1
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
2
|
Cho Y, Kim Y, Lee H, Kim S, Kang J, Kadam US, Ju Park S, Sik Chung W, Chan Hong J. Cellular and physiological functions of SGR family in gravitropic response in higher plants. J Adv Res 2025; 67:43-60. [PMID: 38295878 PMCID: PMC11725163 DOI: 10.1016/j.jare.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.
Collapse
Affiliation(s)
- Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ulhas S Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Soon Ju Park
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
3
|
Yang Z, Huo B, Wei S, Zhang W, He X, Liang J, Nong S, Guo T, He X, Luo C. Overexpression of two DELLA subfamily genes MiSLR1 and MiSLR2 from mango promotes early flowering and enhances abiotic stress tolerance in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112242. [PMID: 39244094 DOI: 10.1016/j.plantsci.2024.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Gibberellic acids (GAs) are a group of endogenous phytohormones that play important roles in plant growth and development. SLENDER RICE (SLR) serves as a vital component of the DELLA gene family, which plays an irreplaceable role in regulating plant flowering and height, as well as stress responses. SLR gene has not been reported in mango, and its function is unknown. In present study, two DELLA subfamily genes MiSLR1 and MiSLR2 were identified from mango. MiSLR1 and MiSLR2 were highly expressed in the stems of the juvenile stage, but were expressed at a low level in flower buds and flowers. Gibberellin treatment could up-regulate the expression of MiSLR1 and MiSLR2 genes, but gibberellin biosynthesis inhibitor prohexadione-calcium (Pro-Ca) and paclobutrazol (PAC) treatments significantly down-regulated the expression of MiSLR1, while MiSLR2 was up-regulated. The expression levels of MiSLR1 and MiSLR2 were up-regulated under both salt and drought treatments. Overexpression of MiSLR1 and MiSLR2 genes significantly resulted early flowering in transgenic Arabidopsis and significantly up-regulated the expression levels of endogenous flower-related genes, such as SUPPRESSOR OF CONSTANS1 (SOC1), APETALA1 (AP1), and FRUITFULL (FUL). Interestingly, MiSLR1 significantly reduced the height of transgenic plants, while MiSLR2 gene increased. Overexpression of MiSLR1 and MiSLR2 increased seed germination rate, root length and survival rate of transgenic plants under salt and drought stress. Physiological and biochemical detection showed that the contents of proline (Pro) and superoxide dismutase (SOD) were significantly increased, while the contents of malondialdehyde (MDA) and H2O2 were significantly decreased. Additionally, protein interaction analysis revealed that MiSLR1 and MiSLR2 interacted with several flowering-related and GA-related proteins. The interaction between MiSLR with MiGF14 and MiSOC1 proteins was found for the first time. Taken together, the data showed that MiSLR1 and MiSLR2 in transgenic Arabidopsis both regulated the flowering time and plant height, while also acting as positive regulators of abiotic stress responses.
Collapse
Affiliation(s)
- Ziyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Bingbing Huo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Songjie Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Wei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiuxia He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiaqi Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyu Nong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Tianli Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Guo H, Li J, Liu Y, Fernández-Pascual E. Lipid metabolism during seed germination of Pistacia chinensis and its response to gibberellic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109371. [PMID: 39667083 DOI: 10.1016/j.plaphy.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism. The results indicated that GA contents increased, while IAA, ABA and JA contents decreased during seed germination. GA3 increased significantly in the two germination stages (i.e. imbibition and radicle protrusion), and it was more abundant than GA1 and GA4. In addition, the relative content of most lipids decreased during germination, and the differentially changed metabolites were significantly enriched in lipid metabolic pathways based on KEGG analysis. WGCNA indicated that GA3 was correlated with more genes in lipid metabolic pathways. Transcriptomic analysis further revealed that differentially expressed genes (DEGs) related to fatty acid biosynthesis, glycerolipid metabolism, glycerophospholipid metabolism and starch and sucrose metabolism were upregulated under GA3 application, such as the acetyl-CoA carboxylase biotin carboxyl carrier protein (ACCB), fatty acyl-ACP thioesterase B (FATB), diacylglycerol acyltransferase (DGAT) and DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1). Therefore, our study supports the hypothesis that GA promotes seed germination in P. chinensis by enhancing lipid mobilization. This study proposes a novel mechanism of lipid responses to exogenous GA, which contributes to a deep understanding of germination of oleaginous seeds.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| | - Eduardo Fernández-Pascual
- Biodiversity Research Institute (IMIB), University of Oviedo - CSIC - Principality of Asturias, E-33600, Mieres, Spain
| |
Collapse
|
5
|
Bykova NV, Igamberdiev AU. Redox Control of Seed Germination is Mediated by the Crosstalk of Nitric Oxide and Reactive Oxygen Species. Antioxid Redox Signal 2024. [PMID: 39602281 DOI: 10.1089/ars.2024.0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Significance: Seed germination and seedling establishment are characterized by changes in the intracellular redox state modulated by accelerated production of nitric oxide (NO) and reactive oxygen species (ROS). Redox regulation and enhanced accumulation of NO and ROS, approaching excessively high levels during seed imbibition, are critically important for breaking endodormancy and inducing germination. Recent Advances: Upon depletion of oxygen under the seed coat, NO is produced anaerobically in the reductive pathway associated mainly with mitochondria, and it participates in the energy metabolism of the seed until radicle protrusion. NO turnover involves nitrate reduction to nitrite in the cytosol, nitrite reduction to NO in mitochondria, and NO oxygenation in the cytosol in the reaction involving the hypoxically induced class 1 phytoglobin. In postgerminative degradation of seed tissues, NO and ROS are involved in redox signaling via post-translational modification of proteins and mediation of phytohormonal responses. Critical Issues: The crosstalk between the cellular redox potential, NO, ROS, and phytohormones integrates major physiological processes related to seed germination. Intensive accumulation of NO and ROS during imbibition is critically important for breaking seed dormancy. Upon oxygen depletion, NO and other nitrous oxides (NOx) are produced anaerobically and support energy metabolism prior to radicle protrusion. Future Directions: The turnover of NOx and ROS is determined by the intracellular redox balance, and it self-controls redox and energy levels upon germination. The particular details, regulation of this process, and its physiological significance remain to be established. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
6
|
Liu X, Wu Y, Zhang M, Gao P, Li J, Ding H, Sun X, Lu L, Iqbal A, Yang Y. Phosphorus-Mediated Transition from Vegetative to Reproductive Growth in Dwarf Coconut ( Cocos nucifera L.). Int J Mol Sci 2024; 25:12040. [PMID: 39596112 PMCID: PMC11593421 DOI: 10.3390/ijms252212040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Reducing the time before the flowering stage in coconut (Cocos nucifera L.) trees greatly influences yield, yet the mechanisms driving the switch from vegetative to reproductive growth are not well understood, especially the role of phosphorus in this transition. In this study, dwarf coconut plants of the same cultivation age were selected and categorized into the vegetative phase (VP) or the reproductive phase (RP). By examining the phenotypic traits, nutrient variations in the roots and soil, and the transcriptional expression of relevant genes in the roots across both phases, we investigated the potential mechanisms driving the transition from the VP to the RP in coconuts. The shoots of coconuts in the RP were significantly taller compared to those in the VP. Moreover, the phosphorus concentration in the roots of coconuts during the RP was 1.31 times higher than in the VP, which may be linked to the significant upregulation of the PT1 genes AZ11G0219160 and AZ02G0034860 in the roots of coconuts in the RP. In addition, all phosphorus-containing metabolites in the roots during the RP showed a significant increase, particularly those related to long-chain fatty acids and ribonucleotide metabolites. This suggests that coconut roots may facilitate the progression from vegetative to reproductive growth by enhancing phosphorus uptake via PT1s and promoting the synthesis and accumulation of phosphorus-containing metabolites.
Collapse
Affiliation(s)
- Xiaomei Liu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Mengluo Zhang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Ping Gao
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Jing Li
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Hao Ding
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Xiwei Sun
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Lilan Lu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| | - Amjad Iqbal
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Hainan Coconut International Joint Research Center, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (X.L.); (Y.W.); (M.Z.); (P.G.); (J.L.); (H.D.); (X.S.); (L.L.); (A.I.)
| |
Collapse
|
7
|
Zhang D, He T, Wang X, Zhou C, Chen Y, Wang X, Wang S, He S, Guo Y, Liu Z, Chen M. Transcription factor DIVARICATA1 positively modulates seed germination in response to salinity stress. PLANT PHYSIOLOGY 2024; 195:2997-3009. [PMID: 38687890 DOI: 10.1093/plphys/kiae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Seed germination is a critical checkpoint for plant growth under unfavorable environmental conditions. In Arabidopsis (Arabidopsis thaliana), the abscisic acid (ABA) and gibberellic acid (GA) signaling pathways play important roles in modulating seed germination. However, the molecular links between salinity stress and ABA/GA signaling are not well understood. Herein, we showed that the expression of DIVARICATA1 (DIV1), which encodes a MYB-like transcription factor, was induced by GA and repressed by ABA, salinity, and osmotic stress in germinating seeds. DIV1 positively regulated seed germination in response to salinity stress by directly regulating the expression of DELAY OF GERMINATION 1-LIKE 3 (DOGL3) and GA-STIMULATED ARABIDOPSIS 4 (GASA4) and indirectly regulating the expression of several germination-associated genes. Moreover, NUCLEAR FACTOR-YC9 (NF-YC9) directly repressed the expression of DIV1 in germinating seeds in response to salinity stress. These results help reveal the function of the NF-YC9-DIV1 module and provide insights into the regulation of ABA and GA signaling in response to salinity stress during seed germination in Arabidopsis.
Collapse
Affiliation(s)
- Da Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xumin Wang
- Ningxia Agricultural Technology Extension Station, Yinchuan 750001, Ningxia, China
| | - Chenchen Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Youpeng Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shixiang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Balouri C, Poulios S, Tsompani D, Spyropoulou Z, Ketikoglou MC, Kaldis A, Doonan JH, Vlachonasios KE. Gibberellin Signaling through RGA Suppresses GCN5 Effects on Arabidopsis Developmental Stages. Int J Mol Sci 2024; 25:6757. [PMID: 38928464 PMCID: PMC11203840 DOI: 10.3390/ijms25126757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Histone acetyltransferases (HATs) modify the amino-terminal tails of the core histone proteins via acetylation, regulating chromatin structure and transcription. GENERAL CONTROL NON-DEREPRESSIBLE 5 (GCN5) is a HAT that specifically acetylates H3K14 residues. GCN5 has been associated with cell division and differentiation, meristem function, root, stem, foliar, and floral development, and plant environmental response. The flowers of gcn5 plants display a reduced stamen length and exhibit male sterility relative to the wild-type plants. We show that these effects may arise from gibberellin (GA)-signaling defects. The signaling pathway of bioactive GAs depends on the proteolysis of their repressors, DELLA proteins. The repressor GA (RGA) DELLA protein represses plant growth, inflorescence, and flower and seed development. Our molecular data indicate that GCN5 is required for the activation and H3K14 acetylation of genes involved in the late stages of GA biosynthesis and catabolism. We studied the genetic interaction of the RGA and GCN5; the RGA can partially suppress GCN5 action during the whole plant life cycle. The reduced elongation of the stamen filament of gcn5-6 mutants is reversed in the rga-t2;gcn5-6 double mutants. RGAs suppress the GCN5 effect on the gene expression and histone acetylation of GA catabolism and GA signaling. Interestingly, the RGA and RGL2 do not suppress ADA2b function, suggesting that ADA2b acts downstream of GA signaling and is distinct from GCN5 activity. In conclusion, we propose that the action of GCN5 on stamen elongation is partially mediated by RGA and GA signaling.
Collapse
Affiliation(s)
- Christina Balouri
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Dimitra Tsompani
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Zoe Spyropoulou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Maria-Christina Ketikoglou
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - Athanasios Kaldis
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
| | - John H. Doonan
- National Plant Phenomics Centre, Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth SY23 3EE, UK;
| | - Konstantinos E. Vlachonasios
- Department of Botany, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.B.); (S.P.); (D.T.); (A.K.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Carrera-Castaño G, Mira S, Fañanás-Pueyo I, Sánchez-Montesino R, Contreras Á, Weiste C, Dröge-Laser W, Gómez L, Oñate-Sánchez L. Complex control of seed germination timing by ERF50 involves RGL2 antagonism and negative feedback regulation of DOG1. THE NEW PHYTOLOGIST 2024; 242:2026-2042. [PMID: 38494681 DOI: 10.1111/nph.19681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Seed dormancy governs germination timing, with both evolutionary and applied consequences. Despite extensive studies on the hormonal and genetic control of these processes, molecular mechanisms directly linking dormancy and germination remain poorly understood. By screening a collection of lines overexpressing Arabidopsis transcription factors, we identified ERF50 as a key gene to control dormancy and germination. To study its regulation, we measured seed-related physiological parameters in loss-of-function mutants and carried out transactivation, protein interaction and ChIP-PCR analyses. We found direct ERF50-mediated repression of DOG1 and activation of EXPA2 transcription, which results in enhanced seed germination. Although ERF50 expression is increased by DOG1 in dormant seeds, ERF50 germination-promoting activity is blocked by RGL2. The physiological, genetic and molecular evidence gathered here supports that ERF50 controls germination timing by regulating DOG1 levels to leverage its role as enhancer of seed germination, via RGL2 antagonism on EXPA2 expression. Our results highlight the central role of ERF50 as a feedback regulator to couple and fine-tune seed dormancy and germination.
Collapse
Affiliation(s)
- Gerardo Carrera-Castaño
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Sara Mira
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| | - Iris Fañanás-Pueyo
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rocío Sánchez-Montesino
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Ángela Contreras
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Luis Gómez
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, 28040, Madrid, Spain
- Centro para la Conservación de la Biodiversidad y el Desarrollo Sostenible, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Luis Oñate-Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, 28040, Spain
| |
Collapse
|
10
|
Ma Y, Fu W, Wan S, Li Y, Mao H, Khalid E, Zhang W, Ming R. Gene Regulatory Network Controlling Flower Development in Spinach ( Spinacia oleracea L.). Int J Mol Sci 2024; 25:6127. [PMID: 38892313 PMCID: PMC11173220 DOI: 10.3390/ijms25116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.
Collapse
Affiliation(s)
- Yaying Ma
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenhui Fu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.M.); (W.F.)
| | - Suyan Wan
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Yikai Li
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Haoming Mao
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Ehsan Khalid
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| | - Wenping Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Ray Ming
- Centre for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.W.); (Y.L.); (H.M.); (E.K.)
| |
Collapse
|
11
|
Shi B, Felipo-Benavent A, Cerutti G, Galvan-Ampudia C, Jilli L, Brunoud G, Mutterer J, Vallet E, Sakvarelidze-Achard L, Davière JM, Navarro-Galiano A, Walia A, Lazary S, Legrand J, Weinstain R, Jones AM, Prat S, Achard P, Vernoux T. A quantitative gibberellin signaling biosensor reveals a role for gibberellins in internode specification at the shoot apical meristem. Nat Commun 2024; 15:3895. [PMID: 38719832 PMCID: PMC11079023 DOI: 10.1038/s41467-024-48116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Growth at the shoot apical meristem (SAM) is essential for shoot architecture construction. The phytohormones gibberellins (GA) play a pivotal role in coordinating plant growth, but their role in the SAM remains mostly unknown. Here, we developed a ratiometric GA signaling biosensor by engineering one of the DELLA proteins, to suppress its master regulatory function in GA transcriptional responses while preserving its degradation upon GA sensing. We demonstrate that this degradation-based biosensor accurately reports on cellular changes in GA levels and perception during development. We used this biosensor to map GA signaling activity in the SAM. We show that high GA signaling is found primarily in cells located between organ primordia that are the precursors of internodes. By gain- and loss-of-function approaches, we further demonstrate that GAs regulate cell division plane orientation to establish the typical cellular organization of internodes, thus contributing to internode specification in the SAM.
Collapse
Affiliation(s)
- Bihai Shi
- College of Agriculture, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, 510642, Guangzhou, China
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Amelia Felipo-Benavent
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Guillaume Cerutti
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Carlos Galvan-Ampudia
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Lucas Jilli
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Geraldine Brunoud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Jérome Mutterer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Elody Vallet
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Lali Sakvarelidze-Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Jean-Michel Davière
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | | | - Ankit Walia
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Shani Lazary
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France
| | - Roy Weinstain
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Salomé Prat
- Centre for Research in Agricultural Genomics, 08193 Cerdanyola, Barcelona, Spain
| | - Patrick Achard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, 69342, Lyon, France.
| |
Collapse
|
12
|
Duan L, Wang F, Shen H, Xie S, Chen X, Xie Q, Li R, Cao A, Li H. Identification, evolution, and expression of GDSL-type Esterase/Lipase (GELP) gene family in three cotton species: a bioinformatic analysis. BMC Genomics 2023; 24:795. [PMID: 38129780 PMCID: PMC10734139 DOI: 10.1186/s12864-023-09717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.
Collapse
Affiliation(s)
- Lisheng Duan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
13
|
Yu JJ, Cui J, Huang H, Cen DC, Liu F, Xu ZF, Wang Y. Identification of flowering genes in Camellia perpetua by comparative transcriptome analysis. Funct Integr Genomics 2023; 24:2. [PMID: 38066213 DOI: 10.1007/s10142-023-01267-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Camellia perpetua has the excellent characteristic of flowering multiple times throughout the year, which is of great importance to solve the problem of "short flowering period" and "low fresh flower yield" in the yellow Camellia industry at present. Observations of flowering phenology have demonstrated that most floral buds of C. perpetua were formed by the differentiation of axillary buds in the scales at the base of the terminal buds of annual branches. However, the molecular mechanism of flowering in C. perpetua is still unclear. In this study, we conducted a comparative transcriptomic study of the terminal buds and their basal flower buds in March (spring) and September (autumn) using RNA-seq and found that a total of 11,067 genes were significantly differentially expressed in these two periods. We identified 27 genes related to gibberellin acid (GA) synthesis, catabolism, and signal transduction during floral bud differentiation. However, treatment of the terminal buds and axillary buds of C. perpetua on annual branch with GA3 did not induce floral buds at the reproductive growth season (in August) but promoted shoot sprouting. Moreover, 203 flowering genes were identified from the C. perpetua transcriptome library through homology alignment, including flowering integrators LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO), as well as MADS-box, SQUAMOSA PROMOTER BINDING PROTEIN-box (SBP-box), and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) genes, which were specifically upregulated in floral buds and were likely involved in flowering in C. perpetua. The floral inhibitor CperTFL1b was identified and cloned from C. perpetua, and its expression level was specifically regulated in terminal buds in autumn. Ectopic overexpression of CperTFL1b delayed flowering time and produced abnormal inflorescence and floral organs in Arabidopsis, suggesting that CperTFL1b inhibits flowering. In conclusion, this study deepens our understanding of the molecular mechanism of blooms throughout the year in C. perpetua and provides a helpful reference for cultivating new varieties of yellow Camellia with improved flowering traits.
Collapse
Affiliation(s)
- Jing-Jing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Jia Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Han Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China
| | - Dong-Can Cen
- Guangxi Yuanzhiyuan Ecological Agriculture Investment Co., Ltd., Nanning, 530212, China
| | - Fang Liu
- Nanning Tree Garden, Nanning, 530031, China
| | - Zeng-Fu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China.
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China.
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530000, China.
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530000, China.
| |
Collapse
|
14
|
Zhang X, Shen Z, Sun X, Chen M, Zhang N. Integrated analysis of transcriptomic and proteomic data reveals novel regulators of soybean ( Glycine max) hypocotyl development. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1086-1098. [PMID: 37866377 DOI: 10.1071/fp23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Hypocotyl elongation directly affects the seedling establishment and soil-breaking after germination. In soybean (Glycine max ), the molecular mechanisms regulating hypocotyl development remain largely elusive. To decipher the regulatory landscape, we conducted proteome and transcriptome analysis of soybean hypocotyl samples at different development stages. Our results showed that during hypocotyl development, many proteins were with extreme high translation efficiency (TE) and may act as regulators. These potential regulators include multiple peroxidases and cell wall reorganisation related enzymes. Peroxidases may produce ROS including H2 O2 . Interestingly, exogenous H2 O2 application promoted hypocotyl elongation, supporting peroxidases as regulators of hypocotyl development. However, a vast variety of proteins were shown to be with dramatically changed TE during hypocotyl development, including multiple phytochromes, plasma membrane intrinsic proteins (PIPs) and aspartic proteases. Their potential roles in hypocotyl development were confirmed by that ectopic expression of GmPHYA1 and GmPIP1-6 in Arabidopsis thaliana affected hypocotyl elongation. In addition, the promoters of these potential regulatory genes contain multiple light/gibberellin/auxin responsive elements, while the expression of some members in hypocotyls was significantly regulated by light and exogenous auxin/gibberellin. Overall, our results revealed multiple novel regulatory factors of soybean hypocotyl elongation. Further research on these regulators may lead to new approvals to improve soybean hypocotyl traits.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhikang Shen
- Sanya Institute, Henan University, Sanya, China; and State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xiaohu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Min Chen
- Sanya Institute, Henan University, Sanya, China; and State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Naichao Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Islam MK, Mummadi ST, Liu S, Wei H. Regulation of regeneration in Arabidopsis thaliana. ABIOTECH 2023; 4:332-351. [PMID: 38106435 PMCID: PMC10721781 DOI: 10.1007/s42994-023-00121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
We employed several algorithms with high efficacy to analyze the public transcriptomic data, aiming to identify key transcription factors (TFs) that regulate regeneration in Arabidopsis thaliana. Initially, we utilized CollaborativeNet, also known as TF-Cluster, to construct a collaborative network of all TFs, which was subsequently decomposed into many subnetworks using the Triple-Link and Compound Spring Embedder (CoSE) algorithms. Functional analysis of these subnetworks led to the identification of nine subnetworks closely associated with regeneration. We further applied principal component analysis and gene ontology (GO) enrichment analysis to reduce the subnetworks from nine to three, namely subnetworks 1, 12, and 17. Searching for TF-binding sites in the promoters of the co-expressed and co-regulated (CCGs) genes of all TFs in these three subnetworks and Triple-Gene Mutual Interaction analysis of TFs in these three subnetworks with the CCGs involved in regeneration enabled us to rank the TFs in each subnetwork. Finally, six potential candidate TFs-WOX9A, LEC2, PGA37, WIP5, PEI1, and AIL1 from subnetwork 1-were identified, and their roles in somatic embryogenesis (GO:0010262) and regeneration (GO:0031099) were discussed, so were the TFs in Subnetwork 12 and 17 associated with regeneration. The TFs identified were also assessed using the CIS-BP database and Expression Atlas. Our analyses suggest some novel TFs that may have regulatory roles in regeneration and embryogenesis and provide valuable data and insights into the regulatory mechanisms related to regeneration. The tools and the procedures used here are instrumental for analyzing high-throughput transcriptomic data and advancing our understanding of the regulation of various biological processes of interest. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00121-9.
Collapse
Affiliation(s)
- Md Khairul Islam
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931 USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 USA
| | - Sai Teja Mummadi
- Computer Science, Michigan Technological University, Houghton, MI 49931 USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Hairong Wei
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931 USA
- Computer Science, Michigan Technological University, Houghton, MI 49931 USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 USA
| |
Collapse
|
16
|
Suhaimi AH, Kobayashi MJ, Satake A, Ng CC, Lee SL, Muhammad N, Numata S, Otani T, Kondo T, Tani N, Yeoh SH. An ecological transcriptome approach to capture the molecular and physiological mechanisms of mass flowering in Shorea curtisii. PeerJ 2023; 11:e16368. [PMID: 38047035 PMCID: PMC10693236 DOI: 10.7717/peerj.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/08/2023] [Indexed: 12/05/2023] Open
Abstract
Climatic factors have commonly been attributed as the trigger of general flowering, a unique community-level mass flowering phenomenon involving most dipterocarp species that forms the foundation of Southeast Asian tropical rainforests. This intriguing flowering event is often succeeded by mast fruiting, which provides a temporary yet substantial burst of food resources for animals, particularly frugivores. However, the physiological mechanism that triggers general flowering, particularly in dipterocarp species, is not well understood largely due to its irregular and unpredictable occurrences in the tall and dense forests. To shed light on this mechanism, we employed ecological transcriptomic analyses on an RNA-seq dataset of a general flowering species, Shorea curtisii (Dipterocarpaceae), sequenced from leaves and buds collected at multiple vegetative and flowering phenological stages. We assembled 64,219 unigenes from the transcriptome of which 1,730 and 3,559 were differentially expressed in the leaf and the bud, respectively. Differentially expressed unigene clusters were found to be enriched with homologs of Arabidopsis thaliana genes associated with response to biotic and abiotic stresses, nutrient level, and hormonal treatments. When combined with rainfall data, our transcriptome data reveals that the trees were responding to a brief period of drought prior to the elevated expression of key floral promoters and followed by differential expression of unigenes that indicates physiological changes associated with the transition from vegetative to reproductive stages. Our study is timely for a representative general flowering dipterocarp species that occurs in forests that are under the constant threat of deforestation and climate change as it pinpoints important climate sensitive and flowering-related homologs and offers a glimpse into the cascade of gene expression before and after the onset of floral initiation.
Collapse
Affiliation(s)
- Ahmad Husaini Suhaimi
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Masaki J. Kobayashi
- Forestry Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ching Ching Ng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Soon Leong Lee
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Selangor, Malaysia
| | - Norwati Muhammad
- Forestry Biotechnology Division, Forest Research Institute Malaysia, Selangor, Malaysia
| | - Shinya Numata
- Department of Tourism Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Tatsuya Otani
- Shikoku Research Center, Forestry Research and Management Organization, Kochi, Japan
| | - Toshiaki Kondo
- Bio-Resources and Utilization Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Naoki Tani
- Forestry Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Suat Hui Yeoh
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Li J, Li Q, Wang W, Zhang X, Chu C, Tang X, Zhu B, Xiong L, Zhao Y, Zhou D. DELLA-mediated gene repression is maintained by chromatin modification in rice. EMBO J 2023; 42:e114220. [PMID: 37691541 PMCID: PMC10620761 DOI: 10.15252/embj.2023114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
DELLA proteins are master regulators of gibberellic acid (GA) signaling through their effects on gene expression. Enhanced DELLA accumulation in rice and wheat varieties has greatly contributed to grain yield increases during the green revolution. However, the molecular basis of DELLA-mediated gene repression remains elusive. In this work, we show that the rice DELLA protein SLENDER RICE1 (SLR1) forms a tripartite complex with Polycomb-repressive complex 2 (PRC2) and the histone deacetylase HDA702 to repress downstream genes by establishing a silent chromatin state. The slr1 mutation and GA signaling resulted in dissociation of PRC2 and HDA702 from GA-inducible genes. Loss-of-function or downregulation of the chromatin regulators impaired SLR1-dependent histone modification and gene repression. Time-resolved analysis of GA signaling revealed that GA-induced transcriptional activation was associated with a rapid increase of H3K9ac followed by H3K27me3 removal. Collectively, these results establish a general epigenetic mechanism for DELLA-mediated gene repression and reveal details of the chromatin dynamics during transcriptional activation stimulated by GA signaling.
Collapse
Affiliation(s)
- Junjie Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Qi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Wentao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xinran Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Chen Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Xintian Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Bo Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Dao‐Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Institute of Plant Science Paris‐Saclay (IPS2), CNRS, INRAEUniversity Paris‐SaclayOrsayFrance
| |
Collapse
|
18
|
Zhang Y, Qu X, Li X, Ren M, Tong Y, Wu X, Sun Y, Wu F, Yang A, Chen S. Comprehensive transcriptome and WGCNA analysis reveals the potential function of anthocyanins in low-temperature resistance of a red flower mutant tobacco. Genomics 2023; 115:110728. [PMID: 37858843 DOI: 10.1016/j.ygeno.2023.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
The anthocyanin is a protective substance in various plants, and plays important roles in resisting to low-temperature. Here, we explored transcriptome analysis of pink flower (as CK) and the natural mutant red flower (as research objects) under low-temperature conditions, and aimed to reveal the potential functions of anthocyanins and anthocyanin-related regulatory factors in resistance to low-temperature. Our results showed that most of the differentially expressed genes (DEGs) encoding key enzymes in the late stage of anthocyanin metabolism in the mutant were significantly up-regulated. Meanwhile, several genes significantly differentially expressed in CK or mutant were obtained by classification and analysis of transcription factors (TFs), phytohormones and osmoregulators. Additionally, WGCNA was carried out to mine hub genes resistanted to low-temperature stress in flavonoid pathway. Finally, one UFGT family gene, three MYB and one bHLH were obtained as the future hub genes of this study. Combined with the above information, we concluded that the ability of the red flower mutant to grow and develop normally at low-temperatures was the result of a combination of flavonoids and cold resistance genes.
Collapse
Affiliation(s)
- Yinchao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaoling Qu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuchun Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Min Ren
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Tong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yangyang Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Shuai Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
19
|
Wong C, Alabadí D, Blázquez MA. Spatial regulation of plant hormone action. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6089-6103. [PMID: 37401809 PMCID: PMC10575700 DOI: 10.1093/jxb/erad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Although many plant cell types are capable of producing hormones, and plant hormones can in most cases act in the same cells in which they are produced, they also act as signaling molecules that coordinate physiological responses between different parts of the plant, indicating that their action is subject to spatial regulation. Numerous publications have reported that all levels of plant hormonal pathways, namely metabolism, transport, and perception/signal transduction, can help determine the spatial ranges of hormone action. For example, polar auxin transport or localized auxin biosynthesis contribute to creating a differential hormone accumulation across tissues that is instrumental for specific growth and developmental responses. On the other hand, tissue specificity of cytokinin actions has been proposed to be regulated by mechanisms operating at the signaling stages. Here, we review and discuss current knowledge about the contribution of the three levels mentioned above in providing spatial specificity to plant hormone action. We also explore how new technological developments, such as plant hormone sensors based on FRET (fluorescence resonance energy transfer) or single-cell RNA-seq, can provide an unprecedented level of resolution in defining the spatial domains of plant hormone action and its dynamics.
Collapse
Affiliation(s)
- Cynthia Wong
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022-Valencia, Spain
| |
Collapse
|
20
|
Yuan L, Liu H, Cao Y, Wu W. Transcription factor TERF1 promotes seed germination through HEXOKINASE 1 (HXK1)-mediated signaling pathway. JOURNAL OF PLANT RESEARCH 2023; 136:743-753. [PMID: 37233958 DOI: 10.1007/s10265-023-01471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Seed germination, a vital process for plant growth and development, is regulated by ethylene. Previously, we showed that Tomato Ethylene Responsive Factor 1 (TERF1), an ethylene-responsive factor (ERF) transcription factor, could significantly promote seed germination by increasing glucose content. As glucose can function as a signaling molecule to regulate plant growth and development through HEXOKINASE 1 (HXK1), we aim to illustrate how TERF1 promotes seed germination through the HXK1-mediated signaling pathway. We showed that seeds overexpressing TERF1 exhibited more resistance to N-acetylglucosamine (NAG), an inhibitor of the HXK1- mediated signaling pathway. We identified genes regulated by TERF1 through HXK1 based on transcriptome analysis. Gene expression and phenotype analysis demonstrated that TERF1 repressed the ABA signaling pathway through HXK1, which promoted germination through activating the plasma membrane (PM) H+-ATPase. TERF1 also alleviated the endoplasmic reticulum (ER) stress to accelerate germination by maintaining reactive oxygen species (ROS) homeostasis through HXK1. Our findings provide new insights into the mechanism regulated by ethylene through the glucose-HXK1 signaling pathway during seed germination.
Collapse
Affiliation(s)
- Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Yupeng Cao
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, China.
| |
Collapse
|
21
|
Dai F, Zhuo X, Luo G, Wang Z, Xu Y, Wang D, Zhong J, Lin S, Chen L, Li Z, Wang Y, Zhang D, Li Y, Zheng Q, Zheng T, Liu Z, Wang L, Zhang Z, Tang C. Genomic Resequencing Unravels the Genetic Basis of Domestication, Expansion, and Trait Improvement in Morus Atropurpurea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300039. [PMID: 37339798 PMCID: PMC10460887 DOI: 10.1002/advs.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/28/2023] [Indexed: 06/22/2023]
Abstract
Mulberry is an economically important plant in the sericulture industry and traditional medicine. However, the genetic and evolutionary history of mulberry remains largely unknown. Here, this work presents the chromosome-level genome assembly of Morus atropurpurea (M. atropurpurea), originating from south China. Population genomic analysis using 425 mulberry accessions reveal that cultivated mulberry is classified into two species, M. atropurpurea and M. alba, which may have originated from two different mulberry progenitors and have independent and parallel domestication in north and south China, respectively. Extensive gene flow is revealed between different mulberry populations, contributing to genetic diversity in modern hybrid cultivars. This work also identifies the genetic architecture of the flowering time and leaf size. In addition, the genomic structure and evolution of sex-determining regions are identified. This study significantly advances the understanding of the genetic basis and domestication history of mulberry in the north and south, and provides valuable molecular markers of desirable traits for mulberry breeding.
Collapse
Affiliation(s)
- Fanwei Dai
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| | - Xiaokang Zhuo
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
- National Engineering Research Center for FloricultureBeijing Forestry UniversityBeijing100083P. R. China
| | - Guoqing Luo
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| | - Zhenjiang Wang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| | - Yujuan Xu
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Dan Wang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Jianwu Zhong
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Sen Lin
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Lian Chen
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Zhiyi Li
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Yuan Wang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Yuanyuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Tangchun Zheng
- National Engineering Research Center for FloricultureBeijing Forestry UniversityBeijing100083P. R. China
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape ArchitectureFujian Agriculture and Forestry UniversityFuzhou350002P. R. China
| | - Li Wang
- Shenzhen BranchGuangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120P. R. China
- Kunpeng Institute of Modern Agriculture at FoshanChinese Academy of Agricultural SciencesFoshan528225P. R. China
| | - Zhiyong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing University of AgricultureBeijing102206P. R. China
| | - Cuiming Tang
- Sericultural & Agri‐Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional FoodsMinistry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products ProcessingGuangzhou510610P. R. China
- Key Laboratory of Urban Agriculture in South ChinaMinistry of Agriculture and Rural AffairsGuangzhou510610P. R. China
| |
Collapse
|
22
|
Luo W, Zhao Z, Chen H, Ao W, Lu L, Liu J, Li X, Sun Y. Genome-wide characterization and expression of DELLA genes in Cucurbita moschata reveal their potential roles under development and abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137126. [PMID: 36909418 PMCID: PMC9995975 DOI: 10.3389/fpls.2023.1137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
DELLA gene family plays a key role in regulating plant development and responding to stress. Currently, many DELLA family members have been identified in plants, however, information on DELLA genes in pumpkin (Cucurbita moschata) is scarce. In this study, physical and chemical properties, gene structure cis-regulatory elements and expression of CmoDELLA genes were examined in pumpkin. We found that seven CmoDELLA genes were identified in pumpkin, and they were unevenly classified into five chromosomes. CmoDELLA proteins were relatively unstable and their secondary structures were mainly made up α-helix and random coil. All seven CmoDELLA proteins contained typical DELLA domain and GRAS domain, however, motif numbers between CmoDELLA proteins were unevenly distributed, implying the complex evolution and functional diversification of CmoDELLA proteins. Cis-regulatory elements analysis revealed that CmoDELLA genes might play an essential role in regulating plant growth and development, and response to stress in pumpkin. Transcriptome data in the roots, stems, leaves and fruits demonstrated that CmoDELLA2, CmoDELLA3 and CmoDELLA7 were related to the stems development, CmoDELLA1, CmoDELLA4, CmoDELLA5 and CmoDELLA6 were associated with the fruits development. Furthermore, we found that CmoDELLA1 and CmoDELLA5 were up-regulated under NaCl stress. CmoDELLA1, CmoDELLA2, CmoDELLA3, CmoDELLA5, CmoDELLA6 and CmoDELLA7 were remarkably induced under waterlogging stress. While, all of the 7 CmoDELLA genes showed significantly induced expression under cold stress. The expression patterns under abiotic stress suggested that CmoDELLA genes might mediate the stress response of pumpkin to NaCl, waterlogging and cold, however, the functions of different CmoDELLA genes varied under different stress. Overall, our study provides valuable information for further research about the potential functions and regulatory networks of CmoDELLA genes in pumpkin.
Collapse
Affiliation(s)
- Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Zhenxiang Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Hongzhi Chen
- College of Bioengineering, Xinxiang Institute of Engineering, Xinxiang, China
| | - Wenhong Ao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Lin Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Junjun Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| |
Collapse
|
23
|
Ge N, Jia JS, Yang L, Huang RM, Wang QY, Chen C, Meng ZG, Li LG, Chen JW. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng. BMC PLANT BIOLOGY 2023; 23:67. [PMID: 36721119 PMCID: PMC9890714 DOI: 10.1186/s12870-023-04084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Panax notoginseng (Burk) F.H. Chen is an essential plant in the family of Araliaceae. Its seeds are classified as a type of morphophysiological dormancy (MPD), and are characterized by recalcitrance during the after-ripening process. However, it is not clear about the molecular mechanism on the after-ripening in recalcitrant seeds. RESULTS In this study, exogenous supply of gibberellic acid (GA3) with different concentrations shortened after-ripening process and promoted the germination of P. notoginseng seeds. Among the identified plant hormone metabolites, exogenous GA3 results in an increased level of endogenous hormone GA3 through permeation. A total of 2971 and 9827 differentially expressed genes (DEGs) were identified in response to 50 mg L-1 GA3 (LG) and 500 mg L-1 GA3 (HG) treatment, respectively, and the plant hormone signal and related metabolic pathways regulated by GA3 was significantly enriched. Weighted gene co-expression network analysis (WGCNA) revealed that GA3 treatment enhances GA biosynthesis and accumulation, while inhibiting the gene expression related to ABA signal transduction. This effect was associated with higher expression of crucial seed embryo development and cell wall loosening genes, Leafy Contyledon1 (LEC1), Late Embryogenesis Abundant (LEA), expansins (EXP) and Pectinesterase (PME). CONCLUSIONS Exogenous GA3 application promotes germination and shorts the after-ripening process of P. notoginseng seeds by increasing GA3 contents through permeation. Furthermore, the altered ratio of GA and ABA contributes to the development of the embryo, breaks the mechanical constraints of the seed coat and promotes the protrusion of the radicle in recalcitrant P. notoginseng seeds. These findings improve our knowledge of the contribution of GA to regulating the dormancy of MPD seeds during the after-ripening process, and provide new theoretical guidance for the application of recalcitrant seeds in agricultural production and storage.
Collapse
Affiliation(s)
- Na Ge
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jin-Shan Jia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Ling Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Rong-Mei Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Qing-Yan Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Cui Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Zhen-Gui Meng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Long-Geng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Yunnan, 650201, Kunming, China.
| |
Collapse
|
24
|
Ngumbi E, Dady E, Calla B. Flooding and herbivory: the effect of concurrent stress factors on plant volatile emissions and gene expression in two heirloom tomato varieties. BMC PLANT BIOLOGY 2022; 22:536. [PMID: 36396998 PMCID: PMC9670554 DOI: 10.1186/s12870-022-03911-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In nature and in cultivated fields, plants encounter multiple stress factors. Nonetheless, our understanding of how plants actively respond to combinatorial stress remains limited. Among the least studied stress combination is that of flooding and herbivory, despite the growing importance of these stressors in the context of climate change. We investigated plant chemistry and gene expression changes in two heirloom tomato varieties: Cherokee Purple (CP) and Striped German (SG) in response to flooding, herbivory by Spodoptera exigua, and their combination. RESULTS Volatile organic compounds (VOCs) identified in tomato plants subjected to flooding and/or herbivory included several mono- and sesquiterpenes. Flooding was the main factor altering VOCs emission rates, and impacting plant biomass accumulation, while different varieties had quantitative differences in their VOC emissions. At the gene expression levels, there were 335 differentially expressed genes between the two tomato plant varieties, these included genes encoding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA-reductase-like, and phytoene synthase (Psy1). Flooding and variety effects together influenced abscisic acid (ABA) signaling genes with the SG variety showing higher levels of ABA production and ABA-dependent signaling upon flooding. Flooding downregulated genes associated with cytokinin catabolism and general defense response and upregulated genes associated with ethylene biosynthesis, anthocyanin biosynthesis, and gibberellin biosynthesis. Combining flooding and herbivory induced the upregulation of genes including chalcone synthase (CHS), PAL, and genes encoding BAHD acyltransferase and UDP-glucose iridoid glucosyltransferase-like genes in one of the tomato varieties (CP) and a disproportionate number of heat-shock proteins in SG. Only the SG variety had measurable changes in gene expression due to herbivory alone, upregulating zeatin, and O-glucosyltransferase and thioredoxin among others. CONCLUSION Our results suggest that both heirloom tomato plant varieties differ in their production of secondary metabolites including phenylpropanoids and terpenoids and their regulation and activation of ABA signaling upon stress associated with flooding. Herbivory and flooding together had interacting effects that were evident at the level of plant chemistry (VOCs production), gene expression and biomass markers. Results from our study highlight the complex nature of plant responses to combinatorial stresses and point at specific genes and pathways that are affected by flooding and herbivory combined.
Collapse
Affiliation(s)
- Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Erinn Dady
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bernarda Calla
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, OR, 97331, USA
| |
Collapse
|
25
|
Yang Y, Kong Q, Lim ARQ, Lu S, Zhao H, Guo L, Yuan L, Ma W. Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. PLANT COMMUNICATIONS 2022; 3:100328. [PMID: 35605194 PMCID: PMC9482985 DOI: 10.1016/j.xplc.2022.100328] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plants produce and accumulate triacylglycerol (TAG) in their seeds as an energy reservoir to support the processes of seed germination and seedling development. Plant seed oils are vital not only for the human diet but also as renewable feedstocks for industrial use. TAG biosynthesis consists of two major steps: de novo fatty acid biosynthesis in the plastids and TAG assembly in the endoplasmic reticulum. The latest advances in unraveling transcriptional regulation have shed light on the molecular mechanisms of plant oil biosynthesis. We summarize recent progress in understanding the regulatory mechanisms of well-characterized and newly discovered transcription factors and other types of regulators that control plant fatty acid biosynthesis. The emerging picture shows that plant oil biosynthesis responds to developmental and environmental cues that stimulate a network of interacting transcriptional activators and repressors, which in turn fine-tune the spatiotemporal regulation of the pathway genes.
Collapse
Affiliation(s)
- Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Audrey R Q Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
26
|
Liu H, Yuan L, Guo W, Wu W. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111350. [PMID: 35709980 DOI: 10.1016/j.plantsci.2022.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Seed germination is the first step of seedling establishment, which is particularly sensitive to drought stress. Elucidating the mechanism regulating seed germination under drought stress is of great importance. We showed that overexpressing Tomato Ethylene Responsive Factor 1 (TERF1), an ERF transcription factor in the ethylene signaling pathway, significantly reduced seed sensitivity to mannitol treatment during seed germination. Germination assay demonstrated that TERF1 could activate gibberellin acid (GA) signaling pathway independent on GA metabolism during germination. By comparative transcriptome analysis (mannitol vs normal germination condition, mannitol vs mannitol plus paclobutrazol (PAC, an inhibitor of GA biosynthesis)) we identified the genes regulated by TERF1 specifically under mannitol treatment and confirmed that TERF1 could activate GA signaling pathway independent on GA metabolism, which were consistent with the germination assay with mannitol and mannitol plus PAC treatment. Based on sugar, gene expression and germination analysis we proved that TERF1 promoted seed germination through glucose signaling pathway mediated by GA. Thus our study provides an underlying mechanism for activating GA signaling pathway by TERF1 during seed germination under osmotic conditions.
Collapse
Affiliation(s)
- Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| |
Collapse
|
27
|
Zhang L, Zhang LL, Kang LN. Promoter cloning of PuLOX2S gene from "Nanguo" pears and screening of transcription factors by Y1H technique. J Food Biochem 2022; 46:e14278. [PMID: 35748399 DOI: 10.1111/jfbc.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022]
Abstract
Our previous study on differential proteome and transcriptome of refrigerated "Nanguo" pears found that the PuLOX2S gene was very active in the LOX pathway of aroma synthesis, but the regulation of expression behavior of the gene and how to mediate the aroma synthesis were still unknown. Partial genome sequences of PuLOX2S were cloned, and its promoter was analyzed by Tail-PCR. The PuLOX2S promoter sequences of 610 bp were isolated and identified using Plant CARE, which were composed of cis-acting elements, such as ABRE, AE-box, ARE, CAAT-box, Box 4, TCCC-motif, CAT-box, CGTCA-motif, G-Box, TATA-box, TCA-element, TGA-element, and TGACG-motif. The Y1H technology was used to determine whether proteins interacted with PuLOX2S based on the pGADT7-Chinese white pear cDNA library. The Y1H results were shown that 52 proteins could interact with the PuLOX2S promoter, which was compared with sequences in the GenBank database. The three genes PuERF12, PuMYB44, and PuRF2a were the candidate transcription factors of PuLOX2S and PuCDPK10 played an important role in the gene expression in Nanguo pears. Therefore, the results of this study supply important information for revealing new function of PuLOX2S and the regulation mechanism of expression behavior of the gene. It provides new ideas for the regulation of aroma synthesis in Nanguo pears. PRACTICAL APPLICATIONS: The gene PuLOX2S was very active in the LOX pathway of aroma synthesis, but the regulation of expression behavior of the gene and how to mediate the aroma synthesis were still unknown. We have successfully cloned the partial sequence of the gene and the 610 bp promoter sequence upstream of PuLOX2S and analyzed the structure of cis-acting elements. There are 52 proteins that interact with the PuLOX2S promoter revealed by the Y1H technique. Three transcription factors among the proteins can regulate the level of PuLOX2S expression, which provides new ideas for the regulation of aroma synthesis in "Nanguo" pears. Moreover, the study results could supply scientific information for the quality improvement and genetic modification of Nanguo pears.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China.,School of Food Engineering, Jilin Agriculture and Technology University, Jilin, People's Republic of China
| | - Lu-Lu Zhang
- Forestry College, Beihua University, Jilin, People's Republic of China
| | - Li-Ning Kang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, People's Republic of China
| |
Collapse
|
28
|
Genome-Wide Analysis of the GDSL Genes in Pecan (Carya illinoensis K. Koch): Phylogeny, Structure, Promoter Cis-Elements, Co-Expression Networks, and Response to Salt Stresses. Genes (Basel) 2022; 13:genes13071103. [PMID: 35885886 PMCID: PMC9323844 DOI: 10.3390/genes13071103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
The Gly-Asp-Ser-Leu (GDSL)-lipase family is a large subfamily of lipolytic enzymes that plays an important role in plant growth and defense against environmental stress. However, little is known about their function in pecans (Carya illinoensis K. Koch). In this study, 87 CilGDSLs were identified and divided into 2 groups and 12 subgroups using phylogenetic analysis; members of the same sub-branch had conserved gene structure and motif composition. The majority of the genes had four introns and were composed of an α-helix and a β-strand. Subcellular localization analysis revealed that these genes were localized in the extracellular matrix, chloroplasts, cytoplasm, nucleus, vacuole, and endoplasmic reticulum, and were validated by transient expression in tobacco mesophyll cells. Furthermore, the analysis of the promoter cis-elements for the CilGDSLs revealed the presence of plant anaerobic induction regulatory, abscisic acid response, light response elements, jasmonic acid (JA) response elements, etc. The qRT-PCR analysis results in “Pawnee” with salt treatment showed that the CilGDSL42.93 (leaf) and CilGDSL39.88 (root) were highly expressed in different tissues. After salt stress treatment, isobaric tags for relative and absolute quantitation (iTRAQ) analysis revealed the presence of a total of ten GDSL proteins. Moreover, the weighted gene co-expression network analysis (WGCNA) showed that one set of co-expressed genes (module), primarily CilGDSL41.11, CilGDSL39.49, CilGDSL34.85, and CilGDSL41.01, was significantly associated with salt stress in leaf. In short, some of them were shown to be involved in plant defense against salt stress in this study.
Collapse
|
29
|
Aguilar-Benitez D, Casimiro-Soriguer I, Ferrandiz C, Torres AM. Study and QTL mapping of reproductive and morphological traits implicated in the autofertility of faba bean. BMC PLANT BIOLOGY 2022; 22:175. [PMID: 35387612 PMCID: PMC8985305 DOI: 10.1186/s12870-022-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Autofertility describes the ability of faba bean flowers to self-fertilize thereby ensuring the productivity of this crop in the absence of pollinators or mechanical disturbance. In the legume crop faba bean (Vicia faba L.), lack of autofertility in a context of insufficient pollination can lead to a severe decrease in grain yield. Here we performed the first QTL analysis aimed at identifying the genomic regions controlling autofertility in this crop. We combined pod and seed setting scores from a recombinant inbred population (RIL) segregating for autofertility in different environments and years with measurements of morphological floral traits and pollen production and viability. This approach revealed 19 QTLs co-localizing in six genomic regions. Extensive co-localization was evident for various floral features whose QTLs clustered in chrs. I, II and V, while other QTLs in chrs. III, IV and VI revealed co-localization of flower characteristics and pod and seed set data. The percentage of phenotypic variation explained by the QTLs ranged from 8.9 for style length to 25.7 for stigma angle. In the three QTLs explaining the highest phenotypic variation (R 2 > 20), the marker alleles derived from the autofertile line Vf27. We further inspected positional candidates identified by these QTLs which represent a valuable resource for further validation. Our results advance the understanding of autofertility in faba bean and will aid the identification of responsible genes for genomic-assisted breeding in this crop.
Collapse
Affiliation(s)
- David Aguilar-Benitez
- Área de Mejora y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo. 3092, 14080, Córdoba, Spain
| | - Inés Casimiro-Soriguer
- Área de Mejora y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo. 3092, 14080, Córdoba, Spain.
| | - Cristina Ferrandiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politécnica de Valencia, 46022, Valencia, Spain
| | - Ana M Torres
- Área de Mejora y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo. 3092, 14080, Córdoba, Spain
| |
Collapse
|
30
|
Identification and Expression Analysis of R2R3-MYB Family Genes Associated with Salt Tolerance in Cyclocarya paliurus. Int J Mol Sci 2022; 23:ijms23073429. [PMID: 35408785 PMCID: PMC8998414 DOI: 10.3390/ijms23073429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
R2R3-MYB transcription factors are most abundant in the MYB superfamily, while the R2R3-MYB genes play an important role in plant growth and development, especially in response to environmental stress. Cyclocarya paliurus is a multifunction tree species, and the existing resources cannot meet the requirement for its leaf production and medical use. Therefore, lands with some environmental stresses would be potential sites for developing C. paliurus plantations. However, the function of R2R3-MYB genes in C.paliurus in response to environmental stress remains unknown. In this study, to identify the roles of R2R3-MYB genes associated with salt stress response, 153 CpaMYB genes and their corresponding protein sequences were identified from the full-length transcriptome. Based on the comparison with MYB protein sequences of Arabidopsis thaliana, 69 R2R3-MYB proteins in C. paliurus were extracted for further screening combined with conserved functional domains. Furthermore, the MYB family members were analyzed from the aspects of protein sequences alignment, evolution, motif prediction, promoter cis-acting element analysis, and gene differential expression under different salt treatments using both a pot experiment and hydroponic experiment. The results showed that the R2R3-MYB genes of C.paliurus conserved functional domains, whereas four R2R3-MYB genes that might respond to salt stress via regulating plant hormone signals were identified in this study. This work provides a basis for further functional characterization of R2R3-MYB TFs in C. paliurus.
Collapse
|
31
|
Identification of DELLA Genes and Key Stage for GA Sensitivity in Bolting and Flowering of Flowering Chinese Cabbage. Int J Mol Sci 2021; 22:ijms222212092. [PMID: 34829974 PMCID: PMC8624557 DOI: 10.3390/ijms222212092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, and its stalk development is mainly regulated by gibberellin (GA). DELLA proteins negatively regulate GA signal transduction and may play an important role in determining bolting and flowering. Nevertheless, no systematic study of the DELLA gene family has been undertaken in flowering Chinese cabbage. In the present study, we found that the two-true-leaf spraying of gibberellin A3 (GA3) did not promote bolting but did promote flowering, whereas the three-true-leaf spraying of GA3 promoted both bolting and flowering. In addition, we identified five DELLA genes in flowering Chinese cabbage. All five proteins contained DELLA, VHYNP, VHIID, and SAW conserved domains. Protein-protein interaction results showed that in the presence of GA3, all five DELLA proteins interacted with BcGID1b (GA-INSENSITIVE DWARF 1b) but not with BcGID1a (GA-INSENSITIVE DWARF 1a) or BcGID1c (GA-INSENSITIVE DWARF 1c). Their expression analysis showed that the DELLA genes exhibited tissue-specific expression, and their reversible expression profiles responded to exogenous GA3 depending on the treatment stage. We also found that the DELLA genes showed distinct expression patterns in the two varieties of flowering Chinese cabbage. BcRGL1 may play a major role in the early bud differentiation process of different varieties, affecting bolting and flowering. Taken together, these results provide a theoretical basis for further dissecting the DELLA regulatory mechanism in the bolting and flowering of flowering Chinese cabbage.
Collapse
|
32
|
Yan G, Yu P, Tian X, Guo L, Tu J, Shen J, Yi B, Fu T, Wen J, Liu K, Ma C, Dai C. DELLA proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2011-2026. [PMID: 33982357 PMCID: PMC8486242 DOI: 10.1111/pbi.13628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 05/25/2023]
Abstract
Seed oil content (SOC) and fatty acid (FA) composition determine the quality and economic value of rapeseed (Brassica napus). Little is known about the role of gibberellic acid (GA) in regulating FA biosynthesis in B. napus. Here, we discovered that four BnaRGAs (B. napus REPRESSOR OF GA), encoding negative regulators of GA signalling, were suppressed during seed development. Compared to the wild type, SOC was reduced in gain-of-function mutants bnaa6.rga-D and ds-3, which also showed reduced oleic acid and increased linoleic acid contents. By contrast, the loss-of-function quadruple mutant bnarga displayed higher SOC during early seed development than the wild type, with increased oleic acid and reduced linoleic acid contents. Notably, only BnaA6.RGA and BnaC7.RGA physically interacted with two BnaLEC1s, which function as essential transcription factors in FA biosynthesis. The FA composition did not significantly differ between bnarga bnalec1 sextuple mutants and bnalec1, suggesting that BnaLEC1s are epistatic to BnaRGAs in the regulation of FA composition. Furthermore, BnaLEC1-induced activation of BnaABI3 expression was repressed by BnaA6.RGA, indicating that GA triggers the degradation of BnaRGAs to relieve their repression of BnaLEC1s, thus promoting the transcription of downstream genes to facilitate oil biosynthesis. Therefore, we uncovered a developmental stage-specific role of GA in regulating oil biosynthesis via the GA-BnaRGA-BnaLEC1 signalling cascade, providing a novel mechanistic understanding of how phytohormones regulate FA biosynthesis in seeds. BnaRGAs represent promising targets for oil crop improvement.
Collapse
Affiliation(s)
- Guanbo Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Pugang Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xia Tian
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Bin Yi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jing Wen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kede Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Cheng Dai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
33
|
Sato H, Santos-González J, Köhler C. Combinations of maternal-specific repressive epigenetic marks in the endosperm control seed dormancy. eLife 2021; 10:e64593. [PMID: 34427186 PMCID: PMC8456740 DOI: 10.7554/elife.64593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) and methylation of histone 3 on lysine 9 (H3K9me) are two repressive epigenetic modifications that are typically localized in distinct regions of the genome. For reasons unknown, however, they co-occur in some organisms and special tissue types. In this study, we show that maternal alleles marked by H3K27me3 in the Arabidopsis endosperm were targeted by the H3K27me3 demethylase REF6 and became activated during germination. In contrast, maternal alleles marked by H3K27me3, H3K9me2, and CHG methylation (CHGm) are likely to be protected from REF6 targeting and remained silenced. Our study unveils that combinations of different repressive epigenetic modifications time a key adaptive trait by modulating access of REF6.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant BiologyUppsalaSweden
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
| |
Collapse
|
34
|
Qian Q, Yang Y, Zhang W, Hu Y, Li Y, Yu H, Hou X. A novel Arabidopsis gene RGAT1 is required for GA-mediated tapetum and pollen development. THE NEW PHYTOLOGIST 2021; 231:137-151. [PMID: 33660280 DOI: 10.1111/nph.17314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone gibberellin (GA) is critical for anther development. RGA, a member of the DELLA family of proteins that are central GA signalling repressors, is a key regulator of male fertility in plants. However, the downstream genes in GA-RGA-mediated anther development remain to be characterised. We identified RGA Target 1 (RGAT1), a novel Arabidopsis gene, that functions as an important RGA-regulated target in pollen development. RGAT1 is predominantly expressed in the tapetum and microspores during anther stages 8-11, and can be directly activated by RGA and suppressed by GA in inflorescence apices. Both loss of function and gain of function of RGAT1 led to abnormal tapetum development, resulting in abortive pollen and short siliques. In RGAT1-knockdown and overexpression lines, pollen abortion occurred at stage 10. Loss of RGAT1 function induced the premature degeneration of tapetal cells with defective ER-derived tapetosomes, while RGAT1 overexpression delayed tapetum degeneration. TUNEL assay confirmed that RGAT1 participates in timely tapetal programmed cell death. Moreover, reducing RGAT1 expression partially rescued the tapetal developmental defects in GA-deficient ga1-3 mutant. Our findings revealed that RGAT1 is a direct target of RGA and plays an essential role in GA-mediated tapetum and pollen development.
Collapse
Affiliation(s)
- Qian Qian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yuhua Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wenbin Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilong Hu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yuge Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Xingliang Hou
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Ren YR, Zhao Q, Yang YY, Zhang R, Wang XF, Zhang TE, You CX, Huo HQ, Hao YJ. Interaction of BTB-TAZ protein MdBT2 and DELLA protein MdRGL3a regulates nitrate-mediated plant growth. PLANT PHYSIOLOGY 2021; 186:750-766. [PMID: 33764451 PMCID: PMC8154073 DOI: 10.1093/plphys/kiab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 06/01/2023]
Abstract
Nitrate acts as a vital signal molecule in the modulation of plant growth and development. The phytohormones gibberellin (GA) is also involved in this process. However, the exact molecular mechanism of how nitrate and GA signaling pathway work together in regulating plant growth remains poorly understood. In this study, we found that a nitrate-responsive BTB/TAZ protein MdBT2 participates in regulating nitrate-induced plant growth in apple (Malus × domestica). Yeast two-hybridization, protein pull-down, and bimolecular fluorescence complementation (BiFC) assays showed that MdBT2 interacts with a DELLA protein MdRGL3a, which is required for the ubiquitination and degradation of MdRGL3a proteins via a 26S proteasome-dependent pathway. Furthermore, heterologous expression of MdBT2 partially rescued growth inhibition caused by overexpression of MdRGL3a in Arabidopsis. Taken together, our findings indicate that MdBT2 promotes nitrate-induced plant growth partially through reducing the abundance of the DELLA protein MdRGL3a.
Collapse
Affiliation(s)
- Yi-Ran Ren
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Qiang Zhao
- Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yu-Ying Yang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Rui Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Tian-En Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - He-Qiang Huo
- Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
36
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
37
|
Slavković F, Dogimont C, Morin H, Boualem A, Bendahmane A. The Genetic Control of Nectary Development. TRENDS IN PLANT SCIENCE 2021; 26:260-271. [PMID: 33246889 DOI: 10.1016/j.tplants.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Nectar is the most important reward offered by flowering plants to pollinators for pollination services. Since pollinator decline has emerged as a major threat for agriculture, and the food demand is growing globally, studying the nectar gland is of utmost importance. Although the genetic mechanisms that control the development of angiosperm flowers have been quite well understood for many years, the development and maturation of the nectar gland and the secretion of nectar in synchrony with the maturation of the sexual organs appears to be one of the flower's best-kept secrets. Here we review key findings controlling these processes. We also raise key questions that need to be addressed to develop crop ecological functions that take into consideration pollinators' needs.
Collapse
Affiliation(s)
- Filip Slavković
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France
| | - Catherine Dogimont
- INRAE, UR 1052, Unité de Génétique et d'Amélioration des Fruits et Légumes, BP 94, F-84143 Montfavet, France
| | - Halima Morin
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France
| | - Adnane Boualem
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, INRAE, CNRS, Univ. Evry, Institute of Plant Sciences Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
38
|
Fang J, Chai Z, Yao W, Chen B, Zhang M. Interactions between ScNAC23 and ScGAI regulate GA-mediated flowering and senescence in sugarcane. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110806. [PMID: 33568306 DOI: 10.1016/j.plantsci.2020.110806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Control of gene transcription is crucial to regulate plant growth and development events, such as flowering, leaf senescence, and seed germination. Here we identified a NAC transcription factor (ScNAC23) isolated from sugarcane (cv. ROC22). Analysis by qRT-PCR indicated that ScNAC23 expression was strongly induced in mature leaves and flowering varieties and was also responsive to exogenous treatment with the hormone gibberellin (GA). Ectopic expression of ScNAC23 in Arabidopsis accelerated bolting, flowering, and leaf senescence compared to wild type plants. Furthermore, Arabidopsis overexpressed ScNAC23 were more sensitive to GA than the wild type, and exogenous GA significantly accelerated flowering and senescence in the ScNAC23-overexpressed ones. A direct interaction between ScNAC23 and ScGAI, an inhibitor of GA signaling, was confirmed by yeast-two hybrid, bimolecular fluorescence complementation, and GST-pull down assay. The putative GA-ScNAC23-LFY/SAGs regulator module might provide a new sight into the molecular action of GA to accelerating flowering and leaf senescence in sugarcane.
Collapse
Affiliation(s)
- Jinlan Fang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning, 530005, China; Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530005, China.
| | - Zhe Chai
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning, 530005, China; Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530005, China.
| | - Wei Yao
- Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning, 530005, China; Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530005, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning, 530005, China; Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
39
|
Riccini A, Picarella ME, De Angelis F, Mazzucato A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. PLANT MOLECULAR BIOLOGY 2021; 105:263-285. [PMID: 33104942 DOI: 10.1007/s11103-020-01086-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Transcriptomic analysis of tomato genotypes contrasting for stigma position suggests that stigma insertion occurred by the disruption of a process that finds a parallel in Arabidopsis gynoecium development. Domestication of cultivated tomato (Solanum lycopersicum L.) included the transition from allogamy to autogamy that occurred through the loss of self-incompatibilty and the retraction of the stigma within the antheridial cone. Although the inserted stigma is an established phenotype in modern tomatoes, an exserted stigma is still present in several landraces or vintage varieties. Moreover, exsertion of the stigma is a frequent response to high temperature stress and, being a cause of reduced fertility, a trait of increasing importance. Few QTLs for stigma position have been described and only one of the underlying genes identified. To gain insights on genes involved in stigma position in tomato, a bulk RNA sequencing (RNA-Seq) approach was adopted, using two groups of contrasting genotypes. Phenotypic analysis confirmed the extent and the stability of stigma position in the selected genotypes, whereas they were highly heterogeneous for other reproductive and productive traits. The RNA-Seq analysis yielded 801 differentially expressed genes (DEGs), 566 up-regulated and 235 down-regulated in the genotypes with exserted stigma. Validation by quantitative PCR indicated a high reliability of the RNA-Seq data. Up-regulated DEGs were enriched for genes involved in the cell wall metabolism, lipid transport, auxin response and flavonoid biosynthesis. Down-regulated DEGs were enriched for genes involved in translation. Validation of selected genes on pistil tissue of the 26 single genotypes revealed that differences between bulks could both be due to a general trend of the bulk or to the behaviour of single genotypes. Novel candidate genes potentially involved in the control of stigma position in tomato are discussed.
Collapse
Affiliation(s)
- A Riccini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - M E Picarella
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - F De Angelis
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - A Mazzucato
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy.
| |
Collapse
|
40
|
Chai S, Yao Q, Zhang X, Xiao X, Fan X, Zeng J, Sha L, Kang H, Zhang H, Li J, Zhou Y, Wang Y. The semi-dwarfing gene Rht-dp from dwarf polish wheat (Triticum polonicum L.) is the "Green Revolution" gene Rht-B1b. BMC Genomics 2021; 22:63. [PMID: 33468043 PMCID: PMC7814455 DOI: 10.1186/s12864-021-07367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background The wheat dwarfing gene increases lodging resistance, the grain number per spike and harvest index. Dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, DPW), initially collected from Tulufan, Xinjiang, China, carries a semi-dwarfing gene Rht-dp on chromosome 4BS. However, Rht-dp and its dwarfing mechanism are unknown. Results Homologous cloning and mapping revealed that Rht-dp is the ‘Green Revolution’ gene Rht-B1b. A haplotype analysis in 59 tetraploid wheat accessions showed that Rht-B1b was only present in T. polonicum. Transcriptomic analysis of two pairs of near-isogenic lines (NILs) of DPW × Tall Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB, TPW) revealed 41 differentially expressed genes (DEGs) as potential dwarfism-related genes. Among them, 28 functionally annotated DEGs were classed into five sub-groups: hormone-related signalling transduction genes, transcription factor genes, cell wall structure-related genes, reactive oxygen-related genes, and nitrogen regulation-related genes. Conclusions These results indicated that Rht-dp is Rht-B1b, which regulates pathways related to hormones, reactive oxygen species, and nitrogen assimilation to modify the cell wall structure, and then limits cell wall loosening and inhibits cell elongation, thereby causing dwarfism in DPW. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07367-x.
Collapse
Affiliation(s)
- Songyue Chai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qin Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
41
|
Phokas A, Coates JC. Evolution of DELLA function and signaling in land plants. Evol Dev 2021; 23:137-154. [PMID: 33428269 PMCID: PMC9285615 DOI: 10.1111/ede.12365] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023]
Abstract
DELLA proteins are master growth regulators that repress responses to a group of plant growth hormones called gibberellins (GAs). Manipulation of DELLA function and signaling was instrumental in the development of high‐yielding crop varieties that saved millions from starvation during the “Green Revolution.” Despite decades of extensive research, it is still unclear how DELLA function and signaling mechanisms evolved within the land plant lineage. Here, we review current knowledge on DELLA protein function with reference to structure, posttranslational modifications, downstream transcriptional targets, and protein–protein interactions. Furthermore, we discuss older and recent findings regarding the evolution of DELLA signaling within the land plant lineage, with an emphasis on bryophytes, and identify future avenues of research that would enable us to shed more light on the evolution of DELLA signaling. Unraveling how DELLA function and signaling mechanisms have evolved could enable us to engineer better crops in an attempt to contribute to mitigating the effects of global warming and achieving global food security. DELLA genes first appeared in the common ancestor of land plants and underwent two major duplications during land plant evolution. DELLAs repress gibberellin responses in vascular plants but their function in nonvascular plants remains elusive.
Collapse
Affiliation(s)
- Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
42
|
Huo Y, Pei Y, Tian Y, Zhang Z, Li K, Liu J, Xiao S, Chen H, Liu J. IRREGULAR POLLEN EXINE2 Encodes a GDSL Lipase Essential for Male Fertility in Maize. PLANT PHYSIOLOGY 2020; 184:1438-1454. [PMID: 32913046 PMCID: PMC7608179 DOI: 10.1104/pp.20.00105] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/02/2020] [Indexed: 05/19/2023]
Abstract
Anther cuticle and pollen exine are two physical barriers protecting plant reproductive cells against environmental stresses; defects in either often cause male sterility. Here, we report the characterization of a male-sterile mutant irregular pollen exine2 (ipe2) of maize (Zea mays), which displays shrunken anthers and no starch accumulation in mature pollen grains. We cloned the causal gene IPE2 and confirmed its role in male fertility in maize with a set of complementary experiments. IPE2 is specifically expressed in maize developing anthers during stages 8 to 9 and encodes an endoplasmic-reticulum-localized GDSL lipase. Dysfunction of IPE2 resulted in delayed degeneration of tapetum and middle layer, leading to defective formation of anther cuticle and pollen exine, and complete male sterility. Aliphatic metabolism was greatly altered, with the contents of lipid constituents, especially C16/C18 fatty acids and their derivatives, significantly reduced in ipe2 developing anthers. Our study elucidates GDSL function in anther and pollen development and provides a promising genetic resource for breeding hybrid maize.
Collapse
Affiliation(s)
- Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Yuanrong Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Kai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, 100864 Beijing, China
| | - Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
43
|
Ha J, Kwon H, Cho KH, Yoon MY, Kim MY, Lee SH. Identification of epigenetic variation associated with synchronous pod maturity in mungbean (Vigna radiata L.). Sci Rep 2020; 10:17414. [PMID: 33060755 PMCID: PMC7562708 DOI: 10.1038/s41598-020-74520-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Cytosine methylation in genomic DNA affects gene expression, potentially causing phenotypic variation. Mungbean, an agronomically and nutritionally important legume species, is characterized by nonsynchronous pod maturity, resulting in multiple harvest which costs extra time and labor. To elucidate the epigenetic influences on synchronous pod maturity (SPM) in mungbean, we determined the genome-wide DNA methylation profiles of eight mungbean recombinant inbred lines (RILs) and their parental genotypes, and compared DNA methylation profiles between high SPM and low SPM RILs, thus revealing differentially methylated regions (DMRs). A total of 3, 18, and 28 pure DMRs, defined as regions showing no significant correlation between nucleotide sequence variation and methylation level, were identified in CpG, CHG, and CHH contexts, respectively. These DMRs were proximal to 20 genes. Among the 544 single nucleotide polymorphisms identified near the 20 genes, only one caused critical change in gene expression by early termination. Analysis of these genome-wide DNA methylation profiles suggests that epigenetic changes can influence the expression of proximal genes, regardless of nucleotide sequence variation, and that SPM is mediated through gibberellin-mediated hormone signaling pathways. These results provide insights into how epialleles contribute to phenotypic variation and improve SPM in mungbean cultivars.
Collapse
Affiliation(s)
- Jungmin Ha
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hakyung Kwon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kang-Heum Cho
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Young Yoon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Moon Young Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea.,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suk-Ha Lee
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea. .,Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
44
|
A Molecular Signal Integration Network Underpinning Arabidopsis Seed Germination. Curr Biol 2020; 30:3703-3712.e4. [PMID: 32763174 PMCID: PMC7544511 DOI: 10.1016/j.cub.2020.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Seed dormancy is an adaptive trait defining where and when plants are established. Diverse signals from the environment are used to decide when to initiate seed germination, a process driven by the expansion of cells within the embryo. How these signals are integrated and transduced into the biomechanical changes that drive embryo growth remains poorly understood. Using Arabidopsis seeds, we demonstrate that cell-wall-loosening EXPANSIN (EXPA) genes promote gibberellic acid (GA)-mediated germination, identifying EXPAs as downstream molecular targets of this developmental phase transition. Molecular interaction screening identified transcription factors (TFs) that bind to both EXPA promoter fragments and DELLA GA-response regulators. A subset of these TFs is targeted each by nitric oxide (NO) and the phytochrome-interacting TF PIL5. This molecular interaction network therefore directly links the perception of an external environmental signal (light) and internal hormonal signals (GA and NO) with downstream germination-driving EXPA gene expression. Experimental validation of this network established that many of these TFs mediate GA-regulated germination, including TCP14/15, RAP2.2/2.3/2.12, and ZML1. The reduced germination phenotype of the tcp14 tcp15 mutant seed was partially rescued through ectopic expression of their direct target EXPA9. The GA-mediated control of germination by TCP14/15 is regulated through EXPA-mediated control of cell wall loosening, providing a mechanistic explanation for this phenotype and a previously undescribed role for TCPs in the control of cell expansion. This network reveals the paths of signal integration that culminate in seed germination and provides a resource to uncover links between the genetic and biomechanical bases of plant growth. The network linking integration of environmental signals to seed growth is mapped EXPANSIN gene expression is redundantly regulated and promotes GA-mediated germination The TCP14 transcription factor directly regulates EXPANSIN9 expression The tcp14/15 germination phenotype is complemented by EXPANSIN9 expression
Collapse
|
45
|
Wang P, Zhang Q, Chen Y, Zhao Y, Ren F, Shi H, Wu X. Comprehensive identification and analysis of DELLA genes throughout the plant kingdom. BMC PLANT BIOLOGY 2020; 20:372. [PMID: 32762652 PMCID: PMC7409643 DOI: 10.1186/s12870-020-02574-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND DELLAs play key roles in plant gibberellin signaling pathways and are generally important in plant development and growth. However, DELLAs in many plant taxa have not yet been systematically analyzed. RESULTS In our study, we searched for DELLA genes across 58 green plant genomes and found 181 DELLAs. Structure analysis showed some DELLA domains do not contain "D-E-L-L-A" sequences and instead contain similar domains, including DGLLA and DSLLH domains. "VHYNP" motifs in plant DELLAs comprise 23 types of sequences, while some DELLAs did not contain GRAS domains. In grape, we found that the DELLA protein GSVIVT01015465001 contains an F-box domain, while apple DELLA proteins MDP0000220512 and MDP0000403162 contain a WW domain and a BCIP domain, respectively. These DELLAs can be divided into 22 homologous groups and 17 orthologous groups, and 35 paralogous genes were identified. In total, 35 positively selected genes (PSGs) and 121 negatively selected genes (NSGs) were found among DELLAs based on selective pressure analysis, with an average Ks of NSGs that was significantly higher than that of PSGs (P < 0.05). Among the paralogous groups, CBI and Fop were significantly positively correlated with GC, GC1, GC2, GC12, and GC3, while CAI was significantly positively correlated with GC, GC1, GC12, and GC. The paralogous groups with ω values exceeding 1 had significantly higher Ka values. We also found some paralogous groups with ω values exceeding 1 that differed in their motifs. CONCLUSIONS This study provides helpful insights into the evolution of DELLA genes and offers exciting opportunities for the investigation of DELLA functions in different plants.
Collapse
Affiliation(s)
- Pengfei Wang
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China.
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Yingchun Chen
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Yanxia Zhao
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Fengshan Ren
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
| | - Xinying Wu
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China.
| |
Collapse
|
46
|
Guo S, Zhang X, Bai Q, Zhao W, Fang Y, Zhou S, Zhao B, He L, Chen J. Cloning and Functional Analysis of Dwarf Gene Mini Plant 1 ( MNP1) in Medicago truncatula. Int J Mol Sci 2020; 21:E4968. [PMID: 32674471 PMCID: PMC7404263 DOI: 10.3390/ijms21144968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Plant height is a vital agronomic trait that greatly determines crop yields because of the close relationship between plant height and lodging resistance. Legumes play a unique role in the worldwide agriculture; however, little attention has been given to the molecular basis of their height. Here, we characterized the first dwarf mutant mini plant 1 (mnp1) of the model legume plant Medicago truncatula. Our study found that both cell length and the cell number of internodes were reduced in a mnp1 mutant. Using the forward genetic screening and subsequent whole-genome resequencing approach, we cloned the MNP1 gene and found that it encodes a putative copalyl diphosphate synthase (CPS) implicated in the first step of gibberellin (GA) biosynthesis. MNP1 was highly homologous to Pisum sativum LS. The subcellular localization showed that MNP1 was located in the chloroplast. Further analysis indicated that GA3 could significantly restore the plant height of mnp1-1, and expression of MNP1 in a cps1 mutant of Arabidopsis partially rescued its mini-plant phenotype, indicating the conservation function of MNP1 in GA biosynthesis. Our results provide valuable information for understanding the genetic regulation of plant height in M. truncatula.
Collapse
Affiliation(s)
- Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojia Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuegenwang Fang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (S.G.); (X.Z.); (Q.B.); (W.Z.); (Y.F.); (S.Z.); (B.Z.)
| |
Collapse
|
47
|
Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. FORESTS 2020. [DOI: 10.3390/f11060633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plant hormone gibberellin (GA) is known to regulate elongating growth, seed germination, and the initiation of flower bud formation, and it has been postulated that GAs originally had functions in reproductive processes. Studies on the mechanism of induction of flowering by GA have been performed in Arabidopsis and other model plants. In coniferous trees, reproductive organ induction by GAs is known to occur, but there are few reports on the molecular mechanism in this system. To clarify the gene expression dynamics of the GA induction of the male strobilus in Cryptomeria japonica, we performed comprehensive gene expression analysis using a microarray. A GA-treated group and a nontreated group were allowed to set, and individual trees were sampled over a 6-week time course. A total of 881 genes exhibiting changed expression was identified. In the GA-treated group, genes related to ‘stress response’ and to ‘cell wall’ were initially enriched, and genes related to ‘transcription’ and ‘transcription factor activity’ were enriched at later stages. This analysis also clarified the dynamics of the expression of genes related to GA signaling transduction following GA treatment, permitting us to compare and contrast with the expression dynamics of genes implicated in signal transduction responses to other plant hormones. These results suggested that various plant hormones have complex influences on the male strobilus induction. Additionally, principal component analysis (PCA) using expression patterns of the genes that exhibited sequence similarity with flower bud or floral organ formation-related genes of Arabidopsis was performed. PCA suggested that gene expression leading to male strobilus formation in C. japonica became conspicuous within one week of GA treatment. Together, these findings help to clarify the evolution of the mechanism of induction of reproductive organs by GA.
Collapse
|
48
|
Bunsick M, Toh S, Wong C, Xu Z, Ly G, McErlean CSP, Pescetto G, Nemrish KE, Sung P, Li JD, Scholes JD, Lumba S. SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. NATURE PLANTS 2020; 6:646-652. [PMID: 32451447 DOI: 10.1038/s41477-020-0653-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
Parasitic plant infestations dramatically reduce the yield of many major food crops of sub-Saharan Africa and pose a serious threat to food security on that continent1. The first committed step of a successful infestation is the germination of parasite seeds primarily in response to a group of related small-molecule hormones called strigolactones (SLs), which are emitted by host roots2. Despite the important role of SLs, it is not clear how host-derived SLs germinate parasitic plants. In contrast, gibberellins (GA) acts as the dominant hormone for stimulation of germination in non-parasitic plant species by inhibiting a set of DELLA repressors3. Here, we show that expression of SL receptors from the parasitic plant Striga hermonthica in the presence of SLs circumvents the GA requirement for germination of Arabidopsis thaliana seed. Striga receptors co-opt and enhance signalling through the HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (AtHTL/KAI2) pathway, which normally plays a rudimentary role in Arabidopsis seed germination4,5. AtHTL/KAI2 negatively controls the SUPPRESSOR OF MAX2 1 (SMAX1) protein5, and loss of SMAX1 function allows germination in the presence of DELLA repressors. Our data suggest that ligand-dependent inactivation of SMAX1 in Striga and Arabidopsis can bypass GA-dependent germination in these species.
Collapse
Affiliation(s)
- Michael Bunsick
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Cynthia Wong
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zhenhua Xu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - George Ly
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Gianni Pescetto
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Priscilla Sung
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jack Daiyang Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Julie D Scholes
- Department of Plant and Animal Sciences, University of Sheffield, Sheffield, UK
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Lantzouni O, Alkofer A, Falter-Braun P, Schwechheimer C. GROWTH-REGULATING FACTORS Interact with DELLAs and Regulate Growth in Cold Stress. THE PLANT CELL 2020; 32:1018-1034. [PMID: 32060178 PMCID: PMC7145461 DOI: 10.1105/tpc.19.00784] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 02/12/2020] [Indexed: 05/18/2023]
Abstract
DELLA proteins are repressors of the gibberellin (GA) hormone signaling pathway that act mainly by regulating transcription factor activities in plants. GAs induce DELLA repressor protein degradation and thereby control a number of critical developmental processes as well as responses to stresses such as cold. The strong effect of cold temperatures on many physiological processes has rendered it difficult to assess, based on phenotypic criteria, the role of GA and DELLAs in plant growth during cold stress. Here, we uncover substantial differences in the GA transcriptomes between plants grown at ambient temperature (21°C) and plants exposed to cold stress (4°C) in Arabidopsis (Arabidopsis thaliana). We further identify over 250, to the largest extent previously unknown, DELLA-transcription factor interactions using the yeast two-hybrid system. By integrating both data sets, we reveal that most members of the nine-member GRF (GROWTH REGULATORY FACTOR) transcription factor family are DELLA interactors and, at the same time, that several GRF genes are targets of DELLA-modulated transcription after exposure to cold stress. We find that plants with altered GRF dosage are differentially sensitive to the manipulation of GA and hence DELLA levels, also after cold stress, and identify a subset of cold stress-responsive genes that qualify as targets of this DELLA-GRF regulatory module.
Collapse
Affiliation(s)
- Ourania Lantzouni
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Angela Alkofer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Pascal Falter-Braun
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
50
|
Gastaldi V, Lucero LE, Ferrero LV, Ariel FD, Gonzalez DH. Class-I TCP Transcription Factors Activate the SAUR63 Gene Subfamily in Gibberellin-Dependent Stamen Filament Elongation. PLANT PHYSIOLOGY 2020; 182:2096-2110. [PMID: 31988200 PMCID: PMC7140962 DOI: 10.1104/pp.19.01501] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/10/2020] [Indexed: 05/06/2023]
Abstract
In autogamous plants like Arabidopsis (Arabidopsis thaliana), stamen filament elongation must be finely regulated to ensure that anthers reach the pistil at the correct developmental stage. In this work, we studied the roles of Arabidopsis TEOSINTE BRANCHED1, CYCLOIDEA, PCF15 (TCP15), and related class-I TCP transcription factors in stamen filament elongation. Plants with decreased expression of class-I TCPs and plants that express a fusion of TCP15 to a repressor domain (pTCP15::TCP15-EAR) had shorter stamens, indicating that class-I TCPs stimulate filament growth. These plants also showed reduced expression of several SMALL AUXIN UP RNA (SAUR)63 subfamily genes, which contain TCP target motifs in their promoters. Mutational analysis indicated that the TCP target motif in the SAUR63 promoter is required for expression of SAUR63 in stamen filaments. Moreover, TCP15 directly binds to the SAUR63 promoter region that contains the TCP target motif in vivo, highlighting the role of the TCPs in this process. Class-I TCPs are also required for the induction of SAUR63 subfamily genes by gibberellins (GAs). In addition, overexpression of SAUR63 restores filament growth in pTCP15::TCP15-EAR plants, whereas overexpression of TCP15 rescues the short stamen phenotype of GA-deficient plants. The results indicate that TCP15 and related class-I TCPs modulate GA-dependent stamen filament elongation by direct activation of SAUR63 subfamily genes through conserved target sites in their promoters. This work provides insight into GA-dependent stamen filament elongation.
Collapse
Affiliation(s)
- Victoria Gastaldi
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Leandro E Lucero
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Lucía V Ferrero
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|