1
|
Haq ME, Mira MM, Duncan RW, Hill RD, Stasolla C. Seed-specific expression of the class 2 Phytoglobin (Pgb2) increases seed oil in Brassica napus. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154032. [PMID: 37392526 DOI: 10.1016/j.jplph.2023.154032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
To examine the function of phytoglobin 2 (Pgb2) on seed oil level in the oil-producing crop Brassica napus L., we generated transgenic plants in which BnPgb2 was over-expressed in the seeds using the cruciferin1 promoter. Over-expression of BnPgb2 elevated the amount of oil, which showed a positive relationship with the level of BnPgb2, without altering the oil nutritional value, as evidenced by the lack of major changes in composition of fatty acids (FA), and key agronomic traits. Two key transcription factors, LEAFY COTYLEDON1 (LEC1) and WRINKLED1 (WRI1), known to promote the synthesis of fatty acids (FA) and potentiate oil accumulation, were induced in BnPgb2 over-expressing seeds. The concomitant induction of several enzymes of sucrose metabolism, SUCROSE SYNTHASE1 (SUS) 1 and 3, FRUCTOSE BISPHOSPHATE ALDOLASE (FPA), and PHOSPHOGLYCERATE KINASE (PGK), and starch synthesis, ADP-GLUCOSE PHOSPHORYLASE (AGPase) suggests that BnPgb2 favors sugar mobilization for FA production. The two plastid FA biosynthetic enzymes SUBUNIT A OF ACETYL-CoA CARBOXYLASE (ACCA2), and MALONYL-CoA:ACP TRANSACYLASE (MCAT) were also up-regulated by the over-expression of BnPgb2. The requirement of BnPgb2 for oil deposition was further evidenced in natural germplasm by the higher levels of BnPgb2 in seeds of high-oil genotypes relative to their low-oil counterparts.
Collapse
Affiliation(s)
- Md Ehsanul Haq
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Mohammed M Mira
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Robert W Duncan
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, R3T2Z2, MB, Canada.
| |
Collapse
|
2
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Lou H, Song L, Li X, Zi H, Chen W, Gao Y, Zheng S, Fei Z, Sun X, Wu J. The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis. Nat Commun 2023; 14:1315. [PMID: 36898990 PMCID: PMC10006428 DOI: 10.1038/s41467-023-37038-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Torreya plants produce dry fruits with assorted functions. Here, we report the 19-Gb chromosome-level genome assembly of T. grandis. The genome is shaped by ancient whole-genome duplications and recurrent LTR retrotransposon bursts. Comparative genomic analyses reveal key genes involved in reproductive organ development, cell wall biosynthesis and seed storage. Two genes encoding a C18 Δ9-elongase and a C20 Δ5-desaturase are identified to be responsible for sciadonic acid biosynthesis and both are present in diverse plant lineages except angiosperms. We demonstrate that the histidine-rich boxes of the Δ5-desaturase are crucial for its catalytic activity. Methylome analysis reveals that methylation valleys of the T. grandis seed genome harbor genes associated with important seed activities, including cell wall and lipid biosynthesis. Moreover, seed development is accompanied by DNA methylation changes that possibly fuel energy production. This study provides important genomic resources and elucidates the evolutionary mechanism of sciadonic acid biosynthesis in land plants.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.,Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China
| | - Hailing Zi
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Shan Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA. .,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China. .,Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, 311300, Zhejiang, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Brazel AJ, Graciet E. Complexity of Abiotic Stress Stimuli: Mimicking Hypoxic Conditions Experimentally on the Basis of Naturally Occurring Environments. Methods Mol Biol 2023; 2642:23-48. [PMID: 36944871 DOI: 10.1007/978-1-0716-3044-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plants require oxygen to respire and produce energy. Plant cells are exposed to low oxygen levels (hypoxia) in different contexts and have evolved conserved molecular responses to hypoxia. Both environmental and developmental factors can influence intracellular oxygen concentrations. In nature, plants can experience hypoxic conditions when the soil becomes saturated with water following heavy precipitation (i.e., waterlogging). Hypoxia can also arise in specific tissues that have poor gas exchange with atmospheric oxygen. In this case, hypoxic niches that are physiologically and developmentally relevant may form. To dissect the molecular mechanisms underlying the regulation of hypoxia response in plants, a wide range of hypoxia-inducing methods have been used in the laboratory setting. Yet, the different characteristics, pros and cons of each of these hypoxia treatments are seldom compared between methods, and with natural forms of hypoxia. In this chapter, we present both environmental and developmental forms of hypoxia that plants encounter in the wild, as well as the different experimental hypoxia treatments used to mimic them in the laboratory setting, with the aim of informing on what experimental approaches might be most appropriate to the questions addressed, including stress signaling and regulation.
Collapse
|
5
|
Zuk M, Szperlik J, Szopa J. Linseed Silesia, Diverse Crops for Diverse Diets. New Solutions to Increase Dietary Lipids in Crop Species. Foods 2021; 10:foods10112675. [PMID: 34828956 PMCID: PMC8623773 DOI: 10.3390/foods10112675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of the work was to compare the new variety of oil flax (Silesia) with already cultivated varieties in terms of plant productivity, oil content, fatty acid composition and significant secondary metabolites. The analyzed linseed varieties are characterized by low (Linola), medium (Silesia) and high (Szafir) content of omega-3 fatty acids. Special attention was paid to the quality of the oil and the characteristics that determine its stability (reduction of susceptibility to oxidation). A number of antioxidant compounds of secondary metabolism (simple phenols, phenolic acids, flavonoids, tannins) were identified in the linseed oils. All of these compounds can affect lipid oxidation by a mechanism that attenuates initiating radicals such as hydroxyl or forms an oxidizing primary product such as peroxides. Chelation of metal ions may also be involved in lipid oxidation. We propose a mechanism that encompasses all these processes and facilitates understanding of the complex relationships between them. The general thesis is that the ratio of polyunsaturated fatty acids is associated with a better metabolic state of flaxseed, and thus with a higher nutritional value. In addition, we find a number of specialized secondary metabolites characteristic of the flax studied, which could be useful for chemotaxonomy.
Collapse
Affiliation(s)
- Magdalena Zuk
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
- Linum Fundation, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland;
- Correspondence:
| | - Jakub Szperlik
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wrocław, Poland;
| | - Jan Szopa
- Linum Fundation, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland;
| |
Collapse
|
6
|
Tang S, Zhao H, Lu S, Yu L, Zhang G, Zhang Y, Yang QY, Zhou Y, Wang X, Ma W, Xie W, Guo L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. MOLECULAR PLANT 2021; 14:470-487. [PMID: 33309900 DOI: 10.1016/j.molp.2020.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 05/25/2023]
Abstract
Seed oil content (SOC) is a highly important and complex trait in oil crops. Here, we decipher the genetic basis of natural variation in SOC of Brassica napus by genome- and transcriptome-wide association studies using 505 inbred lines. We mapped reliable quantitative trait loci (QTLs) that control SOC in eight environments, evaluated the effect of each QTL on SOC, and analyzed selection in QTL regions during breeding. Six-hundred and ninety-two genes and four gene modules significantly associated with SOC were identified by analyzing population transcriptomes from seeds. A gene prioritization framework, POCKET (prioritizing the candidate genes by incorporating information on knowledge-based gene sets, effects of variants, genome-wide association studies, and transcriptome-wide association studies), was implemented to determine the causal genes in the QTL regions based on multi-omic datasets. A pair of homologous genes, BnPMT6s, in two QTLs were identified and experimentally demonstrated to negatively regulate SOC. This study provides rich genetic resources for improving SOC and valuable insights toward understanding the complex machinery that directs oil accumulation in the seeds of B. napus and other oil crops.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qing-Yong Yang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
7
|
Kazaz S, Barthole G, Domergue F, Ettaki H, To A, Vasselon D, De Vos D, Belcram K, Lepiniec L, Baud S. Differential Activation of Partially Redundant Δ9 Stearoyl-ACP Desaturase Genes Is Critical for Omega-9 Monounsaturated Fatty Acid Biosynthesis During Seed Development in Arabidopsis. THE PLANT CELL 2020; 32:3613-3637. [PMID: 32958563 PMCID: PMC7610281 DOI: 10.1105/tpc.20.00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.
Collapse
Affiliation(s)
- Sami Kazaz
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Guillaume Barthole
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Frédéric Domergue
- Université de Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
- CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, 33882 Villenave d'Ornon, France
| | - Hasna Ettaki
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Damien Vasselon
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Delphine De Vos
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Baud
- Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
8
|
Shu Y, Zhou Y, Mu K, Hu H, Chen M, He Q, Huang S, Ma H, Yu X. A transcriptomic analysis reveals soybean seed pre-harvest deterioration resistance pathways under high temperature and humidity stress. Genome 2020; 63:115-124. [PMID: 31774699 DOI: 10.1139/gen-2019-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pre-harvest soybean seeds in the field are susceptible to high temperature and humidity (HTH) stress, leading to pre-harvest seed deterioration, which will result in a reduction in grain quality, yield, and seed vigor. To understand the gene expression involved in seed deterioration response under HTH stress, in this study, we conducted an RNA-Seq analysis using two previously screened soybean cultivars with contrasting seed deterioration resistance. HTH stress induced 1081 and 357 differentially expressed genes (DEGs) in the sensitive cultivar Ningzhen No. 1 and resistant cultivar Xiangdou No. 3, respectively. The majority of DEGs in the resistant cultivar were up-regulated, while down-regulated DEGs were predominant in the sensitive cultivar. KEGG pathway analysis revealed that metabolic pathways, biosynthesis of secondary metabolites, and protein processing in endoplasmic reticulum were the predominant pathways in both cultivars during seed deterioration under HTH stress. The genes involved in photosynthesis, carbohydrate metabolism, lipid metabolism, and heat shock proteins pathways might contribute to the different response to seed deterioration under HTH treatment in the two soybean cultivars. Our study extends the knowledge of gene expression in soybean seed under HTH stress and further provides insight into the molecular mechanism of seed deterioration as well as new strategies for breeding soybean with improved seed deterioration resistance.
Collapse
Affiliation(s)
- Yingjie Shu
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuli Zhou
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Kebin Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyuan He
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Shoucheng Huang
- College of Agriculture, Anhui Science & Technology University, Fengyang 233100, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingwang Yu
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Zheng G, Chen J, Li W. Impacts of CO 2 elevation on the physiology and seed quality of soybean. PLANT DIVERSITY 2020; 42:44-51. [PMID: 32140636 PMCID: PMC7046503 DOI: 10.1016/j.pld.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/12/2019] [Accepted: 09/23/2019] [Indexed: 05/14/2023]
Abstract
Understanding the responses of crops to elevated atmospheric carbon dioxide concentrations (E[CO2]) is very important in terms of global food supplies. The present study investigates the effects of CO2 enrichment (to 800 μmol mol-1) on the physiology of soybean plants and the nutritional value of their seeds under growth chamber conditions. The photosynthesis of soybean was significantly promoted by E[CO2] at all growth stages, but leaf area and specific leaf weight were not affected. The levels of mineral elements in the leaves decreased under E[CO2]. The soil properties after soybean cultivation under E[CO2] were not affected, except for a decrease in available potassium. Moreover, the levels of soluble sugars in the seeds were not affected by E[CO2], but the levels of natural antioxidants decreased. In addition, the level of oleic acid decreased under E[CO2]. However, levels of fatty acid peroxidation and saturation were maintained. In conclusion, E[CO2] appears to have positive effects on the growth of cultivated soybean plants, but its influence on the nutritional values of soybean seeds is complex.
Collapse
Affiliation(s)
- Guowei Zheng
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Jia Chen
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Weiqi Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Corresponding author.
| |
Collapse
|
10
|
Boeckx J, Pols S, Hertog MLATM, Nicolaï BM. Regulation of the Central Carbon Metabolism in Apple Fruit Exposed to Postharvest Low-Oxygen Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1384. [PMID: 31737012 PMCID: PMC6831743 DOI: 10.3389/fpls.2019.01384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/07/2019] [Indexed: 05/07/2023]
Abstract
After harvest, fruit remain metabolically active and continue to ripen. The main goal of postharvest storage is to slow down the metabolic activity of the detached fruit. In many cases, this is accomplished by storing fruit at low temperature in combination with low oxygen (O2) and high carbon dioxide (CO2) partial pressures. However, altering the normal atmospheric conditions is not without any risk and can induce low-O2 stress. This review focuses on the central carbon metabolism of apple fruit during postharvest storage, both under normal O2 conditions and under low-O2 stress conditions. While the current review is focused on apple fruit, most research on the central carbon metabolism, low-O2 stress, and O2 sensing has been done on a range of different model plants (e.g., Arabidopsis, potato, rice, and maize) using various plant organs (e.g., seedlings, tubers, roots, and leaves). This review pulls together this information from the various sources into a coherent overview to facilitate the research on the central carbon metabolism in apple fruit exposed to postharvest low-O2 stress.
Collapse
Affiliation(s)
| | | | | | - Bart M. Nicolaï
- KU Leuven, BIOSYST-MeBioS, Leuven, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| |
Collapse
|
11
|
Kang YJ, Lee BM, Nam M, Oh KW, Lee MH, Kim TH, Jo SH, Lee JH. Identification of quantitative trait loci associated with flowering time in perilla using genotyping-by-sequencing. Mol Biol Rep 2019; 46:4397-4407. [PMID: 31152338 DOI: 10.1007/s11033-019-04894-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Understanding the transition to the reproductive period is important for crop breeding. This information can facilitate the production of novel varieties that are better adapted to local environments or changing climatic conditions. Here, we report the development of a high-density linkage map based on genotyping-by-sequencing (GBS) for the genus perilla. Through GBS library construction and Illumina sequencing of an F2 population, a total of 9607 single-nucleotide polymorphism (SNP) markers were developed. The ten-group linkage map of 1309.39 cM contained 2518 markers, with an average marker density of 0.56 cM per linkage group (LG). Using this map, a total of six QTLs were identified. These quantitative trait loci (QTLs) are associated with three traits related to flowering time: days to visible flower bud, days to flowering, and days to maturity. Ortholog analysis conducted with known genes involved in the regulation of flowering time among different crop species identified GI, CO and ELF4 as putative perilla orthologs that are closely linked to the QTL regions associated with flowering time. These results provide a foundation that will be useful for future studies of flowering time in perilla using fine mapping, and marker-assisted selection for the development of new varieties of perilla.
Collapse
Affiliation(s)
| | - Bo-Mi Lee
- SEEDERS Inc., Daejeon, 34912, Republic of Korea
| | - Moon Nam
- SEEDERS Inc., Daejeon, 34912, Republic of Korea
| | - Ki-Won Oh
- National Institute of Crop Science, RDA, Miryang, 50424, Republic of Korea
| | - Myoung-Hee Lee
- National Institute of Crop Science, RDA, Miryang, 50424, Republic of Korea
| | - Tae-Ho Kim
- National Academy of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Sung-Hwan Jo
- SEEDERS Inc., Daejeon, 34912, Republic of Korea.
| | | |
Collapse
|
12
|
Jo L, Pelletier JM, Harada JJ. Central role of the LEAFY COTYLEDON1 transcription factor in seed development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:564-580. [PMID: 30916433 DOI: 10.1111/jipb.12806] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/16/2019] [Indexed: 05/04/2023]
Abstract
Seed development is a complex period of the flowering plant life cycle. After fertilization, the three main regions of the seed, embryo, endosperm and seed coat, undergo a series of developmental processes that result in the production of a mature seed that is developmentally arrested, desiccated, and metabolically quiescent. These processes are highly coordinated, both temporally and spatially, to ensure the proper growth and development of the seed. The transcription factor, LEAFY COTYLEDON1 (LEC1), is a central regulator that controls several aspects of embryo and endosperm development, including embryo morphogenesis, photosynthesis, and storage reserve accumulation. Thus, LEC1 regulates distinct sets of genes at different stages of seed development. Despite its critical importance for seed development, an understanding of the mechanisms underlying LEC1's multifunctionality is only beginning to be obtained. Recent studies describe the roles of specific transcription factors and the hormones, gibberellic acid and abscisic acid, in controlling the activity and transcriptional specificity of LEC1 across seed development. Moreover, studies indicate that LEC1 acts as a pioneer transcription factor to promote epigenetic reprogramming during embryogenesis. In this review, we discuss the mechanisms that enable LEC1 to serve as a central regulator of seed development.
Collapse
Affiliation(s)
- Leonardo Jo
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - Julie M Pelletier
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| | - John J Harada
- Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
| |
Collapse
|
13
|
Elferjani R, Soolanayakanahally R. Canola Responses to Drought, Heat, and Combined Stress: Shared and Specific Effects on Carbon Assimilation, Seed Yield, and Oil Composition. FRONTIERS IN PLANT SCIENCE 2018; 9:1224. [PMID: 30214451 PMCID: PMC6125602 DOI: 10.3389/fpls.2018.01224] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2018] [Indexed: 05/19/2023]
Abstract
Photosynthetic assimilation is remarkably altered by heat and drought, and this depends on the individual or combined occurrence of stressors and their respective intensities and durations. Abiotic stressors may also alter the nutritional quality and economic value of crops. In this controlled greenhouse study, we evaluated the response of Brassica napus L., from flowering to seed development, to two temperature and water treatments and a combination of these treatments. The diffusional limitations of stomatal conductance and mesophyll conductance on photosynthesis, as well as resource-use efficiency (particularly water and nitrogen), were assessed. In addition, the effects of stressors on the seed fatty acid content and composition and the total protein content were examined. The results showed that the reduction in the net photosynthetic assimilation rate was caused by combinations of heat and drought (heat + drought) treatments, by drought alone, and, to a lesser extent, by heat alone. The stomatal conductance decreased under drought and heat + drought treatments but not under heat. Conversely, the mesophyll conductance was reduced significantly in the plants exposed to heat and heat + drought but not in the plants exposed to drought alone. The carboxylation efficiency rate and the electron transport rate were reduced under the heat treatment. The seed yield was reduced by 85.3% under the heat treatment and, to a lesser extent, under the drought treatment (31%). This emphasizes the devastating effects of hotter weather on seed formation and development. Seed oil content decreased by 52% in the plants exposed to heat, the protein content increased under all the stress treatments. Heat treatment had a more deleterious effect than drought on the seed oil composition, leading to enhanced levels of saturated fatty oils and, consequently, desaturation efficiency, a measure of oil frying ability. Overall, this study showed that except for the photosynthetic assimilation rate and stomatal conductance, heat, rather than drought, negatively affected the photosynthetic capacity, yield, and oil quality attributes when imposed during the flowering and silique-filling stages. This result highlights the necessity for a better understanding of heat tolerance mechanisms in crops to help to create germplasms that are adapted to rapid climate warming.
Collapse
Affiliation(s)
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Vargas M, Jofré E, Navarrete C, Bravo J, Jamett F, Inostroza-Blancheteau C, Ibáñez C. Sexual and asexual reproductive aspects of Leontochir ovallei, a rare and endangered geophyte of the Atacama Desert. REVISTA CHILENA DE HISTORIA NATURAL 2018. [DOI: 10.1186/s40693-018-0075-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Borek S, Kalemba EM, Pukacka S, Pietrowska-Borek M, Stawiński S, Ratajczak L. Nitrate simultaneously enhances lipid and protein accumulation in developing yellow lupin cotyledons cultured in vitro, but not under field conditions. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:26-34. [PMID: 28558332 DOI: 10.1016/j.jplph.2017.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
The research was conducted on yellow lupin (Lupinus luteus L.) mature seeds, developing cotyledons, developing pods, and seedlings. The main storage compound in yellow lupin seeds is protein, whose content may reach up to 45%. Oil content in seeds of yellow lupin is about 6%. In such protein-storing seeds there is a strong negative relationship between accumulation of storage lipid and protein. An increase in protein content causes a decrease in lipid level, and vice versa. However, simultaneous increase in lipid and protein content is possible in developing lupin cotyledons (the main storage organs of lupin seeds) cultured in vitro. Such an effect was obtained by feeding the cotyledons with nitrate (35mM). The same positive relationship in storage lipid and protein accumulation was also obtained in developing lupin pods fed with nitrate (35mM), detached from the mother plant, and maintained under quasi in vitro conditions. Fertilization of lupin plants with nitrate under field conditions (40 or 80kgNha-1 applied before sowing, at the nodulation stage or at the flowering and pod formation stage) did not cause significant changes in lipid and protein contents in mature seeds. Experiments performed on lupin seedlings cultivated hydroponically showed that nitrate added to the medium was accumulated mainly in roots, and at a remarkably lower level in shoots. We hypothesize that the lack of stimulatory effect of nitrate on storage lipid and protein accumulation in seeds under field conditions is due to inefficient transport of nitrate from the root to developing pods in lupin plants. This causes that the level of nitrate inside the developing lupin seeds is not elevated under field conditions.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences,ul. Parkowa 5, 62-035, Kórnik, Poland.
| | - Stanisława Pukacka
- Institute of Dendrology, Polish Academy of Sciences,ul. Parkowa 5, 62-035, Kórnik, Poland.
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, ul. Dojazd 11, 60-632, Poznań, Poland.
| | - Stanisław Stawiński
- Plant Breeding Station Smolice Division in Przebędowo, Przebędowo 1, 62-095 Murowana Goślina, Poland.
| | - Lech Ratajczak
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
16
|
Pelletier JM, Kwong RW, Park S, Le BH, Baden R, Cagliari A, Hashimoto M, Munoz MD, Fischer RL, Goldberg RB, Harada JJ. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci U S A 2017; 114:E6710-E6719. [PMID: 28739919 PMCID: PMC5559047 DOI: 10.1073/pnas.1707957114] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LEAFY COTYLEDON1 (LEC1), an atypical subunit of the nuclear transcription factor Y (NF-Y) CCAAT-binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene networks and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. We compared the mRNA profiles of wild-type and lec1-null mutant seeds at several stages of development to define genes that are down-regulated or up-regulated by the lec1 mutation. We used ChIP and differential gene-expression analyses in Arabidopsis seedlings overexpressing LEC1 and in developing Arabidopsis and soybean seeds to identify globally the target genes that are transcriptionally regulated by LEC1 in planta Collectively, our results show that LEC1 controls distinct gene sets at different developmental stages, including those that mediate the temporal transition between photosynthesis and chloroplast biogenesis early in seed development and seed maturation late in development. Analyses of enriched DNA sequence motifs that may act as cis-regulatory elements in the promoters of LEC1 target genes suggest that LEC1 may interact with other transcription factors to regulate distinct gene sets at different stages of seed development. Moreover, our results demonstrate strong conservation in the developmental processes and gene networks regulated by LEC1 in two dicotyledonous plants that diverged ∼92 Mya.
Collapse
Affiliation(s)
- Julie M Pelletier
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Raymond W Kwong
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Soomin Park
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Brandon H Le
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Russell Baden
- Department of Plant Biology, University of California, Davis, CA 95616
| | | | - Meryl Hashimoto
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Matthew D Munoz
- Department of Plant Biology, University of California, Davis, CA 95616
| | - Robert L Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Robert B Goldberg
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095;
| | - John J Harada
- Department of Plant Biology, University of California, Davis, CA 95616;
| |
Collapse
|
17
|
Yang Z, Ji H, Liu D. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits. PLANT & CELL PHYSIOLOGY 2016; 57:2519-2540. [PMID: 27742886 DOI: 10.1093/pcp/pcw165] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/16/2016] [Indexed: 05/25/2023]
Abstract
Cyperus esculentus is unique in that it can accumulate rich oil in its tubers. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tubers revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber: (i) carbon flux from sucrose toward plastid pyruvate could be produced mostly through the cytosolic glycolytic pathway; (ii) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis; (iii) the expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition; (iv) it was most likely that endoplasmic reticulum (ER)-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER; (v) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of the diacylglycerol (DAG) pool in the Kennedy pathway; and (vi) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis. In contrast to oil-rich fruits, there existed many oleosins, caleosins and steroleosins with very high transcripts in tubers. Surprisingly, only a single ortholog of WRINKLED1 (WRI1)-like transcription factor was identified and it was poorly expressed during tuber development. Our study not only provides insights into lipid metabolism in tuber tissues, but also broadens our understanding of TAG synthesis in oil plants. Such knowledge is of significance in exploiting this oil-rich species and manipulating other non-seed tissues to enhance storage oil production.
Collapse
Affiliation(s)
- Zhenle Yang
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Hongying Ji
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Dantong Liu
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
18
|
Tan H, Xiang X, Tang J, Wang X. Nutritional functions of the funiculus in Brassica napus seed maturation revealed by transcriptome and dynamic metabolite profile analyses. PLANT MOLECULAR BIOLOGY 2016; 92:539-553. [PMID: 27539000 PMCID: PMC5080329 DOI: 10.1007/s11103-016-0530-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/11/2016] [Indexed: 05/04/2023]
Abstract
The funiculus provides the sole channel of communication between the seed and the parent plant; however, little is known about its role in nutrient supply during seed maturation. Here, we investigated the dynamic metabolite profiles of the funiculus during seed maturation in Brassica napus. The funiculus was fully developed at 21 days after flowering (DAF), but the levels of nutrients, including carbohydrates, fatty acids, and amino acids, increased rapidly from 21 to 35 DAF. Orthogonal partial least squares discriminant analysis and correlation analysis identified 37 metabolites that correlated closely with seed fresh weight. To determine the influence of silique wall photosynthesis on the metabolites in the funiculus, we also covered the siliques of intact plants with aluminum foil; in these plants, the funiculus and silique wall had lower metabolite levels, compared with control. RNA-sequencing analysis of the funiculi in the dark-treated and light-exposed siliques showed that the expression of genes encoding nutrient transporters significantly increased in the funiculi in the dark-treated siliques. Furthermore, the transcripts encoding primary metabolic enzymes for amino acid synthesis, fatty acid synthesis and triacylglycerol assembly, and sucrose-starch metabolism, were also markedly up-regulated, despite the decline in metabolite levels of funiculi in the dark-treated silique. These results provide new insights into funiculus function in seed growth and synthesis of storage reserves in seeds, at the metabolic and transcriptional levels. The identification of these metabolites and genes also provides useful information for creating genetically enhanced oilseed crops with improved seed properties.
Collapse
Affiliation(s)
- Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoe Xiang
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Tang
- Crops Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xingchun Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
- Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
19
|
Jain A, Kumar A, Salunke DM. Crystal structure of the vicilin from Solanum melongena reveals existence of different anionic ligands in structurally similar pockets. Sci Rep 2016; 6:23600. [PMID: 27004988 PMCID: PMC4804240 DOI: 10.1038/srep23600] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/07/2016] [Indexed: 11/09/2022] Open
Abstract
Crystal structure of a vicilin, SM80.1, was determined towards exploring its possible physiological functions. The protein was purified from Solanum melongena by combination of ammonium sulphate fractionation and size exclusion chromatography. Structure was determined ab initio at resolution of 1.5 Å by X-ray crystallography showing the three-dimensional topology of the trimeric protein. Each monomer of SM80.1 consists of two similar domains with hydrophobic binding pocket and each accommodating different ligands, i.e. acetate and pyroglutamate. The relatively high stability of these independent anionic ligands in similar pockets indicated a strict requirement of stabilization by hydrogen bonds with the charged residues, suggesting a degree of plasticity within the binding pocket. Comparison of SM80.1 structure with those of other 7S vicilins indicated conservation of putative binding pocket for anionic ligands. Here we propose the possibility of trapping of these ligands in the protein for their requirement in the metabolic processes.
Collapse
Affiliation(s)
- Abha Jain
- Regional Centre for Biotechnology, Faridabad-121001, India.,Manipal University, Manipal, Karnataka-576104, India
| | - Ashish Kumar
- Regional Centre for Biotechnology, Faridabad-121001, India.,National Institute of Immunology, New Delhi-110067, India
| | - Dinakar M Salunke
- Regional Centre for Biotechnology, Faridabad-121001, India.,International Centre for Genetic Engineering and Biotechnology, New Delhi-110067, India
| |
Collapse
|
20
|
Singer SD, Zou J, Weselake RJ. Abiotic factors influence plant storage lipid accumulation and composition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:1-9. [PMID: 26795146 DOI: 10.1016/j.plantsci.2015.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 05/19/2023]
Abstract
The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future.
Collapse
Affiliation(s)
- Stacy D Singer
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jitao Zou
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Randall J Weselake
- Alberta Innovates Phytola Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
21
|
Wang X, Oh M, Sakata K, Komatsu S. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. J Proteomics 2016; 130:42-55. [PMID: 26376099 DOI: 10.1016/j.jprot.2015.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/29/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - MyeongWon Oh
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Katsumi Sakata
- Maebashi Institute of Technology, Maebashi 371-0816, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
22
|
Yang J, Kim SR, Lee SK, Choi H, Jeon JS, An G. Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:79-89. [PMID: 26475189 DOI: 10.1016/j.plantsci.2015.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
Alteration of storage substances, in particular the major storage form starch, leads to floury endosperm. Because floury mutants have physical attributes for milling processes, identification and characterization of those mutants are valuable. In this study we identified a floury endosperm mutant caused by a T-DNA insertion in Oryza sativa alanine-aminotransferase1 (OsAlaAT1). OsAlaAT1 is localized in the cytosol and has aminotransferase enzyme activity. The osalaat1 mutant has less amylose and its amylopectin is structurally altered. OsAlaAT1 is predominantly expressed in developing seeds during active starch synthesis. AlaAT catalyzes the interconversion of pyruvate to alanine, and this pathway is activated under low-oxygen conditions. Consistently, OsAlaAT1 is induced by such conditions. Expression of the starch synthesis genes AGPases, OsSSI, OsSSIIa, and OsPPDKB is decreased in the mutant. Thus, our observations suggest that OsAlaAT1 plays an essential role in starch synthesis in developing seeds that are exposed to low concentrations of oxygen.
Collapse
Affiliation(s)
- Jungil Yang
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Sung-Ryul Kim
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Metro Manila, Philippines
| | - Sang-Kyu Lee
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Heebak Choi
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute & Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea; Department of Genetic Engineering, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
23
|
Schwender J, Hebbelmann I, Heinzel N, Hildebrandt T, Rogers A, Naik D, Klapperstück M, Braun HP, Schreiber F, Denolf P, Borisjuk L, Rolletschek H. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture. PLANT PHYSIOLOGY 2015; 168:828-48. [PMID: 25944824 PMCID: PMC4741336 DOI: 10.1104/pp.15.00385] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 05/05/2023]
Abstract
Seeds provide the basis for many food, feed, and fuel products. Continued increases in seed yield, composition, and quality require an improved understanding of how the developing seed converts carbon and nitrogen supplies into storage. Current knowledge of this process is often based on the premise that transcriptional regulation directly translates via enzyme concentration into flux. In an attempt to highlight metabolic control, we explore genotypic differences in carbon partitioning for in vitro cultured developing embryos of oilseed rape (Brassica napus). We determined biomass composition as well as 79 net fluxes, the levels of 77 metabolites, and 26 enzyme activities with specific focus on central metabolism in nine selected germplasm accessions. Overall, we observed a tradeoff between the biomass component fractions of lipid and starch. With increasing lipid content over the spectrum of genotypes, plastidic fatty acid synthesis and glycolytic flux increased concomitantly, while glycolytic intermediates decreased. The lipid/starch tradeoff was not reflected at the proteome level, pointing to the significance of (posttranslational) metabolic control. Enzyme activity/flux and metabolite/flux correlations suggest that plastidic pyruvate kinase exerts flux control and that the lipid/starch tradeoff is most likely mediated by allosteric feedback regulation of phosphofructokinase and ADP-glucose pyrophosphorylase. Quantitative data were also used to calculate in vivo mass action ratios, reaction equilibria, and metabolite turnover times. Compounds like cyclic 3',5'-AMP and sucrose-6-phosphate were identified to potentially be involved in so far unknown mechanisms of metabolic control. This study provides a rich source of quantitative data for those studying central metabolism.
Collapse
Affiliation(s)
- Jörg Schwender
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Inga Hebbelmann
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Nicolas Heinzel
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Tatjana Hildebrandt
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Alistair Rogers
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Dhiraj Naik
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Matthias Klapperstück
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Hans-Peter Braun
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Falk Schreiber
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Peter Denolf
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Ljudmilla Borisjuk
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| | - Hardy Rolletschek
- Brookhaven National Laboratory, Biological, Environmental, and Climate Sciences Department, Upton, New York 11973 (J.S., I.H., A.R., D.N.);Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany (N.H., L.B., H.R.);Institut für Pflanzengenetik, Universität Hannover, 30419 Hannover, Germany (T.H., H.-P.B.);Department of Environmental Science, Indian Institute of Advanced Research, Koba, Gandhinagar 382007, Gujarat, India (D.N.);Clayton School of Information Technology, Monash University, Melbourne, Victoria 3800, Australia (M.K., F.S.);Institute of Computer Science, University Halle-Wittenberg, 06120 Halle, Germany (F.S.); andBayer CropScience, 9052 Zwijnaarde, Belgium (P.D.)
| |
Collapse
|
24
|
Celdran D, Lloret J, Verduin J, van Keulen M, Marín A. Linking Seed Photosynthesis and Evolution of the Australian and Mediterranean Seagrass Genus Posidonia. PLoS One 2015; 10:e0130015. [PMID: 26066515 PMCID: PMC4466800 DOI: 10.1371/journal.pone.0130015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/30/2015] [Indexed: 11/18/2022] Open
Abstract
Recent findings have shown that photosynthesis in the skin of the seed of Posidonia oceanica enhances seedling growth. The seagrass genus Posidonia is found only in two distant parts of the world, the Mediterranean Sea and southern Australia. This fact led us to question whether the acquisition of this novel mechanism in the evolution of this seagrass was a pre-adaptation prior to geological isolation of the Mediterranean from Tethys Sea in the Eocene. Photosynthetic activity in seeds of Australian species of Posidonia is still unknown. This study shows oxygen production and respiration rates, and maximum PSII photochemical efficiency (Fv : Fm) in seeds of two Australian Posidonia species (P. australis and P. sinuosa), and compares these with previous results for P. oceanica. Results showed relatively high oxygen production and respiratory rates in all three species but with significant differences among them, suggesting the existence of an adaptive mechanism to compensate for the relatively high oxygen demands of the seeds. In all cases maximal photochemical efficiency of photosystem II rates reached similar values. The existence of photosynthetic activity in the seeds of all three species implicates that it was an ability probably acquired from a common ancestor during the Late Eocene, when this adaptive strategy could have helped Posidonia species to survive in nutrient-poor temperate seas. This study sheds new light on some aspects of the evolution of marine plants and represents an important contribution to global knowledge of the paleogeographic patterns of seagrass distribution.
Collapse
Affiliation(s)
- David Celdran
- Unidad Académica de Sistemas Arrecifales (Puerto Morelos), Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Apto Postal 1152, CP: 77500, Cancún, Quintana Roo, Mexico
| | - Javier Lloret
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole, MA, United States of America
| | - Jennifer Verduin
- School of Veterinary and Life Sciences, Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Mike van Keulen
- School of Veterinary and Life Sciences, Environmental and Conservation Sciences, Murdoch University, Murdoch, WA, 6150, Australia
| | - Arnaldo Marín
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
25
|
Tan H, Xie Q, Xiang X, Li J, Zheng S, Xu X, Guo H, Ye W. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. PLoS One 2015; 10:e0124794. [PMID: 25919591 PMCID: PMC4412398 DOI: 10.1371/journal.pone.0124794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/06/2015] [Indexed: 11/25/2022] Open
Abstract
Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil accumulation at the metabolite level.
Collapse
Affiliation(s)
- Helin Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- * E-mail:
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agrobioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoe Xiang
- Animal Sciences National Teaching Demonstration Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianqiao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suning Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Supervision and Testing Center for Vegetable Quality, Ministry of Agriculture, Beijing, 100081, China
| | - Xinying Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haolun Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
26
|
Abstract
Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.
Collapse
Affiliation(s)
- Joost T van Dongen
- Institute of Biology I, Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany;
| | | |
Collapse
|
27
|
Radchuk V, Borisjuk L. Physical, metabolic and developmental functions of the seed coat. FRONTIERS IN PLANT SCIENCE 2014; 5:510. [PMID: 25346737 PMCID: PMC4193196 DOI: 10.3389/fpls.2014.00510] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/11/2014] [Indexed: 05/04/2023]
Abstract
The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction.
Collapse
Affiliation(s)
| | - Ljudmilla Borisjuk
- Heterosis, Molecular Genetics, Leibniz-Institut für Pflanzengenetik und KulturpflanzenforschungGatersleben, Germany
| |
Collapse
|
28
|
Galili G, Avin-Wittenberg T, Angelovici R, Fernie AR. The role of photosynthesis and amino acid metabolism in the energy status during seed development. FRONTIERS IN PLANT SCIENCE 2014; 5:447. [PMID: 25232362 PMCID: PMC4153028 DOI: 10.3389/fpls.2014.00447] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/19/2014] [Indexed: 05/07/2023]
Abstract
Seeds are the major organs responsible for the evolutionary upkeep of angiosperm plants. Seeds accumulate significant amounts of storage compounds used as nutrients and energy reserves during the initial stages of seed germination. The accumulation of storage compounds requires significant amounts of energy, the generation of which can be limited due to reduced penetration of oxygen and light particularly into the inner parts of seeds. In this review, we discuss the adjustment of seed metabolism to limited energy production resulting from the suboptimal penetration of oxygen into the seed tissues. We also discuss the role of photosynthesis during seed development and its contribution to the energy status of developing seeds. Finally, we describe the contribution of amino acid metabolism to the seed energy status, focusing on the Asp-family pathway that leads to the synthesis and catabolism of Lys, Thr, Met, and Ile.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Sciences, The Weizmann Institute of ScienceRehovot, Israel
| | | | - Ruthie Angelovici
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
29
|
Verboven P, Herremans E, Borisjuk L, Helfen L, Ho QT, Tschiersch H, Fuchs J, Nicolaï BM, Rolletschek H. Void space inside the developing seed of Brassica napus and the modelling of its function. THE NEW PHYTOLOGIST 2013; 199:936-947. [PMID: 23692271 PMCID: PMC3784975 DOI: 10.1111/nph.12342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 05/04/2023]
Abstract
The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed.
Collapse
Affiliation(s)
- Pieter Verboven
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Els Herremans
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Lukas Helfen
- IPS/ANKA, Karlsruhe Institute of TechnologyPO Box 3640, 76021, Karlsruhe, Germany
- ESRF6 rue Jules Horowitz, BP220, 38043, Grenoble Cedex, France
| | - Quang Tri Ho
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Henning Tschiersch
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Johannes Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Bart M Nicolaï
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
30
|
Chaturvedi P, Taguchi M, Burrs SL, Hauser BA, Salim WWAW, Claussen JC, McLamore ES. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. PLANTA 2013; 238:599-614. [PMID: 23846103 DOI: 10.1007/s00425-013-1926-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7-15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757-1764, 2006; Van Breusegem et al., Plant Sci 161:405-414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.
Collapse
Affiliation(s)
- P Chaturvedi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Miro B, Ismail AM. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2013; 4:269. [PMID: 23888162 PMCID: PMC3719019 DOI: 10.3389/fpls.2013.00269] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops.
Collapse
Affiliation(s)
| | - Abdelbagi M. Ismail
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
32
|
Nakajima S, Ito H, Tanaka R, Tanaka A. Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds. PLANT PHYSIOLOGY 2012; 160:261-73. [PMID: 22751379 PMCID: PMC3440204 DOI: 10.1104/pp.112.196881] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 06/24/2012] [Indexed: 05/18/2023]
Abstract
Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds.
Collapse
Affiliation(s)
- Saori Nakajima
- Institute of Low Temperature Science, Hokkaido University, Kita-ku, Sapporo 060-0819, Japan
| | | | | | | |
Collapse
|
33
|
Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. PLANT & CELL PHYSIOLOGY 2012; 53:1380-90. [PMID: 22642988 DOI: 10.1093/pcp/pcs082] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Microalgal oils have attracted much interest as potential feedstocks for renewable fuels, yet our understanding of the regulatory mechanisms controlling oil biosynthesis and storage in microalgae is rather limited. Using Chlamydomonas reinhardtii as a model system, we show here that starch, rather than oil, is the dominant storage sink for reduced carbon under a wide variety of conditions. In short-term treatments, significant amounts of oil were found to be accumulated concomitantly with starch only under conditions of N starvation, as expected, or in cells cultured with high acetate in otherwise standard growth medium. Time-course analysis revealed that oil accumulation under N starvation lags behind that of starch and rapid oil synthesis occurs only when carbon supply exceeds the capacity of starch synthesis. In the starchless mutant BAFJ5, blocking starch synthesis results in significant increases in the extent and rate of oil accumulation. In the parental strain, but not the starchless mutant, oil accumulation under N starvation was strictly dependent on the available external acetate supply and the amount of oil increased steadily as the acetate concentration increased to the levels several-fold higher than that of the standard growth medium. Additionally, oil accumulation under N starvation is saturated at low light intensities and appears to be largely independent of de novo protein synthesis. Collectively, our results suggest that carbon availability is a key metabolic factor controlling oil biosynthesis and carbon partitioning between starch and oil in Chlamydomonas.
Collapse
Affiliation(s)
- Jilian Fan
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
34
|
Allen DK, Laclair RW, Ohlrogge JB, Shachar-Hill Y. Isotope labelling of Rubisco subunits provides in vivo information on subcellular biosynthesis and exchange of amino acids between compartments. PLANT, CELL & ENVIRONMENT 2012; 35:1232-44. [PMID: 22292468 PMCID: PMC3556518 DOI: 10.1111/j.1365-3040.2012.02485.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/19/2012] [Accepted: 01/22/2012] [Indexed: 05/18/2023]
Abstract
The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynthesis. To explore the extent to which amino acids are made in single compartments and to gain insight into the metabolic precursors from which they derive, we used steady state (13) C labelling and analysed labelling in protein amino acids from plastid and cytosol. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a major component of green tissues and its large and small subunits are synthesized from different pools of amino acids in the plastid and cytosol, respectively. Developing Brassica napus embryos were cultured in the presence of [U-(13) C]-sucrose, [U-(13) C]-glucose, [U-(13) C]-glutamine or [U-(13) C]-alanine to generate proteins. The large subunits (LSU) and small subunits (SSU) of Rubisco were isolated and the labelling in their constituent amino acids was analysed by gas chromatography-mass spectrometry. Amino acids including alanine, glycine and serine exhibited different (13) C enrichment in the LSU and SSU, demonstrating that these pools have different metabolic origins and are not isotopically equilibrated between the plastid and cytosol on the time scale of cellular growth. Potential extensions of this novel approach to other macromolecules, organelles and cell types of eukaryotes are discussed.
Collapse
Affiliation(s)
- Doug K Allen
- USDA-ARS, Plant Genetics Research Unit, St Louis, MO 63132, USA Donald Danforth Plant Science Center, St Louis, MO 63132, USA.
| | | | | | | |
Collapse
|
35
|
Meyer K, Stecca KL, Ewell-Hicks K, Allen SM, Everard JD. Oil and protein accumulation in developing seeds is influenced by the expression of a cytosolic pyrophosphatase in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:1221-34. [PMID: 22566496 PMCID: PMC3387706 DOI: 10.1104/pp.112.198309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/04/2012] [Indexed: 05/18/2023]
Abstract
This study describes a dominant low-seed-oil mutant (lo15571) of Arabidopsis (Arabidopsis thaliana) generated by enhancer tagging. Compositional analysis of developing siliques and mature seeds indicated reduced conversion of photoassimilates to oil. Immunoblot analysis revealed increased levels of At1g01050 protein in developing siliques of lo15571. At1g01050 encodes a soluble, cytosolic pyrophosphatase and is one of five closely related genes that share predicted cytosolic localization and at least 70% amino acid sequence identity. Expression of At1g01050 using a seed-preferred promoter recreated most features of the lo15571 seed phenotype, including low seed oil content and increased levels of transient starch and soluble sugars in developing siliques. Seed-preferred RNA interference-mediated silencing of At1g01050 and At3g53620, a second cytosolic pyrophosphatase gene that shows expression during seed filling, led to a heritable oil increase of 1% to 4%, mostly at the expense of seed storage protein. These results are consistent with a scenario in which the rate of mobilization of sucrose, for precursor supply of seed storage lipid biosynthesis by cytosolic glycolysis, is strongly influenced by the expression of endogenous pyrophosphatase enzymes. This emphasizes the central role of pyrophosphate-dependent reactions supporting cytosolic glycolysis during seed maturation when ATP supply is low, presumably due to hypoxic conditions. This route is the major route providing precursors for seed oil biosynthesis. ATP-dependent reactions at the entry point of glycolysis in the cytosol or plastid cannot fully compensate for the loss of oil content observed in transgenic events with increased expression of cytosolic pyrophosphatase enzyme in the cytosol. These findings shed new light on the dynamic properties of cytosolic pyrophosphate pools in developing seed and their influence on carbon partitioning during seed filling. Finally, our work uniquely demonstrates that genes encoding cytosolic pyrophosphatase enzymes provide novel targets to improve seed composition for plant biotechnology applications.
Collapse
Affiliation(s)
- Knut Meyer
- A DuPont Company, Agricultural Biotechnology, Wilmington, Delaware 19880, USA.
| | | | | | | | | |
Collapse
|
36
|
Tasleem-Tahir A, Nadaud I, Chambon C, Branlard G. Expression Profiling of Starchy Endosperm Metabolic Proteins at 21 Stages of Wheat Grain Development. J Proteome Res 2012; 11:2754-73. [DOI: 10.1021/pr201110d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Isabelle Nadaud
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| | - Christophe Chambon
- INRA, QPA, Proteomic Plateforme, F-63122 Saint-Genès Champanelle,
France
| | - Gérard Branlard
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| |
Collapse
|
37
|
Fait A, Nesi AN, Angelovici R, Lehmann M, Pham PA, Song L, Haslam RP, Napier JA, Galili G, Fernie AR. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. PLANT PHYSIOLOGY 2011; 157:1026-42. [PMID: 21921115 PMCID: PMC3252140 DOI: 10.1104/pp.111.179986] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/13/2011] [Indexed: 05/17/2023]
Abstract
In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.
Collapse
Affiliation(s)
- Aaron Fait
- French Associates Institute for Biotechnology and Agriculture of Dryland, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Midreshet Ben Gurion 84990, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hayden DM, Rolletschek H, Borisjuk L, Corwin J, Kliebenstein DJ, Grimberg A, Stymne S, Dehesh K. Cofactome analyses reveal enhanced flux of carbon into oil for potential biofuel production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1018-28. [PMID: 21615570 DOI: 10.1111/j.1365-313x.2011.04654.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To identify the underlying molecular basis of carbon partitioning between starch and oil we conducted 454 pyrosequencing, followed by custom microarrays to profile gene expression throughout endosperm development, of two closely related oat cultivars that differ in oil content at the expense of starch as determined by several approaches including non-invasive magnetic resonance imaging. Comparative transcriptome analysis in conjunction with metabolic profiling displays a close coordination between energy metabolism and carbon partitioning pathways, with increased demands for energy and reducing equivalents in kernels with a higher oil content. These studies further expand the repertoire of networks regulating carbon partitioning to those involved in metabolism of cofactors, suggesting that an elevated supply of cofactors, here called cofactomes, contribute to the allocation of higher carbon pools for production of oils and storage proteins. These data highlight a close association between cofactomes and carbon partitioning, thereby providing a biotechnological target for conversion of starch to oil.
Collapse
Affiliation(s)
- Daniel M Hayden
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Licausi F, Weits DA, Pant BD, Scheible WR, Geigenberger P, van Dongen JT. Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. THE NEW PHYTOLOGIST 2011; 190:442-56. [PMID: 20840511 DOI: 10.1111/j.1469-8137.2010.03451.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
• Reduced oxygen availability is not only associated with flooding, but occurs also during growth and development. It is largely unknown how hypoxia is perceived and what signaling cascade is involved in activating adaptive responses. • We analysed the expression of over 1900 transcription factors (TFs) and 180 microRNA primary transcripts (pri-miRNAs) in Arabidopsis roots exposed to different hypoxic conditions by means of quantitative PCR. We also analysed the promoters of genes induced by hypoxia with respect to over-represented DNA elements that can act as potential TF binding sites and their in vivo interaction was verified. • We identified various subsets of TFs that responded differentially through time and in an oxygen concentration-dependent manner. The regulatory potential of selected TFs and their predicted DNA binding elements was validated. Although the expression of pri-miRNAs was differentially regulated under hypoxia, only one corresponding mature miRNA changed accordingly. Putative target transcripts of the miRNAs were not significantly affected. • Our results show that the regulation of hypoxia-induced genes is controlled via simultaneous interaction of various combinations of TFs. Under anoxic conditions, an additional set of TFs is induced. Regulation of gene expression via miRNAs appears to play a minor role during hypoxia.
Collapse
Affiliation(s)
- Francesco Licausi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Vigeolas H, Hühn D, Geigenberger P. Nonsymbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. PLANT PHYSIOLOGY 2011; 155:1435-44. [PMID: 21205621 PMCID: PMC3046597 DOI: 10.1104/pp.110.166462] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/24/2010] [Indexed: 05/19/2023]
Abstract
Nonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter. Overexpression of AHb2 led to a 40% increase in the total fatty acid content of developing and mature seeds in three subsequent generations. This was mainly due to an increase in the polyunsaturated C18:2 (ω-6) linoleic and C18:3 (ω-3) α-linolenic acids. Moreover, AHb2 overexpression led to an increase in the C18:2/C18:1 and C18:3/C18:2 ratios as well as in the C18:3 content in mol % of total fatty acids and in the unsaturation/saturation index of total seed lipids. The increase in fatty acid content was mainly due to a stimulation of the rate of triacylglycerol synthesis, which was attributable to a 3-fold higher energy state and a 2-fold higher sucrose content of the seeds. Under low external oxygen, AHb2 overexpression maintained an up to 5-fold higher energy state and prevented fermentation. This is consistent with AHb2 overexpression results in improved oxygen availability within developing seeds. In contrast to this, overexpression of class 1 hemoglobin did not lead to any significant increase in the metabolic performance of the seeds. These results provide evidence for a specific function of class 2 hemoglobin in seed oil production and in promoting the accumulation of polyunsaturated fatty acids by facilitating oxygen supply in developing seeds.
Collapse
|
41
|
Andriotis VME, Pike MJ, Kular B, Rawsthorne S, Smith AM. Starch turnover in developing oilseed embryos. THE NEW PHYTOLOGIST 2010; 187:791-804. [PMID: 20546137 DOI: 10.1111/j.1469-8137.2010.03311.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
*Starch accumulates early during embryo development in Arabidopsis and oilseed rape, then disappears during oil accumulation. Little is known about the nature and importance of starch metabolism in oilseed embryos. *Histochemical and quantitative measures of starch location and content were made on developing seeds and embryos from wild-type Arabidopsis plants, and from mutants lacking enzymes of starch synthesis and degradation with established roles in leaf starch turnover. Feeding experiments with [(14)C]sucrose were used to measure the rate of starch synthesis in oilseed rape embryos within intact siliques. *The patterns of starch turnover in the developing embryo are spatially and temporally complex. Accumulation is associated with zones of cell division. Study of mutant plants reveals a major role in starch turnover for glucan, water dikinase (absent from the sex1 mutant) and isoforms of beta-amylase (absent from various bam mutants). Starch is synthesized throughout the period of its accumulation and loss in embryos within intact siliques of oilseed rape. *We suggest that starch turnover is functionally linked to cell division and differentiation rather than to developmental or storage functions specific to embryos. The pathways of embryo starch metabolism are similar in several respects to those in Arabidopsis leaves.
Collapse
|
42
|
Angelovici R, Galili G, Fernie AR, Fait A. Seed desiccation: a bridge between maturation and germination. TRENDS IN PLANT SCIENCE 2010; 15:211-8. [PMID: 20138563 DOI: 10.1016/j.tplants.2010.01.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 05/22/2023]
Abstract
The development of orthodox seeds concludes by a desiccation phase. The dry seeds then enter a phase of dormancy, also called the after-ripening phase, and become competent for germination. We discuss physiological processes as well as gene expression and metabolic programs occurring during the desiccation phase in respect to their contribution to the desiccation tolerance, dormancy competence and successful germination of the dry seeds. The transition of developing seeds from the phase of reserve accumulation to desiccation is associated with distinct gene expression and metabolic switches. Interestingly, a significant proportion of the gene expression and metabolic signatures of seed desiccation resemble those characterizing seed germination, implying that the preparation of the seeds for germination begins already during seed desiccation.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Department of Plant Science, the Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
43
|
Gupta KJ, Zabalza A, van Dongen JT. Regulation of respiration when the oxygen availability changes. PHYSIOLOGIA PLANTARUM 2009; 137:383-91. [PMID: 19549068 DOI: 10.1111/j.1399-3054.2009.01253.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxygen is a vital substrate for plant energy metabolism. Since plants do not have a sophisticated mechanism to deliver oxygen to those sites where it is actually needed, a plant cell has to continuously cope with changes of the oxygen tension within the tissue. The actual internal oxygen concentration will depend on the resistance for oxygen diffusion through the tissue, as well as on the actual respiratory activity. This paper discusses the current state of knowledge on the regulation of respiration by the oxygen availability. Contradicting opinions from the literature on plant respiration are reviewed and commented upon. Also, knowledge about the regulation of respiration in animal mitochondria is included. Apart from changes in glycolytic flux, the role of both the cytochrome-c oxidase (COX) and the alternative oxidase (AOX) in the adaptive response of respiration to changes in the oxygen availability are discussed. One hypothesis is formulated which describes an alternative or additional role for AOX. It is suggested that AOX could play a role in maintaining oxygen homeostasis within the mitochondrion. Because of the relative low affinity for oxygen of AOX as compared to COX, the alternative oxidase will not interfere with COX activity, but AOX activity will reduce the free oxygen concentration, thereby decreasing the production of reactive oxygen species (ROS) inside the mitochondrion.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Max Planck Institute of Molecular Plant Physiology, Energy Metabolism Research Group, Am Muehlenberg 1, D-14476 Potsdam, Germany
| | | | | |
Collapse
|
44
|
Andreadeli A, Flemetakis E, Axarli I, Dimou M, Udvardi MK, Katinakis P, Labrou NE. Cloning and characterization of Lotus japonicus formate dehydrogenase: a possible correlation with hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:976-84. [PMID: 19281876 DOI: 10.1016/j.bbapap.2009.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Formate dehydrogenases (FDHs, EC 1.2.1.2) comprise a group of enzymes found in both prokaryotes and eukaryotes that catalyse the oxidation of formate to CO(2). FDH1 from the model legume Lotus japonicus (LjFDH1) was cloned and expressed in E. coli BL21(DE3) as soluble active protein. The enzyme was purified using affinity chromatography on Cibacron blue 3GA-Sepharose. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (K(m), k(cat)) for a number of substrates were determined. Molecular modelling studies were also employed to create a model of LjFDH1, based on the known structure of the Pseudomonas sp. 101 enzyme. The molecular model was used to help interpret biochemical data concerning substrate specificity and catalytic mechanism of the enzyme. The temporal expression pattern of LjFDH1 gene was studied by real-time RT-PCR in various plant organs and during the development of nitrogen-fixing nodules. Furthermore, the spatial transcript accumulation during nodule development and in young seedpods was determined by in situ RNA-RNA hybridization. These results considered together indicate a possible role of formate oxidation by LjFDH1 in plant tissues characterized by relative hypoxia.
Collapse
Affiliation(s)
- A Andreadeli
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
45
|
Zabalza A, van Dongen JT, Froehlich A, Oliver SN, Faix B, Gupta KJ, Schmälzlin E, Igal M, Orcaray L, Royuela M, Geigenberger P. Regulation of respiration and fermentation to control the plant internal oxygen concentration. PLANT PHYSIOLOGY 2009; 149:1087-98. [PMID: 19098094 PMCID: PMC2633817 DOI: 10.1104/pp.108.129288] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/15/2008] [Indexed: 05/17/2023]
Abstract
Plant internal oxygen concentrations can drop well below ambient even when the plant grows under optimal conditions. Using pea (Pisum sativum) roots, we show how amenable respiration adapts to hypoxia to save oxygen when the oxygen availability decreases. The data cannot simply be explained by oxygen being limiting as substrate but indicate the existence of a regulatory mechanism, because the oxygen concentration at which the adaptive response is initiated is independent of the actual respiratory rate. Two phases can be discerned during the adaptive reaction: an initial linear decline of respiration is followed by a nonlinear inhibition in which the respiratory rate decreased progressively faster upon decreasing oxygen availability. In contrast to the cytochrome c pathway, the inhibition of the alternative oxidase pathway shows only the linear component of the adaptive response. Feeding pyruvate to the roots led to an increase of the oxygen consumption rate, which ultimately led to anoxia. The importance of balancing the in vivo pyruvate availability in the tissue was further investigated. Using various alcohol dehydrogenase knockout lines of Arabidopsis (Arabidopsis thaliana), it was shown that even under aerobic conditions, alcohol fermentation plays an important role in the control of the level of pyruvate in the tissue. Interestingly, alcohol fermentation appeared to be primarily induced by a drop in the energy status of the tissue rather than by a low oxygen concentration, indicating that sensing the energy status is an important component of optimizing plant metabolism to changes in the oxygen availability.
Collapse
Affiliation(s)
- Ana Zabalza
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Golm-Potsdam, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Recent applications of oxygen-sensitive microsensors have demonstrated steep oxygen gradients in developing seeds of various crops. Here, we present an overview on oxygen distribution, major determinants of the oxygen status in the developing seed and implications for seed physiology. The steady-state oxygen concentration in different seed tissues depends on developmental parameters, and is determined to a large extent by environmental factors. Photosynthetic activity of the seed significantly diminishes hypoxic constraints, and can even cause transient, local hyperoxia. Changes in oxygen availability cause rapid adjustments in mitochondrial respiration and global metabolism. We argue that nitric oxide (NO) is a key player in the oxygen balancing process in seeds, avoiding fermentation and anoxia in vivo. Molecular approaches aiming to increase oxygen availability within the seed are discussed.
Collapse
Affiliation(s)
- Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstr. 3, D-06466 Gatersleben, Germany
| |
Collapse
|
47
|
van Dongen JT, Fröhlich A, Ramírez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P. Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of arabidopsis plants. ANNALS OF BOTANY 2009; 103:269-80. [PMID: 18660497 PMCID: PMC2707303 DOI: 10.1093/aob/mcn126] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/20/2008] [Accepted: 06/09/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Oxygen can fall to low concentrations within plant tissues, either because of environmental factors that decrease the external oxygen concentration or because the movement of oxygen through the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants can decrease their oxygen consumption in response to relatively small changes in oxygen concentrations to avoid internal anoxia. The molecular mechanisms underlying this response have not been identified yet. The aim of this study was to use transcript and metabolite profiling to investigate the genomic response of arabidopsis roots to a mild decrease in oxygen concentrations. METHODS Arabidopsis seedlings were grown on vertical agar plates at 21, 8, 4 and 1 % (v/v) external oxygen for 0.5, 2 and 48 h. Roots were analysed for changes in transcript levels using Affymetrix whole genome DNA microarrays, and for changes in metabolite levels using routine GC-MS based metabolite profiling. Root extension rates were monitored in parallel to investigate adaptive changes in growth. KEY RESULTS The results show that root growth was inhibited and transcript and metabolite profiles were significantly altered in response to a moderate decrease in oxygen concentrations. Low oxygen leads to a preferential up-regulation of genes that might be important to trigger adaptive responses in the plant. A small but highly specific set of genes is induced very early in response to a moderate decrease in oxygen concentrations. Genes that were down-regulated mainly encoded proteins involved in energy-consuming processes. In line with this, root extension growth was significantly decreased which will ultimately save ATP and decrease oxygen consumption. This was accompanied by a differential regulation of metabolite levels at short- and long-term incubation at low oxygen. CONCLUSIONS The results show that there are adaptive changes in root extension involving large-scale reprogramming of gene expression and metabolism when oxygen concentration is decreased in a very narrow range.
Collapse
Affiliation(s)
- Joost T. van Dongen
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Anja Fröhlich
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Nicolas Schauer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jeremy Clark
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Anke Langer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Peter Geigenberger
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- For correspondence. E-mail
| |
Collapse
|
48
|
Borek S, Pukacka S, Michalski K, Ratajczak L. Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3453-66. [PMID: 19635747 PMCID: PMC2724698 DOI: 10.1093/jxb/erp186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A comparative study was carried out on the dynamics of lipid accumulation in developing seeds of three lupine species. Lupine seeds differ in lipid content; yellow lupine (Lupinus luteus L.) seeds contain about 6%, white lupine (Lupinus albus L.) 7-14%, and Andean lupine (Lupinus mutabilis Sweet) about 20% of lipids by dry mass. Cotyledons from developing seeds were isolated and cultured in vitro for 96 h on Heller medium with 60 mM sucrose (+S) or without sucrose (-S). Each medium was additionally enriched with 35 mM asparagine or 35 mM NaNO3. Asparagine caused an increase in protein accumulation and simultaneously decreased the lipid content, but nitrate increased accumulation of both protein and lipid. Experiments with [1-14C]acetate and [2-14C]acetate showed that the decrease in lipid accumulation in developing lupine seeds resulted from exhaustion of lipid precursors rather than from degradation or modification of the enzymatic apparatus. The carbon atom from the C-1 position of acetate was liberated mainly as CO2, whereas the carbon atom from the C-2 position was preferentially used in anabolic pathways. The dominant phospholipid in the investigated lupine seed storage organs was phosphatidylcholine. The main fatty acid in yellow lupine cotyledons was linoleic acid, in white lupine it was oleic acid, and in Andean lupine it was both linoleic and oleic acids. The relationship between stimulation of lipid and protein accumulation by nitrate in developing lupine cotyledons and enhanced carbon flux through glycolysis caused by the inorganic nitrogen form is discussed.
Collapse
Affiliation(s)
- Slawomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
49
|
Verdier J, Thompson RD. Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. PLANT & CELL PHYSIOLOGY 2008; 49:1263-71. [PMID: 18701524 DOI: 10.1093/pcp/pcn116] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seeds represent a major source of nutrients for human and animal livestock diets. The nutritive value of seeds is largely due to storage products which accumulate during a key phase of seed development, seed filling. In recent years, our understanding of the mechanisms regulating seed filling has advanced significantly due to the diversity of experimental approaches used. This review summarizes recent findings related to transcription factors that regulate seed storage protein accumulation. A framework for the regulation of storage protein synthesis is established which incorporates the events before, during and after seed storage protein synthesis. The transcriptional control of storage protein synthesis is accompanied by physiological and environmental controls, notably through the action of plant hormones and other intermediary metabolites. Finally, recent post-genomics analyses on different model plants have established the existence of a conserved seed filling process involving the master regulators (LEC1, LEC2, ABI3 and FUS3) but also revealed certain differences in fine regulation between plant families.
Collapse
Affiliation(s)
- Jérôme Verdier
- Unité Mixte de Recherche en Génétique et Ecophysiologie des Légumineuses à Graines (UMR-LEG), Institut National de la Recherche Agronomique (INRA), BP 86510, F-21065 Dijon, France
| | | |
Collapse
|
50
|
Morley-Smith ER, Pike MJ, Findlay K, Köckenberger W, Hill LM, Smith AM, Rawsthorne S. The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. PLANT PHYSIOLOGY 2008; 147:2121-30. [PMID: 18562765 PMCID: PMC2492605 DOI: 10.1104/pp.108.124644] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/13/2008] [Indexed: 05/18/2023]
Abstract
The fate of sucrose (Suc) supplied via the phloem to developing oilseed rape (Brassica napus) seeds has been investigated by supplying [(14)C]Suc to pedicels of detached, developing siliques. The method gives high, sustained rates of lipid synthesis in developing embryos within the silique comparable with those on the intact plant. At very early developmental stages (3 d after anthesis), the liquid fraction that occupies most of the interior of the seed has a very high hexose-to-Suc ratio and [(14)C]Suc entering the seeds is rapidly converted to hexoses. Between 3 and 12 d after anthesis, the hexose-to-Suc ratio of the liquid fraction of the seed remains high, but the fraction of [(14)C]Suc converted to hexose falls dramatically. Instead, most of the [(14)C]Suc entering the seed is rapidly converted to products in the growing embryo. These data, together with light and nuclear magnetic resonance microscopy, reveal complex compartmentation of sugar metabolism and transport within the seed during development. The bulk of the sugar in the liquid fraction of the seed is probably contained within the central vacuole of the endosperm. This sugar is not in contact with the embryo and is not on the path taken by carbon from the phloem to the embryo. These findings have important implications for the sugar switch model of embryo development and for understanding the relationship between the embryo and the surrounding endosperm.
Collapse
Affiliation(s)
- Edward R Morley-Smith
- Department of Metabolic Biology , John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|