1
|
Su M, Hou S. Ethylene insensitive 2 (EIN2) destiny shaper: The post-translational modification. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154190. [PMID: 38460400 DOI: 10.1016/j.jplph.2024.154190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
PTMs (Post-Translational Modifications) of proteins facilitate rapid modulation of protein function in response to various environmental stimuli. The EIN2 (Ethylene Insensitive 2) protein is a core regulatory of the ethylene signaling pathway. Recent findings have demonstrated that PTMs, including protein phosphorylation, ubiquitination, and glycosylation, govern EIN2 trafficking, subcellular localization, stability, and physiological roles. The cognition of multiple PTMs in EIN2 underscores the stringent regulation of protein. Consequently, a thorough review of the regulatory role of PTMs in EIN2 functions will improve our profound comprehension of the regulation mechanism and various physiological processes of EIN2-mediated signaling pathways. This review discusses the evolution, functions, structure and characteristics of EIN2 protein in plants. Additionally, this review sheds light on the progress of protein ubiquitination, phosphorylation, O-Glycosylation in the regulation of EIN2 functions, and the unresolved questions and future perspectives.
Collapse
Affiliation(s)
- Meifei Su
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Aleynova OA, Ogneva ZV, Suprun AR, Ananev AA, Nityagovsky NN, Beresh AA, Dubrovina AS, Kiselev KV. The Effect of External Treatment of Arabidopsis thaliana with Plant-Derived Stilbene Compounds on Plant Resistance to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:184. [PMID: 38256739 PMCID: PMC10818634 DOI: 10.3390/plants13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Stilbenes are a group of plant phenolic secondary metabolites, with trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) being recognized as the most prominent and studied member. Stilbenes have a great potential for use in agriculture and medicine, as they have significant activities against plant pathogens and have valuable beneficial effects on human health. In this study, we analyzed the effects of direct application of stilbenes, stilbene precursor, and stilbene-rich extract solutions to the plant foliar surface for increasing the resistance of Arabidopsis thaliana to various abiotic stresses (heat, cold, drought, and soil salinity). Exogenous treatment of A. thaliana with stilbenes (trans-resveratrol, piceid, and spruce bark extract) and phenolic precursor (p-coumaric acid or CA) during germination resulted in considerable growth retardation of A. thaliana plants: a strong delay in the root and stem length of 1-week-old seedlings (in 1.3-4.5 fold) and rosette diameter of 1-month-old plants (in 1.2-1.8 fold), while the 2-month-old treated plants were not significantly different in size from the control. Plant treatments with stilbenes and CA increased the resistance of A. thaliana to heat and, to a lesser extent, to soil salinity (only t-resveratrol and spruce extract) to drought (only CA), while cold resistance was not affected. Plant treatments with stilbenes and CA resulted in a significant increase in plant resistance and survival rates under heat, with plants showing 1.5-2.3 times higher survival rates compared to untreated plants. Thus, exogenous stilbenes and a CA are able to improve plant survival under certain abiotic stresses via specific activation of the genes involved in the biosynthesis of auxins, gibberellins, abscisic acid, and some stress-related genes. The present work provides new insights into the application of stilbenes to improve plant stress tolerance.
Collapse
Affiliation(s)
- Olga A. Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
| | - Andrey R. Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
| | - Alexey A. Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
| | - Alina A. Beresh
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
- The School of Natural Sciences, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (N.N.N.); (A.A.B.); (A.S.D.)
| |
Collapse
|
3
|
Cheng Y, Li Y, Yang J, He H, Zhang X, Liu J, Yang X. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC PLANT BIOLOGY 2023; 23:519. [PMID: 37884905 PMCID: PMC10604859 DOI: 10.1186/s12870-023-04543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Ethylene inhibitor treatment of soybean promotes flower bud differentiation and early flowering, suggested that there is a close relationship between ethylene signaling and soybean growth and development. The short-lived ETHYLENE INSENSITIVE2 (EIN2) and ETHYLENE INSENSITIVE3 (EIN3) proteins play central roles in plant development. The objective of this study was carried out gene editing of EIL family members in soybeans and to examine the effects on soybean yield and other markers of growth. METHODS AND RESULTS By editing key-node genes in the ethylene signaling pathway using a multi-sgRNA-in-one strategy, we obtained a series of gene edited lines with variable edit combinations among 15 target genes. EIL3, EIL4, and EIN2L were editable genes favored by the T0 soybean lines. Pot experiments also show that the early flowering stage R1 of the EIL3, EIL4, and EIN2L triple mutant was 7.05 d earlier than that of the wild-type control. The yield of the triple mutant was also increased, being 1.65-fold higher than that of the control. Comparative RNA-seq revealed that sucrose synthase, AUX28, MADS3, type-III polyketide synthase A/B, ABC transporter G family member 26, tetraketide alpha-pyrone reductase, and fatty acyl-CoA reductase 2 may be involved in regulating early flowering and high-yield phenotypes in triple mutant soybean plants. CONCLUSION Our results provide a scientific basis for genetic modification to promote the development of earlier-flowering and higher-yielding soybean cultivars.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yujie Li
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China.
| |
Collapse
|
4
|
Zhang Y, Zang Y, Chen J, Feng S, Zhang Z, Hu Y, Zhang T. A truncated ETHYLENE INSENSITIVE3-like protein, GhLYI, regulates senescence in cotton. PLANT PHYSIOLOGY 2023; 193:1177-1196. [PMID: 37430389 DOI: 10.1093/plphys/kiad395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Numerous endogenous and environmental signals regulate the intricate and highly orchestrated process of plant senescence. Ethylene (ET), which accumulates as senescence progresses, is a major promoter of leaf senescence. The master transcription activator ETHYLENE INSENSITIVE3 (EIN3) activates the expression of a wide range of downstream genes during leaf senescence. Here, we found that a unique EIN3-LIKE 1 (EIL1) gene, cotton LINT YIELD INCREASING (GhLYI), encodes a truncated EIN3 protein in upland cotton (Gossypium hirsutum L.) that functions as an ET signal response factor and a positive regulator of senescence. Ectopic expression or overexpression of GhLYI accelerated leaf senescence in both Arabidopsis (Arabidopsis thaliana) and cotton. Cleavage under targets and tagmentation (CUT&Tag) analyses revealed that SENESCENCE-ASSOCIATED GENE 20 (SAG20) was a target of GhLYI. Electrophoretic mobility shift assay (EMSA), yeast 1-hybrid (Y1H), and dual-luciferase transient expression assay confirmed that GhLYI directly bound the promoter of SAG20 to activate its expression. Transcriptome analysis revealed that transcript levels of a series of senescence-related genes, SAG12, NAC-LIKE, ACTIVATED by APETALA 3/PISTILLATA (NAP/ANAC029), and WRKY53, are substantially induced in GhLYI overexpression plants compared with wild-type (WT) plants. Virus-induced gene silencing (VIGS) preliminarily confirmed that knockdown of GhSAG20 delayed leaf senescence. Collectively, our findings provide a regulatory module involving GhLYI-GhSAG20 in controlling senescence in cotton.
Collapse
Affiliation(s)
- Yayao Zhang
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Yihao Zang
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Jinwen Chen
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Shouli Feng
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Zhiyuan Zhang
- Hainan Institute, Zhejiang University, Sanya 310012, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 310012, China
| | - Yan Hu
- Advanced Seed Science Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | | |
Collapse
|
5
|
Guo R, Wen X, Zhang W, Huang L, Peng Y, Jin L, Han H, Zhang L, Li W, Guo H. Arabidopsis EIN2 represses ABA responses during germination and early seedling growth by inactivating HLS1 protein independently of the canonical ethylene pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1514-1527. [PMID: 37269223 DOI: 10.1111/tpj.16335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The signaling pathways for the phytohormones ethylene and abscisic acid (ABA) have antagonistic effects on seed germination and early seedling establishment. However, the underlying molecular mechanisms remain unclear. In Arabidopsis thaliana, ETHYLENE INSENSITIVE 2 (EIN2) localizes to the endoplasmic reticulum (ER); although its biochemical function is unknown, it connects the ethylene signal with the key transcription factors EIN3 and EIN3-LIKE 1 (EIL1), leading to the transcriptional activation of ethylene-responsive genes. In this study, we uncovered an EIN3/EIL1-independent role for EIN2 in regulating the ABA response. Epistasis analysis demonstrated that this distinct role of EIN2 in the ABA response depends on HOOKLESS 1 (HLS1), the putative histone acetyltransferase acting as a positive regulator of ABA responses. Protein interaction assays supported a direct physical interaction between EIN2 and HLS1 in vitro and in vivo. Loss of EIN2 function resulted in an alteration of HLS1-mediated histone acetylation at the ABA-INSENSITIVE 3 (ABI3) and ABI5 loci, which promotes gene expression and the ABA response during seed germination and early seedling growth, indicating that the EIN2-HLS1 module contributes to ABA responses. Our study thus revealed that EIN2 modulates ABA responses by repressing HLS1 function, independently of the canonical ethylene pathway. These findings shed light on the intricate regulatory mechanisms underling the antagonistic interactions between ethylene and ABA signaling, with significant implications for our understanding of plant growth and development.
Collapse
Affiliation(s)
- Renkang Guo
- Harbin Institute of Technology, Harbin, 150001, China
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xing Wen
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Huang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yang Peng
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lian Jin
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huihui Han
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Linlin Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenyang Li
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Azhar BJ, Abbas S, Aman S, Yamburenko MV, Chen W, Müller L, Uzun B, Jewell DA, Dong J, Shakeel SN, Groth G, Binder BM, Grigoryan G, Schaller GE. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2215195120. [PMID: 37253004 PMCID: PMC10266040 DOI: 10.1073/pnas.2215195120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.
Collapse
Affiliation(s)
- Beenish J. Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | | | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Buket Uzun
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - David A. Jewell
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - Jian Dong
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN37996
| | - Gevorg Grigoryan
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
7
|
Park HL, Seo DH, Lee HY, Bakshi A, Park C, Chien YC, Kieber JJ, Binder BM, Yoon GM. Ethylene-triggered subcellular trafficking of CTR1 enhances the response to ethylene gas. Nat Commun 2023; 14:365. [PMID: 36690618 PMCID: PMC9870993 DOI: 10.1038/s41467-023-35975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
The phytohormone ethylene controls plant growth and stress responses. Ethylene-exposed dark-grown Arabidopsis seedlings exhibit dramatic growth reduction, yet the seedlings rapidly return to the basal growth rate when ethylene gas is removed. However, the underlying mechanism governing this acclimation of dark-grown seedlings to ethylene remains enigmatic. Here, we report that ethylene triggers the translocation of the Raf-like protein kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), a negative regulator of ethylene signaling, from the endoplasmic reticulum to the nucleus. Nuclear-localized CTR1 stabilizes the ETHYLENE-INSENSITIVE3 (EIN3) transcription factor by interacting with and inhibiting EIN3-BINDING F-box (EBF) proteins, thus enhancing the ethylene response and delaying growth recovery. Furthermore, Arabidopsis plants with enhanced nuclear-localized CTR1 exhibited improved tolerance to drought and salinity stress. These findings uncover a mechanism of the ethylene signaling pathway that links the spatiotemporal dynamics of cellular signaling components to physiological responses.
Collapse
Affiliation(s)
- Hye Lin Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Dong Hye Seo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biology, Chosun University, Gwangju, 61452, Korea
| | - Arkadipta Bakshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Botany, UW-Madison, Madison, WI, USA
| | - Chanung Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuan-Chi Chien
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Shin SY, Choi Y, Kim SG, Park SJ, Park JS, Moon KB, Kim HS, Jeon JH, Cho HS, Lee HJ. Submergence promotes auxin-induced callus formation through ethylene-mediated post-transcriptional control of auxin receptors. MOLECULAR PLANT 2022; 15:1947-1961. [PMID: 36333910 DOI: 10.1016/j.molp.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation. However, in the aboveground organs of many species, somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation, suggesting the existence of repressive regulatory mechanisms that are largely unknown. Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions. We determined that short-term submergence of intact seedlings induces auxin-mediated cell dedifferentiation across the entirety of Arabidopsis thaliana explants. The constitutive triple response 1-1 (ctr1-1) mutation induced callus formation in explants without submergence, suggesting that ethylene facilitates cell dedifferentiation. We show that ETHYLENE-INSENSITIVE 2 (EIN2) post-transcriptionally regulates the abundance of transcripts for auxin receptor genes by facilitating microRNA393 degradation. Submergence-induced calli in non-wounded regions were suitable for shoot regeneration, similar to those near the wound site. We also observed submergence-promoted callus formation in Chinese cabbage (Brassica rapa), indicating that this may be a conserved mechanism in other species. Our study identifies previously unknown regulatory mechanisms by which ethylene promotes cell dedifferentiation and provides a new approach for boosting callus induction efficiency in shoot explants.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jae Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
9
|
RNA-binding proteins and their role in translational regulation in plants. Essays Biochem 2022; 66:87-97. [PMID: 35612383 DOI: 10.1042/ebc20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Translation is a fundamental process for life that needs to be finely adapted to the energetical, developmental and environmental conditions; however, the molecular mechanisms behind such adaptation are not yet fully understood. By directly recognizing and binding to cis-elements present in their target mRNAs, RBPs govern all post-transcriptional regulatory processes. They orchestrate the balance between mRNA stability, storage, decay, and translation of their client mRNAs, playing a crucial role in the modulation of gene expression. In the last years exciting discoveries have been made regarding the roles of RBPs in fine-tuning translation. In this review, we focus on how these RBPs recognize their targets and modulate their translation, highlighting the complex and diverse molecular mechanisms implicated. Since the repertoire of RBPs keeps growing, future research promises to uncover new fascinating means of translational modulation, and thus, of gene expression.
Collapse
|
10
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
11
|
Wang Z, Li ZF, Wang SS, Xiao YS, Xie XD, Wu MZ, Yu JL, Cheng LR, Yang AG, Yang J. NtMYB12a acts downstream of sucrose to inhibit fatty acid accumulation by targeting lipoxygenase and SFAR genes in tobacco. PLANT, CELL & ENVIRONMENT 2021; 43:2287-2300. [PMID: 33225450 DOI: 10.1111/pce.13803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/31/2020] [Accepted: 04/26/2020] [Indexed: 05/18/2023]
Abstract
MYB12 promotes flavonol biosynthesis in plants by targeting several early biosynthesis genes (EBGs) of this pathway. The transcriptions of these EBGs are also induced by sucrose signal. However, whether MYB12 is activated by sucrose signal and what the other roles MYB12 has in regulating plant metabolism are poorly understood. In this study, two NtMYB12 genes were cloned from Nicotiana tabacum. Both NtMYB12a and NtMYB12b are involved in regulating flavonoids biosynthesis in tobacco. NtMYB12a is further shown to inhibit the accumulation of fatty acid (FA) in tobacco leaves and seeds. Post-translational activation and chromatin immunoprecipitation assays demonstrate that NtMYB12a directly promotes the transcriptions of NtLOX6, NtLOX5, NtSFAR4 and NtGDSL2, which encode lipoxygenase (LOX) or SFAR enzymes catalyzing the degradation of FA. NtLOX6 and NtLOX5 are shown to prevent the accumulation of FA in the mature seeds and significantly reduced the percentage of polyunsaturated fatty acids (PUFAs) in tobacco. Sucrose stimulates the transcription of NtMYB12a, and loss function of NtMYB12a partially suppresses the decrease of FA content in tobacco seedlings caused by sucrose treatment. The regulation of sucrose on the expression of NtLOX6 and NtGDSL2 genes is mediated by NtMYB12a, whereas those of NtLOX5 and NtSFAR4 genes are independent of sucrose.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ze Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Shan Shan Wang
- Xiangyang Cigarette Factory, China Tobacco Hubei Industrial Co., Ltd., Xiangyang, China
| | - Yan Song Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Xiao Dong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Ming Zhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jin Long Yu
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Li Rui Cheng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ai Guo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
12
|
The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth. Nature 2021; 591:288-292. [PMID: 33658715 DOI: 10.1038/s41586-021-03310-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
The evolutionarily conserved target of rapamycin (TOR) kinase acts as a master regulator that coordinates cell proliferation and growth by integrating nutrient, energy, hormone and stress signals in all eukaryotes1,2. Research has focused mainly on TOR-regulated translation, but how TOR orchestrates the global transcriptional network remains unclear. Here we identify ethylene-insensitive protein 2 (EIN2), a central integrator3-5 that shuttles between the cytoplasm and the nucleus, as a direct substrate of TOR in Arabidopsis thaliana. Glucose-activated TOR kinase directly phosphorylates EIN2 to prevent its nuclear localization. Notably, the rapid global transcriptional reprogramming that is directed by glucose-TOR signalling is largely compromised in the ein2-5 mutant, and EIN2 negatively regulates the expression of a wide range of target genes of glucose-activated TOR that are involved in DNA replication, cell wall and lipid synthesis and various secondary metabolic pathways. Chemical, cellular and genetic analyses reveal that cell elongation and proliferation processes that are controlled by the glucose-TOR-EIN2 axis are decoupled from canonical ethylene-CTR1-EIN2 signalling, and mediated by different phosphorylation sites. Our findings reveal a molecular mechanism by which a central signalling hub is shared but differentially modulated by diverse signalling pathways using distinct phosphorylation codes that can be specified by upstream protein kinases.
Collapse
|
13
|
Multi-Walled Carbon Nanotubes Can Promote Brassica napus L. and Arabidopsis thaliana L. Root Hair Development through Nitric Oxide and Ethylene Pathways. Int J Mol Sci 2020; 21:ijms21239109. [PMID: 33266061 PMCID: PMC7729517 DOI: 10.3390/ijms21239109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/22/2022] Open
Abstract
Here, we report that multi-walled carbon nanotubes (MWCNTs) can promote plant root hair growth in the species analyzed in this study; however, low and excessive concentrations of MWCNTs had no significant effect or even an inhibiting influence. Further results show that MWCNTs can enter rapeseed root cells. Meanwhile, nitrate reductase (NR)-dependent nitric oxide (NO) and ethylene syntheses, as well as root hair formation, were significantly stimulated by MWCNTs. Transcription of root hair growth-related genes were also modulated. The above responses were sensitive to the removal of endogenous NO or ethylene with a scavenger of NO or NO/ethylene synthesis inhibitors. Pharmacological and molecular evidence suggested that ethylene might act downstream of NR-dependent NO in MWCNTs-induced root hair morphogenesis. Genetic evidence in Arabidopsis further revealed that MWCNTs-triggered root hair growth was abolished in ethylene-insensitive mutants ein2-5 and ein3-1, and NR mutant nia1/2, but not in noa1 mutant. Further data placed NO synthesis linearly before ethylene production in root hair development triggered by MWCNTs. The above findings thus provide some insights into the molecular mechanism underlying MWCNTs control of root hair morphogenesis.
Collapse
|
14
|
Wang L, Ko EE, Tran J, Qiao H. TREE1-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc Natl Acad Sci U S A 2020; 117:29178-29189. [PMID: 33139535 PMCID: PMC7682432 DOI: 10.1073/pnas.2018735117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ethylene is an important plant hormone that regulates plant growth, in which the master transcriptionactivator EIN3 (Ethylene Insensitive 3)-mediated transcriptional activation plays vital roles. However, the EIN3-mediated transcriptional repression in ethylene response is unknown. We report here that a Transcriptional Repressor of EIN3-dependent Ethylene-response 1 (TREE1) interacts with EIN3 to regulate transcriptional repression that leads to an inhibition of shoot growth in response to ethylene. Tissue-specific transcriptome analysis showed that most of the genes are down-regulated by ethylene in shoots, and a DNA binding motif was identified that is important for this transcriptional repression. TREE1 binds to the DNA motif to repress gene expression in an EIN3-dependent manner. Genetic validation demonstrated that repression of TREE1-targeted genes leads to an inhibition of shoot growth. Overall, this work establishes a mechanism by which transcriptional repressor TREE1 interacts with EIN3 to inhibit shoot growth via transcriptional repression in response to ethylene.
Collapse
Affiliation(s)
- Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Eun Esther Ko
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Jaclyn Tran
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712;
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
15
|
Meng LS, Wei ZQ, Cao XY, Tong C, Lv MJ, Yu F, Loake GJ. Cytosolic Invertase-Mediated Root Growth Is Feedback Regulated by a Glucose-Dependent Signaling Loop. PLANT PHYSIOLOGY 2020; 184:895-908. [PMID: 32820066 PMCID: PMC7536704 DOI: 10.1104/pp.20.00778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
The disaccharide Suc cannot be utilized directly; rather, it is irreversibly hydrolyzed by invertase to the hexoses Glc and Fru to shape plant growth. In this context, Glc controls the stability of the transcription factor Ethylene-Insensitive3 (EIN3) via the function of Hexokinase1 (HXK1), a Glc sensor. Thus, invertase, especially the major neutral cytosolic invertase (CINV), constitutes a key point of control for plant growth. However, the cognate regulatory mechanisms that modulate CINV activity remain unclear. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), EIN3 binds directly to both the promoters of Production of Anthocyanin Pigment1 (PAP1) and Phosphatidylinositol Monophosphate 5-Kinase 9 (PIP5K9), repressing and enhancing, respectively, their expression. Subsequently, PAP1 binds directly to and promotes transcription of the Cytosolic Invertase1 (CINV1) promoter, while PIP5K9 interacts with and negatively regulates CINV1. The accumulated CINV1 subsequently hydrolyzes Suc, releasing the sequestered signaling cue, Glc, which has been shown to negatively regulate the stability of EIN3 via HXK1. We conclude that a CINV1-Glc-HXK1-EIN3-PAP1/PIP5K9-CINV1 loop contributes to the modulation of CINV1 activity regulating root growth by Glc signaling.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Zhi-Qin Wei
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Xiao-Ying Cao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Chen Tong
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Meng-Jiao Lv
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Fei Yu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
| | - Gary J Loake
- Jiangsu Normal University-Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, Xuzhou, 221116 Jiangsu, People's Republic of China
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
16
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
17
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
18
|
Li Q, Shen Y, Guo L, Wang H, Zhang Y, Fan C, Zheng Y. The EIL transcription factor family in soybean: Genome-wide identification, expression profiling and genetic diversity analysis. FEBS Open Bio 2019; 9:629-642. [PMID: 30984538 PMCID: PMC6443860 DOI: 10.1002/2211-5463.12596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/28/2018] [Accepted: 01/14/2019] [Indexed: 11/15/2022] Open
Abstract
The ETHYLENE INSENSITIVE3-LIKE (EIL) transcription factor family plays a critical role in the ethylene signaling pathway, which regulates a broad spectrum of plant growth and developmental processes, as well as defenses to myriad stresses. Although genome-wide analysis of this family has been carried out for several plant species, no comprehensive analysis of the EIL gene family in soybean has been reported so far. Furthermore, there are few studies on the functions of EIL genes in soybean. In this study, we identified 12 soybean (Gm) EIL genes, which we divided into three groups based on their phylogenetic relationships. We then detected their duplication status and found that most of the GmEIL genes have duplicated copies derived from two whole-genome duplication events. These duplicated genes underwent strong negative selection during evolution. We further analyzed the transcript profiles of GmEIL genes using the transcriptome data and found that their spatio-temporal and stress expression patterns varied considerably. For example, GmEIL1-GmEIL5 were found to be strongly expressed in almost every sample, while GmEIL8-GmEIL12 exhibited low expression, or were not expressed at all. Additionally, these genes showed different responses to dehydration, salinity and phosphate starvation. Finally, we surveyed genetic variations of these genes in 302 resequenced wild soybeans, landraces and improved soybean cultivars. Our data showed that most GmEIL genes are well conserved, and are not modified in domesticated or improved cultivars. Together, these findings provide a potentially valuable resource for characterizing the GmEIL gene family and lay the basis for further elucidation of their molecular mechanisms.
Collapse
Affiliation(s)
- Qing Li
- College of Life Sciences and OceanographyShenzhen UniversityChina
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityChina
| | - Yanting Shen
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Luqin Guo
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Hong Wang
- College of Life Sciences and OceanographyShenzhen UniversityChina
| | - Yu Zhang
- College of Life Sciences and OceanographyShenzhen UniversityChina
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Chengming Fan
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yihong Zheng
- College of Life Sciences and OceanographyShenzhen UniversityChina
| |
Collapse
|
19
|
Allen CJ, Lacey RF, Binder Bickford AB, Beshears CP, Gilmartin CJ, Binder BM. Cyanobacteria Respond to Low Levels of Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:950. [PMID: 31417582 PMCID: PMC6682694 DOI: 10.3389/fpls.2019.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 05/07/2023]
Abstract
Ethylene is a gas that has long been known to act as a plant hormone. We recently showed that a cyanobacterium, Synechocystis sp. PCC 6803 (Synechocystis) contains an ethylene receptor (SynEtr1) that regulates cell surface and extracellular components leading to altered phototaxis and biofilm formation. To determine whether other cyanobacteria respond to ethylene, we examined the effects of exogenous ethylene on phototaxis of the filamentous cyanobacterium, Geitlerinema sp. PCC 7105 (Geitlerinema). A search of the Geitlerinema genome suggests that two genes encode proteins that contain an ethylene binding domain and Geitlerinema cells have previously been shown to bind ethylene. We call these genes GeiEtr1 and GeiEtr2 and show that in air both are expressed. Treatment with ethylene decreases the abundance of GeiEtr1 transcripts. Treatment of Geitlerinema with 1000 nL L-1 ethylene affected the phototaxis response to white light as well as monochromatic red light, but not blue or green light. This is in contrast to Synechocystis where we previously found ethylene affected phototaxis to all three colors. We also demonstrate that application of ethylene down to 8 nL L-1 stimulates phototaxis of both cyanobacteria as well as biofilm formation of Synechocystis. We formerly demonstrated that the transcript levels of slr1214 and CsiR1 in Synechocystis are reduced by treatment with 1000 nL L-1 ethylene. Here we show that application of ethylene down to 1 nL L-1 causes a reduction in CsiR1 abundance. This is below the threshold for most ethylene responses documented in plants. By contrast, slr1214 is unaffected by this low level of ethylene and only shows a reduction in transcript abundance at the highest ethylene level used. Thus, cyanobacteria are very sensitive to ethylene. However, the dose-binding characteristics of ethylene binding to Geitlerinema and Synechocystis cells as well as to the ethylene binding domain of SynEtr1 heterologously expressed in yeast, are similar to what has been reported for plants and exogenously expressed ethylene receptors from plants. These data are consistent with a model where signal amplification is occurring at the level of the receptors.
Collapse
Affiliation(s)
- Cidney J. Allen
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Randy F. Lacey
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - C. Payton Beshears
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Brad M. Binder
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Brad M. Binder,
| |
Collapse
|
20
|
Vanderstraeten L, Depaepe T, Bertrand S, Van Der Straeten D. The Ethylene Precursor ACC Affects Early Vegetative Development Independently of Ethylene Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:1591. [PMID: 31867034 PMCID: PMC6908520 DOI: 10.3389/fpls.2019.01591] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 05/22/2023]
Abstract
The plant hormone ethylene plays a pivotal role in virtually every aspect of plant development, including vegetative growth, fruit ripening, senescence, and abscission. Moreover, it acts as a primary defense signal during plant stress. Being a volatile, its immediate biosynthetic precursor, 1-aminocyclopropane-1-carboxylic acid, ACC, is generally employed as a tool to provoke ethylene responses. However, several reports propose a role for ACC in parallel or independently of ethylene signaling. In this study, pharmacological experiments with ethylene biosynthesis and signaling inhibitors, 2-aminoisobutyric acid and 1-methylcyclopropene, as well as mutant analyses demonstrate ACC-specific but ethylene-independent growth responses in both dark- and light-grown Arabidopsis seedlings. Detection of ethylene emanation in ethylene-deficient seedlings by means of laser-based photoacoustic spectroscopy further supports a signaling role for ACC. In view of these results, future studies employing ACC as a proxy for ethylene should consider ethylene-independent effects as well. The use of multiple knockout lines of ethylene biosynthesis genes will aid in the elucidation of the physiological roles of ACC as a signaling molecule in addition to its function as an ethylene precursor.
Collapse
|
21
|
Chen Y, Rofidal V, Hem S, Gil J, Nosarzewska J, Berger N, Demolombe V, Bouzayen M, Azhar BJ, Shakeel SN, Schaller GE, Binder BM, Santoni V, Chervin C. Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SlETR3 Accumulation in Never-Ripe Tomatoes. FRONTIERS IN PLANT SCIENCE 2019; 10:1054. [PMID: 31555314 PMCID: PMC6727826 DOI: 10.3389/fpls.2019.01054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 05/04/2023]
Abstract
Ethylene regulates fruit ripening and several plant functions (germination, plant growth, plant-microbe interactions). Protein quantification of ethylene receptors (ETRs) is essential to study their functions, but is impaired by low resolution tools such as antibodies that are mostly nonspecific, or the lack of sensitivity of shotgun proteomic approaches. We developed a targeted proteomic method, to quantify low-abundance proteins such as ETRs, and coupled this to mRNAs analyses, in two tomato lines: Wild Type (WT) and Never-Ripe (NR) which is insensitive to ethylene because of a gain-of-function mutation in ETR3. We obtained mRNA and protein abundance profiles for each ETR over the fruit development period. Despite a limiting number of replicates, we propose Pearson correlations between mRNA and protein profiles as interesting indicators to discriminate the two genotypes: such correlations are mostly positive in the WT and are affected by the NR mutation. The influence of putative post-transcriptional and post-translational changes are discussed. In NR fruits, the observed accumulation of the mutated ETR3 protein between ripening stages (Mature Green and Breaker + 8 days) may be a cause of NR tomatoes to stay orange. The label-free quantitative proteomics analysis of membrane proteins, concomitant to Parallel Reaction Monitoring analysis, may be a resource to study changes over tomato fruit development. These results could lead to studies about ETR subfunctions and interconnections over fruit development. Variations of RNA-protein correlations may open new fields of research in ETR regulation. Finally, similar approaches may be developed to study ETRs in whole plant development and plant-microorganism interactions.
Collapse
Affiliation(s)
- Yi Chen
- GBF, Université de Toulouse, INRA, Toulouse, France
| | - Valérie Rofidal
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Julie Gil
- GBF, Université de Toulouse, INRA, Toulouse, France
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Nathalie Berger
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Beenish J. Azhar
- Department of Biochemistry, Quaid-i-azam University, Islamabad, Pakistan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Samina N. Shakeel
- Department of Biochemistry, Quaid-i-azam University, Islamabad, Pakistan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Véronique Santoni
- BPMP, CNRS, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Véronique Santoni, ; Christian Chervin,
| | - Christian Chervin
- GBF, Université de Toulouse, INRA, Toulouse, France
- *Correspondence: Véronique Santoni, ; Christian Chervin,
| |
Collapse
|
22
|
Dolgikh VA, Pukhovaya EM, Zemlyanskaya EV. Shaping Ethylene Response: The Role of EIN3/EIL1 Transcription Factors. FRONTIERS IN PLANT SCIENCE 2019; 10:1030. [PMID: 31507622 PMCID: PMC6718143 DOI: 10.3389/fpls.2019.01030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/23/2019] [Indexed: 05/05/2023]
Abstract
EIN3/EIL1 transcription factors are the key regulators of ethylene signaling that sustain a variety of plant responses to ethylene. Since ethylene regulates multiple aspects of plant development and stress responses, its signaling outcome needs proper modulation depending on the spatiotemporal and environmental conditions. In this review, we summarize recent advances on the molecular mechanisms that underlie EIN3/EIL1-directed ethylene signaling in Arabidopsis. We focus on the role of EIN3/EIL1 in tuning transcriptional regulation of ethylene response in time and space. Besides, we consider the role of EIN3/EIL1-independent regulation of ethylene signaling.
Collapse
Affiliation(s)
- Vladislav A. Dolgikh
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniya M. Pukhovaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- *Correspondence: Elena V. Zemlyanskaya,
| |
Collapse
|
23
|
Zhang C, Teng XD, Zheng QQ, Zhao YY, Lu JY, Wang Y, Guo H, Yang ZN. Ethylene signaling is critical for synergid cell functional specification and pollen tube attraction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:176-187. [PMID: 30003612 DOI: 10.1111/tpj.14027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/03/2018] [Indexed: 05/23/2023]
Abstract
ETHYLENE INSENSITIVE 3 (EIN3) is a key regulator of ethylene signaling, and EIN3-BINDING F-BOX1 (EBF1) and EBF2 are responsible for EIN3 degradation. Previous reports have shown that the ebf1 ebf2 double homozygous mutant cannot be identified. In this study, the genetic analysis revealed that the ebf1 ebf2 female gametophyte is defective. The pollination experiment showed that ebf1 ebf2 ovules failed to attract pollen tubes. In female gametophyte/ovule, the synergid cell is responsible for pollen tube attraction. Observation of the pEIN3::EIN3-GFP transgenic lines showed that EIN3 signal was over-accumulated at the micropylar end of ebf1 ebf2 female gametophyte. The overexpression of stabilized EIN3 in synergid cell led to the defect of pollen tube guidance. These results suggested that the over-accumulated EIN3 in ebf1 ebf2 synergid cell blocks its pollen tube attraction which leads to the failure of ebf1 ebf2 homozygous plant. We identified that EIN3 directly activated the expression of a sugar transporter, SENESCENCE-ASSOCIATED GENE29 (SAG29/SWEET15). Overexpression of SAG29 in synergid cells blocked pollen tube attraction, suggesting that SAG29 might play a role in ethylene signaling to repel pollen tube entry. Taken together, our study reveals that strict control of ethylene signaling is critical for the synergid cell function during plant reproduction.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Xiao-Dong Teng
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Quan-Quan Zheng
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Yun Zhao
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jie-Yang Lu
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 508055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 508055, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
24
|
Wang Y, Ji Y, Fu Y, Guo H. Ethylene-induced microtubule reorientation is essential for fast inhibition of root elongation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:864-877. [PMID: 29752856 DOI: 10.1111/jipb.12666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/09/2018] [Indexed: 05/22/2023]
Abstract
Microtubule reorientation is a long-standing observation that has been implicated in regulating the inhibitory effect of ethylene on axial elongation of plant cells. However, the signaling mechanism underlying ethylene-induced microtubule reorientation has remained elusive. Here, we reveal, by live confocal imaging and kinetic root elongation assays, that the time courses of ethylene-induced microtubule reorientation and root elongation inhibition are highly correlated, and that microtubule reorientation is required for the full responsiveness of root elongation to ethylene treatment. Our genetic analysis demonstrated that the effect of ethylene on microtubule orientation and root elongation is mainly transduced through the canonical linear ethylene signaling pathway. By using pharmacological and genetic analyses, we demonstrate further that the TIR1/AFBs-Aux/IAAs-ARFs auxin signaling pathway, but not the ABP1-ROP6-RIC1 auxin signaling branch, is essential for ethylene-induced microtubule reorientation and root elongation inhibition. Together, these findings offer evidence for the functional significance and elucidate the signaling mechanism for ethylene-induced microtubule reorientation in fast root elongation inhibition in Arabidopsis.
Collapse
Affiliation(s)
- Yichuan Wang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yusi Ji
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Binder BM, Kim HJ, Mathews DE, Hutchison CE, Kieber JJ, Schaller GE. A role for two-component signaling elements in the Arabidopsis growth recovery response to ethylene. PLANT DIRECT 2018; 2:e00058. [PMID: 31245724 PMCID: PMC6508545 DOI: 10.1002/pld3.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/29/2023]
Abstract
Previous studies indicate that the ability of Arabidopsis seedlings to recover normal growth following an ethylene treatment involves histidine kinase activity of the ethylene receptors. As histidine kinases can function as inputs for a two-component signaling system, we examined loss-of-function mutants involving two-component signaling elements. We find that mutants of phosphotransfer proteins and type-B response regulators exhibit a defect in their ethylene growth recovery response similar to that found with the loss-of-function ethylene receptor mutant etr1-7. The ability of two-component signaling elements to regulate the growth recovery response to ethylene functions independently from their well-characterized role in cytokinin signaling, based on the analysis of cytokinin receptor mutants as well as following chemical inhibition of cytokinin biosynthesis. Histidine kinase activity of the receptor ETR1 also facilitates growth recovery in the ethylene hypersensitive response, which is characterized by a transient decrease in growth rate when seedlings are treated continuously with a low dose of ethylene; however, this response was found to operate independently of the type-B response regulators. These results indicate that histidine kinase activity of the ethylene receptor ETR1 performs two independent functions: (a) regulating the growth recovery to ethylene through a two-component signaling system involving phosphotransfer proteins and type-B response regulators and (b) regulating the hypersensitive response to ethylene in a type-B response regulator independent manner.
Collapse
Affiliation(s)
- Brad M. Binder
- Department of Biochemistry and Cellular & Molecular BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Hyo Jung Kim
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
- Center for Plant Aging ResearchInstitute for Basic Science (IBS)DaeguKorea
| | - Dennis E. Mathews
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew Hampshire
| | - Claire E. Hutchison
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
- Present address:
William Harvey Research InstituteQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUK
| | - Joseph J. Kieber
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
| | - G. Eric Schaller
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| |
Collapse
|
26
|
Harkey AF, Watkins JM, Olex AL, DiNapoli KT, Lewis DR, Fetrow JS, Binder BM, Muday GK. Identification of Transcriptional and Receptor Networks That Control Root Responses to Ethylene. PLANT PHYSIOLOGY 2018; 176:2095-2118. [PMID: 29259106 PMCID: PMC5841720 DOI: 10.1104/pp.17.00907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/17/2017] [Indexed: 05/20/2023]
Abstract
Transcriptomic analyses with high temporal resolution provide substantial new insight into hormonal response networks. This study identified the kinetics of genome-wide transcript abundance changes in response to elevated levels of the plant hormone ethylene in roots from light-grown Arabidopsis (Arabidopsis thaliana) seedlings, which were overlaid on time-matched developmental changes. Functional annotation of clusters of transcripts with similar temporal patterns revealed rapidly induced clusters with known ethylene function and more slowly regulated clusters with novel predicted functions linked to root development. In contrast to studies with dark-grown seedlings, where the canonical ethylene response transcription factor, EIN3, is central to ethylene-mediated development, the roots of ein3 and eil1 single and double mutants still respond to ethylene in light-grown seedlings. Additionally, a subset of these clusters of ethylene-responsive transcripts were enriched in targets of EIN3 and ERFs. These results are consistent with EIN3-independent developmental and transcriptional changes in light-grown roots. Examination of single and multiple gain-of-function and loss-of-function receptor mutants revealed that, of the five ethylene receptors, ETR1 controls lateral root and root hair initiation and elongation and the synthesis of other receptors. These results provide new insight into the transcriptional and developmental responses to ethylene in light-grown seedlings.
Collapse
Affiliation(s)
- Alexandria F Harkey
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Justin M Watkins
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Amy L Olex
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Kathleen T DiNapoli
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Daniel R Lewis
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Jacquelyn S Fetrow
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Brad M Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| |
Collapse
|
27
|
Milić D, Dick M, Mulnaes D, Pfleger C, Kinnen A, Gohlke H, Groth G. Recognition motif and mechanism of ripening inhibitory peptides in plant hormone receptor ETR1. Sci Rep 2018; 8:3890. [PMID: 29497085 PMCID: PMC5832771 DOI: 10.1038/s41598-018-21952-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
Synthetic peptides derived from ethylene-insensitive protein 2 (EIN2), a central regulator of ethylene signalling, were recently shown to delay fruit ripening by interrupting protein-protein interactions in the ethylene signalling pathway. Here, we show that the inhibitory peptide NOP-1 binds to the GAF domain of ETR1 - the prototype of the plant ethylene receptor family. Site-directed mutagenesis and computational studies reveal the peptide interaction site and a plausible molecular mechanism for the ripening inhibition.
Collapse
Affiliation(s)
- Dalibor Milić
- Institute of Biochemical Plant Physiology and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Markus Dick
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Daniel Mulnaes
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Pfleger
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Kinnen
- Institute of Biochemical Plant Physiology and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - Georg Groth
- Institute of Biochemical Plant Physiology and Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Bakshi A, Piya S, Fernandez JC, Chervin C, Hewezi T, Binder BM. Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses. PLANT PHYSIOLOGY 2018; 176:910-929. [PMID: 29158332 PMCID: PMC5761792 DOI: 10.1104/pp.17.01321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/17/2017] [Indexed: 05/04/2023]
Abstract
Ethylene is a gaseous plant hormone perceived by a family of receptors in Arabidopsis (Arabidopsis thaliana) including ETHYLENE RESPONSE1 (ETR1) and ETR2. Previously we showed that etr1-6 loss-of-function plants germinate better and etr2-3 loss-of-function plants germinate worse than wild-type under NaCl stress and in response to abscisic acid (ABA). In this study, we expanded these results by showing that ETR1 and ETR2 have contrasting roles in the control of germination under a variety of inhibitory conditions for seed germination such as treatment with KCl, CuSO4, ZnSO4, and ethanol. Pharmacological and molecular biology results support a model where ETR1 and ETR2 are indirectly affecting the expression of genes encoding ABA signaling proteins to affect ABA sensitivity. The receiver domain of ETR1 is involved in this function in germination under these conditions and controlling the expression of genes encoding ABA signaling proteins. Epistasis analysis demonstrated that these contrasting roles of ETR1 and ETR2 do not require the canonical ethylene signaling pathway. To explore the importance of receptor-protein interactions, we conducted yeast two-hybrid screens using the cytosolic domains of ETR1 and ETR2 as bait. Unique interacting partners with either ETR1 or ETR2 were identified. We focused on three of these proteins and confirmed the interactions with receptors. Loss of these proteins led to faster germination in response to ABA, showing that they are involved in ABA responses. Thus, ETR1 and ETR2 have both ethylene-dependent and -independent roles in plant cells that affect responses to ABA.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, 37996
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996
| | - Jessica C Fernandez
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Christian Chervin
- Université de Toulouse, INP-ENSAT, INRA, UMR 990 Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan Cedex, France
| | - Tarek Hewezi
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, 37996
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996
| | - Brad M Binder
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, 37996
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
29
|
Zhang F, Wang L, Ko EE, Shao K, Qiao H. Histone Deacetylases SRT1 and SRT2 Interact with ENAP1 to Mediate Ethylene-Induced Transcriptional Repression. THE PLANT CELL 2018; 30:153-166. [PMID: 29298835 PMCID: PMC5810571 DOI: 10.1105/tpc.17.00671] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 05/19/2023]
Abstract
Ethylene plays pleiotropic roles in plant growth, plant development, and stress responses. Although the effects of ethylene on plants are well documented, little is known about molecular-level events that result in transcriptional repression during the ethylene response. In this study, we found that two histone deacetylases, SRT1 and SRT2, interact with ENAP1, which associates with EIN2 in the nucleus. Genetic and transcriptome analyses revealed that SRT1 and SRT2 are required for negative regulation of certain ethylene-responsive genes. The acetylation of HISTONE3 at K9 (H3K9Ac) is specifically regulated by SRT1 and SRT2 in ethylene-repressed genes. In addition, the srt1 srt2 double mutation in Arabidopsis thaliana suppresses both the ENAP1ox and the EIN3ox constitutive ethylene response phenotypes, and the ethylene-induced transcriptional repression observed in EIN3ox plants is derepressed in the EIN3ox/srt1 srt2 mutant. SRT2 and ENAP1 both bind to promoter regions of genes negatively regulated by ethylene, reducing H3K9Ac levels and resulting in transcriptional repression. This work establishes a mechanism by which histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate transcriptional repression by regulating the levels of H3K9 acetylation in the ethylene signaling.
Collapse
Affiliation(s)
- Fan Zhang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Likai Wang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Eun Esther Ko
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Kevin Shao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
| | - Hong Qiao
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
30
|
Pereira L, Pujol M, Garcia-Mas J, Phillips MA. Non-invasive quantification of ethylene in attached fruit headspace at 1 p.p.b. by gas chromatography-mass spectrometry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:172-183. [PMID: 28370685 DOI: 10.1111/tpj.13545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 05/05/2023]
Abstract
Ethylene is a gaseous plant hormone involved in defense, adaptations to environmental stress and fruit ripening. Its relevance to the latter makes its detection highly useful for physiologists interested in the onset of ripening. Produced as a sharp peak during the respiratory burst, ethylene is biologically active at tens of nl L-1 . Reliable quantification at such concentrations generally requires specialized instrumentation. Here we present a rapid, high-sensitivity method for detecting ethylene in attached fruit using a conventional gas chromatography-mass spectrometry (GC-MS) system and in situ headspace collection chambers. We apply this method to melon (Cucumis melo L.), a unique species consisting of climacteric and non-climacteric varieties, with a high variation in the climacteric phenotype among climacteric types. Using a population of recombinant inbred lines (RILs) derived from highly climacteric ('Védrantais', cantalupensis type) and non-climacteric ('Piel de Sapo', inodorus type) parental lines, we observed a significant variation for the intensity, onset and duration of the ethylene burst during fruit ripening. Our method does not require concentration, sampling times over 1 h or fruit harvest. We achieved a limit of detection of 0.41 ± 0.04 nl L-1 and a limit of quantification of 1.37 ± 0.13 nl L-1 with an analysis time per sample of 2.6 min. Validation of the analytical method indicated that linearity (>98%), precision (coefficient of variation ≤2%) and sensitivity compared favorably with dedicated optical sensors. This study adds to evidence of the characteristic climacteric ethylene burst as a complex trait whose intensity in our RIL population lies along a continuum in addition to two extremes.
Collapse
Affiliation(s)
- Lara Pereira
- IRTA, Center for Research in Agricultural Genomics (IRTA- CSIC- UAB-UB), Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Marta Pujol
- IRTA, Center for Research in Agricultural Genomics (IRTA- CSIC- UAB-UB), Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Jordi Garcia-Mas
- IRTA, Center for Research in Agricultural Genomics (IRTA- CSIC- UAB-UB), Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Michael A Phillips
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
31
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1361-1369. [PMID: 28201612 DOI: 10.1093/jxb/erx004] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
Plants are challenged with numerous abiotic stresses, such as drought, cold, heat, and salt stress. These environmental stresses are major causes of crop failure and reduced yields worldwide. Phytohormones play essential roles in regulating various plant physiological processes and alleviating stressful perturbations. Jasmonate (JA), a group of oxylipin compounds ubiquitous in the plant kingdom, acts as a crucial signal to modulate multiple plant processes. Recent studies have shown evidence supporting the involvement of JA in leaf senescence and tolerance to cold stress. Concentrations of JA are much higher in senescent leaves compared with those in non-senescent ones. Treatment with exogenous JA induces leaf senescence and expression of senescence-associated genes. In response to cold stress, exogenous application of JA enhances Arabidopsis freezing tolerance with or without cold acclimation. Consistently, biosynthesis of endogenous JA is activated in response to cold exposure. JA positively regulates the CBF (C-REPEAT BINDING FACTOR) transcriptional pathway to up-regulate downstream cold-responsive genes and ultimately improve cold tolerance. JA interacts with other hormone signaling pathways (such as auxin, ethylene, and gibberellin) to regulate leaf senescence and tolerance to cold stress. In this review, we summarize recent studies that have provided insights into JA-mediated leaf senescence and cold-stress tolerance.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
33
|
Abstract
Ethylene is a gas biosynthesized by plants which has many physiological and developmental effects on their growth. Ethylene affects agriculturally and horticulturally important traits such as fruit ripening, post-harvest physiology, senescence, and abscission, and so ethylene action is often inhibited to improve the shelf life of fruits, vegetables, and cut flowers. Chemical inhibitors of ethylene action are also useful for research to characterize the mechanisms of ethylene biosynthesis and signal transduction, and the role that ethylene plays in various physiological processes. Here, we describe the use of three inhibitors commonly used for the study of ethylene action in plants: 2-aminoethoxyvinyl glycine (AVG), silver ions (Ag), and the gaseous compound 1-methylcyclopropene (1-MCP). AVG is an inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme involved in ethylene biosynthesis. Silver and 1-MCP are both inhibitors of the ethylene receptors. Inhibitor use as well as off-target effects are described with a focus on ethylene responses in dark-grown Arabidopsis seedlings. Methods for the use of these inhibitors can be applied to other plant growth assays.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
| | - Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, M407 Walters Life Sciences, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, 37996, USA.
| |
Collapse
|
34
|
Binder BM. Time-Lapse Imaging to Examine the Growth Kinetics of Arabidopsis Seedlings in Response to Ethylene. Methods Mol Biol 2017; 1573:211-222. [PMID: 28293848 DOI: 10.1007/978-1-4939-6854-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ethylene is well known to inhibit the growth of dark-grown eudicot seedlings. Most studies examine this inhibition after several days of exposure to ethylene. However, such end-point analysis misses transient responses and the dynamic nature of growth regulation. Here, high-resolution, time-lapse imaging is described as a method to gather data about ethylene growth kinetics and movement responses of the hypocotyls of dark-grown seedlings of Arabidopsis thaliana. These methods allow for the characterization of short-term kinetic responses and can be modified for the analysis of roots and seedlings from other species.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry & Cellular and Molecular Biology, M407 Walters Life Sciences, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN, 37996, USA.
| |
Collapse
|
35
|
Das D, St Onge KR, Voesenek LACJ, Pierik R, Sasidharan R. Ethylene- and Shade-Induced Hypocotyl Elongation Share Transcriptome Patterns and Functional Regulators. PLANT PHYSIOLOGY 2016; 172:718-733. [PMID: 27329224 PMCID: PMC5047086 DOI: 10.1104/pp.16.00725] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/17/2016] [Indexed: 05/12/2023]
Abstract
Plants have evolved shoot elongation mechanisms to escape from diverse environmental stresses such as flooding and vegetative shade. The apparent similarity in growth responses suggests a possible convergence of the signaling pathways. Shoot elongation is mediated by passive ethylene accumulating to high concentrations in flooded plant organs and by changes in light quality and quantity under vegetation shade. Here, we study hypocotyl elongation as a proxy for shoot elongation and delineate Arabidopsis (Arabidopsis thaliana) hypocotyl length kinetics in response to ethylene and shade. Based on these kinetics, we further investigated ethylene- and shade-induced genome-wide gene expression changes in hypocotyls and cotyledons separately. Both treatments induced a more extensive transcriptome reconfiguration in the hypocotyls compared with the cotyledons. Bioinformatics analyses suggested contrasting regulation of growth promotion- and photosynthesis-related genes. These analyses also suggested an induction of auxin, brassinosteroid, and gibberellin signatures and the involvement of several candidate regulators in the elongating hypocotyls. Pharmacological and mutant analyses confirmed the functional involvement of several of these candidate genes and physiological control points in regulating stress-escape responses to different environmental stimuli. We discuss how these signaling networks might be integrated and conclude that plants, when facing different stresses, utilize a conserved set of transcriptionally regulated genes to modulate and fine-tune growth.
Collapse
Affiliation(s)
- Debatosh Das
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands (D.D., K.R.S.O., L.A.C.J.V., R.P., R.S.); and Department of Biological Sciences, University of Alberta, Alberta, Canada T6J2E9 (K.R.S.O.)
| | - Kate R St Onge
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands (D.D., K.R.S.O., L.A.C.J.V., R.P., R.S.); and Department of Biological Sciences, University of Alberta, Alberta, Canada T6J2E9 (K.R.S.O.)
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands (D.D., K.R.S.O., L.A.C.J.V., R.P., R.S.); and Department of Biological Sciences, University of Alberta, Alberta, Canada T6J2E9 (K.R.S.O.)
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands (D.D., K.R.S.O., L.A.C.J.V., R.P., R.S.); and Department of Biological Sciences, University of Alberta, Alberta, Canada T6J2E9 (K.R.S.O.)
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands (D.D., K.R.S.O., L.A.C.J.V., R.P., R.S.); and Department of Biological Sciences, University of Alberta, Alberta, Canada T6J2E9 (K.R.S.O.)
| |
Collapse
|
36
|
Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT. Perception of the plant hormone ethylene: known-knowns and known-unknowns. J Biol Inorg Chem 2016; 21:715-28. [DOI: 10.1007/s00775-016-1378-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
|
37
|
Qing D, Yang Z, Li M, Wong WS, Guo G, Liu S, Guo H, Li N. Quantitative and Functional Phosphoproteomic Analysis Reveals that Ethylene Regulates Water Transport via the C-Terminal Phosphorylation of Aquaporin PIP2;1 in Arabidopsis. MOLECULAR PLANT 2016; 9:158-174. [PMID: 26476206 DOI: 10.1016/j.molp.2015.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/27/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Ethylene participates in the regulation of numerous cellular events and biological processes, including water loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a (15)N stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eil1-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene-regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-0 and ein3eil1 genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up-regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs.
Collapse
Affiliation(s)
- Dongjin Qing
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mingzhe Li
- School of Life Science, Peking University, Beijing 100089, China
| | - Wai Shing Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guangyu Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hongwei Guo
- School of Life Science, Peking University, Beijing 100089, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
38
|
Prescott AM, McCollough FW, Eldreth BL, Binder BM, Abel SM. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics. FRONTIERS IN PLANT SCIENCE 2016; 7:1308. [PMID: 27625669 PMCID: PMC5003821 DOI: 10.3389/fpls.2016.01308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 05/04/2023]
Abstract
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses.
Collapse
Affiliation(s)
- Aaron M. Prescott
- Department of Chemical and Biomolecular Engineering, University of TennesseeKnoxville, TN, USA
| | - Forest W. McCollough
- Department of Biochemistry and Cellular and Molecular Biology, University of TennesseeKnoxville, TN, USA
| | - Bryan L. Eldreth
- Department of Chemical and Biomolecular Engineering, University of TennesseeKnoxville, TN, USA
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of TennesseeKnoxville, TN, USA
- *Correspondence: Brad M. Binder
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of TennesseeKnoxville, TN, USA
- National Institute for Mathematical and Biological Synthesis, University of TennesseeKnoxville, TN, USA
- Steven M. Abel
| |
Collapse
|
39
|
Zheng Y, Zhu Z. Relaying the Ethylene Signal: New Roles for EIN2. TRENDS IN PLANT SCIENCE 2016; 21:2-4. [PMID: 26679045 DOI: 10.1016/j.tplants.2015.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/27/2015] [Indexed: 05/20/2023]
Abstract
ETHYLENE INSENSITIVE 2 (EIN2), an endoplasmic reticulum (ER) localized protein, plays a central role in relaying the ethylene signal from ER perception to the nucleus. Two recent reports reveal the novel role for EIN2 in translational control, providing another layer of regulation for ethylene signal transduction.
Collapse
Affiliation(s)
- Yuyu Zheng
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
40
|
Abstract
Ethylene regulates many aspects of plant growth and development. In the presence of ethylene, the C terminus of EIN2 (EIN2C) translocates into the nucleus and activates transcription. Li et al. and Merchante et al. show that EIN2C also regulates translation through an interaction with the 3' UTRs of transcripts.
Collapse
Affiliation(s)
- Mohammad Salehin
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Estelle
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Merchante C, Brumos J, Yun J, Hu Q, Spencer K, Enríquez P, Binder B, Heber S, Stepanova A, Alonso J. Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell 2015; 163:684-97. [DOI: 10.1016/j.cell.2015.09.036] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/04/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
|
42
|
Bakshi A, Wilson RL, Lacey RF, Kim H, Wuppalapati SK, Binder BM. Identification of Regions in the Receiver Domain of the ETHYLENE RESPONSE1 Ethylene Receptor of Arabidopsis Important for Functional Divergence. PLANT PHYSIOLOGY 2015; 169:219-32. [PMID: 26160962 PMCID: PMC4577405 DOI: 10.1104/pp.15.00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 05/08/2023]
Abstract
Ethylene influences the growth and development of Arabidopsis (Arabidopsis thaliana) via five receptor isoforms. However, the ETHYLENE RESPONSE1 (ETR1) ethylene receptor has unique, and sometimes contrasting, roles from the other receptor isoforms. Prior research indicates that the receiver domain of ETR1 is important for some of these noncanonical roles. We determined that the ETR1 receiver domain is not needed for ETR1's predominant role in mediating responses to the ethylene antagonist, silver. To understand the structure-function relationship underlying the unique roles of the ETR1 receiver domain in the control of specific traits, we performed alanine-scanning mutagenesis. We chose amino acids that are poorly conserved and are in regions predicted to have altered tertiary structure compared with the receiver domains of the other two receptors that contain a receiver domain, ETR2 and ETHYLENE INSENSITIVE4. The effects of these mutants on various phenotypes were examined in transgenic, receptor-deficient Arabidopsis plants. Some traits, such as growth in air and growth recovery after the removal of ethylene, were unaffected by these mutations. By contrast, three mutations on one surface of the receiver domain rendered the transgene unable to rescue ethylene-stimulated nutations. Additionally, several mutations on another surface altered germination on salt. Some of these mutations conferred hyperfunctionality to ETR1 in the context of seed germination on salt, but not for other traits, that correlated with increased responsiveness to abscisic acid. Thus, the ETR1 receiver domain has multiple functions where different surfaces are involved in the control of different traits. Models are discussed for these observations.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Rebecca L Wilson
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Randy F Lacey
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Heejung Kim
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Sai Keerthana Wuppalapati
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Brad M Binder
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
43
|
Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene. Appl Biochem Biotechnol 2015; 177:175-89. [PMID: 26164855 DOI: 10.1007/s12010-015-1736-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology.
Collapse
|
44
|
Rai MI, Wang X, Thibault DM, Kim HJ, Bombyk MM, Binder BM, Shakeel SN, Schaller GE. The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC PLANT BIOLOGY 2015; 15:157. [PMID: 26105742 PMCID: PMC4478640 DOI: 10.1186/s12870-015-0554-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/15/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ethylene plays critical roles in plant growth and development, including the regulation of cell expansion, senescence, and the response to biotic and abiotic stresses. Elements of the initial signal transduction pathway have been determined, but we are still defining regulatory mechanisms by which the sensitivity of plants to ethylene is modulated. RESULTS We report here that members of the ARGOS gene family of Arabidopsis, previously implicated in the regulation of plant growth and biomass, function as negative feedback regulators of ethylene signaling. Expression of all four members of the ARGOS family is induced by ethylene, but this induction is blocked in ethylene-insensitive mutants. The dose dependence for ethylene induction varies among the ARGOS family members, suggesting that they could modulate responses across a range of ethylene concentrations. GFP-fusions of ARGOS and ARL localize to the endoplasmic reticulum, the same subcellular location as the ethylene receptors and other initial components of the ethylene signaling pathway. Seedlings with increased expression of ARGOS family members exhibit reduced ethylene sensitivity based on physiological and molecular responses. CONCLUSIONS These results support a model in which the ARGOS gene family functions as part of a negative feedback circuit to desensitize the plant to ethylene, thereby expanding the range of ethylene concentrations to which the plant can respond. These results also indicate that the effects of the ARGOS gene family on plant growth and biomass are mediated through effects on ethylene signal transduction.
Collapse
Affiliation(s)
- Muneeza Iqbal Rai
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
- Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan.
| | - Xiaomin Wang
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Derek M Thibault
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Hyo Jung Kim
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Matthew M Bombyk
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Samina N Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
- Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan.
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
45
|
Shakeel SN, Gao Z, Amir M, Chen YF, Rai MI, Haq NU, Schaller GE. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana. J Biol Chem 2015; 290:12415-24. [PMID: 25814663 DOI: 10.1074/jbc.m115.652503] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Indexed: 11/06/2022] Open
Abstract
The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed.
Collapse
Affiliation(s)
- Samina N Shakeel
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, the Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan, and
| | - Zhiyong Gao
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Madiha Amir
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, the Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan, and
| | - Yi-Feng Chen
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, the Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Muneeza Iqbal Rai
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, the Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan, and
| | - Noor Ul Haq
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, the Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan, and
| | - G Eric Schaller
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755,
| |
Collapse
|
46
|
Wilson RL, Kim H, Bakshi A, Binder BM. The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress. PLANT PHYSIOLOGY 2014; 165:1353-1366. [PMID: 24820022 PMCID: PMC4081342 DOI: 10.1104/pp.114.241695] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of seed germination during salt stress. Specifically, loss of ETHYLENE RESPONSE1 (ETR1) or ETHYLENE INSENSITIVE4 (EIN4) leads to accelerated germination, loss of ETR2 delays germination, and loss of either ETHYLENE RESPONSE SENSOR1 (ERS1) or ERS2 has no measurable effect on germination. Epistasis analysis indicates that ETR1 and EIN4 function additively with ETR2 to control this trait. Interestingly, regulation of germination by ETR1 requires the full-length receptor. The differences in germination between etr1 and etr2 loss-of-function mutants under salt stress could not be explained by differences in the production of or sensitivity to ethylene, gibberellin, or cytokinin. Instead, etr1 loss-of-function mutants have reduced sensitivity to abscisic acid (ABA) and germinate earlier than the wild type, whereas etr2 loss-of-function mutants have increased sensitivity to ABA and germinate slower than the wild type. Additionally, the differences in seed germination on salt between the two mutants and the wild type are eliminated by the ABA biosynthetic inhibitor norflurazon. These data suggest that ETR1 and ETR2 have roles independent of ethylene signaling that affect ABA signaling and result in altered germination during salt stress.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Heejung Kim
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Arkadipta Bakshi
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Brad M Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
47
|
Cho YH, Yoo SD. Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:733. [PMID: 25601870 PMCID: PMC4283510 DOI: 10.3389/fpls.2014.00733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
The signaling of the plant hormone ethylene has been studied genetically, resulting in the identification of signaling components from membrane receptors to nuclear effectors. Among constituents of the hormone signaling pathway, functional links involving a putative mitogen-activated protein kinase kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) and a membrane transporter-like protein ETHYLENE INSENSITIVE2 (EIN2) have been missing for a long time. We now learn that EIN2 is cleaved and its C-terminal end moves to the nucleus upon ethylene perception at the membrane receptors, and then the C-terminal end of EIN2 in the nucleus supports EIN3-dependent ethylene-response gene expression. CTR1 kinase activity negatively controls the EIN2 cleavage process through direct phosphorylation. Despite the novel connection of CTR1 with EIN2 that explains a large portion of the missing links in ethylene signaling, our understanding still remains far from its completion. This focused review will summarize recent advances in the EIN3-dependent ethylene signaling mechanisms including CTR1-EIN2 functions with respect to EIN3 regulation and ethylene responses. This will also present several emerging issues that need to be addressed for the comprehensive understanding of signaling pathways of the invaluable plant hormone ethylene.
Collapse
Affiliation(s)
| | - Sang-Dong Yoo
- *Correspondence: Sang-Dong Yoo, Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 145 Anamro, Sungbuk-gu, Seoul 136-713, South Korea e-mail:
| |
Collapse
|
48
|
Yang Z, Guo G, Zhang M, Liu CY, Hu Q, Lam H, Cheng H, Xue Y, Li J, Li N. Stable isotope metabolic labeling-based quantitative phosphoproteomic analysis of Arabidopsis mutants reveals ethylene-regulated time-dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase. Mol Cell Proteomics 2013; 12:3559-82. [PMID: 24043427 PMCID: PMC3861708 DOI: 10.1074/mcp.m113.031633] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/27/2013] [Indexed: 02/05/2023] Open
Abstract
Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on (15)N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein-protein interaction filter revealed a total of 14 kinase-substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light harvesting chlorophyll A/B binding protein 1.1, and flowering bHLH 3 proteins in a dual-and-opposing fashion.
Collapse
Affiliation(s)
- Zhu Yang
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guangyu Guo
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Manyu Zhang
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Y. Liu
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qin Hu
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Henry Lam
- ¶Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Han Cheng
- ‖Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- ‖Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiayang Li
- **State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Li
- From the ‡Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
49
|
In BC, Binder BM, Falbel TG, Patterson SE. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4923-37. [PMID: 24078672 PMCID: PMC3830478 DOI: 10.1093/jxb/ert281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription-PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers.
Collapse
Affiliation(s)
- Byung-Chun In
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tanya G. Falbel
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sara E. Patterson
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Merchante C, Alonso JM, Stepanova AN. Ethylene signaling: simple ligand, complex regulation. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:554-60. [PMID: 24012247 DOI: 10.1016/j.pbi.2013.08.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 05/21/2023]
Abstract
The hormone ethylene plays numerous roles in plant development. In the last few years the model of ethylene signaling has evolved from an initially largely linear route to a much more complex pathway with multiple feedback loops. Identification of key transcriptional and post-transcriptional regulatory modules controlling expression and/or stability of the core pathway components revealed that ethylene perception and signaling are tightly regulated at multiple levels. This review describes the most current outlook on ethylene signal transduction and emphasizes the latest discoveries in the ethylene field that shed light on the mechanistic mode of action of the central pathway components CTR1 and EIN2, as well as on the post-transcriptional regulatory steps that modulate the signaling flow through the pathway.
Collapse
Affiliation(s)
- Catharina Merchante
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, United States
| | | | | |
Collapse
|