1
|
Lin B, Ma H, Zhang K, Cui J. Regulatory mechanisms and metabolic changes of miRNA during leaf color change in the bud mutation branches of Acer pictum subsp. mono. FRONTIERS IN PLANT SCIENCE 2023; 13:1047452. [PMID: 36714704 PMCID: PMC9879609 DOI: 10.3389/fpls.2022.1047452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Acer pictum subsp. mono is a colorful tree species with considerable ornamental and economic value. However, little is known about the metabolism and regulatory mechanism of leaf color change in A. p. subsp. mono. To reveal the molecular mechanism of leaf color change in A. p. subsp. mono, the present study examined the bud mutation branches and compared the metabolites of the red leaves (AR) of the bud mutation branches of A. p. subsp. mono with those of the green leaves (AG) of the wild-type branches. It was found that the chlorophyll and carotenoids content of the red leaves decreased significantly, while anthocyanins, and various antioxidant enzymes increased significantly compared with the green leaves. The glycosides cyanidin, pelargonidin, malvidin, petunidin, delphinidin, and peonidin were detected in AR by liquid chromatography-mass spectrometry. The cyanidin glycosides increased, and cyanidin 3-O-glycoside was significantly upregulated. We analyzed the transcriptome and small RNA of A. p. subsp. mono leaves and detected 4061 differentially expressed mRNAs and 116 differentially expressed miRNAs. Through miRNA-mRNA association analysis, five differentially expressed modules were found; one miRNA targeted three genes, and four miRNAs targeted a single gene. Among them, miR160b, miR6300, and miR396g were found to be the key miRNAs regulating stable anthocyanin accumulation in A. p. subsp. mono leaves. By revealing the physiological response of leaf color change and the molecular regulatory mechanism of the miRNA, this study provides new insight into the molecular regulatory mechanism of leaf color change, thereby offering a foundation for future studies.
Collapse
Affiliation(s)
- Baoli Lin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - He Ma
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, China
| | - Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
2
|
Zhu H, Yang X, Li Q, Guo J, Ma T, Liu S, Lin S, Zhou Y, Zhao C, Wang J, Sui J. The Sweetpotato Voltage-Gated K + Channel β Subunit, KIbB1, Positively Regulates Low-K + and High-Salinity Tolerance by Maintaining Ion Homeostasis. Genes (Basel) 2022; 13:genes13061100. [PMID: 35741862 PMCID: PMC9222298 DOI: 10.3390/genes13061100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated K+ channel β subunits act as a structural component of Kin channels in different species. The β subunits are not essential to the channel activity but confer different properties through binding the T1 domain or the C-terminal of α subunits. Here, we studied the physiological function of a novel gene, KIbB1, encoding a voltage-gated K+ channel β subunit in sweetpotato. The transcriptional level of this gene was significantly higher in the low-K+-tolerant line than that in the low-K+-sensitive line under K+ deficiency conditions. In Arabidopsis, KIbB1 positively regulated low-K+ tolerance through regulating K+ uptake and translocation. Under high-salinity stress, the growth conditions of transgenic lines were obviously better than wild typr (WT). Enzymatic and non-enzymatic reactive oxygen species (ROS) scavenging were activated in transgenic plants. Accordingly, the malondialdehyde (MDA) content and the accumulation of ROS such as H2O2 and O2− were lower in transgenic lines under salt stress. It was also found that the overexpression of KIbB1 enhanced K+ uptake, but the translocation from root to shoot was not affected under salt stress. This demonstrates that KIbB1 acted as a positive regulator in high-salinity stress resistance through regulating Na+ and K+ uptake to maintain K+/Na+ homeostasis. These results collectively suggest that the mechanisms of KIbB1 in regulating K+ were somewhat different between low-K+ and high-salinity conditions.
Collapse
Affiliation(s)
- Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Xue Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
- Laboratory of Microbiology, Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Qiyan Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Jiayu Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Tao Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Shuyan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Shunyu Lin
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Yuanyuan Zhou
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China;
| | - Chunmei Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (H.Z.); (X.Y.); (Q.L.); (J.G.); (T.M.); (S.L.); (S.L.); (C.Z.); (J.W.)
- Correspondence:
| |
Collapse
|
3
|
Krishnamurthy P, Pothiraj R, Suthanthiram B, Somasundaram SM, Subbaraya U. Phylogenomic classification and synteny network analyses deciphered the evolutionary landscape of aldo-keto reductase (AKR) gene superfamily in the plant kingdom. Gene 2022; 816:146169. [PMID: 35026291 DOI: 10.1016/j.gene.2021.146169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
Aldo-keto reductase-domain (PF00248) containing proteins (AKRs) are NAD(P)(H)-dependent oxidoreductases of a multigene superfamily that mediate versatile functions in plants ranging from detoxification, metal chelation, potassium ion efflux to specialized metabolism. To uncover the complete repertoire of AKR gene superfamily in plants, a systematic kingdom-wide identification, phylogeny reconstruction, classification and synteny network clustering analyses were performed in this study using 74 diverse plant genomes. Plant AKRs were omnipresent, legitimately classified into 4 groups (based on phylogeny) and 14 subgroups (based on the ≥ 60% of protein sequence identity). Species composition of AKR subgroups highlights their distinct emergence during plant evolution. Loss of AKR subgroups among plants was apparent and that various lineage-, order/family- and species-specific losses were observed. The subgroups IA, IVB and IVF were flourished and diversified well during plant evolution, likely related to the complexity of plant's specialized metabolism and environmental adaptation. About 65% of AKRs were in genomic synteny regions across the plant kingdom and the AKRs relevant to important functions (e.g. vitamin B6 metabolism) were in profoundly conserved angiosperm-wide synteny communities. This study underscores the evolutionary landscape of plant AKRs and provides a comprehensive resource to facilitate the functional characterization of them.
Collapse
Affiliation(s)
| | - Ramanujam Pothiraj
- Crop Improvement Division, ICAR National Research Centre for Banana, Tiruchirappalli 620 102, India
| | - Backiyarani Suthanthiram
- Crop Improvement Division, ICAR National Research Centre for Banana, Tiruchirappalli 620 102, India
| | | | - Uma Subbaraya
- Crop Improvement Division, ICAR National Research Centre for Banana, Tiruchirappalli 620 102, India
| |
Collapse
|
4
|
Yu J, Sun H, Zhang J, Hou Y, Zhang T, Kang J, Wang Z, Yang Q, Long R. Analysis of Aldo-Keto Reductase Gene Family and Their Responses to Salt, Drought, and Abscisic Acid Stresses in Medicago truncatula. Int J Mol Sci 2020; 21:ijms21030754. [PMID: 31979344 PMCID: PMC7037683 DOI: 10.3390/ijms21030754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Salt and drought stresses are two primary abiotic stresses that inhibit growth and reduce the activity of photosynthetic apparatus in plants. Abscisic acid (ABA) plays a key role in abiotic stress regulation in plants. Some aldo-keto reductases (AKRs) can enhance various abiotic stresses resistance by scavenging cytotoxic aldehydes in some plants. However, there are few comprehensive reports of plant AKR genes and their expression patterns in response to abiotic stresses. In this study, we identified 30 putative AKR genes from Medicago truncatula. The gene characteristics, coding protein motifs, and expression patterns of these MtAKRs were analyzed to explore and identify candidate genes in regulation of salt, drought, and ABA stresses. The phylogenetic analysis result indicated that the 52 AKRs in Medicago truncatula and Arabidopsis thaliana can be divided into three groups and six subgroups. Fifteen AKR genes in M. truncatula were randomly selected from each group or subgroup, to investigate their response to salt (200 mM of NaCl), drought (50 g·L-1 of PEG 6000), and ABA (100 µM) stresses in both leaves and roots. The results suggest that MtAKR1, MtAKR5, MtAKR11, MtAKR14, MtAKR20, and MtAKR29 may play important roles in response to these stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ruicai Long
- Correspondence: (Q.Y.); (R.L.); Tel.: +86-10-62816357
| |
Collapse
|
5
|
Dastmalchi M, Chang L, Torres MA, Ng KKS, Facchini PJ. Codeinone reductase isoforms with differential stability, efficiency and product selectivity in opium poppy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:631-647. [PMID: 29779229 DOI: 10.1111/tpj.13975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Codeinone reductase (COR) catalyzes the reversible NADPH-dependent reduction of codeinone to codeine as the penultimate step of morphine biosynthesis in opium poppy (Papaver somniferum). It also irreversibly reduces neopinone, which forms by spontaneous isomerization in aqueous solution from codeinone, to neopine. In a parallel pathway involving 3-O-demethylated analogs, COR converts morphinone to morphine, and neomorphinone to neomorphine. Similar to neopine, the formation of neomorphine by COR is irreversible. Neopine is a minor substrate for codeine O-demethylase (CODM), yielding morphine. In the plant, neopine levels are low and neomorphine has not been detected. Silencing of CODM leads to accumulation of upstream metabolites, such as codeine and thebaine, but does not result in a shift towards higher relative concentrations of neopine, suggesting a mechanism in the plant for limiting neopine production. In yeast (Saccharomyces cerevisiae) engineered to produce opiate alkaloids, the catalytic properties of COR lead to accumulation of neopine and neomorphine as major products. An isoform (COR-B) was isolated from opium poppy chemotype Bea's Choice that showed higher catalytic activity than previously characterized CORs, and it yielded mostly neopine in vitro and in engineered yeast. Five catalytically distinct COR isoforms (COR1.1-1.4 and COR-B) were used to determine sequence-function relationships that influence product selectivity. Biochemical characterization and site-directed mutagenesis of native COR isoforms identified four residues (V25, K41, F129 and W279) that affected protein stability, reaction velocity, and product selectivity and output. Improvement of COR performance coupled with an ability to guide pathway flux is necessary to facilitate commercial production of opiate alkaloids in engineered microorganisms.
Collapse
Affiliation(s)
- Mehran Dastmalchi
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Limei Chang
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Miguel A Torres
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Kenneth K S Ng
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
6
|
Suekawa M, Fujikawa Y, Esaka M. Two G-box-like elements essential to high gene expression of SlAKR4B in tomato leaves. Biosci Biotechnol Biochem 2018; 82:425-432. [PMID: 29384041 DOI: 10.1080/09168451.2018.1429887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aldo-keto reductases (AKRs) play important roles in aldehyde detoxification as well as primary and secondary metabolism in plants. We previously reported inducible expression of a Solanum lycopersicum AKR4B (SlAKR4B) in tomato leaves treated with salicylic acid and jasmonic acid, and high promoter activity of SlAKR4B in tomato leaf protoplasts. In this study, we investigated the expression response of SlAKR4B in the tomato leaves with infiltration treatment and the cis-element(s) involved in high promoter activity. Gene expression analysis in tomato leaf protoplasts and buffer-infiltrated tomato leaves suggested that cell damage caused the increased expression of SlAKR4B. Promoter activity of SlAKR4B was significantly reduced by mutation of two G-box like elements. It is suggested that the two G-box like elements are responsible for the high promoter activity.
Collapse
Affiliation(s)
- Marina Suekawa
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Yukichi Fujikawa
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Muneharu Esaka
- a Graduate School of Biosphere Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
7
|
Suekawa M, Fujikawa Y, Inada S, Murano A, Esaka M. Gene expression and promoter analysis of a novel tomato aldo-keto reductase in response to environmental stresses. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:35-44. [PMID: 27337067 DOI: 10.1016/j.jplph.2016.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 05/26/2023]
Abstract
The functional role of an uncharacterized tomato (Solanum lycopersicum) aldo-keto reductase 4B, denoted as SlAKR4B, was investigated. The gene expression of tomato SlAKR4B was detected at a high level in the senescent leaves and the ripening fruits of tomato. Although d-galacturonic acid reductase activities tended to be higher in tomato SlAKR4B-overexpressing transgenic tobacco BY-2 cell lines than those in control cell lines, SlAKR4B gene expression was not well correlated with l-ascorbic acid content among the cell lines. The analysis of the transgenic cell lines showed that tomato SlAKR4B has enzyme activities toward d-galacturonic acid as well as glyceraldehyde and glyoxal, suggesting that the SlAKR4B gene encodes a functional enzyme in tomato. Gene expression of SlAKR4B was induced by NaCl, H2O2, and plant hormones such as salicylic acid and jasmonic acid, suggesting that SlAKR4B is involved in the stress response. The transient expression assay using protoplasts showed the promoter activity of the SlAKR4B gene was as high as that of the cauliflower mosaic virus 35S promoter. Also, the promoter region of the SlAKR4B gene was suggested to contain cis-element(s) for abiotic stress-inducible expression.
Collapse
Affiliation(s)
- Marina Suekawa
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Yukichi Fujikawa
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Shuhei Inada
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Asako Murano
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Muneharu Esaka
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
8
|
Sengupta D, Naik D, Reddy AR. Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: A structure-function update. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:40-55. [PMID: 25840343 DOI: 10.1016/j.jplph.2015.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 05/18/2023]
Abstract
The aldo-keto reductase (AKR) superfamily comprises of a large number of primarily monomeric protein members, which reduce a broad spectrum of substrates ranging from simple sugars to potentially toxic aldehydes. Plant AKRs can be broadly categorized into four important functional groups, which highlight their roles in diverse plant metabolic reactions including reactive aldehyde detoxification, biosynthesis of osmolytes, secondary metabolism and membrane transport. Further, multiple overlapping functional aspects of plant AKRs including biotic and abiotic stress defense, production of commercially important secondary metabolites, iron acquisition from soil, plant-microbe interactions etc. are discussed as subcategories within respective major groups. Owing to the broad substrate specificity and multiple stress tolerance of the well-characterized AKR4C9 from Arabidopsis thaliana, protein sequences of all the homologues of AKR4C9 (A9-like proteins) from forty different plant species (Phytozome database) were analyzed. The analysis revealed that all A9-like proteins possess strictly conserved key catalytic residues (D-47, Y-52 and K-81) and belong to the pfam00248 and cl00470 AKR superfamilies. Based on structural homology of the three flexible loops of AKR4C9 (Loop A, B and C) responsible for broad substrate specificity, A9-like proteins found in Brassica rapa, Phaseolus vulgaris, Cucumis sativus, Populus trichocarpa and Solanum lycopersicum were predicted to have a similar range of substrate specificity. Thus, plant AKRs can be considered as potential breeding targets for developing stress tolerant varieties in the future. The present review provides a consolidated update on the current research status of plant AKRs with an emphasis on important functional aspects as well as their potential future prospects and an insight into the overall structure-function relationships of A9-like proteins.
Collapse
Affiliation(s)
- Debashree Sengupta
- Department of Environmental Biotechnology and Ecological Sciences, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India; Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Dhiraj Naik
- Department of Environmental Biotechnology and Ecological Sciences, Indian Institute of Advanced Research, Gandhinagar 382007, Gujarat, India
| | - Attipalli R Reddy
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
9
|
McLoughlin F, Testerink C. Phosphatidic acid, a versatile water-stress signal in roots. FRONTIERS IN PLANT SCIENCE 2013; 4:525. [PMID: 24391659 PMCID: PMC3870300 DOI: 10.3389/fpls.2013.00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones, protein kinases, and phosphatases, Ca(2) (+), reactive oxygen species, and low abundant phospholipids that together form complex signaling cascades. Phosphatidic acid (PA) is a signaling lipid that rapidly accumulates in response to a wide array of abiotic stress stimuli. PA formation provides the cell with spatial and transient information about the external environment by acting as a protein-docking site in cellular membranes. PA reportedly binds to a number of proteins that play a role during water limiting conditions, such as drought and salinity and has been shown to play an important role in maintaining root system architecture. Members of two osmotic stress-activated protein kinase families, sucrose non-fermenting 1-related protein kinase 2 and mitogen activated protein kinases were recently shown bind PA and are also involved in the maintenance of root system architecture and salinity stress tolerance. In addition, PA regulates several proteins involved in abscisic acid-signaling. PA-dependent recruitment of glyceraldehyde-3-phosphate dehydrogenase under water limiting conditions indicates a role in regulating metabolic processes. Finally, a recent study also shows the PA recruits the clathrin heavy chain and a potassium channel subunit, hinting toward additional roles in cellular trafficking and potassium homeostasis. Taken together, the rapidly increasing number of proteins reported to interact with PA implies a broad role for this versatile signaling phospholipid in mediating salt and water stress responses.
Collapse
Affiliation(s)
| | - Christa Testerink
- *Correspondence: Christa Testerink, Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090GE Amsterdam, Netherlands e-mail:
| |
Collapse
|
10
|
Ardie SW, Nishiuchi S, Liu S, Takano T. Ectopic expression of the K+ channel β subunits from Puccinellia tenuiflora (KPutB1) and rice (KOB1) alters K+ homeostasis of yeast and Arabidopsis. Mol Biotechnol 2011; 48:76-86. [PMID: 21108023 DOI: 10.1007/s12033-010-9349-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we cloned a cDNA for the K+ channel β subunit from the halophyte Puccinellia tenuiflora and named it KPutB1. KPutB1 was preferentially expressed in the roots and was transiently induced by K+-starvation, salt stress, or the combination of both stresses. By yeast two-hybrid assay, we demonstrated that KPutB1 interacts with PutAKT1, α subunit of an AKT1-type K+ channel of P. tenuiflora. The functional relevance of this interaction on K+-nutrition was investigated by co-expression experiments in yeast under various ionic conditions, and K+ channel α and β subunit homologues from rice (OsAKT1 and KOB1, respectively) were included for comparison. Yeast co-expressing PutAKT1 and the β subunits (KPutB1 and KOB1) had better growth and higher K+-uptake ability than yeast expressing PutAKT1 alone. In contrast, yeast co-expressing the β subunits (KPutB1 and KOB1) with OsAKT1 had slower growth and lower K+ uptake than yeast expressing OsAKT1 alone. Arabidopsis plants over-expressing the K+ channel β subunit of P. tenuiflora or rice showed increased shoot K+ content and decreased root Na+ content under control, 75 mM NaCl, and K+-starvation stress conditions. These results suggest that ectopic expression of the K+ channel β subunit could alter K+ and Na+ homeostasis in plants.
Collapse
Affiliation(s)
- Sintho Wahyuning Ardie
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | | | | | | |
Collapse
|
11
|
Simpson PJ, Tantitadapitak C, Reed AM, Mather OC, Bunce CM, White SA, Ride JP. Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J Mol Biol 2009; 392:465-80. [PMID: 19616008 DOI: 10.1016/j.jmb.2009.07.023] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/26/2009] [Accepted: 07/09/2009] [Indexed: 11/17/2022]
Abstract
Aldo-keto reductases (AKRs) are widely distributed in nature and play numerous roles in the metabolism of steroids, sugars, and other carbonyls. They have also frequently been implicated in the metabolism of exogenous and endogenous toxicants, including those stimulated by stress. Although the Arabidopsis genome includes at least 21 genes with the AKR signature, very little is known of their functions. In this study, we have screened the Arabidopsis thaliana genomic sequence for genes with significant homology to members of the mammalian AKR1 family and identified four homologues for further study. Following alignment of the predicted protein sequences with representatives from the AKR superfamily, the proteins were ascribed not to the AKR1 family but to the AKR4C subfamily, with the individual designations of AKR4C8, AKR4C9, AKR4C10, and AKR4C11. Expression of two of the genes, AKR4C8 and AKR4C9, has been shown to be coordinately regulated and markedly induced by various forms of stress. The genes have been overexpressed in bacteria, and recombinant proteins have been purified and crystallized. Both enzymes display NADPH-dependent reduction of carbonyl compounds, typical of the superfamily, but will accept a very wide range of substrates, reducing a range of steroids, sugars, and aliphatic and aromatic aldehydes/ketones, although there are distinct differences between the two enzymes. We have obtained high-resolution crystal structures of AKR4C8 (1.4 A) and AKR4C9 (1.25 A) in ternary complexes with NADP(+) and acetate. Three extended loops, present in all AKRs and responsible for defining the cofactor- and substrate-binding sites, are shorter in the 4C subfamily compared to other AKRs. Consequently, the crystal structures reveal open and accommodative substrate-binding sites, which correlates with their broad substrate specificity. It is suggested that the primary role of these enzymes may be to detoxify a range of toxic aldehydes and ketones produced during stress, although the precise nature of the principal natural substrates remains to be determined.
Collapse
Affiliation(s)
- Paul J Simpson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Chan Z, Wang Q, Xu X, Meng X, Qin G, Li B, Tian S. Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics 2008; 8:4791-807. [DOI: 10.1002/pmic.200701155] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Xicluna J, Lacombe B, Dreyer I, Alcon C, Jeanguenin L, Sentenac H, Thibaud JB, Chérel I. Increased functional diversity of plant K+ channels by preferential heteromerization of the shaker-like subunits AKT2 and KAT2. J Biol Chem 2007; 282:486-94. [PMID: 17085433 DOI: 10.1074/jbc.m607607200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of plant Shaker subunits as heterotetramers, increasing channel functional diversity, has been reported. Here we focus on a new interaction, between AKT2 and KAT2 subunits. The assembly as AKT2/KAT2 heterotetramers is demonstrated by (i) a strong signal in two-hybrid tests with intracytoplasmic C-terminal regions, (ii) the effect of KAT2 on AKT2 subunit targeting in tobacco cells, (iii) the complete inhibition of AKT2 currents by co-expression with a dominant-negative KAT2 subunit in Xenopus oocytes, and reciprocally, and (iv) the appearance, upon co-expression of wild-type AKT2 and KAT2 subunits, of new channel functional properties that cannot be explained by the co-existence of two kinds of homotetrameric channels. In particular, the instantaneous current, characteristic of AKT2, displayed new functional features when compared with those of AKT2 homotetramers: activation by external acidification (instead of inhibition) and weak inhibition by calcium. Single channel current measurements in oocytes co-expressing AKT2 and KAT2 revealed a strong preference for incorporation of subunits into heteromultimers and a diversity of individual channels. In planta, these new channels, which may undergo specific regulations, are likely to be formed in guard cells and in the phloem, where they could participate in the control of membrane potential and potassium fluxes.
Collapse
Affiliation(s)
- Jérôme Xicluna
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 Agro-Montpellier/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Montpellier II, Place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chérel I. Regulation of K+ channel activities in plants: from physiological to molecular aspects. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:337-51. [PMID: 14739260 DOI: 10.1093/jxb/erh028] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant voltage-gated channels belonging to the Shaker family participate in sustained K+ transport processes at the cell and whole plant levels, such as K+ uptake from the soil solution, long-distance K+ transport in the xylem and phloem, and K+ fluxes in guard cells during stomatal movements. The attention here is focused on the regulation of these transport systems by protein-protein interactions. Clues to the identity of the regulatory mechanisms have been provided by electrophysiological approaches in planta or in heterologous systems, and through analogies with their animal counterparts. It has been shown that, like their animal homologues, plant voltage-gated channels can assemble as homo- or heterotetramers associating polypeptides encoded by different Shaker genes, and that they can bind auxiliary subunits homologous to those identified in mammals. Furthermore, several regulatory processes (involving, for example, protein kinases and phosphatases, G proteins, 14-3-3s, or syntaxins) might be common to plant and animal Shakers. However, the molecular identification of plant channel partners is still at its beginning. This paper reviews current knowledge on plant K+ channel regulation at the physiological and molecular levels, in the light of the corresponding knowledge in animal cells, and discusses perspectives for the deciphering of regulatory networks in the future.
Collapse
Affiliation(s)
- Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004, Agro-M/INRA/CNRS/UM2, Montpellier, France.
| |
Collapse
|
15
|
Véry AA, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. ANNUAL REVIEW OF PLANT BIOLOGY 2003; 54:575-603. [PMID: 14503004 DOI: 10.1146/annurev.arplant.54.031902.134831] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Potassium (K+) plays a number of important roles in plant growth and development. Over the past few years, molecular approaches associated with electrophysiological analyses have greatly advanced our understanding of K+ transport in plants. A large number of genes encoding K+ transport systems have been identified, revealing a high level of complexity. Characterization of some transport systems is providing exciting information at the molecular level on functions such as root K+ uptake and secretion into the xylem sap, K+ transport in guard cells, or K+ influx into growing pollen tubes. In this review, we take stock of this recent molecular information. The main families of plant K+ transport systems (Shaker and KCO channels, KUP/HAK/KT and HKT transporters) are described, along with molecular data on how these systems are regulated. Finally, we discuss a few physiological questions on which molecular studies have shed new light.
Collapse
Affiliation(s)
- Anne-Aliénor Véry
- UMR 5004 CNRS/ENSA-M/INRA/UM2, Place Viala, 34060 Montpellier, France.
| | | |
Collapse
|
16
|
Schachtman DP. Molecular insights into the structure and function of plant K(+) transport mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:127-39. [PMID: 10748250 DOI: 10.1016/s0005-2736(00)00134-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our understanding of plant potassium transport has increased in the past decade through the application of molecular biological techniques. In this review, recent work on inward and outward rectifying K(+) channels as well as high affinity K(+) transporters is described. Through the work on inward rectifying K(+) channels, we now have precise details on how the structure of these proteins determines functional characteristics such as ion conduction, pH sensitivity, selectivity and voltage sensing. The physiological function of inward rectifying K(+) channels in plants has been clarified through the analysis of expression patterns and mutational analysis. Two classes of outward rectifying K(+) channels have now been cloned from plants and their initial characterisation is reviewed. The physiological role of one class of outward rectifying K(+) channel has been demonstrated to be involved in long distance transport of K(+) from roots to shoots. The molecular structure and function of two classes of energised K(+) transporters are also reviewed. The first class is energised by Na(+) and shares structural similarities with K(+) transport mechanisms in bacteria and fungi. Structure-function studies suggest that it should be possible to increase the K(+) and Na(+) selectivity of these transporters, which will enhance the salt tolerance of higher plants. The second class of K(+) transporter is comprised of a large gene family and appears to have a dual affinity for K(+). A suite of molecular techniques, including gene cloning, oocyte expression, RNA localisation and gene inactivation, is now being used to fully characterise the biophysical and physiological function of plants K(+) transport mechanisms.
Collapse
Affiliation(s)
- D P Schachtman
- CSIRO Plant Industry, Horticulture Unit, GPO Box 350, Glen Osmond, Australia.
| |
Collapse
|
17
|
Braun EL, Halpern AL, Nelson MA, Natvig DO. Large-scale comparison of fungal sequence information: mechanisms of innovation in Neurospora crassa and gene loss in Saccharomyces cerevisiae. Genome Res 2000; 10:416-30. [PMID: 10779483 DOI: 10.1101/gr.10.4.416] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report a large-scale comparison of sequence data from the filamentous fungus Neurospora crassa with the complete genome sequence of Saccharomyces cerevisiae. N. crassa is considerably more morphologically and developmentally complex than S. cerevisiae. We found that N. crassa has a much higher proportion of "orphan" genes than S. cerevisiae, suggesting that its morphological complexity reflects the acquisition or maintenance of novel genes, consistent with its larger genome. Our results also indicate the loss of specific genes from S. cerevisiae. Surprisingly, some of the genes lost from S. cerevisiae are involved in basic cellular processes, including translation and ion (especially calcium) homeostasis. Horizontal gene transfer from prokaryotes appears to have played a relatively modest role in the evolution of the N. crassa genome. Differences in the overall rate of molecular evolution between N. crassa and S. cerevisiae were not detected. Our results indicate that the current public sequence databases have fairly complete samples of gene families with ancient conserved regions, suggesting that further sequencing will not substantially change the proportion of genes with homologs among distantly related groups. Models of the evolution of fungal genomes compatible with these results, and their functional implications, are discussed.
Collapse
Affiliation(s)
- E L Braun
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
18
|
Zhang X, Ma J, Berkowitz GA. Evaluation of functional interaction between K(+) channel alpha- and beta-subunits and putative inactivation gating by Co-expression in Xenopus laevis oocytes. PLANT PHYSIOLOGY 1999; 121:995-1002. [PMID: 10557249 PMCID: PMC59464 DOI: 10.1104/pp.121.3.995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/1999] [Accepted: 07/22/1999] [Indexed: 05/18/2023]
Abstract
Animal K(+) channel alpha- (pore-forming) subunits form native proteins by association with beta-subunits, which are thought to affect channel function by modifying electrophysiological parameters of currents (often by inducing fast inactivation) or by stabilizing the protein complex. We evaluated the functional association of KAT1, a plant K(+) channel alpha-subunit, and KAB1 (a putative homolog of animal K(+) channel beta-subunits) by co-expression in Xenopus laevis oocytes. Oocytes expressing KAT1 displayed inward-rectifying, non-inactivating K(+) currents that were similar in magnitude to those reported in prior studies. K(+) currents recorded from oocytes expressing both KAT1 and KAB1 had similar gating kinetics. However, co-expression resulted in greater total current, consistent with the possibility that KAB1 is a beta-subunit that stabilizes and therefore enhances surface expression of K(+) channel protein complexes formed by alpha-subunits such as KAT1. K(+) channel protein complexes formed by alpha-subunits such as KAT1 that undergo (voltage-dependent) inactivation do so by means of a "ball and chain" mechanism; the ball portion of the protein complex (which can be formed by the N terminus of either an alpha- or beta-subunit) occludes the channel pore. KAT1 was co-expressed in oocytes with an animal K(+) channel alpha-subunit (hKv1.4) known to contain the N-terminal ball and chain. Inward currents through heteromeric hKv1. 4:KAT1 channels did undergo typical voltage-dependent inactivation. These results suggest that inward currents through K(+) channel proteins formed at least in part by KAT1 polypeptides are capable of inactivation, but the structural component facilitating inactivation is not present when channel complexes are formed by either KAT1 or KAB1 in the absence of additional subunits.
Collapse
Affiliation(s)
- X Zhang
- Department of Plant Science, University of Connecticut, Storrs, Connecticut 06269-4067, USA
| | | | | |
Collapse
|
19
|
Fang Z, Kamasani U, Berkowitz GA. Molecular cloning and expression characterization of a rice K+ channel beta subunit. PLANT MOLECULAR BIOLOGY 1998; 37:597-606. [PMID: 9687064 DOI: 10.1023/a:1005913629485] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
K+ channel proteins native to animal membranes have been shown to be composed of two different types of polypeptides: the pore-forming alpha subunit and the beta subunit which may be involved in either modulation of conductance through the channel, or stabilization and surface expression of the channel complex. Several cDNAs encoding animal K+ channel beta subunits have been recently cloned and sequenced. We report the molecular cloning of a rice plant homolog of these animal beta subunits. The rice cDNA (KOB1) described in this report encodes a 36 kDa polypeptide which shares 45% sequence identity with these animal K+ channel beta subunits. and 72% identity with the only other cloned plant (Arabidopsis thaliana) K+ channel beta subunit (KAB1). The KOB1 translation product was demonstrated to form a tight physical association with a plant K+ channel alpha subunit. These results are consistent with the conclusion that the KOB1 cDNA encodes a K+ channel beta subunit. Expression studies indicated that KOB1 protein is more abundant in leaves than in either reproductive structures or roots. Later-developing leaves on a rice plant were found to contain increasing levels of the protein with the flag leaf having the highest titer of KOB1. Leaf sheaths are known to accumulate excess K+ and act as reserve sources of this cation when new growth requires remobilization of K+. Leaf sheaths were found to contain higher levels of KOB1 protein than the blade portions of leaves. It was further determined that when K+ was lost from older leaves of plants grown on K+-deficient fertilizer, the loss of cellular K+ was associated with a decline in both KOB1 mRNA and protein. This finding represents the first demonstration (in either plants or animals) that changes in cellular K+ status may specifically alter expression of a gene encoding a K+ channel subunit.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Molecular Sequence Data
- Oryza/genetics
- Oryza/metabolism
- Potassium Channels/chemistry
- Potassium Channels/genetics
- Potassium Channels/metabolism
- Protein Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Z Fang
- Plant Science Department, College of Agriculture and Natural Resources, University of Connecticut, Storrs 06269-4067, USA
| | | | | |
Collapse
|
20
|
Abstract
This review summarizes current knowledge about genes whose products function in the transport of various cationic macronutrients (K, Ca) and micronutrients (Cu, Fe, Mn, and Zn) in plants. Such genes have been identified on the basis of function, via complementation of yeast mutants, or on the basis of sequence similarity, via database analysis, degenerate PCR, or low stringency hybridization. Not surprisingly, many of these genes belong to previously described transporter families, including those encoding Shaker-type K+ channels, P-type ATPases, and Nramp proteins. ZIP, a novel cation transporter family first identified in plants, also seems to be ubiquitous; members of this family are found in protozoa, yeast, nematodes, and humans. Emerging information on where in the plant each transporter functions and how each is controlled in response to nutrient availability may allow creation of food crops with enhanced mineral content as well as crops that bioaccumulate or exclude toxic metals.
Collapse
Affiliation(s)
- Tama Christine Fox
- Department of Biological Sciences, Dartmouth College, 6044 Gilman, Hanover, New Hampshire 03755; e-mail:
| | | |
Collapse
|
21
|
Maathuis FJ, Ichida AM, Sanders D, Schroeder JI. Roles of higher plant K+ channels. PLANT PHYSIOLOGY 1997; 114:1141-9. [PMID: 9276943 PMCID: PMC158406 DOI: 10.1104/pp.114.4.1141] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- F J Maathuis
- Department of Biology, University of York, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Dreyer I, Antunes S, Hoshi T, Müller-Röber B, Palme K, Pongs O, Reintanz B, Hedrich R. Plant K+ channel alpha-subunits assemble indiscriminately. Biophys J 1997; 72:2143-50. [PMID: 9129816 PMCID: PMC1184408 DOI: 10.1016/s0006-3495(97)78857-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In plants a large diversity of inwardly rectifying K+ channels (K(in) channels) has been observed between tissues and species. However, only three different types of voltage-dependent plant K+ uptake channel subfamilies have been cloned so far; they relate either to KAT1, AKT1, or AtKC1. To explore the mechanisms underlying the channel diversity, we investigated the assembly of plant inwardly rectifying alpha-subunits. cRNA encoding five different K+ channel alpha-subunits of the three subfamilies (KAT1, KST1, AKT1, SKT1, and AtKC1) which were isolated from different tissues, species, and plant families (Arabidopsis thaliana and Solanum tuberosum) was reciprocally co-injected into Xenopus oocytes. We identified plant K+ channels as multimers. Moreover, using K+ channel mutants expressing different sensitivities to voltage, Cs+, Ca2+, and H+, we could prove heteromers on the basis of their altered voltage and modulator susceptibility. We discovered that, in contrast to animal K+ channel alpha-subunits, functional aggregates of plant K(in) channel alpha-subunits assembled indiscriminately. Interestingly, AKT-type channels from A. thaliana and S. tuberosum, which as homomers were electrically silent in oocytes after co-expression, mediated K+ currents. Our findings suggest that K+ channel diversity in plants results from nonselective heteromerization of different alpha-subunits, and thus depends on the spatial segregation of individual alpha-subunit pools and the degree of temporal overlap and kinetics of expression.
Collapse
Affiliation(s)
- I Dreyer
- Institut für Biophysik, Universität Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang H, Vasconcelos AC, Berkowitz GA. Physical association of KAB1 with plant K+ channel alpha subunits. THE PLANT CELL 1996; 8:1545-53. [PMID: 8837508 PMCID: PMC161297 DOI: 10.1105/tpc.8.9.1545] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
K+ channel proteins contain four alpha subunits that align along a central axis perpendicular to membranes and form an ion-conducting pore. Recent work with K+ channels native to animal membranes has shown that at least some members of this protein family also have four beta subunits. These structural components of the holoenzyme each form tight associations with the cytoplasmic portion of an alpha subunit. We have cloned an Arabidopsis cDNA (KAB1) that encodes a polypeptide sharing 49% amino acid identity with animal K+ channel beta subunits. In this study, we provide experimental evidence that the KAB1 polypeptide forms a tight physical association with the Arabidopsis K+ channel alpha subunit, KAT1. An affinity-purified KAB1 fusion protein was immobilized to a support resin and shown to sequester selectively the KAT1 polypeptide. In addition, polyclonal antibodies raised against KAB1 were shown to immunoprecipitate the KAT1 polypeptide as a KAT1-KAB1 protein complex. Immunoblot analysis demonstrated that KAB1 is expressed in Arabidopsis seedings and is present in both membrane and soluble protein fractions. The presence of KAB1 (a soluble polypeptide) in both soluble and membrane protein fractions suggests that a portion of the total amount of native KAB1 is associated with an integral membrane protein, such as KAT1. The presence of KAB1 in crude protein fractions prepared from different Arabidopsis plant organs was evaluated. High levels of KAB1 protein were present in flowers, roots, and leaves. Immunoblot analysis of protein extracts prepared from broad bean leaves indicated that the KAB1 expression level was 80-fold greater in guard cells than in mesophyll cells. Previous studies of the in situ transcription pattern of KAT1 in Arabidopsis indicated that this alpha subunit is abundantly present in leaves and, within the leaf, exclusively present in guard cells. Thus, KAB1 was determined to be expressed in plant organs (leaves) and cell types (guard cells) that are sites of KAT1 expression in the plant. The in situ expression pattern of KAB1 suggests that it may associate with more than one type of K+ channel alpha subunit. Sequence analysis indicates that KAB1 may function in plant K+ channels as an oxidoreductase. It is postulated that beta subunits native to animal K+ channels act as regulatory subunits through pyridine nucleotide-linked reduction of alpha polypeptides. Although the KAB1 primary structure is substantially different from that of animal beta subunits, amino acid motifs critical for this catalytic activity are retained in the plant beta subunit.
Collapse
Affiliation(s)
- H Tang
- Plant Science Department, Cook College, Rutgers, State University of New Jersey, New Brunswick 08903, USA
| | | | | |
Collapse
|
24
|
Abstract
Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.
Collapse
Affiliation(s)
- S M Assmann
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|