1
|
Fernández JD, Miño I, Canales J, Vidal EA. Gene regulatory networks underlying sulfate deficiency responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2781-2798. [PMID: 38366662 DOI: 10.1093/jxb/erae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Sulfur (S) is an essential macronutrient for plants and its availability in soils is an important determinant for growth and development. Current regulatory policies aimed at reducing industrial S emissions together with changes in agronomical practices have led to a decline in S contents in soils worldwide. Deficiency of sulfate-the primary form of S accessible to plants in soil-has adverse effects on both crop yield and nutritional quality. Hence, recent research has increasingly focused on unraveling the molecular mechanisms through which plants detect and adapt to a limiting supply of sulfate. A significant part of these studies involves the use of omics technologies and has generated comprehensive catalogs of sulfate deficiency-responsive genes and processes, principally in Arabidopsis together with a few studies centering on crop species such as wheat, rice, or members of the Brassica genus. Although we know that sulfate deficiency elicits an important reprogramming of the transcriptome, the transcriptional regulators orchestrating this response are not yet well understood. In this review, we summarize our current knowledge of gene expression responses to sulfate deficiency and recent efforts towards the identification of the transcription factors that are involved in controlling these responses. We further compare the transcriptional response and putative regulators between Arabidopsis and two important crop species, rice and tomato, to gain insights into common mechanisms of the response to sulfate deficiency.
Collapse
Affiliation(s)
- José David Fernández
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, 8580745, Santiago, Chile
| | - Ignacio Miño
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Javier Canales
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Elena A Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
| |
Collapse
|
2
|
Puresmaeli F, Heidari P, Lawson S. Insights into the Sulfate Transporter Gene Family and Its Expression Patterns in Durum Wheat Seedlings under Salinity. Genes (Basel) 2023; 14:genes14020333. [PMID: 36833260 PMCID: PMC9956213 DOI: 10.3390/genes14020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Sulfate transporters (SULTRs) are an essential plant transporter class responsible for the absorption and distribution of sulfur, an essential plant growth element. SULTRs are also involved in processes related to growth and development and in response to environmental stimuli. In the present study, 22 TdSULTR family members were identified and characterized in the genome of Triticum turgidum L. ssp. durum (Desf.) using available bioinformatics tools. The expression levels of candidate TdSULTR genes were investigated under salt treatments of 150 and 250 mM NaCl after several different exposure times. TdSULTRs showed diversity in terms of physiochemical properties, gene structure, and pocket sites. TdSULTRs and their orthologues were classified into the known five main plant groups of highly diverse subfamilies. In addition, it was noted that segmental duplication events could lengthen TdSULTR family members under evolutionary processes. Based on pocket site analysis, the amino acids leucine (L), valine (V), and serine (S) were most often detected in TdSULTR protein binding sites. Moreover, it was predicted that TdSULTRs have a high potential to be targeted by phosphorylation modifications. According to promoter site analysis, the plant bioregulators ABA and MeJA were predicted to affect TdSULTR expression patterns. Real-time PCR analysis revealed TdSULTR genes are differentially expressed at 150 mM NaCl but show similar expression in response to 250 mM NaCl. TdSULTR reached a maximum level of expression 72 h after the 250 mM salt treatment. Overall, we conclude that TdSULTR genes are involved in the response to salinity in durum wheat. However, additional studies of functionality are needed to determine their precise function and linked-interaction pathways.
Collapse
Affiliation(s)
- Fatemeh Puresmaeli
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
- Correspondence:
| | - Shaneka Lawson
- USDA Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center (HTIRC), Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47906, USA
| |
Collapse
|
3
|
Rahimzadeh Karvansara P, Kelly C, Krone R, Zenzen I, Ristova D, Silz E, Jobe TO, Kopriva S. Unique features of regulation of sulfate assimilation in monocots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:308-320. [PMID: 36222825 DOI: 10.1093/jxb/erac402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Sulfate assimilation is an essential pathway of plant primary metabolism, regulated by the demand for reduced sulfur (S). The S-containing tripeptide glutathione (GSH) is the key signal for such regulation in Arabidopsis, but little is known about the conservation of these regulatory mechanisms beyond this model species. Using two model monocot species, C3 rice (Oryza sativa) and C4Setaria viridis, and feeding of cysteine or GSH, we aimed to find out how conserved are the regulatory mechanisms described for Arabidopsis in these species. We showed that while in principle the regulation is similar, there are many species-specific differences. For example, thiols supplied by the roots are translocated to the shoots in rice but remain in the roots of Setaria. Cysteine and GSH concentrations are highly correlated in Setaria, but not in rice. In both rice and Setaria, GSH seems to be the signal for demand-driven regulation of sulfate assimilation. Unexpectedly, we observed cysteine oxidation to sulfate in both species, a reaction that does not occur in Arabidopsis. This reaction is dependent on sulfite oxidase, but the enzyme(s) releasing sulfite from cysteine still need to be identified. Altogether our data reveal a number of unique features in the regulation of S metabolism in the monocot species and indicate the need for using multiple taxonomically distinct models to better understand the control of nutrient homeostasis, which is important for generating low-input crop varieties.
Collapse
Affiliation(s)
- Parisa Rahimzadeh Karvansara
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Ciaran Kelly
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Raissa Krone
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Ivan Zenzen
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Emely Silz
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Timothy O Jobe
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| |
Collapse
|
4
|
Khan MS, Soyk A, Wolf I, Peter M, Meyer AJ, Rausch T, Wirtz M, Hell R. Discriminative Long-Distance Transport of Selenate and Selenite Triggers Glutathione Oxidation in Specific Subcellular Compartments of Root and Shoot Cells in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:894479. [PMID: 35812960 PMCID: PMC9263558 DOI: 10.3389/fpls.2022.894479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Selenium is an essential trace element required for seleno-protein synthesis in many eukaryotic cells excluding higher plants. However, a substantial fraction of organically bound selenide in human nutrition is directly or indirectly derived from plants, which assimilate inorganic selenium into organic seleno-compounds. In humans, selenium deficiency is associated with several health disorders Despite its importance for human health, selenium assimilation and metabolism is barely understood in plants. Here, we analyzed the impact of the two dominant forms of soil-available selenium, selenite and selenate, on plant development and selenium partitioning in plants. We found that the reference plant Arabidopsis thaliana discriminated between selenate and selenite application. In contrast to selenite, selenate was predominantly deposited in leaves. This explicit deposition of selenate caused chlorosis and impaired plant morphology, which was not observed upon selenite application. However, only selenate triggered the accumulation of the macronutrient sulfur, the sister element of selenium in the oxygen group. To understand the oxidation state-specific toxicity mechanisms for selenium in plants, we quantified the impact of selenate and selenite on the redox environment in the plastids and the cytosol in a time-resolved manner. Surprisingly, we found that selenite first caused the oxidation of the plastid-localized glutathione pool and had a marginal impact on the redox state of the cytosolic glutathione pool, specifically in roots. In contrast, selenate application caused more vigorous oxidation of the cytosolic glutathione pool but also impaired the plastidic redox environment. In agreement with the predominant deposition in leaves, the selenate-induced oxidation of both glutathione pools was more pronounced in leaves than in roots. Our results demonstrate that Se-species dependent differences in Se partitioning substantially contribute to whole plant Se toxicity and that these Se species have subcellular compartment-specific impacts on the glutathione redox buffer that correlate with toxicity symptoms.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Anna Soyk
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ingo Wolf
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Miriam Peter
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Andreas J. Meyer
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- INRES - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Thomas Rausch
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Khan MS, Lu Q, Cui M, Rajab H, Wu H, Chai T, Ling HQ. Crosstalk Between Iron and Sulfur Homeostasis Networks in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:878418. [PMID: 35755678 PMCID: PMC9224419 DOI: 10.3389/fpls.2022.878418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The widespread deficiency of iron (Fe) and sulfur (S) is becoming a global concern. The underlying mechanisms regulating Fe and S sensing and signaling have not been well understood. We investigated the crosstalk between Fe and S using mutants impaired in Fe homeostasis, sulfate assimilation, and glutathione (GSH) biosynthesis. We showed that chlorosis symptoms induced by Fe deficiency were not directly related to the endogenous GSH levels. We found dynamic crosstalk between Fe and S networks and more interestingly observed that the upregulated expression of IRT1 and FRO2 under S deficiency in Col-0 was missing in the cad2-1 mutant background, which suggests that under S deficiency, the expression of IRT1 and FRO2 was directly or indirectly dependent on GSH. Interestingly, the bottleneck in sulfite reduction led to a constitutively higher IRT1 expression in the sir1-1 mutant. While the high-affinity sulfate transporter (Sultr1;2) was upregulated under Fe deficiency in the roots, the low-affinity sulfate transporters (Sultr2;1, and Sultr2;2) were down-regulated in the shoots of Col-0 seedlings. Moreover, the expression analysis of some of the key players in the Fe-S cluster assembly revealed that the expression of the so-called Fe donor in mitochondria (AtFH) and S mobilizer of group II cysteine desulfurase in plastids (AtNFS2) were upregulated under Fe deficiency in Col-0. Our qPCR data and ChIP-qPCR experiments suggested that the expression of AtFH is likely under the transcriptional regulation of the central transcription factor FIT.
Collapse
Affiliation(s)
- Muhammad Sayyar Khan
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Qiao Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hala Rajab
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Local and Systemic Response to Heterogeneous Sulfate Resupply after Sulfur Deficiency in Rice. Int J Mol Sci 2022; 23:ijms23116203. [PMID: 35682882 PMCID: PMC9181796 DOI: 10.3390/ijms23116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Sulfur (S) is an essential mineral nutrient required for plant growth and development. Plants usually face temporal and spatial variation in sulfur availability, including the heterogeneous sulfate content in soils. As sessile organisms, plants have evolved sophisticated mechanisms to modify their gene expression and physiological processes in order to optimize S acquisition and usage. Such plasticity relies on a complicated network to locally sense S availability and systemically respond to S status, which remains poorly understood. Here, we took advantage of a split-root system and performed transcriptome-wide gene expression analysis on rice plants in S deficiency followed by sulfate resupply. S deficiency altered the expressions of 6749 and 1589 genes in roots and shoots, respectively, accounting for 18.07% and 4.28% of total transcripts detected. Homogeneous sulfate resupply in both split-root halves recovered the expression of 27.06% of S-deficiency-responsive genes in shoots, while 20.76% of S-deficiency-responsive genes were recovered by heterogeneous sulfate resupply with only one split-root half being resupplied with sulfate. The local sulfate resupply response genes with expressions only recovered in the split-root half resupplied with sulfate but not in the other half remained in S deficiency were identified in roots, which were mainly enriched in cellular amino acid metabolic process and root growth and development. Several systemic response genes were also identified in roots, whose expressions remained unchanged in the split-root half resupplied with sulfate but were recovered in the other split-root half without sulfate resupply. The systemic response genes were mainly related to calcium signaling and auxin and ABA signaling. In addition, a large number of S-deficiency-responsive genes exhibited simultaneous local and systemic responses to sulfate resupply, such as the sulfate transporter gene OsSULTR1;1 and the O-acetylserine (thiol) lyase gene, highlighting the existence of a systemic regulation of sulfate uptake and assimilation in S deficiency plants followed by sulfate resupply. Our studies provided a comprehensive transcriptome-wide picture of a local and systemic response to heterogeneous sulfate resupply, which will facilitate an understanding of the systemic regulation of S homeostasis in rice.
Collapse
|
7
|
Iqrar S, Ashrafi K, Khan S, Saifi M, Nasrullah N, Abdin MZ. Set of miRNAs Involved in Sulfur Uptake and the Assimilation Pathway of Indian Mustard ( B. juncea) in Response to Sulfur Treatments. ACS OMEGA 2022; 7:13228-13242. [PMID: 35474774 PMCID: PMC9026012 DOI: 10.1021/acsomega.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) play an important role in the regulation of gene expression. They play a regulatory role in various nutrient assimilatory pathways of plants; however, their role in the regulation of sulfur uptake and assimilatory pathways in mustard cultivars under high/low sulfur conditions is not elucidated. Sulfur is essential for plant growth and development, and its deficiency can cause a decline in oil seed content and thus lower the economic yield in Brassica juncea. In this study, different miRNAs involved in the regulation of sulfur uptake and assimilation pathways in B. juncea were identified using a psRNA target analyzer and miRanda database tools. The predicted miRNAs that belong to 10 highly conserved families were validated using stem-loop RT-PCR. The B. juncea cultivars Pusa Jaikisan, Pusa Bold, and Varuna were kept in sulfur-excessive (high) and -deficient (insufficient) conditions, and expression studies of miRNAs and their target mRNAs were carried out using qRT-PCR. The correlation between the expression pattern of miRNAs and their target genes showed their potential role in sulfur uptake and assimilation. Analysis with 5' RACE revealed the authentic target of miRNAs. The influence of S treatments on metabolites and sulfur content was also studied using GC-MS and a CHNS analyzer. Our study showed the potential role of miRNAs in the regulation of sulfur uptake and assimilation and put forward the implications of these molecules to enhance the sulfur content of B. juncea.
Collapse
|
8
|
Mondal S, Pramanik K, Panda D, Dutta D, Karmakar S, Bose B. Sulfur in Seeds: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030450. [PMID: 35161431 PMCID: PMC8838887 DOI: 10.3390/plants11030450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/30/2023]
Abstract
Sulfur is a growth-limiting and secondary macronutrient as well as an indispensable component for several cellular components of crop plants. Over the years various scientists have conducted several experiments on sulfur metabolism based on different aspects of plants. Sulfur metabolism in seeds has immense importance in terms of the different sulfur-containing seed storage proteins, the significance of transporters in seeds, the role of sulfur during the time of seed germination, etc. The present review article is based on an overview of sulfur metabolism in seeds, in respect to source to sink relationships, S transporters present in the seeds, S-regulated seed storage proteins and the importance of sulfur at the time of seed germination. Sulfur is an essential component and a decidable factor for seed yield and the quality of seeds in terms of oil content in oilseeds, storage of qualitative proteins in legumes and has a significant role in carbohydrate metabolism in cereals. In conclusion, a few future perspectives towards a more comprehensive knowledge on S metabolism/mechanism during seed development, storage and germination have also been stated.
Collapse
Affiliation(s)
- Sananda Mondal
- Department of Crop Physiology, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Kalipada Pramanik
- Department of Agronomy, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Debasish Panda
- Department of Crop Physiology, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Debjani Dutta
- Department of Plant Physiology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (D.D.); (S.K.)
| | - Snehashis Karmakar
- Department of Plant Physiology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (D.D.); (S.K.)
| | - Bandana Bose
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
9
|
Xun M, Song J, Shi J, Li J, Shi Y, Yan J, Zhang W, Yang H. Genome-Wide Identification of Sultr Genes in Malus domestica and Low Sulfur-Induced MhSultr3;1a to Increase Cysteine-Improving Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:748242. [PMID: 34707631 PMCID: PMC8544799 DOI: 10.3389/fpls.2021.748242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Sulfur is an essential nutrient for plant growth and development. Sulfate transporters (Sultrs) are critical for sulfate (SO 4 2 - ) uptake from the soil by the roots in higher plants. However, knowledge about Sultrs in apples (Malus domestica) is scarce. Here, nine putative MdSultrs were identified and classified into two groups according to the their phylogenetic relationships, gene structures, and conserved motifs. Various cis-regulatory elements related to abiotic stress and plant hormone responsiveness were found in the promoter regions of MdSultrs. These MdSultrs exhibited tissue-specific expression patterns and responded to low sulfur (S), abscisic acid (ABA), indole-3-acetic acid (IAA), and methyl jasmonate (MeJA), wherein MdSultr3;1a was especially expressed in the roots and induced by low S. The uptake ofSO 4 2 - in cultivated apples depends on the roots of its rootstock, and MhSultr3;1a was isolated from Malus hupehensis roots used as a rootstock. MhSultr3;1a shared 99.85% homology with MdSultr3;1a and localized on the plasma membrane and nucleus membrane. Further function characterization revealed that MhSultr3;1a complemented anSO 4 2 - transport-deficient yeast mutant and improved the growth of yeast and apple calli under low S conditions. The MhSultr3;1a-overexpressing apple calli had a higher fresh weight compared with the wild type (WT) under a low-S treatment because of the increasedSO 4 2 - and cysteine (Cys) content. These results demonstrate that MhSultr3;1a may increase the content ofSO 4 2 - and Cys to meet the demands of S-containing compounds and improve their growth under S-limiting conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weiwei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Hongqiang Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
10
|
Forieri I, Aref R, Wirtz M, Hell R. Micrografting Provides Evidence for Systemic Regulation of Sulfur Metabolism between Shoot and Root. PLANTS 2021; 10:plants10081729. [PMID: 34451773 PMCID: PMC8402062 DOI: 10.3390/plants10081729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
The uptake of sulfate by roots and its reductive assimilation mainly in the leaves are not only essential for plant growth and development but also for defense responses against biotic and abiotic stresses. The latter functions result in stimulus-induced fluctuations of sulfur demand at the cellular level. However, the maintenance and acclimation of sulfur homeostasis at local and systemic levels is not fully understood. Previous research mostly focused on signaling in response to external sulfate supply to roots. Here we apply micrografting of Arabidopsis wildtype knock-down sir1-1 mutant plants that suffer from an internally lowered reductive sulfur assimilation and a concomitant slow growth phenotype. Homografts of wildtype and sir1-1 confirm the hallmarks of non-grafted sir1-1 mutants, displaying substantial induction of sulfate transporter genes in roots and sulfate accumulation in shoots. Heterografts of wildtype scions and sir1-1 rootstocks and vice versa, respectively, demonstrate a dominant role of the shoot over the root with respect to sulfur-related gene expression, sulfate accumulation and organic sulfur metabolites, including the regulatory compound O-acetylserine. The results provide evidence for demand-driven control of the shoot over the sulfate uptake system of roots under sulfur-sufficient conditions, allowing sulfur uptake and transport to the shoot for dynamic responses.
Collapse
Affiliation(s)
- Ilaria Forieri
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
| | - Rasha Aref
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
| | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany; (I.F.); (R.A.); (M.W.)
- Correspondence: ; Tel.: +49-6221-54-5334
| |
Collapse
|
11
|
Lima LW, Nardi S, Santoro V, Schiavon M. The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants (Basel) 2021; 10:antiox10071031. [PMID: 34202330 PMCID: PMC8300636 DOI: 10.3390/antiox10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.
Collapse
Affiliation(s)
| | - Serenella Nardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy;
| | - Veronica Santoro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
| | - Michela Schiavon
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO, Italy;
- Correspondence: ; Tel.: +1-1670-8520
| |
Collapse
|
12
|
Yuan Z, Long W, Hu H, Liang T, Luo X, Hu Z, Zhu R, Wu X. Genome-Wide Identification and Expansion Patterns of SULTR Gene Family in Gramineae Crops and Their Expression Profiles under Abiotic Stress in Oryza sativa. Genes (Basel) 2021; 12:634. [PMID: 33922737 PMCID: PMC8146379 DOI: 10.3390/genes12050634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Sulfate transporters (SULTRs), also known as H+/SO42- symporters, play a key role in sulfate transport, plant growth and stress responses. However, the evolutionary relationships and functional differentiation of SULTRs in Gramineae crops are rarely reported. Here, 111 SULTRs were retrieved from the genomes of 10 Gramineae species, including Brachypodium disachyon, Hordeum vulgare, Setaria italica, Sorghum bicolor, Zea mays, Oryza barthii, Oryza rufipogon, Oryza glabbermia and Oryza sativa (Oryza sativa ssp. indica and Oryza sativa ssp. japonica). The SULTRs were clustered into five clades based on a phylogenetic analysis. Syntheny analysis indicates that whole-genome duplication/segmental duplication and tandem duplication events were essential in the SULTRs family expansion. We further found that different clades and orthologous groups of SULTRs were under a strong purifying selective force. Expression analysis showed that rice SULTRs with high-affinity transporters are associated with the functions of sulfate uptake and transport during rice seedling development. Furthermore, using Oryza sativa ssp. indica as a model species, we found that OsiSULTR10 was significantly upregulated under salt stress, while OsiSULTR3 and OsiSULTR12 showed remarkable upregulation under high temperature, low-selenium and drought stresses. OsiSULTR3 and OsiSULTR9 were upregulated under both low-selenium and high-selenium stresses. This study illustrates the expression and evolutionary patterns of the SULTRs family in Gramineae species, which will facilitate further studies of SULTR in other Gramineae species.
Collapse
Affiliation(s)
- Zhengqing Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; (Z.Y.); (W.L.); (T.L.); (X.L.); (Z.H.); (R.Z.)
| | - Weixiong Long
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; (Z.Y.); (W.L.); (T.L.); (X.L.); (Z.H.); (R.Z.)
| | - Haifei Hu
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia;
| | - Ting Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; (Z.Y.); (W.L.); (T.L.); (X.L.); (Z.H.); (R.Z.)
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; (Z.Y.); (W.L.); (T.L.); (X.L.); (Z.H.); (R.Z.)
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; (Z.Y.); (W.L.); (T.L.); (X.L.); (Z.H.); (R.Z.)
| | - Renshan Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; (Z.Y.); (W.L.); (T.L.); (X.L.); (Z.H.); (R.Z.)
| | - Xianting Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China; (Z.Y.); (W.L.); (T.L.); (X.L.); (Z.H.); (R.Z.)
| |
Collapse
|
13
|
Li Q, Gao Y, Yang A. Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E8926. [PMID: 33255536 PMCID: PMC7727837 DOI: 10.3390/ijms21238926] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sulfur (S) is an essential macronutrient for plant growth and development. S is majorly absorbed as sulfate from soil, and is then translocated to plastids in leaves, where it is assimilated into organic products. Cysteine (Cys) is the first organic product generated from S, and it is used as a precursor to synthesize many S-containing metabolites with important biological functions, such as glutathione (GSH) and methionine (Met). The reduction of sulfate takes place in a two-step reaction involving a variety of enzymes. Sulfate transporters (SULTRs) are responsible for the absorption of SO42- from the soil and the transport of SO42- in plants. There are 12-16 members in the S transporter family, which is divided into five categories based on coding sequence homology and biochemical functions. When exposed to S deficiency, plants will alter a series of morphological and physiological processes. Adaptive strategies, including cis-acting elements, transcription factors, non-coding microRNAs, and phytohormones, have evolved in plants to respond to S deficiency. In addition, there is crosstalk between S and other nutrients in plants. In this review, we summarize the recent progress in understanding the mechanisms underlying S homeostasis in plants.
Collapse
Affiliation(s)
| | | | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; (Q.L.); (Y.G.)
| |
Collapse
|
14
|
Regulation of Sulfate Uptake and Assimilation in Barley (Hordeum vulgare) as Affected by Rhizospheric and Atmospheric Sulfur Nutrition. PLANTS 2020; 9:plants9101283. [PMID: 32998434 PMCID: PMC7601654 DOI: 10.3390/plants9101283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022]
Abstract
To study the regulation of sulfate metabolism in barley (Hordeum vulgare), seedlings were exposed to atmospheric hydrogen sulfide (H2S) in the presence and absence of a sulfate supply. Sulfate deprivation reduced shoot and root biomass production by 60% and 70%, respectively, and it affected the plant’s mineral nutrient composition. It resulted in a 5.7- and 2.9-fold increased shoot and root molybdenum content, respectively, and a decreased content of several other mineral nutrients. Particularly, it decreased shoot and root total sulfur contents by 60% and 70%, respectively. These decreases could be ascribed to decreased sulfate contents. Sulfate deficiency was additionally characterized by significantly lowered cysteine, glutathione and soluble protein levels, enhanced dry matter, nitrate and free amino acid contents, an increased APS reductase (APR) activity and an increased expression and activity of the root sulfate uptake transporters. When sulfate-deprived barley was exposed to 0.6 µL L−1 atmospheric H2S, the decrease in biomass production and the development of other sulfur deficiency symptoms were alleviated. Clearly, barley could use H2S, absorbed by the foliage, as a sulfur source for growth. H2S fumigation of both sulfate-deprived and sulfate-sufficient plants downregulated APR activity as well as the expression and activity of the sulfate uptake transporters. Evidently, barley switched from rhizospheric sulfate to atmospheric H2S as sulfur source. Though this indicates that sulfate utilization in barley is controlled by signals originating in the shoot, the signal transduction pathway involved in the shoot-to-root regulation must be further elucidated.
Collapse
|
15
|
Ausma T, Mulder J, Polman TR, van der Kooi CJ, De Kok LJ. Atmospheric H 2S exposure does not affect stomatal aperture in maize. PLANTA 2020; 252:63. [PMID: 32968882 PMCID: PMC7511280 DOI: 10.1007/s00425-020-03463-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/12/2020] [Indexed: 05/10/2023]
Abstract
Stomatal aperture in maize is not affected by exposure to a subtoxic concentration of atmospheric H2S. At least in maize, H2S, thus, is not a gaseous signal molecule that controls stomatal aperture. Sulfur is an indispensable element for the physiological functioning of plants with hydrogen sulfide (H2S) potentially acting as gasotransmitter in the regulation of stomatal aperture. It is often assumed that H2S is metabolized into cysteine to stimulate stomatal closure. To study the significance of H2S for the regulation of stomatal closure, maize was exposed to a subtoxic atmospheric H2S level in the presence or absence of a sulfate supply to the root. Similar to other plants, maize could use H2S as a sulfur source for growth. Whereas sulfate-deprived plants had a lower biomass than sulfate-sufficient plants, exposure to H2S alleviated this growth reduction. Shoot sulfate, glutathione, and cysteine levels were significantly higher in H2S-fumigated plants compared to non-fumigated plants. Nevertheless, this was not associated with changes in the leaf area, stomatal density, stomatal resistance, and transpiration rate of plants, meaning that H2S exposure did not affect the transpiration rate per stoma. Hence, it did not affect stomatal aperture, indicating that, at least in maize, H2S is not a gaseous signal molecule controlling this aperture.
Collapse
Affiliation(s)
- Ties Ausma
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Jeffrey Mulder
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Thomas R Polman
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Casper J van der Kooi
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Luit J De Kok
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Chen J, Zhang NN, Pan Q, Lin XY, Shangguan Z, Zhang JH, Wei GH. Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings. BMC PLANT BIOLOGY 2020; 20:383. [PMID: 32819279 PMCID: PMC7441670 DOI: 10.1186/s12870-020-02601-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hydrogen sulphide (H2S) is involved in regulating physiological processes in plants. We investigated how H2S ameliorates iron (Fe) deficiency in soybean (Glycine max L.) seedlings. Multidisciplinary approaches including physiological, biochemical and molecular, and transcriptome methods were used to investigate the H2S role in regulating Fe availability in soybean seedlings. RESULTS Our results showed that H2S completely prevented leaf interveinal chlorosis and caused an increase in soybean seedling biomass under Fe deficiency conditions. Moreover, H2S decreased the amount of root-bound apoplastic Fe and increased the Fe content in leaves and roots by regulating the ferric-chelate reductase (FCR) activities and Fe homeostasis- and sulphur metabolism-related gene expression levels, thereby promoting photosynthesis in soybean seedlings. In addition, H2S changed the plant hormone concentrations by modulating plant hormone-related gene expression abundances in soybean seedlings grown in Fe-deficient solution. Furthermore, organic acid biosynthesis and related genes expression also played a vital role in modulating the H2S-mediated alleviation of Fe deficiency in soybean seedlings. CONCLUSION Our results indicated that Fe deficiency was alleviated by H2S through enhancement of Fe acquisition and assimilation, thereby regulating plant hormones and organic acid synthesis in plants.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Qing Pan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xue-Yuan Lin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jian-Hua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ge-Hong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
17
|
Tang L, Hamid Y, Zehra A, Sahito ZA, He Z, Khan MB, Feng Y, Yang X. Comparative assessment of Brassica pekinensis L. genotypes for phytoavoidation of nitrate, cadmium and lead in multi-pollutant field. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:972-985. [PMID: 32524834 DOI: 10.1080/15226514.2020.1774498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Information is needed for comparative assessment and agronomic practices for phytoavoidation in multi-pollutant field. A field study was conducted to explore 97 Brassica pekinensis L. genotypes with permissible limit of contaminants growing in a severely Cd, moderately nitrate and slightly Pb multi-polluted field. Thirteen genotypes, i.e. KGZY, CXQW, CAIB, JINL, JQIN, JFEN, WMQF, XLSH, TAIK, BJXS, JUKA, XYJQ and GQBW, were identified with permissible limit for nitrate, Cd and Pb based on their resistance to heavy metal and nitrate accumulation in leaves when grown in co-contaminated soils. Furthermore, the correlation between essential and toxic elements concentrations in plant of B. pekinensis were inconsistent. Generally speaking, application of increasing Ca, K and S fertilizers in appropriate forms and dosages tended to increase the yield and quality of B. pekinensis cultivated in multi-pollutant field.
Collapse
Affiliation(s)
- Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Afsheen Zehra
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Botany, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Zulfiqar Ali Sahito
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenli He
- Institute of Food and Agricultural Sciences, Indian River Research and Education Center, University of Florida, Fort Pierce, FL, USA
| | - Muhammad Bilal Khan
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
18
|
Borpatragohain P, Rose TJ, Liu L, Barkla BJ, Raymond CA, King GJ. Remobilization and fate of sulphur in mustard. ANNALS OF BOTANY 2019; 124:471-480. [PMID: 31181139 PMCID: PMC6798836 DOI: 10.1093/aob/mcz101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Sulphur (S) is an essential macronutrient involved in numerous metabolic pathways required for plant growth. Crops of the plant family Brassicaceae require more S compared with other crops for optimum growth and yield, with most S ultimately sequestered in the mature seeds as the storage proteins cruciferin and napin, along with the unique S-rich secondary metabolite glucosinolate (GSL). It is well established that S assimilation primarily takes place in the shoots rather than roots, and that sulphate is the major form in which S is transported and stored in plants. We carried out a developmental S audit to establish the net fluxes of S in two lines of Brassica juncea mustard where seed GSL content differed but resulted in no yield penalty. METHODS We quantified S pools (sulphate, GSL and total S) in different organs at multiple growth stages until maturity, which also allowed us to test the hypothesis that leaf S, accumulated as a primary S sink, becomes remobilized as a secondary source to meet the requirements of GSL as the dominant seed S sink. KEY RESULTS Maximum plant sulphate accumulation had occurred by floral initiation in both lines, at which time most of the sulphate was found in the leaves, confirming its role as the primary S sink. Up to 52 % of total sulphate accumulated by the low-GSL plants was lost through senesced leaves. In contrast, S from senescing leaves of the high-GSL line was remobilized to other tissues, with GSL accumulating in the seed from commencement of silique filling until maturity. CONCLUSION We have established that leaf S compounds that accumulated as primary S sinks at early developmental stages in condiment type B. juncea become remobilized as a secondary S source to meet the demand for GSL as the dominant seed S sink at maturity.
Collapse
Affiliation(s)
| | - Terry J Rose
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Carolyn A Raymond
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, Australia
- For correspondence. E-mail
| |
Collapse
|
19
|
Ausma T, De Kok LJ. Atmospheric H 2S: Impact on Plant Functioning. FRONTIERS IN PLANT SCIENCE 2019; 10:743. [PMID: 31263471 PMCID: PMC6584822 DOI: 10.3389/fpls.2019.00743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/20/2019] [Indexed: 05/11/2023]
Abstract
Hydrogen sulfide (H2S) is an air pollutant present at high levels in various regions. Plants actively take up H2S via the foliage, though the impact of the gas on the physiological functioning of plants is paradoxical. Whereas elevated H2S levels may be phytotoxic, H2S levels realistic for polluted areas can also significantly contribute to the sulfur requirement of the vegetation. Plants can even grow with H2S as sole sulfur source. There is no relation between the rate of H2S metabolism and the H2S susceptibility of a plant, which suggests that the metabolism of H2S does not contribute to the detoxification of absorbed sulfide. By contrast, there may be a strong relation between the rate of H2S metabolism and the rate of sulfate metabolism: foliar H2S absorbance may downregulate the metabolism of sulfate, taken up by the root. Studies with plants from the Brassica genus clarified the background of this downregulation. Simultaneously, these studies illustrated that H2S fumigation may be a useful tool for obtaining insight in the regulation of sulfur homeostasis and the (signal) functions of sulfur-containing compounds in plants.
Collapse
Affiliation(s)
- Ties Ausma
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | | |
Collapse
|
20
|
Chen Z, Zhao PX, Miao ZQ, Qi GF, Wang Z, Yuan Y, Ahmad N, Cao MJ, Hell R, Wirtz M, Xiang CB. SULTR3s Function in Chloroplast Sulfate Uptake and Affect ABA Biosynthesis and the Stress Response. PLANT PHYSIOLOGY 2019; 180:593-604. [PMID: 30837346 PMCID: PMC6501079 DOI: 10.1104/pp.18.01439] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/28/2019] [Indexed: 05/20/2023]
Abstract
Plants are major sulfur reducers in the global sulfur cycle. Sulfate, the major natural sulfur source in soil, is absorbed by plant roots and transported into plastids, where it is reduced and assimilated into Cys for further metabolic processes. Despite its importance, how sulfate is transported into plastids is poorly understood. We previously demonstrated using single Arabidopsis (Arabidopsis thaliana) genetic mutants that each member of the sulfate transporter (SULTR) subfamily 3 was able to transport sulfate across the chloroplast envelope membrane. To resolve the function of SULTR3s, we constructed a sultr3 quintuple mutant completely knocking out all five members of the subfamily. Here we report that all members of the SULTR3 subfamily show chloroplast membrane localization. Sulfate uptake by chloroplasts of the quintuple mutant is reduced by more than 50% compared with the wild type. Consequently, Cys and abscisic acid (ABA) content are reduced to ∼67 and ∼20% of the wild-type level, respectively, and strong positive correlations are found among sulfate, Cys, and ABA content. The sultr3 quintuple mutant shows obvious growth retardation with smaller rosettes and shorter roots. Seed germination of the sultr3 quintuple mutant is hypersensitive to exogenous ABA and salt stress, but is rescued by sulfide supplementation. Furthermore, sulfate-induced stomatal closure is abolished in the quintuple mutant, strongly suggesting that chloroplast sulfate is required for stomatal closure. Our genetic analyses unequivocally demonstrate that sulfate transporter subfamily 3 is responsible for more than half of the chloroplast sulfate uptake and influences downstream sulfate assimilation and ABA biosynthesis.
Collapse
Affiliation(s)
- Zhen Chen
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping-Xia Zhao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zi-Qing Miao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Guo-Feng Qi
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhen Wang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
- Shanghai Center for Plant Stress Biology, CAS, Shanghai 201602, China
| | - Yang Yuan
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Nisar Ahmad
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Department of Biotechnology, University of Science and Technology, 28100 Bannu, Pakistan
| | - Min-Jie Cao
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
- Shanghai Center for Plant Stress Biology, CAS, Shanghai 201602, China
| | - Ruediger Hell
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
21
|
Speiser A, Silbermann M, Dong Y, Haberland S, Uslu VV, Wang S, Bangash SAK, Reichelt M, Meyer AJ, Wirtz M, Hell R. Sulfur Partitioning between Glutathione and Protein Synthesis Determines Plant Growth. PLANT PHYSIOLOGY 2018; 177:927-937. [PMID: 29752309 PMCID: PMC6053006 DOI: 10.1104/pp.18.00421] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 05/08/2023]
Abstract
Photoautotrophic organisms must efficiently allocate their resources between stress-response pathways and growth-promoting pathways to be successful in a constantly changing environment. In this study, we addressed the coordination of sulfur flux between the biosynthesis of the reactive oxygen species scavenger glutathione (GSH) and protein translation as one example of a central resource allocation switch. We crossed the Arabidopsis (Arabidopsis thaliana) GSH synthesis-depleted cadmium-sensitive cad2-1 mutant, which lacks glutamate cysteine (Cys) ligase, into the sulfite reductase sir1-1 mutant, which suffers from a significantly decreased flux of sulfur into Cys and, consequently, is retarded in growth. Surprisingly, depletion of GSH synthesis promoted the growth of the sir1-1 cad2-1 double mutant (s1c2) when compared with sir1-1 Determination of GSH levels and in vivo live-cell imaging of the reduction-oxidation-sensitive green fluorescent protein sensor demonstrated significant oxidation of the plastidic GSH redox potential in cad2-1 and s1c2 This oxidized GSH redox potential aligned with significant activation of plastid-localized sulfate reduction and a significantly higher flux of sulfur into proteins. The specific activation of the serine/threonine sensor kinase Target of Rapamycin (TOR) in cad2-1 and s1c2 was the trigger for reallocation of Cys from GSH biosynthesis into protein translation. Activation of TOR in s1c2 enhanced ribosome abundance and partially rescued the decreased meristematic activity observed in sir1-1 mutants. Therefore, we found that the coordination of sulfur flux between GSH biosynthesis and protein translation determines growth via the regulation of TOR.
Collapse
Affiliation(s)
- Anna Speiser
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marleen Silbermann
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Yihan Dong
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Haberland
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Veli Vural Uslu
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Shanshan Wang
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Ruediger Hell
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|
23
|
Lima LW, Pilon-Smits EAH, Schiavon M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. Biochim Biophys Acta Gen Subj 2018; 1862:2343-2353. [PMID: 29626605 DOI: 10.1016/j.bbagen.2018.03.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. SCOPE OF REVIEW This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. MAJOR CONCLUSIONS Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. GENERAL SIGNIFICANCE Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds.
Collapse
Affiliation(s)
| | | | - Michela Schiavon
- DAFNAE, University of Padova, Agripolis, 35020 Legnaro, PD, Italy.
| |
Collapse
|
24
|
Alarcón-Poblete E, Inostroza-Blancheteau C, Alberdi M, Rengel Z, Reyes-Díaz M. Molecular regulation of aluminum resistance and sulfur nutrition during root growth. PLANTA 2018; 247:27-39. [PMID: 29119269 DOI: 10.1007/s00425-017-2805-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Aluminum toxicity and sulfate deprivation both regulate microRNA395 expression, repressing its low-affinity sulfate transporter ( SULTR2;1 ) target. Sulfate deprivation also induces the high-affinity sulfate transporter gene ( SULTR12 ), allowing enhanced sulfate uptake. Few studies about the relationships between sulfate, a plant nutrient, and aluminum, a toxic ion, are available; hence, the molecular and physiological processes underpinning this interaction are poorly understood. The Al-sulfate interaction occurs in acidic soils, whereby relatively high concentrations of trivalent toxic aluminum (Al3+) may hamper root growth, limiting uptake of nutrients, including sulfur (S). On the other side, Al3+ may be detoxified by complexation with sulfate in the acid soil solution as well as in the root-cell vacuoles. In this review, we focus on recent insights into the mechanisms governing plant responses to Al toxicity and its relationship with sulfur nutrition, emphasizing the role of phytohormones, microRNAs, and ion transporters in higher plants. It is known that Al3+ disturbs gene expression and enzymes involved in biosynthesis of S-containing cysteine in root cells. On the other hand, Al3+ may induce ethylene biosynthesis, enhance reactive oxygen species production, alter phytohormone transport, trigger root growth inhibition and promote sulfate uptake under S deficiency. MicroRNA395, regulated by both Al toxicity and sulfate deprivation, represses its low-affinity Sulfate Transporter 2;1 (SULTR2;1) target. In addition, sulfate deprivation induces High Affinity Sulfate Transporters (HAST; SULTR1;2), improving sulfate uptake from low-sulfate soil solutions. Identification of new microRNAs and cloning of their target genes are necessary for a better understanding of the role of molecular regulation of plant resistance to Al stress and sulfate deprivation.
Collapse
Affiliation(s)
- Edith Alarcón-Poblete
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Escuela de Agronomía, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaría, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Miren Alberdi
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Zed Rengel
- Soil Science and Plant Nutrition, UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, 6009, Australia
| | - Marjorie Reyes-Díaz
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
25
|
El Mehdawi AF, Jiang Y, Guignardi ZS, Esmat A, Pilon M, Pilon-Smits EAH, Schiavon M. Influence of sulfate supply on selenium uptake dynamics and expression of sulfate/selenate transporters in selenium hyperaccumulator and nonhyperaccumulator Brassicaceae. THE NEW PHYTOLOGIST 2018; 217:194-205. [PMID: 29034966 DOI: 10.1111/nph.14838] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/08/2017] [Indexed: 05/21/2023]
Abstract
Stanleya pinnata not only hyperaccumulates selenium (Se) to 0.5% of its dry weight, but also exhibits higher tissue Se-to-sulfur (S) ratios than other species and its surroundings. To investigate the mechanisms underlying this Se enrichment, we compared S. pinnata with the nonhyperaccumulators S. elata and Brassica juncea for selenate uptake in long- (9 d) and short-term (1 h) assays, using different concentrations of selenate and competitor sulfate. Different sulfate pre-treatments (0, 0.5, 5 mM, 3 d) were also tested for effects on selenate uptake and sulfate transporters' expression. Relative to nonhyperaccumulators, S. pinnata showed higher rates of root and shoot Se accumulation and less competitive inhibition by sulfate or by high-S pretreatment. The selenate uptake rate for S. pinnata (1 h) was three- to four-fold higher than for nonhyperaccumulators, and not significantly affected by 100-fold excess sulfate, which reduced selenate uptake by 100% in S. elata and 40% in B. juncea. Real-time reverse transcription PCR indicated constitutive upregulation in S. pinnata of sulfate transporters SULTR1;2 (root influx) and SULTR2;1 (translocation), but reduced SULTR1;1 expression (root influx). In S. pinnata, selenate uptake and translocation rates are constitutively elevated and relatively sulfate-independent. Underlying mechanisms likely include overexpression of SULTR1;2 and SULTR2;1, which may additionally have evolved enhanced specificity for selenate over sulfate.
Collapse
Affiliation(s)
- Ali F El Mehdawi
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ying Jiang
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zack S Guignardi
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ahmad Esmat
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | - Marinus Pilon
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
| | | | - Michela Schiavon
- Biology Department, Colorado State University, Fort Collins, CO, 80523, USA
- DAFNAE, University of Padova, Agripolis, 35020, Legnaro, Padua, Italy
| |
Collapse
|
26
|
Coleto I, de la Peña M, Rodríguez-Escalante J, Bejarano I, Glauser G, Aparicio-Tejo PM, González-Moro MB, Marino D. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC PLANT BIOLOGY 2017; 17:157. [PMID: 28931380 PMCID: PMC5607504 DOI: 10.1186/s12870-017-1100-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/05/2017] [Indexed: 05/14/2023]
Abstract
BACKGROUND The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). RESULTS Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH4+, amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. CONCLUSIONS The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Marlon de la Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Jon Rodríguez-Escalante
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Iraide Bejarano
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Pedro M. Aparicio-Tejo
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Navarre Spain
| | - M. Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, E-48080 Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
27
|
|
28
|
Wiesner-Reinhold M, Schreiner M, Baldermann S, Schwarz D, Hanschen FS, Kipp AP, Rowan DD, Bentley-Hewitt KL, McKenzie MJ. Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health. FRONTIERS IN PLANT SCIENCE 2017; 8:1365. [PMID: 28824693 PMCID: PMC5540907 DOI: 10.3389/fpls.2017.01365] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 05/04/2023]
Abstract
Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.
Collapse
Affiliation(s)
- Melanie Wiesner-Reinhold
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- *Correspondence: Melanie Wiesner-Reinhold
| | - Monika Schreiner
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Susanne Baldermann
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of PotsdamNuthethal, Germany
| | - Dietmar Schwarz
- Functional Plant Biology, Leibniz Institute of Vegetable and Ornamental CropGrossbeeren, Germany
| | - Franziska S. Hanschen
- Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental CropsGrossbeeren, Germany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University JenaJena, Germany
| | - Daryl D. Rowan
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Kerry L. Bentley-Hewitt
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| | - Marian J. McKenzie
- Food Innovation, The New Zealand Institute for Plant & Food Research LimitedPalmerston North, New Zealand
| |
Collapse
|
29
|
Vatansever R, Koc I, Ozyigit II, Sen U, Uras ME, Anjum NA, Pereira E, Filiz E. Genome-wide identification and expression analysis of sulfate transporter (SULTR) genes in potato (Solanum tuberosum L.). PLANTA 2016; 244:1167-1183. [PMID: 27473680 DOI: 10.1007/s00425-016-2575-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/23/2016] [Indexed: 05/15/2023]
Abstract
Solanum tuberosum genome analysis revealed 12 StSULTR genes encoding 18 transcripts. Among genes annotated at group level ( StSULTR I-IV), group III members formed the largest SULTRs-cluster and were potentially involved in biotic/abiotic stress responses via various regulatory factors, and stress and signaling proteins. Employing bioinformatics tools, this study performed genome-wide identification and expression analysis of SULTR (StSULTR) genes in potato (Solanum tuberosum L.). Very strict homology search and subsequent domain verification with Hidden Markov Model revealed 12 StSULTR genes encoding 18 transcripts. StSULTR genes were mapped on seven S. tuberosum chromosomes. Annotation of StSULTR genes was also done as StSULTR I-IV at group level based mainly on the phylogenetic distribution with Arabidopsis SULTRs. Several tandem and segmental duplications were identified between StSULTR genes. Among these duplications, Ka/Ks ratios indicated neutral nature of mutations that might not be causing any selection. Two segmental and one-tandem duplications were calculated to occur around 147.69, 180.80 and 191.00 million years ago (MYA), approximately corresponding to the time of monocot/dicot divergence. Two other segmental duplications were found to occur around 61.23 and 67.83 MYA, which is very close to the origination of monocotyledons. Most cis-regulatory elements in StSULTRs were found associated with major hormones (such as abscisic acid and methyl jasmonate), and defense and stress responsiveness. The cis-element distribution in duplicated gene pairs indicated the contribution of duplication events in conferring the neofunctionalization/s in StSULTR genes. Notably, RNAseq data analyses unveiled expression profiles of StSULTR genes under different stress conditions. In particular, expression profiles of StSULTR III members suggested their involvement in plant stress responses. Additionally, gene co-expression networks of these group members included various regulatory factors, stress and signaling proteins, and housekeeping and some other proteins with unknown functions.
Collapse
Affiliation(s)
- Recep Vatansever
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Ibrahim Koc
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Ugur Sen
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Mehmet Emin Uras
- Department of Biology, Faculty of Science and Arts, Marmara University, 34722, Goztepe, Istanbul, Turkey
| | - Naser A Anjum
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ertugrul Filiz
- Department of Crop and Animal Production, Cilimli Vocational School, Duzce University, 81750, Cilimli, Duzce, Turkey.
| |
Collapse
|
30
|
Liu F, Huang JC, Zhou C, He S, Zhou W. Development of an algal treatment system for Se removal: Effects of light regimes, nutrients, sulfate and hypersalinity. CHEMOSPHERE 2016; 164:372-378. [PMID: 27596824 DOI: 10.1016/j.chemosphere.2016.08.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/01/2016] [Accepted: 08/27/2016] [Indexed: 06/06/2023]
Abstract
Selenium (Se) exposure poses potential risks to wildlife at the Salton Sea. Our previous research suggests Chlorella sp. be highly efficient at absorbing and volatilizing Se. In developing an algal treatment system for Se removal, this study further evaluated the performance under the conditions to be encountered in the field using Chlorella pyrenoidosa and Chlorella vulgaris. The results show the algal Se removal efficiency was little affected by photoperiod, yet volatilization became relatively greater in dark/light cycles over a longer term. The rates of Se absorption and volatilization by C. vulgaris were 88% and 77% more, respectively, in the DI water, while C. pyrenoidosa acted oppositely, indicating C. vulgaris will perform better in Se removal if nutrient levels are reduced in advance. The presence of sulfate reduced biomass Se, especially through volatilization, by 8% for C. vulgaris, lessening potential ecotoxicity. Finally, C. vulgaris released biomass Se back to the water column under hypersaline conditions, leading to a 6% increase in water Se concentrations. These results suggest C. vulgaris be the best alga for the treatment of Se laden river water in the Salton Sea area, yet a filtering system is required to prevent Se containing algae from entering food chains.
Collapse
Affiliation(s)
- Fang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
31
|
Borpatragohain P, Rose TJ, King GJ. Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. FRONTIERS IN PLANT SCIENCE 2016; 7:1735. [PMID: 27917185 PMCID: PMC5116641 DOI: 10.3389/fpls.2016.01735] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/03/2016] [Indexed: 05/20/2023]
Abstract
Glucosinolates (GSLs) represent one of the most widely studied classes of plant secondary metabolite, and have a wide range of biological activities. Their unique properties also affect livestock and human health, and have been harnessed for food and other end-uses. Since GSLs are sulfur (S)-rich there are many lines of evidence suggesting that plant S status plays a key role in determining plant GSL content. However, there is still a need to establish a detailed knowledge of the distribution and remobilization of S and GSLs throughout the development of Brassica crops, and to represent this in terms of primary and secondary sources and sinks. The increased genome complexity, gene duplication and divergence within brassicas, together with their ontogenetic plasticity during crop development, appear to have a marked effect on the regulation of S and GSLs. Here, we review the current understanding of inorganic S (sulfate) assimilation into organic S forms, including GSLs and their precursors, the intracellular and inter-organ transport of inorganic and organic S forms, and the accumulation of GSLs in specific tissues. We present this in the context of overlapping sources and sinks, transport processes, signaling molecules and their associated molecular interactions. Our analysis builds on recent insights into the molecular regulation of sulfate uptake and transport by different transporters, transcription factors and miRNAs, and the role that these may play in GSL biosynthesis. We develop a provisional model describing the key processes that could be targeted in crop breeding programs focused on modifying GSL content.
Collapse
Affiliation(s)
| | - Terry J. Rose
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
- Southern Cross GeoScience, Southern Cross University, LismoreNSW, Australia
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, LismoreNSW, Australia
| |
Collapse
|
32
|
Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ. Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. PLANT AND SOIL 2016; 411:319-332. [PMID: 32269390 PMCID: PMC7115016 DOI: 10.1007/s11104-016-3026-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS It remains uncertain whether a higher toxicity of either NaCl or Na2SO4 in plants is due to an altered toxicity of sodium or a different toxicity of the anions. The aim of this study was to determine the contributions of sodium and the two anions to the different toxicities of chloride and sulfate salinity. The effects of the different salts on physiological parameters, mineral nutrient composition and expression of genes of sulfate transport and assimilation were studied. METHODS Seedlings of Brassica rapa L. have been exposed to NaCl, Na2SO4, KCl and K2SO4 to assess the potential synergistic effect of the anions with the toxic cation sodium, as well as their separate toxicities if accompanied by the non-toxic cation potassium. Biomass production, stomatal resistance and Fv/fm were measured to determine differences in ionic and osmotic stress caused by the salts. Anion content (HPLC), mineral nutrient composition (ICP-AES) and gene expression of sulfate transporters and sulfur assimilatory enzymes (real-time qPCR) were analyzed. RESULTS Na2SO4 impeded growth to a higher extent than NaCl and was the only salt to decrease Fv/fm. K2SO4 reduced plant growth more than NaCl. Analysis of mineral nutrient contents of plant tissue revealed that differences in sodium accumulation could not explain the increased toxicity of sulfate over chloride salts. Shoot contents of calcium, manganese and phosphorus were decreased more strongly by exposure to Na2SO4 than by NaCl. The expression levels of genes encoding proteins for sulfate transport and assimilation were differently affected by the different salts. While gene expression of primary sulfate uptake at roots was down-regulated upon exposure to sulfate salts, presumably to prevent an excessive uptake, genes encoding for the vacuolar sulfate transporter Sultr4;1 were upregulated. Gene expression of ATP sulfurylase was hardly affected by salinity in shoot and roots, the transcript level of 5'-adenylylsulfate reductase (APR) was decreased upon exposure to sulfate salts in roots. Sulfite reductase was decreased in the shoot by all salts similarly and remained unaffected in roots. CONCLUSIONS The higher toxicity of Na2SO4 over NaCl in B. rapa seemed to be due to an increased toxicity of sulfate over chloride, as indicated by the higher toxicity of K2SO4 over KCl. Thus, toxicity of sodium was not promoted by sulfate. The observed stronger negative effect on the tissue contents of calcium, manganese and phosphorus could contribute to the increased toxicity of sulfate over chloride. The upregulation of Sultr4;1 and 4;2 under sulfate salinity might lead to a detrimental efflux of stored sulfate from the vacuole into the cytosol and the chloroplasts. It remains unclear why expression of Sultr4;1 and 4;2 was upregulated. A possible explanation is a control of the gene expression of these transporters by the sulfate gradient across the tonoplast.
Collapse
Affiliation(s)
- Martin Reich
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands
| | - Tahereh Aghajanzadeh
- Department of Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Juliane Helm
- Plant Biodiversity Group, Institute of Systematic Botany, Friedrich Schiller University, Philosophenweg 16, D-07743 Jena, Germany
| | - Saroj Parmar
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Malcolm J. Hawkesford
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ UK
| | - Luit J. De Kok
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands
| |
Collapse
|
33
|
Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 2016; 55-56:91-100. [DOI: 10.1016/j.niox.2016.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/03/2016] [Accepted: 04/11/2016] [Indexed: 12/18/2022]
|
34
|
Reich M, Shahbaz M, Prajapati DH, Parmar S, Hawkesford MJ, De Kok LJ. Interactions of Sulfate with Other Nutrients As Revealed by H2S Fumigation of Chinese Cabbage. FRONTIERS IN PLANT SCIENCE 2016; 7:541. [PMID: 27200018 PMCID: PMC4847332 DOI: 10.3389/fpls.2016.00541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/05/2016] [Indexed: 05/21/2023]
Abstract
Sulfur deficiency in plants has severe impacts on both growth and nutrient composition. Fumigation with sub-lethal concentrations of H2S facilitates the supply of reduced sulfur via the leaves while sulfate is depleted from the roots. This restores growth while sulfate levels in the plant tissue remain low. In the present study this system was used to reveal interactions of sulfur with other nutrients in the plant and to ascertain whether these changes are due to the absence or presence of sulfate or rather to changes in growth and organic sulfur. There was a complex reaction of the mineral composition to sulfur deficiency, however, the changes in content of many nutrients were prevented by H2S fumigation. Under sulfur deficiency these nutrients accumulated on a fresh weight basis but were diluted on a dry weight basis, presumably due to a higher dry matter content. The pattern differed, however, between leaves and roots which led to changes in shoot to root partitioning. Only the potassium, molybdenum and zinc contents were strongly linked to the sulfate supply. Potassium was the only nutrient amongst those measured which showed a positive correlation with sulfur content in shoots, highlighting a role as a counter cation for sulfate during xylem loading and vacuolar storage in leaves. This was supported by an accumulation of potassium in roots of the sulfur-deprived plants. Molybdenum and zinc increased substantially under sulfur deficiency, which was only partly prevented by H2S fumigation. While the causes of increased molybdenum under sulfur deficiency have been previously studied, the relation between sulfate and zinc uptake needs further clarification.
Collapse
Affiliation(s)
- Martin Reich
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Muhammad Shahbaz
- Department of Chemistry and Biochemistry, Worcester Polytechnic InstituteWorcester, MA, USA
| | - Dharmendra H. Prajapati
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Saroj Parmar
- Plant Biology and Crop Science Department, Rothamsted ResearchHarpenden, UK
| | | | - Luit J. De Kok
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| |
Collapse
|
35
|
White PJ. Selenium accumulation by plants. ANNALS OF BOTANY 2016; 117:217-35. [PMID: 26718221 PMCID: PMC4724052 DOI: 10.1093/aob/mcv180] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/09/2015] [Accepted: 10/19/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. SCOPE This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. CONCLUSIONS The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins, through the synthesis of less toxic Se metabilites. There is potential to breed or select crops with greater Se concentrations in their edible tissues, which might be used to increase dietary Se intakes of animals and humans.
Collapse
Affiliation(s)
- Philip J White
- Ecological Sciences Group, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK and Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Chen J, Wu FH, Shang YT, Wang WH, Hu WJ, Simon M, Liu X, Shangguan ZP, Zheng HL. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6605-22. [PMID: 26208645 PMCID: PMC4623679 DOI: 10.1093/jxb/erv368] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China. Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Fei-Hua Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - Yu-Ting Shang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Wen-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Wen-Jun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xiang Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Zhou-Ping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, P.R. China.
| |
Collapse
|
37
|
Aghajanzadeh T, Kopriva S, Hawkesford MJ, Koprivova A, De Kok LJ. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition. FRONTIERS IN PLANT SCIENCE 2015; 6:924. [PMID: 26579170 PMCID: PMC4623504 DOI: 10.3389/fpls.2015.00924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/12/2015] [Indexed: 05/05/2023]
Abstract
The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and B. rapa. Both species contained a number of aliphatic, aromatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa, which could solely be attributed to the presence of high levels of sinigrin, which was absent in the latter species. Sulfate deprivation resulted in a strong decrease in the content and an altered composition of the glucosinolates of both species. Despite the differences in patterns in foliarly uptake and metabolism, their exposure hardly affected the glucosinolate composition of the shoot, both at sulfate-sufficient and sulfate-deprived conditions. This indicated that the glucosinolate composition in the shoot was hardly affected by differences in sulfur source (viz., sulfate, sulfite and sulfide). Upon sulfate deprivation, where foliarly absorbed H2S and SO2 were the sole sulfur source for growth, the glucosinolate composition of roots differed from sulfate-sufficient B. juncea and B. rapa, notably the fraction of the indolic glucosinolates was lower than that observed in sulfur-sufficient roots.
Collapse
Affiliation(s)
- Tahereh Aghajanzadeh
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Stanislav Kopriva
- Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne, Germany
| | | | - Anna Koprivova
- Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne, Germany
| | - Luit J. De Kok
- Laboratory of Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| |
Collapse
|
38
|
Hasler-Sheetal H, Holmer M. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina. PLoS One 2015; 10:e0129136. [PMID: 26030258 PMCID: PMC4452231 DOI: 10.1371/journal.pone.0129136] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/05/2015] [Indexed: 12/04/2022] Open
Abstract
Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments.
Collapse
Affiliation(s)
| | - Marianne Holmer
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
39
|
Pandurangan S, Sandercock M, Beyaert R, Conn KL, Hou A, Marsolais F. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition. FRONTIERS IN PLANT SCIENCE 2015; 6:92. [PMID: 25750649 PMCID: PMC4335288 DOI: 10.3389/fpls.2015.00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 05/28/2023]
Abstract
It has been hypothesized that the relatively low concentration of sulfur amino acids in legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris) differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an enhanced concentration of cysteine and methionine, mostly at the expense of the abundant non-protein amino acid, S-methylcysteine. To identify potential effects associated with an increased concentration of sulfur amino acids in the protein pool, the response of the two genotypes to low and high sulfur nutrition was evaluated under controlled conditions. Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment in both genotypes. The concentration of total cysteine and extractible globulins was increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein 4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1 exhibited a slight increase in yield in response to sulfur treatment, typical for common bean.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Mark Sandercock
- Cereal Research Centre Morden, Agriculture and Agri-Food CanadaCanada, Morden, MB, Canada
| | - Ronald Beyaert
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Kenneth L. Conn
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Anfu Hou
- Cereal Research Centre Morden, Agriculture and Agri-Food CanadaCanada, Morden, MB, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
40
|
Weese A, Pallmann P, Papenbrock J, Riemenschneider A. Brassica napus L. cultivars show a broad variability in their morphology, physiology and metabolite levels in response to sulfur limitations and to pathogen attack. FRONTIERS IN PLANT SCIENCE 2015; 6:9. [PMID: 25699060 PMCID: PMC4313603 DOI: 10.3389/fpls.2015.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/06/2015] [Indexed: 05/26/2023]
Abstract
Under adequate sulfur supply, plants accumulate sulfate in the vacuoles and use sulfur-containing metabolites as storage compounds. Under sulfur-limiting conditions, these pools of stored sulfur-compounds are depleted in order to balance the nitrogen to sulfur ratio for protein synthesis. Stress conditions like sulfur limitation and/or pathogen attack induce changes in the sulfate pool and the levels of sulfur-containing metabolites, which often depend on the ecotypes or cultivars. We are interested in investigating the influence of the genetic background of canola (Brassica napus) cultivars in sulfur-limiting conditions on the resistance against Verticillium longisporum. Therefore, four commercially available B. napus cultivars were analyzed. These high-performing cultivars differ in some characteristics described in their cultivar pass, such as several agronomic traits, differences in the size of the root system, and resistance to certain pathogens, such as Phoma and Verticillium. The objectives of the study were to examine and explore the patterns of morphological, physiological and metabolic diversity in these B. napus cultivars at different sulfur concentrations and in the context of plant defense. Results indicate that the root systems are influenced differently by sulfur deficiency in the cultivars. Total root dry mass and length of root hairs differ not only among the cultivars but also vary in their reaction to sulfur limitation and pathogen attack. As a sensitive indicator of stress, several parameters of photosynthetic activity determined by PAM imaging showed a broad variability among the treatments. These results were supported by thermographic analysis. Levels of sulfur-containing metabolites also showed large variations. The data were interrelated to predict the specific behavior during sulfur limitation and/or pathogen attack. Advice for farming are discussed.
Collapse
Affiliation(s)
| | - Philip Pallmann
- Institute of Biostatistics, Leibniz University HannoverHannover, Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University HannoverHannover, Germany
| | | |
Collapse
|
41
|
Nazar R, Umar S, Khan NA. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. PLANT SIGNALING & BEHAVIOR 2015; 10:e1003751. [PMID: 25730495 PMCID: PMC4622964 DOI: 10.1080/15592324.2014.1003751] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 05/18/2023]
Abstract
Ascorbate (AsA)-glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants.
Collapse
Key Words
- APX, Ascorbate peroxidase
- ATP-sulfurylase
- ATPS, ATP-sulfurylase
- AsA-GSH, Ascorbate-glutathione
- CAT, Catalase
- Cys, Cysteine
- DAS, Days after sowing
- DHA, Dehydroascorbate
- DHAR, Dehydroascorbate reductase
- Fv/Fm, maximal PS II photochemical efficiency
- GR, Glutathione reductase
- GSH, Reduced glutathione
- GSSG, Oxidized glutathione
- ROS, Reactive oxygen species
- RuBP, ribulose 1, 5-bisphosphate
- S, sulfur
- SAT, Serine acetyl transferase
- TBARS, Thiobarbituric acid reactive substances
- WUE, water use efficiency.
- ascorbate
- glutathione
- gs, stomatal conductance
- oxidative stress
- photosynthesis
- salicylic acid
- salt stress
Collapse
Affiliation(s)
- Rahat Nazar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Shahid Umar
- Department of Botany; Jamia Hamdard University; New Delhi, India
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Section; Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
42
|
Schiavon M, Pilon M, Malagoli M, Pilon-Smits EAH. Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). FRONTIERS IN PLANT SCIENCE 2015; 6:2. [PMID: 25688247 PMCID: PMC4304243 DOI: 10.3389/fpls.2015.00002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/05/2015] [Indexed: 05/07/2023]
Abstract
Selenium (Se) hyperaccumulation, the capacity of some species to concentrate Se to levels upwards of 0.1% of dry weight, is an intriguing phenomenon that is only partially understood. Questions that remain to be answered are: do hyperaccumulators have one or more Se-specific transporters? How are these regulated by Se and sulfur (S)? In this study, hyperaccumulator Stanleya pinnata was compared with related non-hyperaccumulator Brassica juncea with respect to S-dependent selenate uptake and translocation, as well as for the expression levels of three sulfate/selenate transporters (Sultr) and three ATP sulphurylases (APS). Selenium accumulation went down ~10-fold with increasing sulfate supply in B. juncea, while S. pinnata only had a 2-3-fold difference in Se uptake between the highest (5 mM) and lowest sulfate (0 mM) treatments. The Se/S ratio was generally higher in the hyperaccumulator than the non-hyperaccumulator, and while tissue Se/S ratio in B. juncea largely reflected the ratio in the growth medium, S. pinnata enriched itself up to 5-fold with Se relative to S. The transcript levels of Sultr1;2 and 2;1 and APS1, 2, and 4 were generally much higher in S. pinnata than B. juncea, and the species showed differential transcript responses to S and Se supply. These results indicate that S. pinnata has at least one transporter with significant selenate specificity over sulfate. Also, the hyperaccumulator has elevated expression levels of several sulfate/selenate transporters and APS enzymes, which likely contribute to the Se hyperaccumulation and hypertolerance phenotype.
Collapse
Affiliation(s)
- Michela Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Padova, Italy
| | - Marinus Pilon
- Department of Biology, Colorado State UniversityFort Collins, CO, USA
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of PadovaLegnaro, Padova, Italy
- *Correspondence: Mario Malagoli, Department of Agronomy, Food, Natural Resources, Animals and the Environment, Agripolis, Viale dell'Università 16, Legnaro, Padova 35020, Italy e-mail:
| | | |
Collapse
|
43
|
Aghajanzadeh T, Hawkesford MJ, De Kok LJ. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. FRONTIERS IN PLANT SCIENCE 2014; 5:704. [PMID: 25566279 PMCID: PMC4271774 DOI: 10.3389/fpls.2014.00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/25/2014] [Indexed: 05/04/2023]
Abstract
Brassica juncea seedlings contained a twofold higher glucosinolate content than B. rapa and these secondary sulfur compounds accounted for up to 30% of the organic sulfur fraction. The glucosinolate content was not affected by H2S and SO2 exposure, demonstrating that these sulfur compounds did not form a sink for excessive atmospheric supplied sulfur. Upon sulfate deprivation, the foliarly absorbed H2S and SO2 replaced sulfate as the sulfur source for growth of B. juncea and B. rapa seedlings. The glucosinolate content was decreased in sulfate-deprived plants, though its proportion of organic sulfur fraction was higher than that of sulfate-sufficient plants, both in absence and presence of H2S and SO2. The significance of myrosinase in the in situ turnover in these secondary sulfur compounds needs to be questioned, since there was no direct co-regulation between the content of glucosinolates and the transcript level and activity of myrosinase. Evidently, glucosinolates cannot be considered as sulfur storage compounds upon exposure to excessive atmospheric sulfur and are unlikely to be involved in the re-distribution of sulfur in B. juncea and B. rapa seedlings upon sulfate deprivation.
Collapse
Affiliation(s)
| | | | - Luit J. De Kok
- Laboratory of Plant Physiology, University of GroningenGroningen, Netherlands
| |
Collapse
|
44
|
Rodríguez-Hernández MDC, Moreno DA, Carvajal M, Martínez-Ballesta MDC. Genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress. PLANT & CELL PHYSIOLOGY 2014; 55:2047-2059. [PMID: 25246493 DOI: 10.1093/pcp/pcu130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Climatic change predicts elevated salinity in soils as well as increased carbon dioxide dioxide [CO2] in the atmosphere. The present study aims to determine the effect of combined salinity and elevated [CO2] on sulfur (S) metabolism and S-derived phytochemicals in green and purple broccoli (cv. Naxos and cv. Viola, respectively). Elevated [CO2] involved the amelioration of salt stress, especially in cv. Viola, where a lower biomass reduction by salinity was accompanied by higher sodium (Na(+)) and chloride (Cl(-)) compartmentation in the vacuole. Moreover, salinity and elevated [CO2] affected the mineral and glucosinolate contents and the activity of biosynthetic enzymes of S-derived compounds and the degradative enzyme of glucosinolate metabolism, myrosinase, as well as the related amino acids and the antioxidant glutathione (GSH). In cv. Naxos, elevated [CO2] may trigger the antioxidant response to saline stress by means of increased GSH concentration. Also, in cv. Naxos, indolic glucosinolates were more influenced by the NaCl×CO2 interaction whereas in cv. Viola the aliphatic glucosinolates were significantly increased by these conditions. Salinity and elevated [CO2] enhanced the S cellular partitioning and metabolism affecting the myrosinase-glucosinolate system.
Collapse
Affiliation(s)
- María del Carmen Rodríguez-Hernández
- Department of Plant Nutrition, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| | - Diego A Moreno
- Department of Food Science and Technology, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| | - Micaela Carvajal
- Department of Plant Nutrition, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| | - María del Carmen Martínez-Ballesta
- Department of Plant Nutrition, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, Edificio 25, E-Murcia, 30100, Spain
| |
Collapse
|
45
|
Fang SC, Chung CL, Chen CH, Lopez-Paz C, Umen JG. Defects in a new class of sulfate/anion transporter link sulfur acclimation responses to intracellular glutathione levels and cell cycle control. PLANT PHYSIOLOGY 2014; 166:1852-68. [PMID: 25361960 PMCID: PMC4256884 DOI: 10.1104/pp.114.251009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chin-Lin Chung
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - Cristina Lopez-Paz
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| | - James G Umen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan County 741, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan (S.-C.F., C.-L.C., C.-H.C.);Institute of Marine Biotechnology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (C.-L.C.); andDonald Danforth Plant Science Center, St. Louis, Missouri 63132 (C.L.-P., J.G.U.)
| |
Collapse
|
46
|
Birke H, De Kok LJ, Wirtz M, Hell R. The Role of Compartment-Specific Cysteine Synthesis for Sulfur Homeostasis During H2S Exposure in Arabidopsis. ACTA ACUST UNITED AC 2014; 56:358-67. [DOI: 10.1093/pcp/pcu166] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Nazar R, Khan MIR, Iqbal N, Masood A, Khan NA. Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. PHYSIOLOGIA PLANTARUM 2014; 152:331-44. [PMID: 24547902 DOI: 10.1111/ppl.12173] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/20/2023]
Abstract
Sulfur (S) assimilation results in the synthesis of cysteine (Cys), a common metabolite for the formation of both reduced glutathione (GSH) and ethylene. Thus, ethylene may have regulatory interaction with GSH in the alleviation of salt stress. The involvement of ethylene in the alleviation of salt stress by S application was studied in mustard (Brassica juncea cv. Pusa Jai Kisan). First, the effects of 0, 0.5, 1.0 and 2.0 mM SO4 (2) (-) were studied on photosynthetic and growth parameters to ascertain the S requirement as sufficient-S and excess-S for the plant. In further experiments, the effects of sufficient-S (1 mM SO4 (2) (-) ) and excess-S (2 mM SO4 (2) (-) ) were studied on the alleviation of salt stress-induced by 100 mM NaCl, and ethylene involvement in the alleviation of salt stress by S. Under non-saline condition, excess-S increased ethylene with less content of Cys and GSH and adversely affected photosynthesis and growth. In contrast, excess-S maximally alleviated salt stress due to high demand for S and optimal ethylene formation, which maximally increased GSH and promoted photosynthesis and growth. The involvement of ethylene in S-mediated alleviation of salt stress was further substantiated by the reversal of the effects of excess-S on photosynthesis by aminoethoxyvinylglycine (AVG), ethylene biosynthesis inhibitor. The studies suggest that plants respond differentially to the S availability under non-saline and salt stress and excess-S was more potential in the alleviation of salt stress. Further, ethylene regulates plants' response and excess S-induced alleviation of salt stress and promotion of photosynthesis.
Collapse
Affiliation(s)
- Rahat Nazar
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | | | | | | |
Collapse
|
48
|
Pick TR, Weber APM. Unknown components of the plastidial permeome. FRONTIERS IN PLANT SCIENCE 2014; 5:410. [PMID: 25191333 PMCID: PMC4137279 DOI: 10.3389/fpls.2014.00410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 05/29/2023]
Abstract
Beyond their role in photosynthesis plastids provide a plethora of additional metabolic functions to plant cells. For example, they harbor complete biosynthetic pathways for the de novo synthesis of carotenoids, fatty acids, and amino acids. Furthermore plastids contribute important reactions to multi-compartmentalized pathways, such as photorespiration or plant hormone syntheses, and they depend on the import of essential molecules that they cannot synthesize themselves, such as ascorbic acid. This causes a high traffic of metabolites across the plastid envelope. Although it was recently shown that non-polar substrates could be exchanged between the plastid and the ER without involving transporters, various essential transport processes are mediated by highly selective but still unknown metabolite transporters. This review focuses on selected components of the plastidial permeome that are predicted to exist but that have not yet been identified as molecular entities, such as the transporters for isopentenyl diphosphate (IPP) or ascorbic acid.
Collapse
Affiliation(s)
| | - Andreas P. M. Weber
- *Correspondence: Andreas P. M. Weber, Institut für Biochemie der Pflanzen, Cluster of Excellence on Plant Sciences, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, D-40225 Düsseldorf, Germany e-mail:
| |
Collapse
|
49
|
Signaling in the plant cytosol: cysteine or sulfide? Amino Acids 2014; 47:2155-64. [DOI: 10.1007/s00726-014-1786-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
50
|
Krüßel L, Junemann J, Wirtz M, Birke H, Thornton JD, Browning LW, Poschet G, Hell R, Balk J, Braun HP, Hildebrandt TM. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:92-104. [PMID: 24692429 PMCID: PMC4012607 DOI: 10.1104/pp.114.239764] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.
Collapse
|