalong cultivar, most likely due to epigenetic changes. These lines with high rates of somatic embryogenesis (SE) can be compared with wild-type where SE is rare. Much of the research has been with the high SE genotype Jemalong 2HA (2HA). SE can be induced from leaf tissue explants or isolated mesophyll protoplasts. In 2HA, the exogenous phytohormones 1-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP) are central to SE. However, there are interactions with ethylene, abscisic acid (ABA), and gibberellic acid (GA) which produce maximum SE. In the main, somatic embryos are derived from dedifferentiated cells, undergo organellar changes, and produce stem-like cells. There is evidence that the SE is induced as a result of a stress and hormone interaction and this is discussed. In M. truncatula, there are connections between stress and specific up-regulated genes and specific hormones and up-regulated genes during the SE induction phase. Some of the transcription factors have been knocked down using RNAi to show they are critical for SE induction (MtWUSCHEL, MtSERF1). SE research in M. truncatula has utilized high throughput transcriptomic and proteomic studies and the more detailed investigation of some individual genes. In this review, these studies are integrated to suggest a framework and timeline for some of the key events of SE induction in M. truncatula.
Collapse
Affiliation(s)
- Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, De-la-Peña C, Loyola-Vargas VM. Signaling Overview of Plant Somatic Embryogenesis. FRONTIERS IN PLANT SCIENCE 2019; 10:77. [PMID: 30792725 PMCID: PMC6375091 DOI: 10.3389/fpls.2019.00077] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/17/2019] [Indexed: 05/17/2023]
Abstract
Somatic embryogenesis (SE) is a means by which plants can regenerate bipolar structures from a somatic cell. During the process of cell differentiation, the explant responds to endogenous stimuli, which trigger the induction of a signaling response and, consequently, modify the gene program of the cell. SE is probably the most studied plant regeneration model, but to date it is the least understood due to the unclear mechanisms that occur at a cellular level. In this review, the authors seek to emphasize the importance of signaling on plant SE, highlighting the interactions between the different plant growth regulators (PGR), mainly auxins, cytokinins (CKs), ethylene and abscisic acid (ABA), during the induction of SE. The role of signaling is examined from the start of cell differentiation through the early steps on the embryogenic pathway, as well as its relation to a plant's tolerance of different types of stress. Furthermore, the role of genes encoded to transcription factors (TFs) during the embryogenic process such as the LEAFY COTYLEDON (LEC), WUSCHEL (WUS), BABY BOOM (BBM) and CLAVATA (CLV) genes, Arabinogalactan-proteins (AGPs), APETALA 2 (AP2) and epigenetic factors is discussed.
Collapse
Affiliation(s)
- Hugo A. Méndez-Hernández
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Maharshi Ledezma-Rodríguez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Randy N. Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Yary L. Juárez-Gómez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Analesa Skeete
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Johny Avilez-Montalvo
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
20
|
Santos IR, Maximiano MR, Almeida RF, da Cunha RNV, Lopes R, Scherwinski-Pereira JE, Mehta A. Genotype-dependent changes of gene expression during somatic embryogenesis in oil palm hybrids (Elaeis oleifera x E. guineensis). PLoS One 2018; 13:e0209445. [PMID: 30596686 PMCID: PMC6312368 DOI: 10.1371/journal.pone.0209445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
To understand the molecular processes triggered during the different steps of somatic embryogenesis (SE) in oil palm, the expression of 19 genes associated to SE identified in proteomic and transcriptomic studies was investigated by qRT-PCR. To evaluate the differential expression of these genes, two interspecific hybrid genotypes (Elaeis oleifera x Elaeis guineensis) contrasting for the acquisition of embryogenic competence were used. Aclorophyllated leaves of both hybrids, one responsive (B351733) and the other non-responsive (B352933) to SE were submitted to callus induction and collected at different time points: 0 (before induction), 14, 30, 90 and 150 days of callus induction (doi). The results obtained showed that all evaluated genes were downregulated at 14 doi in the responsive genotype when compared to the non-responsive. It was also possible to observe that most of the genes changed their expression behavior at 30 doi and were upregulated thereafter until 150 doi, with the exception of the pathogenesis-related PRB1-3-like (PRB1-3) gene, which did not show differential expression at 30 doi and was downregulated at 90 and 150 doi when compared to the non-responsive hybrid. These results indicate that 30 doi is a turning point in gene expression, probably associated to embryogenic competence acquisition. We also show that the expression behavior of the responsive genotype is more stable than that of the non-responsive when the different induction time points are compared to 0 doi (before induction). Moreover, the results obtained in this study corroborate our hypothesis that the regulation of genes involved in the control of oxidative stress and energy metabolism are crucial for the acquisition of embryogenic competence in oil palm.
Collapse
Affiliation(s)
- Ivonaldo Reis Santos
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Brasília—DF, Brazil
| | - Mariana Rocha Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Raphael Ferreira Almeida
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Programa de Pós-Graduação em Botânica, Universidade de Brasília, Brasília—DF, Brazil
| | | | | | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| |
Collapse
|
21
|
Zheng L, Ma J, Mao J, Fan S, Zhang D, Zhao C, An N, Han M. Genome-wide identification of SERK genes in apple and analyses of their role in stress responses and growth. BMC Genomics 2018; 19:962. [PMID: 30587123 PMCID: PMC6307271 DOI: 10.1186/s12864-018-5342-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Somatic embryogenesis receptor-like kinases (SERKs) are leucine-rich repeat receptor-like kinases associated with various signaling pathways. These kinases have a relationship with stress signals, and they are also believed to be important for regulating plant growth. However, information about this protein family in apple is limited. RESULTS Twelve apple SERK genes distributed across eight chromosomes were identified. These genes clustered into three distinct groups in a phylogenetic analysis. All of the encoded proteins contained typical SERK domains. The chromosomal locations, gene/protein structures, synteny, promoter sequences, protein-protein interactions, and physicochemical characteristics of MdSERK genes were analyzed. Bioinformatics analyses demonstrated that gene duplications have likely contributed to the expansion and evolution of SERK genes in the apple genome. Six homologs of SERK genes were identified between apple and Arabidopsis. Quantitative real-time PCR analyses revealed that the MdSERK genes showed different expression patterns in various tissues. Eight MdSERK genes were responsive to stress signals, such as methyl jasmonate, salicylic acid, abscisic acid, and salt (NaCl). The application of exogenous brassinosteroid and auxin increased the growth and endogenous hormone contents of Malus hupehensis seedlings. The expression levels of seven MdSERK genes were significantly upregulated by brassinosteroid and auxin. In addition, several MdSERK genes showed higher expression levels in standard trees of 'Nagafu 2' (CF)/CF than in dwarf trees of CF/'Malling 9' (M.9), and in CF than in the spur-type bud mutation "Yanfu 6" (YF). CONCLUSION This study represents the first comprehensive investigation of the apple SERK gene family. These data indicate that apple SERKs may function in adaptation to adverse environmental conditions and may also play roles in controlling apple tree growth.
Collapse
Affiliation(s)
- Liwei Zheng
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Jiangping Mao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Sheng Fan
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China. .,College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
22
|
Jiménez-Guillen D, Pérez-Pascual D, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ. Cloning of the Coffea canephora SERK1 promoter and its molecular analysis during the cell-to-embryo transition. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
23
|
Porras-Murillo R, Andrade-Torres A, Solís-Ramos LY. Expression analysis of two SOMATIC EMBRYOGENESIS RECEPTOR KINASE ( SERK) genes during in vitro morphogenesis in Spanish cedar ( Cedrela odorata L.). 3 Biotech 2018; 8:470. [PMID: 30456004 PMCID: PMC6223411 DOI: 10.1007/s13205-018-1492-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022] Open
Abstract
Somatic embryogenesis (SE) is one of the most important steps during regeneration, but the molecular mechanism of SE remains unclear for Cedrela odorata. SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) is one of the genes associated with induction of SE and is considered a marker of cells competent to form somatic embryos. Our objective was to clone and characterize the SERK1 and SERK2 gene homologues and analyze their expression patterns during in vitro morphogenesis in Spanish cedar. CoSERK1 and CoSERK2 were isolated from cedar, both share domains characteristic of the SERK family, including leucine-rich repeats, a proline-rich motif, a transmembrane domain, and kinase domains. Embryogenic cultures were established from callus cultures induced on medium supplemented with 1 mg/L dicamba. Histological sections were studied to determine the embryogenic nature of the samples. The CoSERK1 gene was highly expressed during the acquisition of embryogenic competence. The expression level of SERK1 was lower in non-embryogenic tissues and organs than in embryogenic calli, and it was higher in 3-week old embryogenic calli. CoSERK2 gene was highly expressed in leaves and shoots but no difference in expression was obtained between somatic and embryogenic tissues. These results suggest that the expression of CoSERK1 is associated with somatic embryogenesis induction and could be used as a potential marker to monitor the transition from competent to embryogenic cells and tissues in Spanish cedar.
Collapse
Affiliation(s)
- Romano Porras-Murillo
- Biotecnología de Plantas, Escuela de Biología, Universidad de Costa Rica, Sede Rodrigo Facio, San Pedro, Costa Rica
| | - Antonio Andrade-Torres
- Biotecnología y Ecología de Organismos Simbióticos, CA-173 Ecología y Manejo de la Biodiversidad, Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz Mexico
| | - Laura Y. Solís-Ramos
- Biotecnología de Plantas, Escuela de Biología, Universidad de Costa Rica, Sede Rodrigo Facio, San Pedro, Costa Rica
| |
Collapse
|
24
|
Pérez-Pascual D, Jiménez-Guillen D, Villanueva-Alonzo H, Souza-Perera R, Godoy-Hernández G, Zúñiga-Aguilar JJ. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. PHYSIOLOGIA PLANTARUM 2018; 163:530-551. [PMID: 29607503 DOI: 10.1111/ppl.12709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 05/28/2023]
Abstract
Somatic embryogenesis receptor-like kinase 1 (SERK1) is a membrane receptor that might serve as common co-regulator of plant cell differentiation processes by forming heterodimers with specific receptor-like kinases. The Coffea canephora SERK1 homolog (CcSERK1) was cloned in this work, and its early function in the transcription of embryogenesis master genes and of genes encoding proteins involved in auxin metabolism was investigated by externally manipulating its expression in embryogenic leaf explants, before the appearance of embryogenic structures. Overexpression of CcSERK1 early during embryogenesis caused an increase in the number of somatic embryos when the 55-day process was completed. Suppression of CcSERK1 expression by RNA interference almost abolished somatic embryogenesis. Real time-PCR experiments revealed that the transcription of the CcAGL15, CcWUS, CcBBM, CcPKL, CcYUC1, CcPIN1 and CcPIN4 homologs was modified in direct proportion to the expression of CcSERK1 and that only CcLEC1 was inversely affected by the expression levels of CcSERK1. The expression of the CcYUC4 homolog was induced to more than 80-fold under CcSERK1 overexpression conditions, but it was also induced when CcSERK1 expression was silenced. The level of CcTIR1 was not affected by CcSERK1 overexpression but was almost abolished during CcSERK1 silencing. These results suggest that CcSERK1 co-regulates the induction of somatic embryogenesis in Coffea canephora by early activation of YUC-dependent auxin biosynthesis, auxin transport mediated by PIN1 and PIN4, and probably auxin perception by the TIR1 receptor, leading to the induction of early-stage homeotic genes (CcAGL15, CcWUS, CcPKL and CcBBM) and repression of late-stage homeotic genes (CcLec1).
Collapse
Affiliation(s)
- Daniel Pérez-Pascual
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Doribet Jiménez-Guillen
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Hernán Villanueva-Alonzo
- Current address: Centro de Investigaciones Regionales, Dr. Hideyo Noguchi, Mérida, Yucatán, Mexico
| | - Ramón Souza-Perera
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | - Gregorio Godoy-Hernández
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Mérida, Yucatán, Mexico
| | | |
Collapse
|
25
|
Histological Analysis of the Developmental Stages of Direct Somatic Embryogenesis Induced from In Vitro Leaf Explants of Date Palm. Methods Mol Biol 2018. [PMID: 28755343 DOI: 10.1007/978-1-4939-7156-5_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Somatic embryogenesis is an ideal technique for the micropropagation of date palm using different explant tissue; however, histological studies describing the ontogenesis of plant regeneration are limited. This chapter provides a simple protocol for the histological analysis of the successive developmental stages of direct somatic embryogenesis induced from in vitro leaf explants. Direct somatic embryos are obtained from Murashige and Skoog (MS) medium containing 2 mg/L 6-benzylaminopurine. In order to observe the different developmental stages, histological analysis is carried out on samples at 15-day intervals for 60 days. Samples are fixed in formalin acetic alcohol and embedded in paraffin wax. Stain serial transverse and longitudinal sections, 8 μm thick, are stained with safranin-Fast Green. After 15 days on the induction medium, somatic embryos exhibit multicellular origin directly from the procambium cells, whereas the mesophyll and the epidermal cells are not involved in this process. After 2 months, several developmental stages (pre-globular, globular, early bipolar, bipolar, and cotyledonary-shaped) are observed. These embryos germinate after transferring to MS medium without plant growth regulators and rooting on 2 mg/L NAA-containing medium resulting in complete plantlets.
Collapse
|
26
|
da Cunha Soares T, da Silva CRC, Chagas Carvalho JMF, Cavalcanti JJV, de Lima LM, de Albuquerque Melo Filho P, Severino LS, Dos Santos RC. Validating a probe from GhSERK1 gene for selection of cotton genotypes with somatic embryogenic capacity. J Biotechnol 2018; 270:44-50. [PMID: 29427607 DOI: 10.1016/j.jbiotec.2018.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/11/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Substantial progress is being reported in the techniques for plant transformation, but successful regeneration of some genotypes remains a challenging step in the attempts to transform some recalcitrant species. GhSERK1 gene is involved on embryo formation, and its overexpression enhances the embryogenic competence. In this study we validate a short GhSERK1 probe in order to identify embryogenic cotton genotypes using RT-qPCR and blotting assays. Cotton genotypes with contrasting somatic embryogenic capacity were tested using in vitro procedures. High expression of transcripts was found in embryogenic genotypes, and the results were confirmed by the RT-PCR-blotting using a non-radioactive probe. The regeneration ability was confirmed in embryogenic genotypes. We confirmed that GhSERK1 can be used as marker for estimating the somatic embryogenesis ability of cotton plants.
Collapse
Affiliation(s)
- Taiza da Cunha Soares
- Post-Graduation in Biotechnology, Renorbio/ Federal Rural University of Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Carliane Rebeca Coelho da Silva
- Post-Graduation in Biotechnology, Renorbio/ Federal Rural University of Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | | | | | - Liziane Maria de Lima
- Biotechnology Laboratory, Embrapa Algodão, Rua Osvaldo Cruz, 1143 - Centenário, 58428-095, Campina Grande, Paraíba, Brazil
| | - Péricles de Albuquerque Melo Filho
- Post-Graduation in Biotechnology, Renorbio/ Federal Rural University of Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, 52171-900, Recife, Pernambuco, Brazil
| | - Liv Soares Severino
- Biotechnology Laboratory, Embrapa Algodão, Rua Osvaldo Cruz, 1143 - Centenário, 58428-095, Campina Grande, Paraíba, Brazil
| | - Roseane Cavalcanti Dos Santos
- Biotechnology Laboratory, Embrapa Algodão, Rua Osvaldo Cruz, 1143 - Centenário, 58428-095, Campina Grande, Paraíba, Brazil.
| |
Collapse
|
27
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt S. Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula. Methods Mol Biol 2018; 1822:291-314. [PMID: 30043311 DOI: 10.1007/978-1-4939-8633-0_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Changes in global climate and the nonstop increase in demographic pressure have provoked a stronger demand for agronomic resources at a time where land suitable for agriculture is becoming a rare commodity. They have also generated a number of abiotic stresses which exacerbate effects of diseases and pests and result in physiological and metabolic disorders that ultimately impact on yield when and where it is most needed. Therefore, a major scientific and agronomic challenge today is that of understanding and countering the impact of stress on yield. In this respect, in vitro biotechnology would be an efficient and feasible breeding alternative, particularly now that the genetic and genomic tools needed to unravel the mechanisms underlying the acquisition of tolerance to stress have become available. Legumes in general play a central role in a sustainable agriculture due to their capacity to symbiotically fix the atmospheric nitrogen, thereby reducing the need for fertilizers. They also produce grains that are rich in protein and thus are important as food and feed. However, they also suffer from abiotic stresses in general and osmotic stress and salinity in particular. This chapter provides a detailed overview of the methods employed for in vitro selection in the model legume Medicago truncatula for the generation of novel germplasm capable of resisting NaCl- and PEG-induced osmotic stress. We also address the understanding of the genetic determinism in the acquisition of stress resistance, which differs between NaCl and PEG. Thus, the expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1) proline synthesis (P5CS), and ploidy level and cell cycle (CCS52 and WEE1) was upregulated under NaCl stress, while under PEG treatment the expression of MtWEE1 and MtCCS52 was significantly increased, but no significant differences were observed in the expression of genes MtSERK1 and MtP5CS, and MtSOS1 was downregulated. A number of morphological and physiological traits relevant to the acquisition of stress resistance were also assessed, and methods used to do so are also detailed.
Collapse
Affiliation(s)
- Adel M Elmaghrabi
- Biotechnology Research Center (BTRC), Tripoli, Libya
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | - Sergio Ochatt
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
28
|
Díaz-Sala C. Molecular Dissection of the Regenerative Capacity of Forest Tree Species: Special Focus on Conifers. FRONTIERS IN PLANT SCIENCE 2018; 9:1943. [PMID: 30687348 PMCID: PMC6333695 DOI: 10.3389/fpls.2018.01943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/13/2018] [Indexed: 05/21/2023]
Abstract
Somatic embryogenesis (SE) and organogenesis have become leading biotechnologies for forest tree improvement and the implementation of multi-varietal forestry. Despite major advances in clonal propagation using these technologies, many forest tree species, such as conifers, show a low regeneration capacity. Developmental factors such as genotype, the type and age of the explant or tissue, and the age and maturity of the mother tree are limiting factors for the success of propagation programs. This review summarizes recent research on the molecular pathways involved in the regulation of key steps in SE and organogenesis of forest tree species, mainly conifers. The interaction between auxin and stress conditions, the induction of cell identity regulators and the role of cell wall remodeling are reviewed. This information is essential to develop tools and strategies to improve clonal propagation programs for forest tree species.
Collapse
|
29
|
Song Y, He L, Wang XD, Smith N, Wheeler S, Garg ML, Rose RJ. Regulation of Carbon Partitioning in the Seed of the Model Legume Medicago truncatula and Medicago orbicularis: A Comparative Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:2070. [PMID: 29312368 PMCID: PMC5733034 DOI: 10.3389/fpls.2017.02070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 05/20/2023]
Abstract
The proportion of starch, protein and oil in legume seeds is species dependent. The model legume, Medicago truncatula, has predominantly oil and protein stores. To investigate the regulation of seed oil production we compared M. truncatula with M. orbicularis, which has less oil and protein. The types of protein and fatty acids are similar between the two species. Electron microscopy indicated that the size and distribution of the oil bodies in M. orbicularis, is consistent with reduced oil production. M. orbicularis has more extruded endosperm mucilage compared to M. truncatula. The cotyledons have a greater cell wall content, visualized as thicker cell walls. The reduced oil content in M. orbicularis is associated with increased expression of the MtGLABRA2-like (MtGL2) transcription factor, linked to an inverse relationship between mucilage and oil content in Arabidopsis. The expression of the pectin biosynthesis GALACTURONOSYLTRANSFERASE (GAUT) genes, is also increased in M. orbicularis. These increases in extruded mucilage and cell wall storage components in M. orbicularis are accompanied by reduced expression of transcriptional regulators of oil biosynthesis, MtLEAFY COTYLEDON1-LIKE (MtL1L), MtABSCISIC ACID-INSENSITIVE3 (MtABI3), and MtWRINKLED-like (MtWRI), in M. orbicularis. The reduced oil in M. orbicularis, is consistent with increased synthesis of cell wall polysaccharides and decreased expression of master transcription factors regulating oil biosynthesis and embryo maturation. Comparative investigations between these two Medicago species is a useful system to investigate the regulation of oil content and carbon partitioning in legumes.
Collapse
Affiliation(s)
- Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Liang He
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xin-Ding Wang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Nathan Smith
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Simon Wheeler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Manohar L. Garg
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Ray J. Rose
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
30
|
Zhou X, Zheng R, Liu G, Xu Y, Zhou Y, Laux T, Zhen Y, Harding SA, Shi J, Chen J. Desiccation Treatment and Endogenous IAA Levels Are Key Factors Influencing High Frequency Somatic Embryogenesis in Cunninghamia lanceolata (Lamb.) Hook. FRONTIERS IN PLANT SCIENCE 2017; 8:2054. [PMID: 29259612 PMCID: PMC5723420 DOI: 10.3389/fpls.2017.02054] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/16/2017] [Indexed: 05/12/2023]
Abstract
Cunninghamia lanceolata (Lamb.) Hook (Chinese fir) is an important tree, commercially and ecologically, in southern China. The traditional regenerating methods are based on organogenesis and cutting propagation. Here, we report the development of a high-frequency somatic embryogenesis (SE) regeneration system synchronized via a liquid culture from immature zygotic embryos. Following synchronization, PEM II cell aggregates were developmentally equivalent in appearance to cleaved zygotic embryos. Embryo and suspensor growth and subsequent occurrence of the apical and then the cotyledonary meristems were similar for zygotic and SE embryo development. However, SE proembryos exhibited a more reddish coloration than zygotic proembryos, and SE embryos were smaller than zygotic embryos. Mature somatic embryos gave rise to plantlets on hormone-free medium. For juvenile explants, low concentrations of endogenous indole-3-acetic acid in initial explants correlated with improved proembryogenic mass formation, and high SE competency. Analysis of karyotypes and microsatellites detected no major genetic variation in the plants regenerated via SE, and suggest a potential in the further development of this system as a reliable methodology for true-to-type seedling production. Treatment with polyethylene glycol (PEG) and abscisic acid (ABA) were of great importance to proembryo formation and complemented each other. ABA assisted the growth of embryonal masses, whereas PEG facilitated the organization of the proembryo-like structures. SOMATIC EMBRYOGENESIS RECEPTOR KINASE SERK) and the WUSCHEL homeobox (WOX) transcription factor served as molecular markers during early embryogenesis. Our results show that ClSERKs are conserved and redundantly expressed during SE. SERK and WOX transcript levels were highest during development of the proembryos and lowest in developed embryos. ClWOX13 expression correlates with the critical transition from proembryogenic masses to proembryos. Both SERK and WOX expression reveal their applicability in Chinese fir as markers of early embryogenesis. Overall, the findings provided evidence for the potential of this system in high fidelity Chinese fir seedlings production. Also, SE modification strategies were demonstrated and could be applied in other conifer species on the basis of our hormonal, morphological and molecular analyses.
Collapse
Affiliation(s)
- Xiaohong Zhou
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Renhua Zheng
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, State Forestry Administration Engineering Research Center of Chinese Fir, Fujian Academy of Forestry, Fuzhou, China
| | - Guangxin Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yang Xu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Yanwei Zhou
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Thomas Laux
- Centre for Biological Signaling Studies, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Yan Zhen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Scott A. Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep 2017; 7:12368. [PMID: 28959050 PMCID: PMC5620050 DOI: 10.1038/s41598-017-10038-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023] Open
Abstract
Somatic embryogenesis receptor kinases (SERKs) belong to a small gene family of receptor-like kinases involved in signal transduction. A total of 54 genes were shortlisted from the wheat genome survey sequence of which 5 were classified as SERKs and 49 were identified as SERK-like (SERLs). Tissue- specific expression of TaSERKs at major developmental stages of wheat corroborates their indispensable role during somatic and zygotic embryogenesis. TaSERK transcripts show inherent differences in their hormonal sensitivities, i.e. TaSERK2 and TaSERK3 elicits auxin- specific responses while TaSERK1, 4 and 5 were more specific towards BR-mediated regulation. The ectopic expression of TaSERK1, 2, 3, 4 and 5 in Arabidopsis led to enhanced plant height, larger silique size and increased seed yield. Zygotic embryogenesis specific genes showed a differential pattern in TaSERK Arabidopsis transgenics specifically in the silique tissues. Elongated hypocotyls and enhanced root growth were observed in the overexpression transgenic lines of all five TaSERKs. The inhibitory action of auxin and brassinosteroid in all the TaSERK transgenic lines indicates their role in regulating root development. The results obtained imply redundant functions of TaSERKs in maintaining plant growth and development.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Plant Molecular Biology, University of Delhi, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, New Delhi, 110021, India.
| |
Collapse
|
32
|
Oliveira EJ, Koehler AD, Rocha DI, Vieira LM, Pinheiro MVM, de Matos EM, da Cruz ACF, da Silva TCR, Tanaka FAO, Nogueira FTS, Otoni WC. Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon. PROTOPLASMA 2017; 254:2017-2034. [PMID: 28290060 DOI: 10.1007/s00709-017-1089-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 05/25/2023]
Abstract
The wild grass species Brachypodium distachyon (L.) has been proposed as a new model for temperate grasses. Among the biotechnological tools already developed for the species, an efficient induction protocol of somatic embryogenesis (SE) using immature zygotic embryos has provided the basis for genetic transformation studies. However, a systematic work to better understanding the basic cellular and molecular mechanisms that underlie the SE process of this grass species is still missing. Here, we present new insights at the morpho-histological, histochemical, and molecular aspects of B. distachyon SE pathway. Somatic embryos arose from embryogenic callus formed by cells derived from the protodermal-dividing cells of the scutellum. These protodermal cells showed typical meristematic features and high protein accumulation which were interpreted as the first observable steps towards the acquisition of a competent state. Starch content decreased along embryogenic callus differentiation supporting the idea that carbohydrate reserves are essential to morphogenetic processes. Interestingly, starch accumulation was also observed at late stages of SE process. Searches in databanks revealed three sequences available annotated as BdSERK, being two copies corresponding to SERK1 and one showing greater identity to SERK2. In silico analysis confirmed the presence of characteristic domains in a B. distachyon Somatic Embryogenesis Receptor Kinase genes candidates (BdSERKs), which suggests SERK functions are conserved in B. distachyon. In situ hybridization demonstrated the presence of transcripts of BdSERK1 in all development since globular until scutellar stages. The results reported in this study convey important information about the morphogenetic events in the embryogenic pathway which has been lacking in B. distachyon. This study also demonstrates that B. distachyon provides a useful model system for investigating the genetic regulation of SE in grass species.
Collapse
Affiliation(s)
- Evelyn Jardim Oliveira
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Andréa Dias Koehler
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Diego Ismael Rocha
- Instituto de Biociências, Universidade Federal de Goiás, Regional Jataí, BR 364, km 195, 75801-615, Jataí, GO, Brazil
| | - Lorena Melo Vieira
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Marcos Vinícius Marques Pinheiro
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Elyabe Monteiro de Matos
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Ana Claudia Ferreira da Cruz
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Thais Cristina Ribeiro da Silva
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Francisco André Ossamu Tanaka
- Departamento de Fitopatologia e Nematologia, Universidade de São Paulo/ESALQ, Av. Pádua Dias, 13418-900, Piracicaba, SP, Brazil
| | - Fabio Tebaldi Silveira Nogueira
- Laboratorio de Genética Molecular do Desenvolvimento Vegetal (LGMDV), Universidade de São Paulo/ESALQ, Av. Pádua Dias, 13418-900, Piracicaba, SP, Brazil.
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos/BIOAGRO, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Avenida P. H. Rolfs s/n, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
33
|
Ligaba-Osena A, Fei Z, Liu J, Xu Y, Shaff J, Lee SC, Luan S, Kudla J, Kochian L, Piñeros M. Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis. THE NEW PHYTOLOGIST 2017; 214:830-841. [PMID: 28150888 DOI: 10.1111/nph.14420] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/01/2016] [Indexed: 05/11/2023]
Abstract
Despite the physiological importance of aluminum (Al) phytotoxicity for plants, it remained unknown if, and how, calcineurin B-like calcium sensors (CBLs) and CBL-interacting protein kinases (CIPKs) are involved in Al resistance. We performed a comparative physiological and whole transcriptome investigation of an Arabidopsis CBL1 mutant (cbl1) and the wild-type (WT). cbl1 plants exudated less Al-chelating malate, accumulated more Al, and displayed a severe root growth reduction in response to Al. Genes involved in metabolism, transport, cell wall modification, transcription and oxidative stress were differentially regulated between the two lines, under both control and Al stress treatments. Exposure to Al resulted in up-regulation of a large set of genes only in WT and not cbl1 shoots, while a different set of genes were down-regulated in cbl1 but not in WT roots. These differences allowed us, for the first time, to define a calcium-regulated/dependent transcriptomic network for Al stress responses. Our analyses reveal not only the fundamental role of CBL1 in the adjustment of central transcriptomic networks involved in maintaining adequate physiological homeostasis processes, but also that a high shoot-root dynamics is required for the proper deployment of Al resistance responses in the root.
Collapse
Affiliation(s)
- Ayalew Ligaba-Osena
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jiping Liu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Jon Shaff
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Sung-Chul Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Jörg Kudla
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 7, 48149, Münster, Germany
| | - Leon Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Miguel Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS, Vaganan MM, Muthusamy M, Sajith KP. Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine. PLANT CELL REPORTS 2017; 36:163-178. [PMID: 27807644 DOI: 10.1007/s00299-016-2067-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 05/22/2023]
Abstract
Endogenous hormone secretion proteins along with stress and defense proteins play predominant role in banana embryogenesis. This study reveals the underlying molecular mechanism during transition from vegetative to embryogenic state. Banana (Musa spp.) is well known globally as a food fruit crop for millions. The requirement of quality planting material of banana is enormous. Although mass multiplication through tissue culture is in vogue, high-throughput techniques like somatic embryogenesis (SE) as a mass multiplication tool needs to be improved. Apart from clonal propagation, SE has extensive applications in genetic improvement and mutation. SE in banana is completely genome-dependent and most of the commercial cultivars exhibit recalcitrance. Thus, understanding the molecular basis of embryogenesis in Musa will help to develop strategies for mass production of quality planting material. In this study, differentially expressed proteins between embryogenic calli (EC) and non-embryogenic calli (NEC) with respect to the explant, immature male flower buds (IMFB), of cv. Grand Naine (AAA) were determined using two-dimensional gel electrophoresis (2DE). The 2DE results were validated through qRT-PCR. In total, 65 proteins were identified: 42 were highly expressed and 23 were less expressed in EC compared to NEC and IMFB. qRT-PCR analysis of five candidate proteins, upregulated in EC, were well correlated with expression at transcript level. Further analysis of proteins showed that embryogenesis in banana is associated with the control of oxidative stress. The regulation of ROS scavenging system and protection of protein structure occurred in the presence of heat shock proteins. Alongside, high accumulation of stress-related cationic peroxidase and plant growth hormone-related proteins like indole-3-pyruvate monooxygenase and adenylate isopentenyltransferase in EC revealed the association with the induction of SE.
Collapse
Affiliation(s)
- Marimuthu Kumaravel
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Subbaraya Uma
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India.
| | - Suthanthiram Backiyarani
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Marimuthu Somasundaram Saraswathi
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Muthu Mayil Vaganan
- Crop Protection Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Muthusamy Muthusamy
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| | - Kallu Purayil Sajith
- Crop Improvement Division, ICAR, National Research Centre for Banana, Thogamalai Main Road, Thayanoor Post, Tiruchirappalli, 102, Tamil Nadu, India
| |
Collapse
|
35
|
BEN MAHMOUD K, JEDIDI E, DELPORTE F, MUHOVSKI Y, JEMMALI A, DRUART P. Molecular investigations of the somatic embryogenesis recalcitrancein the cherry (Prunus cerasus L.) rootstock CAB 6P. Turk J Biol 2017. [DOI: 10.3906/biy-1604-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
36
|
Regeneration-Based Quantification of Coumarins (Scopoletin and Scoparone) in Abutilon indicum In Vitro Cultures. Appl Biochem Biotechnol 2016; 180:766-779. [DOI: 10.1007/s12010-016-2131-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
37
|
Kisiel A, Kępczyńska E. Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. PLANTA 2016; 243:1169-89. [PMID: 26861677 PMCID: PMC4837224 DOI: 10.1007/s00425-016-2469-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/14/2016] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION The present study showed all the 16 strains isolated and identified from the alfalfa rhizosphere and nodules, and registered in GenBank, to be good candidates for targeted use in studies addressing the rather weak known mechanism of plant growth promotion, including that of Medicago truncatula, a molecular crop model. Based on physiological, biochemical and molecular analysis, the 16 isolates obtained were ascribed to the following five families: Bacillaceae, Rhizobiaceae, Xantomonadaceae, Enterobacteriaceae and Pseudomonadaceae, within which 9 genera and 16 species were identified. All these bacteria were found to significantly enhance fresh and dry weight of root, shoots and whole 5-week-old seedlings. The bacteria were capable of the in vitro use of tryptophan to produce indolic compounds at various concentrations. The ability of almost all the strains to enhance growth of seedlings and individual roots was positively correlated with the production of the indolic compounds (r = 0.69; P = 0.0001), but not with the 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity (no correlation). For some strains, it was difficult to conclude whether the growth promotion was related to the production of indolic compounds or to the ACCD activity. It is likely that promotion of M. truncatula root development involves also root interaction with pseudomonads, known to produce 2,4-diacetylphloroglucinol (DAPG), a secondary metabolite reported to alter the root architecture by interacting with an auxin-dependent signaling pathway. Inoculation of seedlings with Pseudomonas brassicacearum KK 5, a bacterium known for its lowest ability to produce indolic compounds, the highest ACCD activity and the presence of the phlD gene responsible for DAPG precursor synthesis, resulted in a substantial promotion of root development. Inoculation with the strain increased the endogenous IAA level in M. truncatula leaves after inoculation of 5-week-old seedlings. Three other strains examined in this study also increased the IAA level in the leaves upon inoculation. Moreover, several other factors such as mobilization of phosphorus and zinc to make them available to plants, iron sequestration by siderophore production and the ability to ammonia production also contributed substantially to the phytostimulatory biofertilizing potential of isolated strains. There is, thus, evidence that Medicago truncatula growth promotion by rhizobacteria involves more than one mechanism.
Collapse
Affiliation(s)
- Anna Kisiel
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Ewa Kępczyńska
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
38
|
Indoliya Y, Tiwari P, Chauhan AS, Goel R, Shri M, Bag SK, Chakrabarty D. Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies. Sci Rep 2016; 6:23050. [PMID: 26973288 PMCID: PMC4789791 DOI: 10.1038/srep23050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.
Collapse
Affiliation(s)
- Yuvraj Indoliya
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Poonam Tiwari
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Abhisekh Singh Chauhan
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Ridhi Goel
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Manju Shri
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India
| | - Sumit Kumar Bag
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow-226001, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi-110 001, India
| |
Collapse
|
39
|
Rocha DI, Pinto DLP, Vieira LM, Tanaka FAO, Dornelas MC, Otoni WC. Cellular and molecular changes associated with competence acquisition during passion fruit somatic embryogenesis: ultrastructural characterization and analysis of SERK gene expression. PROTOPLASMA 2016; 253:595-609. [PMID: 26008651 DOI: 10.1007/s00709-015-0837-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/17/2015] [Indexed: 05/18/2023]
Abstract
The integration of cellular and molecular data is essential for understanding the mechanisms involved in the acquisition of competence by plant somatic cells and the cytological changes that underlie this process. In the present study, we investigated the dynamics and fate of Passiflora edulis Sims cotyledon explants that were committed to somatic embryogenesis by characterizing the associated ultrastructural events and analysing the expression of a putative P. edulis ortholog of the Somatic Embryogenesis Receptor-like Kinase (SERK) gene. Embryogenic calli were obtained from zygotic embryo explants cultured on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine. Callus formation was initiated by the division of cells derived from the protodermal and subprotodermal cells on the abaxial side of the cotyledons. The isodiametric protodermal cells of the cotyledon explants adopted a columnar shape and became meristematic at the onset of PeSERK expression, which was not initially detected in explant cells. Therefore, we propose that these changes represent the first observable steps towards the acquisition of a competent state within this regeneration system. PeSERK expression was limited to the early stages of somatic embryogenesis; the expression of this gene was confined to proembryogenic zones and was absent in the embryos after the globular stage. Our data also demonstrated that the dynamics of the mobilization of reserve compounds correlated with the differentiation of the embryogenic callus.
Collapse
Affiliation(s)
- Diego Ismael Rocha
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil
| | - Daniela Lopes Paim Pinto
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, Pisa, TC, 56127, Italy
| | - Lorena Melo Vieira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs, Viçosa, MG, 36570-900, Brazil
| | - Francisco André Ossamu Tanaka
- Departamento de Fitopatologia e Nematologia, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Agricultura, Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Marcelo Carnier Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs, Viçosa, MG, 36570-900, Brazil.
- Departamento de Biologia Vegetal, Laboratório de Cultura de Tecidos/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs s/n, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
40
|
Pilarska M, Malec P, Salaj J, Bartnicki F, Konieczny R. High expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE coincides with initiation of various developmental pathways in in vitro culture of Trifolium nigrescens. PROTOPLASMA 2016; 253:345-55. [PMID: 25876517 PMCID: PMC4783438 DOI: 10.1007/s00709-015-0814-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/26/2015] [Indexed: 05/22/2023]
Abstract
The aim of this study was to identify and examine the expression pattern of the ortholog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE gene from Trifolium nigrescens (TnSERK) in embryogenic and non-regenerative cultures of immature cotyledonary-stage zygotic embryos (CsZEs). In the presence of 1-naphthaleneacetic acid and N(6)-[2-isopentenyl]-adenine, the CsZE regenerated embryoids directly and in a lengthy culture produced callus which was embryogenic or remained non-regenerative. As revealed by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), the TnSERK was expressed in both embryogenic and non-regenerative cultures, but the expression level was significantly higher in embryogenic ones. An in situ RNA hybridization assay revealed that the expression of TnSERK preceded the induction of cell division in explants, and then, it was maintained exclusively in actively dividing cells from which embryoids, embryo-like structures (ELSs), callus or tracheary elements were produced. However, the cells involved in different morphogenic events differed in intensity of hybridization signal which was the highest in embryogenic cells. The TnSERK was up-regulated during the development of embryoids, but in cotyledonary embryos, it was preferentially expressed in the regions of the apical meristems. The occurrence of morphological and anatomical abnormalities in embryoid development was preceded by a decline in TnSERK expression, and this coincided with the parenchymatization of the ground tissue in developing ELSs. TnSERK was also down-regulated during the maturation of parenchyma and xylem elements in CsZE and callus. Altogether, these data suggest the involvement of TnSERK in the induction of various developmental programs related to differentiation/transdifferentiation and totipotent state of cell(s).
Collapse
Affiliation(s)
- Maria Pilarska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Jan Salaj
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, 950-07, Nitra, Slovak Republic
| | - Filip Bartnicki
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Robert Konieczny
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
41
|
Ahmadi B, Masoomi-Aladizgeh F, Shariatpanahi ME, Azadi P, Keshavarz-Alizadeh M. Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: implication for microspore embryogenesis and plant regeneration. PLANT CELL REPORTS 2016; 35:185-93. [PMID: 26449417 DOI: 10.1007/s00299-015-1878-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/12/2015] [Accepted: 09/29/2015] [Indexed: 05/19/2023]
Abstract
The BnSERK1 and BnSERK2 are involved in the process of microspore embryogenesis induction, development, and plantlet regeneration. Little is known about regulatory role of somatic embryogenesis-related kinase (SERK) genes family in the induction of microspore embryogenesis, development and plant regeneration. In this study, the expression of two SERK genes (SERK1 and SERK2) was assessed during the microspore embryogenesis and plantlet regeneration in Brassica napus L. The BnSERK1 was severely up-regulated 1-5 days following microspore culture and its expression drastically decreased in the globular-heart and also torpedo staged microspore-derived embryos (MDEs). In addition, high levels of BnSERK1 transcript were detected in the MDE maturation phase and in the roots and shoots of the regenerated plantlets which indicates a broader role(s) of BnSERK1 in the organ formation, rather than being specific to the embryogenesis. Results of partial sequencing indicated that the BnSERK1 shares a conserved serine-threonine kinase catalytic domain and exhibited 95 % similarity with AtSERK1, CsSERK1, BrSERK1, NaSERK1, and NbSERK1. A steady increase in the expression of BnSERK2 was observed during the MDE initiation and development so that, the highest expression was noted in the MDE maturation phase i.e., late cotyledonary MDEs. Our results also indicated low amounts of BnSERK2 transcript at the onset of rhyzogenesis but significantly higher expression in the developing roots. In contrast, the BnSERK2 strongly up-regulated during the both initially and developed shoots. The BnSERK2 shares highly conserved LRR-RLK domain when compared with different species tested so that, high homology (100 %) was noticed with BrSERK2. Based on our findings, MDE formation and plantlet regeneration seem to be correlated with both BnSERK1 and BnSERK2 expression.
Collapse
Affiliation(s)
- Behzad Ahmadi
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| | - Farhad Masoomi-Aladizgeh
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| | - Mehran E Shariatpanahi
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran.
| | - Pejman Azadi
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| | - Mehdi Keshavarz-Alizadeh
- Department of Tissue Culture and Gene Transformation, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, 3135933151, Karaj, Iran
| |
Collapse
|
42
|
Kou Y, Yuan C, Zhao Q, Liu G, Nie J, Ma Z, Cheng C, Teixeira da Silva JA, Zhao L. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-Like Bodies by Changing Incipient Cell Fate. FRONTIERS IN PLANT SCIENCE 2016; 7:557. [PMID: 27200031 PMCID: PMC4855734 DOI: 10.3389/fpls.2016.00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/11/2016] [Indexed: 05/23/2023]
Abstract
Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.
Collapse
Affiliation(s)
- Yaping Kou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Cunquan Yuan
- National Engineering Research Center for Floriculture, Beijing Forestry UniversityBeijing, China
| | - Qingcui Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Jing Nie
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Zhimin Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | - Chenxia Cheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
| | | | - Liangjun Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural UniversityBeijing, China
- *Correspondence: Liangjun Zhao,
| |
Collapse
|
43
|
Abstract
Somatic embryogenesis involves a broad repertoire of genes, and complex expression patterns controlled by a concerted gene regulatory network. The present work describes this regulatory network focusing on the main aspects involved, with the aim of providing a deeper insight into understanding the total reprogramming of cells into a new organism through a somatic way. To the aim, the chromatin remodeling necessary to totipotent stem cell establishment is described, as the activity of numerous transcription factors necessary to cellular totipotency reprogramming. The eliciting effects of various plant growth regulators on the induction of somatic embryogenesis is also described and put in relation with the activity of specific transcription factors. The role of programmed cell death in the process, and the related function of specific hemoglobins as anti-stress and anti-death compounds is also described. The tools for biotechnology coming from this information is highlighted in the concluding remarks.
Collapse
|
44
|
Min L, Hu Q, Li Y, Xu J, Ma Y, Zhu L, Yang X, Zhang X. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 Network Regulates Somatic Embryogenesis by Regulating Auxin Homeostasis. PLANT PHYSIOLOGY 2015; 169:2805-21. [PMID: 26491146 PMCID: PMC4677921 DOI: 10.1104/pp.15.01480] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/21/2015] [Indexed: 05/19/2023]
Abstract
Somatic embryogenesis (SE) is an efficient tool for the propagation of plant species and also, a useful model for studying the regulatory networks in embryo development. However, the regulatory networks underlying the transition from nonembryogenic callus to somatic embryos during SE remain poorly understood. Here, we describe an upland cotton (Gossypium hirsutum) CASEIN KINASE I gene, GhCKI, which is a unique key regulatory factor that strongly affects SE. Overexpressing GhCKI halted the formation of embryoids and plant regeneration because of a block in the transition from nonembryogenic callus to somatic embryos. In contrast, defective GhCKI in plants facilitated SE. To better understand the mechanism by which GhCKI regulates SE, the regulatory network was analyzed. A direct upstream negative regulator protein, cotton LEAFY COTYLEDON1, was identified to be targeted to a cis-element, CTTTTC, in the promoter of GhCKI. Moreover, GhCKI interacted with and phosphorylated cotton CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF transcription factor15 by coordinately regulating the expression of cotton PHYTOCHROME INTERACTING FACTOR4, finally disrupting auxin homeostasis, which led to increased cell proliferation and aborted somatic embryo formation in GhCKI-overexpressing somatic cells. Our results show a complex process of SE that is negatively regulated by GhCKI through a complex regulatory network.
Collapse
Affiliation(s)
- Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
45
|
Proteomic Analysis of Immature Fraxinus mandshurica Cotyledon Tissues during Somatic Embryogenesis: Effects of Explant Browning on Somatic Embryogenesis. Int J Mol Sci 2015; 16:13692-713. [PMID: 26084048 PMCID: PMC4490518 DOI: 10.3390/ijms160613692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
Manchurian ash (Fraxinus mandshurica Rupr.) is a valuable hardwood species in Northeast China. In cultures of F. mandshurica, somatic embryos were produced mainly on browned explants. Therefore, we studied the mechanism of explant browning and its relationship with somatic embryogenesis (SE). We used explants derived from F. mandshurica immature zygotic embryo cotyledons as materials. Proteins were extracted from browned embryogenic explants, browned non-embryogenic explants, and non-brown explants, and then separated by 2-dimensional electrophoresis. Differentially and specifically expressed proteins were analyzed by mass spectrometry to identify proteins involved in the browning of explants and SE. Some stress response and defense proteins such as chitinases, peroxidases, aspartic proteinases, and an osmotin-like protein played important roles during SE of F. mandshurica. Our results indicated that explant browning might not be caused by the accumulation and oxidation of polyphenols only, but also by some stress-related processes, which were involved in programmed cell death (PCD), and then induced SE.
Collapse
|
46
|
Li Q, Zhang S, Wang J. Transcriptomic and proteomic analyses of embryogenic tissues in Picea balfouriana treated with 6-benzylaminopurine. PHYSIOLOGIA PLANTARUM 2015; 154:95-113. [PMID: 25200684 DOI: 10.1111/ppl.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 05/22/2023]
Abstract
The cytokinin 6-benzylaminopurine (6-BAP) influences the embryogenic capacity of the tissues of Picea balfouriana during long subculture (after 3 months). Tissues that proliferate in 3.6 and 5 µM 6-BAP exhibit the highest and lowest embryogenic capacity, respectively, generating 113 ± 6 and 23 ± 3 mature embryos per 100 mg of tissue. In this study, a comparative transcriptomic and proteomic approach was applied to characterize the genes and proteins that are differentially expressed among tissues under the influence of different levels of 6-BAP. A total of 51 375 unigenes and 2617 proteins were obtained after quality filtering. There were 2770 transcripts for proteins found among these unigenes. Gene ontology (GO) analysis of the differentially expressed unigenes and proteins showed that they were involved in cell and binding activity and were enriched in ribosome and glutathione metabolism pathways. Ribosomal proteins, glutathione S-transferase proteins, germin-like proteins and calmodulin-independent protein kinases were up-regulated in the embryogenic tissues with the highest embryogenic ability (treated with 3.6 µM 6-BAP), which was validated via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and these proteins might serve as molecular markers of embryogenic ability. Data are available via Sequence Read Archive (SRA) and ProteomeXchange with identifier SRP042246 and PXD001022, respectively.
Collapse
Affiliation(s)
- Qingfen Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | | |
Collapse
|
47
|
Gao B, Wen C, Fan L, Kou Y, Ma N, Zhao L. A Rosa canina WUSCHEL-related homeobox gene, RcWOX1, is involved in auxin-induced rhizoid formation. PLANT MOLECULAR BIOLOGY 2014; 86:671-679. [PMID: 25301174 DOI: 10.1007/s11103-014-0255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Homeobox (HB) proteins are important transcription factors that regulate the developmental decisions of eukaryotes. WUSCHEL-related homeobox (WOX) transcription factors, known as a plant-specific HB family, play a key role in plant developmental processes. Our previous work has indicated that rhizoids are induced by auxin in rose (Rosa spp.), which acts as critical part of an efficient plant regeneration system. However, the function of WOX genes in auxin-induced rhizoid formation remains unclear. Here, we isolated and characterized a WUSCHEL-related homeobox gene from Rosa canina, RcWOX1, containing a typical homeodomain with 65 amino acid residues. Real-time reverse transcription PCR (qRT-PCR) analysis revealed that RcWOX1 was expressed in the whole process of callus formation and in the early stage of rhizoid formation. Moreover, its expression was induced by auxin treatment. In Arabidopsis transgenic lines expressing the RcWOX1pro::GUS and 35S::GFP-RcWOX1, RcWOX1 was specifically expressed in roots and localized to the nucleus. Overexpression of RcWOX1 in Arabidopsis increased lateral root density and induced upregulation of PIN1 and PIN7 genes. Therefore, we postulated that RcWOX1 is a functional transcription factor that plays an essential role in auxin-induced rhizoid formation.
Collapse
Affiliation(s)
- Bin Gao
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
48
|
Ge X, Zhang C, Wang Q, Yang Z, Wang Y, Zhang X, Wu Z, Hou Y, Wu J, Li F. iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plantlet Regeneration of Gossypium hirsutum L. J Proteome Res 2014; 14:268-78. [PMID: 25367710 DOI: 10.1021/pr500688g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xiaoyang Ge
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Chaojun Zhang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Qianhua Wang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Zuoren Yang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Ye Wang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Xueyan Zhang
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Zhixia Wu
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| | - Yuxia Hou
- College
of Science, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jiahe Wu
- Institute
of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China
| | - Fuguang Li
- State
Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Huanghe Road, Anyang, Henan 455000, China
| |
Collapse
|
49
|
Ma J, He Y, Hu Z, Xu W, Xia J, Guo C, Lin S, Chen C, Wu C, Zhang J. Characterization of the third SERK gene in pineapple (Ananas comosus) and analysis of its expression and autophosphorylation activity in vitro. Genet Mol Biol 2014; 37:530-9. [PMID: 25249776 PMCID: PMC4171775 DOI: 10.1590/s1415-47572014000400009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/15/2014] [Indexed: 11/21/2022] Open
Abstract
Two somatic embryogenesis receptor-like kinase genes (identified as AcSERK1 and AcSERK2) have previously been characterized from pineapple (Ananas comosus). In this work, we describe the characterization of a third gene (AcSERK3) in this family. AcSERK3 had all the characteristic domains and shared extensive sequence homology with other plant SERKs. AcSERK3 expression was studied by in situ hybridization and quantitative real-time PCR to analyze its function. Intense in situ hybridization signals were observed only in single competent cells and competent cell clusters; no hybridization signal was detected in the subsequent stages of somatic embryogenesis. AcSERK3 was highly expressed in embryogenic callus compared to other organs, e.g., 20–80 fold more than in anther but similar to that of non-embryogenic callus, which was 20–50 fold that of anther. AcSERK3 expression in root was 80 fold higher than in anther and the highest amongst all organs tested. These results indicate that AcSERK3 plays an important role in callus proliferation and root development. His-tagged AcSERK3 protein was successfully expressed and the luminescence of His6-AcSERK3 protein was only ∼5% of that of inactivated AcSERK3 protein and reaction buffer without protein, and 11.3% of that of an extract of host Escherichia coli pET-30a. This finding confirmed that the AcSERK3 fusion protein had autophosphorylation activity.
Collapse
Affiliation(s)
- Jun Ma
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China . ; College of Landscape Architecture , Sichuan Agricultural University , Chengdu , China
| | - Yehua He
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Zhongyi Hu
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Wentian Xu
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Jingxian Xia
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Cuihong Guo
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Shunquan Lin
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Chengjie Chen
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Chenghou Wu
- Horticultural Biotechnology College , South China Agricultural University , Guangzhou , China
| | - Junli Zhang
- College of Landscape Architecture , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
50
|
Li Q, Zhang S, Wang J. Transcriptome analysis of callus from Picea balfouriana. BMC Genomics 2014; 15:553. [PMID: 24993107 PMCID: PMC4094777 DOI: 10.1186/1471-2164-15-553] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 06/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Picea likiangensis var. balfouriana (Rehd. et Wils.) Hillier ex Slavin (also known as Picea balfouriana) is an ecologically and economically important conifer that grows rapidly under optimum conditions and produces high-quality wood. It has a wide geographic distribution and is prevalent in southwest and eastern regions of China. Under suboptimal conditions, P. balfouriana grows slowly, which restricts its cultivation. Somatic embryogenesis has been used in the mass propagation of commercial species. However, low initiation rates are a common problem and the mechanisms involved in the induction of somatic embryogenesis are not fully understood. To understand the molecular mechanisms regulating somatic embryogenesis in P. balfouriana, high-throughput RNA-seq technology was used to investigate the transcriptomes of embryogenic and non-embryogenic tissues from three P. balfouriana genotypes. We compared the genes expressed in these tissues to identify molecular markers with embryogenic potential. RESULTS A total of 55,078,846 nucleotide sequence reads were obtained for the embryogenic and non-embryogenic tissues of P. balfouriana, and 49.56% of them uniquely matched 22,295 (84.3%) of the 26,437 genes in the Picea abies genome database (Nature 497: 579-584, 2013). Differential gene expression analysis identified 1,418 differentially expressed genes (false discovery rate <0.0001; fold change ≥2) in the embryogenic tissues relative to the non-embryogenic tissues, including 431 significantly upregulated and 987 significantly downregulated genes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the most significantly altered genes were involved in plant hormone signal transduction, metabolic pathways (starch and sucrose metabolism), and phenylalanine metabolism. CONCLUSIONS We found that the initiation of embryogenic tissues affected gene expression in many KEGG pathways, but predominantly in plant hormone signal transduction, plant-pathogen interaction, and starch and sucrose metabolism. The changes in multiple pathways related to induction in the P. balfouriana embryogenic tissues described here, will contribute to a more comprehensive understanding of the mechanisms involved in the initiation of somatic embryogenesis. Additionally, we found that somatic embryogenesis receptor kinase (SERK), arabinogalactan proteins, and members of the WUS-related homeobox protein family may play important roles and could act as molecular markers in the early stage of somatic embryogenesis, as reported previously.
Collapse
Affiliation(s)
- Qingfen Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Number 1 of Dongxiaofu in Haidian District, Beijing, China
| | - Shougong Zhang
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Number 1 of Dongxiaofu in Haidian District, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Number 1 of Dongxiaofu in Haidian District, Beijing, China
| |
Collapse
|