1
|
Liu H, Zhang J, Wang J, Fan Z, Qu X, Yan M, Zhang C, Yang K, Zou J, Le J. The rice R2R3 MYB transcription factor FOUR LIPS connects brassinosteroid signaling to lignin deposition and leaf angle. THE PLANT CELL 2024; 36:4768-4785. [PMID: 39259275 PMCID: PMC11530771 DOI: 10.1093/plcell/koae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
Leaf angle is an important agronomic trait for crop architecture and yield. In rice (Oryza sativa), the lamina joint is a unique structure connecting the leaf blade and sheath that determines leaf angle. Brassinosteroid (BR) signaling involving GLYCOGEN SYNTHASE KINASE-3 (GSK3)/SHAGGY-like kinases and BRASSINAZOLE-RESISTANT1 (BZR1) has a central role in regulating leaf angle in rice. In this study, we identified the atypical R2R3-MYB transcription factor FOUR LIPS (OsFLP), the rice homolog of Arabidopsis (Arabidopsis thaliana) AtFLP, as a participant in BR-regulated leaf angle formation. The spatiotemporal specificity of OsFLP expression in the lamina joint was closely associated with lignin deposition in vascular bundles and sclerenchyma cells. OsFLP mutation caused loose plant architecture with droopy flag leaves and hypersensitivity to BRs. OsBZR1 directly targeted OsFLP, and OsFLP transduced BR signals to lignin deposition in the lamina joint. Moreover, OsFLP promoted the transcription of the phenylalanine ammonia-lyase family genes OsPAL4 and OsPAL6. Intriguingly, OsFLP feedback regulated OsGSK1 transcription and OsBZR1 phosphorylation status. In addition, an Ala-to-Thr substitution within the OsFLP R3 helix-turn-helix domain, an equivalent mutation to that in Osflp-1, affected the DNA-binding ability and transcriptional activity of OsFLP. Our results reveal that OsFLP functions with OsGSK1 and OsBZR1 in BR signaling to maintain optimal leaf angle by modulating the lignin deposition in mechanical tissues of the lamina joint.
Collapse
Affiliation(s)
- Huichao Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxue Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kezhen Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junjie Zou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- International College, University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 10093, China
| |
Collapse
|
2
|
Zhang Y, Dong G, Zhang Y, Jiang Y, Chen F, Ruan B, Wu L, Yu Y. BLA1 Affects Leaf Angles by Altering Brassinosteroid Biosynthesis in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19629-19643. [PMID: 39207175 DOI: 10.1021/acs.jafc.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Brassinosteroids (BRs) are crucial plant hormones influencing diverse developmental processes in rice. While several enzymes in BR biosynthesis have been identified, their regulatory mechanisms remain largely unknown. This study highlights a novel regulatory pathway wherein the CHD3 chromatin remodeler, BLA1, epigenetically modulates the expression of key BR biosynthesis genes, BRD1 and D2. Phenotypic analysis of bla1 mutants revealed significant alterations, such as increased leaf angles and longer mesocotyls, which were alleviated by BR synthesis inhibitors. Moreover, the bla1 mutants showed elevated BR levels that correlated with the significant upregulation of the expression levels of BRD1 and D2, particularly at the lamina joint sites. Mechanistically, the yeast one-hybrid and chromatin immunoprecipitation assays revealed specific binding of BLA1 to the promoter regions of BRD1 and D2, accompanied by a marked enrichment of the transcriptionally active histone modification, H3K4me3, on these loci in the bla1 mutant. Functional assessments of the brd1 and d2 mutants confirmed their reduced sensitivity to BR, further underscoring their critical regulatory roles in BR-mediated developmental processes. Our findings uncovered an epigenetic mechanism that governs BR biosynthesis and orchestrates the expression of BRD1 and D2 to modulate BR levels and influence rice growth and development.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
- School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
| | - Ying Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Deng R, Huang S, Du J, Luo D, Liu J, Zhao Y, Zheng C, Lei T, Li Q, Zhang S, Jiang M, Jin T, Liu D, Wang S, Zhang Y, Wang X. The brassinosteroid receptor StBRI1 promotes tuber development by enhancing plasma membrane H+-ATPase activity in potato. THE PLANT CELL 2024; 36:3498-3520. [PMID: 38819320 PMCID: PMC11371173 DOI: 10.1093/plcell/koae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
The brassinosteroid (BR) receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) plays a critical role in plant growth and development. Although much is known about how BR signaling regulates growth and development in many crop species, the role of StBRI1 in regulating potato (Solanum tuberosum) tuber development is not well understood. To address this question, a series of comprehensive genetic and biochemical methods were applied in this investigation. It was determined that StBRI1 and Solanum tuberosum PLASMA MEMBRANE (PM) PROTON ATPASE2 (PHA2), a PM-localized proton ATPase, play important roles in potato tuber development. The individual overexpression of StBRI1 and PHA2 led to a 22% and 25% increase in tuber yield per plant, respectively. Consistent with the genetic evidence, in vivo interaction analysis using double transgenic lines and PM H+-ATPase activity assays indicated that StBRI1 interacts with the C-terminus of PHA2, which restrains the intramolecular interaction of the PHA2 C-terminus with the PHA2 central loop to attenuate autoinhibition of PM H+-ATPase activity, resulting in increased PHA2 activity. Furthermore, the extent of PM H+-ATPase autoinhibition involving phosphorylation-dependent mechanisms corresponds to phosphorylation of the penultimate Thr residue (Thr-951) in PHA2. These results suggest that StBRI1 phosphorylates PHA2 and enhances its activity, which subsequently promotes tuber development. Altogether, our results uncover a BR-StBRI1-PHA2 module that regulates tuber development and suggest a prospective strategy for improving tuberous crop growth and increasing yield via the cell surface-based BR signaling pathway.
Collapse
Affiliation(s)
- Rui Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhua Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jia Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Luo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chongyang Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Siwei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dehai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shufen Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanfeng Zhang
- Department of Science and Technology of Shaanxi Province, Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Xiaofeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Zhou C, Wei X, Liu S, Liu C, Tian K, Zhang D. Global Characterization of DNA Methylation during Rice Leaf Angle Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19219-19231. [PMID: 39146245 DOI: 10.1021/acs.jafc.4c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
During plant development and growth, genomic DNA accumulates chemical markers that determine the levels of gene expression. DNA methylation is an important epigenetic marker involved in plant developmental events. However, the characterization of the role of DNA methylation in rice leaf angle development has lagged behind. Herein, we performed bisulfite sequencing to characterize DNA methylation sites and performed transcriptome and small RNA sequencing during leaf angle development. The results revealed a global reduction in CG methylation during leaf angle establishment. A reduction in gene body CG methylation appears to play a vital role in leaf angle development. The hypomethylated and weakly expressed genes were functionally enriched in the brassinosteroid and auxin signaling pathways. Additionally, the main DNA methyltransferases were inactive. The addition of exogenous DNA methylation inhibitor 5-azacytidine increased the leaf angle, which confirmed that DNA methylation is crucial for leaf angle development. This study revealed a gradual decrease in 24-nucleotide siRNA levels during leaf angle development, particularly in relation to the enrichment of 24-nucleotide siRNAs at different hypomethylated regions that induce leaf angle inclination. Our results indicate crucial roles for DNA methylation in the rice leaf angle developmental stages.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xinlin Wei
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shuangcheng Liu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chang Liu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kexin Tian
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Dechun Zhang
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
5
|
Peng A, Li S, Wang Y, Cheng F, Chen J, Zheng X, Xiong J, Ding G, Zhang B, Zhai W, Song L, Wei W, Chen L. Mining Candidate Genes for Leaf Angle in Brassica napus L. by Combining QTL Mapping and RNA Sequencing Analysis. Int J Mol Sci 2024; 25:9325. [PMID: 39273273 PMCID: PMC11394825 DOI: 10.3390/ijms25179325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Leaf angle (LA) is an important trait of plant architecture, and individuals with narrow LA can better capture canopy light under high-density planting, which is beneficial for increasing the overall yield per unit area. To study the genetic basis and molecular regulation mechanism of leaf angle in rapeseed, we carried out a series of experiments. Quantitative trait loci (QTL) mapping was performed using the RIL population, and seven QTLs were identified. Transcriptome analysis showed that the cell wall formation/biogenesis processes and biosynthesis/metabolism of cell wall components were the most enrichment classes. Most differentially expressed genes (DEGs) involved in the synthesis of lignin, xylan, and cellulose showed down-regulated expression in narrow leaf material. Microscopic analysis suggested that the cell size affected by the cell wall in the junction area of the stem and petiole was the main factor in leaf petiole angle (LPA) differences. Combining QTL mapping and RNA sequencing, five promising candidate genes BnaA01G0125600ZS, BnaA01G0135700ZS, BnaA01G0154600ZS, BnaA10G0154200ZS, and BnaC03G0294200ZS were identified in rapeseed, and most of them were involved in cell wall biogenesis and the synthesis/metabolism of cell wall components. The results of QTL, transcriptome analysis, and cytological analysis were highly consistent, collectively revealing that genes related to cell wall function played a crucial role in regulating the LA trait in rapeseed. The study provides further insights into LA traits, and the discovery of new QTLs and candidate genes is highly beneficial for genetic improvement.
Collapse
Affiliation(s)
- Aoyi Peng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Shuyu Li
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yuwen Wang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fengjie Cheng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jun Chen
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Xiaoxiao Zheng
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jie Xiong
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Ge Ding
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Bingchao Zhang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wen Zhai
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Laiqiang Song
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lunlin Chen
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
6
|
Kumar P, Gill HS, Singh M, Kaur K, Koupal D, Talukder S, Bernardo A, Amand PS, Bai G, Sehgal SK. Characterization of flag leaf morphology identifies a major genomic region controlling flag leaf angle in the US winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:205. [PMID: 39141073 PMCID: PMC11324803 DOI: 10.1007/s00122-024-04701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Multi-environmental characterization of flag leaf morphology traits in the US winter wheat revealed nine stable genomic regions for different flag leaf-related traits including a major region governing flag leaf angle. Flag leaf in wheat is the primary contributor to accumulating photosynthetic assimilates. Flag leaf morphology (FLM) traits determine the overall canopy structure and capacity to intercept the light, thus influencing photosynthetic efficiency. Hence, understanding the genetic control of these traits could be useful for breeding desirable ideotypes in wheat. We used a panel of 272 accessions from the hard winter wheat (HWW) region of the USA to investigate the genetic architecture of five FLM traits including flag leaf length (FLL), width (FLW), angle (FLANG), length-width ratio, and area using multilocation field experiments. Multi-environment GWAS using 14,537 single-nucleotide polymorphisms identified 36 marker-trait associations for different traits, with nine being stable across environments. A novel and major stable region for FLANG (qFLANG.1A) was identified on chromosome 1A accounting for 9-13% variation. Analysis of spatial distribution for qFLANG.1A in a set of 2354 breeding lines from the HWW region showed a higher frequency of allele associated with narrow leaf angle. A KASP assay was developed for allelic discrimination of qFLANG.1A and was used for its independent validation in a diverse set of spring wheat accessions. Furthermore, candidate gene analysis for two regions associated with FLANG identified seven putative genes of interest for each of the two regions. The present study enhances our understanding of the genetic control of FLM in wheat, particularly FLANG, and these results will be useful for dissecting the genes underlying canopy architecture in wheat facilitating the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Mandeep Singh
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Karanjot Kaur
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Dante Koupal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shyamal Talukder
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research Center, Beaumont, TX, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
7
|
Kaur A, Best NB, Hartwig T, Budka J, Khangura RS, McKenzie S, Aragón-Raygoza A, Strable J, Schulz B, Dilkes BP. A maize semi-dwarf mutant reveals a GRAS transcription factor involved in brassinosteroid signaling. PLANT PHYSIOLOGY 2024; 195:3072-3096. [PMID: 38709680 PMCID: PMC11288745 DOI: 10.1093/plphys/kiae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 05/08/2024]
Abstract
Brassinosteroids (BR) and gibberellins (GA) regulate plant height and leaf angle in maize (Zea mays). Mutants with defects in BR or GA biosynthesis or signaling identify components of these pathways and enhance our knowledge about plant growth and development. In this study, we characterized three recessive mutant alleles of GRAS transcription factor 42 (gras42) in maize, a GRAS transcription factor gene orthologous to the DWARF AND LOW TILLERING (DLT) gene of rice (Oryza sativa). These maize mutants exhibited semi-dwarf stature, shorter and wider leaves, and more upright leaf angle. Transcriptome analysis revealed a role for GRAS42 as a determinant of BR signaling. Analysis of the expression consequences from loss of GRAS42 in the gras42-mu1021149 mutant indicated a weak loss of BR signaling in the mutant, consistent with its previously demonstrated role in BR signaling in rice. Loss of BR signaling was also evident by the enhancement of weak BR biosynthetic mutant alleles in double mutants of nana plant1-1 and gras42-mu1021149. The gras42-mu1021149 mutant had little effect on GA-regulated gene expression, suggesting that GRAS42 is not a regulator of core GA signaling genes in maize. Single-cell expression data identified gras42 expressed among cells in the G2/M phase of the cell cycle consistent with its previously demonstrated role in cell cycle gene expression in Arabidopsis (Arabidopsis thaliana). Cis-acting natural variation controlling GRAS42 transcript accumulation was identified by expression genome-wide association study (eGWAS) in maize. Our results demonstrate a conserved role for GRAS42/SCARECROW-LIKE 28 (SCL28)/DLT in BR signaling, clarify the role of this gene in GA signaling, and suggest mechanisms of tillering and leaf angle control by BR.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Norman B Best
- Plant Genetics Research Unit, USDA-ARS, Columbia, MO 65211, USA
| | - Thomas Hartwig
- Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Josh Budka
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Steven McKenzie
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Alejandro Aragón-Raygoza
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Burkhard Schulz
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907USA
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Wang Q, Wang X, Zhang Q, Zhang X, Liu X, Jiang J. Major quantitative trait locus qLA3.1 is related to tomato leaf angle by regulating cell length at the petiole base. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:145. [PMID: 38822827 DOI: 10.1007/s00122-024-04657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
KEY MESSAGE qLA3.1, controlling leaf angle in tomato, was fine-mapped to an interval of 4.45 kb on chromosome A03, and one gene encoding auxin response factor was identified as a candidate gene. Leaf angle is a crucial trait in plant architecture that plays an important role in achieving optimal plant structure. However, there are limited reports on gene localization, cloning, and the function of plant architecture in horticultural crops, particularly regarding leaf angle. In this study, we selected 'Z3' with erect leaves and 'Heinz1706' with horizontal leaves as the phenotype and cytological observation. We combined bulked segregant analysis and fine genetic mapping to identify a candidate gene, known as, i.e., qLA3.1, which was related to tomato leaf angle. Through multiple analyses, we found that Solyc03g113410 was the most probably candidate for qLA3.1, which encoded the auxin response factor SlARF11 in tomato and was homologous to OsARF11 related to leaf angle in rice. We discovered that silencing SlARF11 resulted in upright leaves, while plants with over-expressed SlARF11 exhibited horizontal leaves. We also found that cultivars with erect leaves had a mutation from base G to base A. Moreover, quantitative analysis of plants treated with hormones indicated that SlARF11 might participate in cell elongation and the activation of genes related to auxin and brassinosteroid pathways. Transcriptome analysis further validated that SlARF11 may regulate leaf angle through hormone signaling pathways. These data support the idea that the auxin response factor SlARF11 may have an important function in tomato leaf petiole angles.
Collapse
Affiliation(s)
- Qihui Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xi Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Qiongqiong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinsheng Zhang
- College of Horticulture, Jilin Agricultural University, Xincheng Street 2888, Changchun, 130118, China
| | - Xin Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| | - Jing Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Education Ministry, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
9
|
Liu L, Zhao L, Liu Y, Zhu Y, Chen S, Yang L, Li X, Chen W, Xu Z, Xu P, Wang H, Yu D. Transcription factor OsWRKY72 controls rice leaf angle by regulating LAZY1-mediated shoot gravitropism. PLANT PHYSIOLOGY 2024; 195:1586-1600. [PMID: 38478430 DOI: 10.1093/plphys/kiae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 06/02/2024]
Abstract
Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.
Collapse
Affiliation(s)
- Lei Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lirong Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunwei Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Yi Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500 Kunming, China
- School of Life Sciences, Yunnan University, 650500 Kunming, China
- Southwest United Graduate School, 650092 Kunming, China
| |
Collapse
|
10
|
Hou L, Liu Z, Zhang D, Liu S, Chen Z, Wu Q, Shang Z, Wang J, Wang J. BR regulates wheat root salt tolerance by maintaining ROS homeostasis. PLANTA 2024; 260:5. [PMID: 38777878 DOI: 10.1007/s00425-024-04429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
MAIN CONCLUSION Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.
Collapse
Affiliation(s)
- Lijiang Hou
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zihui Liu
- Department of Biochemistry, Baoding University, Baoding, 071000, Hebei, China
| | - Dongzhi Zhang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, 734000, China
| | - Shuhan Liu
- College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, China
| | - Zhenzhen Chen
- Xinyang Academy of Agricultural Sciences, Xinyang, 464000, Henan, China
| | - Qiufang Wu
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Zengzhen Shang
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Jingshun Wang
- Key Laboratory of Anyang Wheat Breeding Engineering Research Center, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
11
|
Liu J, Zhang H, Wang Y, Liu E, Shi H, Gao G, Zhang Q, Lou G, Jiang G, He Y. QTL Analysis for Rice Quality-Related Traits and Fine Mapping of qWCR3. Int J Mol Sci 2024; 25:4389. [PMID: 38673973 PMCID: PMC11050666 DOI: 10.3390/ijms25084389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.
Collapse
Affiliation(s)
- Jun Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
- Institute of Crop Germplasm Resources, Guizhou Academy of Agriculture Science, Guiyang 550006, China
| | - Hao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| | - Yingying Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| | - Enyu Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| | - Huan Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| | - Gonghao Jiang
- College of Life Science, Heilongjiang University, Harbin 150080, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (H.Z.); (E.L.); (Q.Z.); (G.L.)
| |
Collapse
|
12
|
Ji X, Gao Q, Zhuang Z, Chang F, Peng Y. WGCNA analysis of the effect of exogenous BR on leaf angle of maize mutant lpa1. Sci Rep 2024; 14:5238. [PMID: 38433245 PMCID: PMC10909878 DOI: 10.1038/s41598-024-55835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Leaf angle, as one of the important agronomic traits of maize, can directly affect the planting density of maize, thereby affecting its yield. Here we used the ZmLPA1 gene mutant lpa1 to study maize leaf angle and found that the lpa1 leaf angle changed significantly under exogenous brassinosteroid (BR) treatment compared with WT (inbred line B73). Transcriptome sequencing of WT and lpa1 treated with different concentrations of exogenous BR showed that the differentially expressed genes were upregulated with auxin, cytokinin and brassinosteroid; Genes associated with abscisic acid are down-regulated. The differentially expressed genes in WT and lpa1 by weighted gene co-expression network analysis (WGCNA) yielded two gene modules associated with maize leaf angle change under exogenous BR treatment. The results provide a new theory for the regulation of maize leaf angle by lpa1 and exogenous BR.
Collapse
Affiliation(s)
- Xiangzhuo Ji
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiaohong Gao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zelong Zhuang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fangguo Chang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yunling Peng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
13
|
Liu M, Lu M, Zhao Z, Luo Q, Liu F, Zhao J, He Y, Tian Y, Zhan H. Rice ILI atypical bHLH transcription factors antagonize OsbHLH157/OsbHLH158 during brassinosteroid signaling. PLANT PHYSIOLOGY 2024; 194:1545-1562. [PMID: 38039100 DOI: 10.1093/plphys/kiad635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid hormones that play crucial roles in plant growth and development. Atypical bHLH transcription factors that lack the basic region for DNA binding have been implicated in BR signaling. However, the underlying mechanisms of atypical bHLHs in regulation of rice (Oryza sativa) BR signaling are still largely unknown. Here, we describe a systematic characterization of INCREASED LEAF INCLINATION (ILI) subfamily atypical bHLH transcription factors in rice. A total of 8 members, ILI1 to ILI8, with substantial sequence similarity were retrieved. Knockout and overexpression analyses demonstrated that these ILIs play unequally redundant and indispensable roles in BR-mediated growth and development in rice, with a more prominent role for ILI4 and ILI5. The ili3/4/5/8 quadruple and ili1/3/4/7/8 quintuple mutants displayed tremendous BR-related defects with severe dwarfism, erect leaves, and sterility. Biochemical analysis showed that ILIs interact with OsbHLH157 and OsbHLH158, which are also atypical bHLHs and have no obvious transcriptional activity. Overexpression of OsbHLH157 and OsbHLH158 led to drastic BR-defective growth, whereas the osbhlh157 osbhlh158 double mutant developed a typical BR-enhanced phenotype, indicating that OsbHLH157 and OsbHLH158 play a major negative role in rice BR signaling. Further transcriptome analyses revealed opposite effects of ILIs and OsbHLH157/OsbHLH158 in regulation of downstream gene expression, supporting the antagonism of ILIs and OsbHLH157/OsbHLH158 in maintaining the balance of BR signaling. Our results provide insights into the mechanism of BR signaling and plant architecture formation in rice.
Collapse
Affiliation(s)
- Mingqian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingmin Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubing He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), CAAS, Sanya 572024, China
| | - Yanan Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Sun X, Xie Y, Xu K, Li J. Regulatory networks of the F-box protein FBX206 and OVATE family proteins modulate brassinosteroid biosynthesis to regulate grain size and yield in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:789-801. [PMID: 37818650 DOI: 10.1093/jxb/erad397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
F-box proteins participate in the regulation of many processes, including cell division, development, and plant hormone responses. Brassinosteroids (BRs) regulate plant growth and development by activating core transcriptional and other multiple factors. In rice, OVATE family proteins (OFPs) participate in BR signalling and regulate grain size. Here we identified an F-box E3 ubiquitin ligase, FBX206, that acts as a negative factor in BR signalling and regulates grain size and yield in rice. Suppressed expression of FBX206 by RNAi leads to promoted plant growth and increased grain yield. Molecular analyses showed that the expression levels of BR biosynthetic genes were up-regulated, whereas those of BR catabolic genes were down-regulated in FBX206-RNAi plants, resulting in the accumulation of 28-homoBL, one of the bioactive BRs. FBX206 interacted with OsOFP8, a positive regulator in BR signalling, and OsOFP19, a negative regulator in BR signalling. SCFFBX206 mediated the degradation of OsOFP8 but suppressed OsOFP19 degradation. OsOFP8 interacted with OsOFP19, and the reciprocal regulation between OsOFP8 and OsOFP19 required the presence of FBX206. FBX206 itself was ubiquitinated and degraded, but interactions of OsOFP8 and OsOFP19 synergistically suppressed the degradation of FBX206. Genetic interactions indicated an additive effect between FBX206 and OsOFP8 and epistatic effects of OsOFP19 on FBX206 and OsOFP8. Our study reveals the regulatory networks of FBX206, OsOFP8, and OsOFP19 in BR signalling that regulate grain size and yield in rice.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Kaizun Xu
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jianxiong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Gasparis S, Miłoszewski MM. Genetic Basis of Grain Size and Weight in Rice, Wheat, and Barley. Int J Mol Sci 2023; 24:16921. [PMID: 38069243 PMCID: PMC10706642 DOI: 10.3390/ijms242316921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Grain size is a key component of grain yield in cereals. It is a complex quantitative trait controlled by multiple genes. Grain size is determined via several factors in different plant development stages, beginning with early tillering, spikelet formation, and assimilates accumulation during the pre-anthesis phase, up to grain filling and maturation. Understanding the genetic and molecular mechanisms that control grain size is a prerequisite for improving grain yield potential. The last decade has brought significant progress in genomic studies of grain size control. Several genes underlying grain size and weight were identified and characterized in rice, which is a model plant for cereal crops. A molecular function analysis revealed most genes are involved in different cell signaling pathways, including phytohormone signaling, transcriptional regulation, ubiquitin-proteasome pathway, and other physiological processes. Compared to rice, the genetic background of grain size in other important cereal crops, such as wheat and barley, remains largely unexplored. However, the high level of conservation of genomic structure and sequences between closely related cereal crops should facilitate the identification of functional orthologs in other species. This review provides a comprehensive overview of the genetic and molecular bases of grain size and weight in wheat, barley, and rice, focusing on the latest discoveries in the field. We also present possibly the most updated list of experimentally validated genes that have a strong effect on grain size and discuss their molecular function.
Collapse
Affiliation(s)
- Sebastian Gasparis
- Plant Breeding and Acclimatization Institute—National Research Institute in Radzików, 05-870 Błonie, Poland;
| | | |
Collapse
|
16
|
Teng S, Liu Q, Chen G, Chang Y, Cui X, Wu J, Ai P, Sun X, Zhang Z, Lu T. OsbHLH92, in the noncanonical brassinosteroid signaling pathway, positively regulates leaf angle and grain weight in rice. THE NEW PHYTOLOGIST 2023; 240:1066-1081. [PMID: 37574840 DOI: 10.1111/nph.19204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Modifications of plant architecture can increase planting density, regulate photosynthesis, and improve crop yields. Many basic helix-loop-helix (bHLH) transcription factors participate in the brassinosteroid (BR) signaling pathway and are critical for plant architecture morphogenesis in rice. However, the number of identified bHLH genes suitable for improving production value is still limited. In this study, we cloned Lam1, encoding the typical bHLH transcription factor OsbHLH92. OsbHLH92 knockout (KO) lines exhibit erect leaves. Decreases in the number and size of parenchyma cell layers on the adaxial side of the lamina joint in KO lines were the main reason for the decreased leaf angle. Genetic experiments verify that OsBU1 and its homologs are downstream of OsbHLH92, which is involved in the noncanonical RGA1-mediated BR signaling pathway. OsbHLH91, an OsbHLH92 homolog, plays both conserved and differentiated roles relative to OsbHLH92. Notably, OsbHLH92-KO lines show erect leaves without the acquisition of adverse agronomic traits. Moreover, by driving a specific panicle promoter, OsbHLH92 can greatly increase productivity by at least 10%. This study identifies new components of the BR signaling pathway, demonstrates the importance of OsbHLH92 in improving planting density and crop productivity, and broadens our knowledge of typical and atypical bHLH family members in rice.
Collapse
Affiliation(s)
- Shouzhen Teng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiming Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Pengfei Ai
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Hebei, 050000, China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
17
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
18
|
Zheng S, Shin K, Lin W, Wang W, Yang X. Identification and Characterization of PRE Genes in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2023; 24:ijms24086886. [PMID: 37108050 PMCID: PMC10138968 DOI: 10.3390/ijms24086886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Basic helix-loop-helix (bHLH)/HLH transcription factors are involved in various aspects of the growth and development of plants. Here, we identified four HLH genes, PePRE1-4, in moso bamboo plants that are homologous to Arabidopsis PRE genes. In bamboo seedlings, PePRE1/3 were found to be highly expressed in the internode and lamina joint by using quantitative RT-PCR analysis. In the elongating internode of bamboo shoots, PePRE genes are expressed at higher levels in the basal segment than in the mature top segment. Overexpression of PePREs (PePREs-OX) in Arabidopsis showed longer petioles and hypocotyls, as well as earlier flowering. PePRE1 overexpression restored the phenotype due to the deficiency of AtPRE genes caused by artificial micro-RNA. PePRE1-OX plants showed hypersensitivity to propiconazole treatment compared with the wild type. In addition, PePRE1/3 but not PePRE2/4 proteins accumulated as punctate structures in the cytosol, which was disrupted by the vesicle recycling inhibitor brefeldin A (BFA). PePRE genes have a positive function in the internode elongation of moso bamboo shoots, and overexpression of PePREs genes promotes flowering and growth in Arabidopsis. Our findings provided new insights about the fast-growing mechanism of bamboo shoots and the application of PRE genes from bamboo.
Collapse
Affiliation(s)
- Sujin Zheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kihye Shin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63243, Republic of Korea
| | - Wenxiong Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfei Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuelian Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Lan D, Cao L, Liu M, Ma F, Yan P, Zhang X, Hu J, Niu F, He S, Cui J, Yuan X, Yang J, Wang Y, Luo X. The identification and characterization of a plant height and grain length related gene hfr131 in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1152196. [PMID: 37035088 PMCID: PMC10080003 DOI: 10.3389/fpls.2023.1152196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Plant height and grain size are important agronomic traits affecting rice yield. Various plant hormones participate in the regulation of plant height and grain size in rice. However, how these hormones cooperate to regulate plant height and grain size is poorly understood. In this study, we identified a brassinosteroid-related gene, hfr131, from an introgression line constructed using Oryza longistaminata, that caused brassinosteroid insensitivity and reduced plant height and grain length in rice. Further study showed that hfr131 is a new allele of OsBRI1 with a single-nucleotide polymorphism (G to A) in the coding region, leading to a T988I conversion at a conserved site of the kinase domain. By combining yeast one-hybrid assays, chromatin immunoprecipitation-quantitative PCR and gene expression quantification, we demonstrated that OsARF17, an auxin response factor, could bind to the promoter region of HFR131 and positively regulated HFR131 expression, thereby regulating the plant height and grain length, and influencing brassinosteroid sensitivity. Haplotype analysis showed that the consociation of OsAFR17Hap1 /HFR131Hap6 conferred an increase in grain length. Overall, this study identified hfr131 as a new allele of OsBRI1 that regulates plant height and grain length in rice, revealed that brassinosteroid and auxin might coordinate through OsARF17-HFR131 interaction, and provided a potential breeding target for improvement of rice yield.
Collapse
Affiliation(s)
- Dengyong Lan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Liming Cao
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Mingyu Liu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xinwei Zhang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Hu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Fuan Niu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Institute of Crop Breeding and Cultivation, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shicong He
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Yuan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
20
|
Zhang G, Liu Y, Xie Q, Tong H, Chu C. Crosstalk between brassinosteroid signaling and variable nutrient environments. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2319-0. [PMID: 36907968 DOI: 10.1007/s11427-022-2319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
Brassinosteroid (BR) represents a group of steroid hormones that regulate plant growth and development as well as environmental adaptation. The fluctuation of external nutrient elements is a situation that plants frequently face in the natural environment, in which nitrogen (N) and phosphorus (P) are two of the most critical nutrients restraint of the early growth of plants. As the macronutrients, N and P are highly required by plants, but their availability or solubility in the soil is relatively low. Since iron (Fe) and P always modulate each other's content and function in plants mutually antagonistically, the regulatory mechanisms of Fe and P are inextricably linked. Recently, BR has emerged as a critical regulator in nutrient acquisition and phenotypic plasticity in response to the variable nutrient levels in Arabidopsis and rice. Here, we review the current understanding of the crosstalk between BR and the three major nutrients (N, P, and Fe), highlighting how nutrient signaling regulates BR synthesis and signaling to accommodate plant growth and development in Arabidopsis and rice.
Collapse
Affiliation(s)
- Guoxia Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingjun Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Hong Y, Zhang M, Xu R. Genetic Localization and Homologous Genes Mining for Barley Grain Size. Int J Mol Sci 2023; 24:ijms24054932. [PMID: 36902360 PMCID: PMC10003025 DOI: 10.3390/ijms24054932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Grain size is an important agronomic trait determining barley yield and quality. An increasing number of QTLs (quantitative trait loci) for grain size have been reported due to the improvement in genome sequencing and mapping. Elucidating the molecular mechanisms underpinning barley grain size is vital for producing elite cultivars and accelerating breeding processes. In this review, we summarize the achievements in the molecular mapping of barley grain size over the past two decades, highlighting the results of QTL linkage analysis and genome-wide association studies. We discuss the QTL hotspots and predict candidate genes in detail. Moreover, reported homologs that determine the seed size clustered into several signaling pathways in model plants are also listed, providing the theoretical basis for mining genetic resources and regulatory networks of barley grain size.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225127, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225127, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225127, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
22
|
Takanashi H. Genetic control of morphological traits useful for improving sorghum. BREEDING SCIENCE 2023; 73:57-69. [PMID: 37168813 PMCID: PMC10165342 DOI: 10.1270/jsbbs.22069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2023]
Abstract
Global climate change and global warming, coupled with the growing population, have raised concerns about sustainable food supply and bioenergy demand. Sorghum [Sorghum bicolor (L.) Moench] ranks fifth among cereals produced worldwide; it is a C4 crop with a higher stress tolerance than other major cereals and has a wide range of uses, such as grains, forage, and biomass. Therefore, sorghum has attracted attention as a promising crop for achieving sustainable development goals (SDGs). In addition, sorghum is a suitable genetic model for C4 grasses because of its high morphological diversity and relatively small genome size compared to other C4 grasses. Although sorghum breeding and genetic studies have lagged compared to other crops such as rice and maize, recent advances in research have identified several genes and many quantitative trait loci (QTLs) that control important agronomic traits in sorghum. This review outlines traits and genetic information with a focus on morphogenetic aspects that may be useful in sorghum breeding for grain and biomass utilization.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
23
|
Li Z, Liu J, Wang X, Wang J, Ye J, Xu S, Zhang Y, Hu D, Zhang M, Xu Q, Wang S, Yang Y, Wei X, Feng Y, Wang S. LG5, a Novel Allele of EUI1, Regulates Grain Size and Flag Leaf Angle in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:675. [PMID: 36771759 PMCID: PMC9921835 DOI: 10.3390/plants12030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Grain size and flag leaf angle are two important traits that determining grain yield in rice. However, the mechanisms regulating these two traits remain largely unknown. In this study, a rice long grain 5 (lg5) mutant with a large flag leaf angle was identified, and map-based cloning revealed that a single base substitution followed by a 2 bp insertion in the LOC_Os05g40384 gene resulted in larger grains, a larger flag leaf angle, and higher plant height than the wild type. Sequence analysis revealed that lg5 is a novel allele of elongated uppermost internode-1 (EUI1), which encodes a cytochrome P450 protein. Functional complementation and overexpression tests showed that LG5 can rescue the bigger grain size and larger flag leaf angle in the Xiushui11 (XS) background. Knockdown of the LG5 transcription level by RNA interference resulted in elevated grain size and flag leaf angle in the Nipponbare (NIP) background. Morphological and cellular analyses suggested that LG5 regulated grain size and flag leaf angle by promoting cell expansion and cell proliferation. Our results provided new insight into the functions of EUI1 in rice, especially in regulating grain size and flag leaf angle, indicating a potential target for the improvement of rice breeding.
Collapse
Affiliation(s)
- Zhen Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Junrong Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xingyu Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junhua Ye
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Siliang Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuanyuan Zhang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Dongxiu Hu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Mengchen Zhang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Qun Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shan Wang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yaolong Yang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xinghua Wei
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yue Feng
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
24
|
Tian P, Liu J, Yan B, Zhou C, Wang H, Shen R. BRASSINOSTEROID-SIGNALING KINASE1-1, a positive regulator of brassinosteroid signalling, modulates plant architecture and grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:283-295. [PMID: 36346128 DOI: 10.1093/jxb/erac429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroids (BRs) are a crucial class of plant hormones that regulate plant growth and development, thus affecting many important agronomic traits in crops. However, there are still significant gaps in our understanding of the BR signalling pathway in rice. In this study, we provide multiple lines of evidence to indicate that BR-SIGNALING KINASE1-1 (OsBSK1-1) likely represents a missing component in the BR signalling pathway in rice. We showed that knockout mutants of OsBSK1-1 are less sensitive to BR and exhibit a pleiotropic phenotype, including lower plant height, less tiller number and shortened grain length, whereas transgenic plants overexpressing a gain-of-function dominant mutant form of OsBSK1-1 (OsBSK1-1A295V) are hypersensitive to BR, and exhibit some enhanced BR-responsive phenotypes. We found that OsBSK1-1 physically interacts with the BR receptor BRASSINOSTEROID INSENSITIVE1 (OsBRI1), and GLYCOGEN SYNTHASE KINASE2 (OsGSK2), a downstream component crucial for BR signalling. Moreover, we showed that OsBSK1-1 can be phosphorylated by OsBRI1 and can inhibit OsGSK2-mediated phosphorylation of BRASSINOSTEROID RESISTANT1 (OsBZR1). We further demonstrated that OsBSK1-1 genetically acts downstream of OsBRI1, but upstream of OsGSK2. Together, our results suggest that OsBSK1-1 may serve as a scaffold protein directly bridging OsBRI1 and OsGSK2 to positively regulate BR signalling, thus affecting plant architecture and grain size in rice.
Collapse
Affiliation(s)
- Peng Tian
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Jiafan Liu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Baohui Yan
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chunlei Zhou
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Shen
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Zhang Y, Han E, Peng Y, Wang Y, Wang Y, Geng Z, Xu Y, Geng H, Qian Y, Ma S. Rice co-expression network analysis identifies gene modules associated with agronomic traits. PLANT PHYSIOLOGY 2022; 190:1526-1542. [PMID: 35866684 PMCID: PMC9516743 DOI: 10.1093/plphys/kiac339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Haiying Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
26
|
Kim SH, Shim KC, Lee HS, Jeon YA, Adeva C, Luong NH, Ahn SN. Brassinosteroid biosynthesis gene OsD2 is associated with low-temperature germinability in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:985559. [PMID: 36204076 PMCID: PMC9530605 DOI: 10.3389/fpls.2022.985559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
In rice, low-temperature germinability (LTG) is essential for stable stand establishment using the direct seeding method in temperate and high-altitude areas. Previously, we reported that the quantitative trait locus qLTG1 is associated with LTG. qLTG1 is also associated with tolerance to several abiotic stresses, such as salt and osmotic conditions. In this study, map-based cloning and sequence analysis indicated that qLTG1 is allelic to DWARF2 (OsD2), which encodes cytochrome P450 D2 (LOC_Os01g10040) involved in brassinosteroid (BR) biosynthesis. Sequence comparison of the two parental lines, Hwaseong and Oryza rufipogon (IRGC 105491), revealed five single nucleotide polymorphisms (SNPs) in the coding region. Three of these SNPs led to missense mutations in OsD2, whereas the other two SNPs were synonymous. We evaluated two T-DNA insertion mutants, viz., overexpression (OsD2-OE) and knockdown (OsD2-KD) mutants of OsD2, with the Dongjin genetic background. OsD2-KD plants showed a decrease in LTG and grain size. In contrast, OsD2-OE plants showed an increase in grain size and LTG. We also examined the expression levels of several BR signaling and biosynthetic genes using the T-DNA insertion mutants. Gene expression analysis and BR application experiments demonstrated that BR enhanced the seed germination rate under low-temperature conditions. These results suggest that OsD2 is associated with the regulation of LTG and improving grain size. Thus, OsD2 may be a suitable target for rice breeding programs to improve rice yield and LTG.
Collapse
Affiliation(s)
- Sun Ha Kim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, South Korea
| | - Yun-A Jeon
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
27
|
Das AK, Hao L. Functional characterization of ZmbHLH121, a bHLH transcription factor, focusing on Zea mays kernel development. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Ge L, Guo H, Li X, Tang M, Guo C, Bao H, Huang L, Yi Y, Cui Y, Chen L. OsSIDP301, a Member of the DUF1644 Family, Negatively Regulates Salt Stress and Grain Size in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:863233. [PMID: 35968081 PMCID: PMC9366248 DOI: 10.3389/fpls.2022.863233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
As a major environmental factor, salt stress substantially retards growth and reduces the productivity of rice (Oryza sativa). Members of the DUF1644 family, "the domains of unknown function 1644 motif" are predicted to play an essential regulatory role in response to abiotic stress. However, the specific molecular mechanisms of most members of this family remain elusive. Here, we report that the OsSIDP301 (stress-induced DUF1644 protein) was induced by salt stress and abscisic acid (ABA). We found that overexpression of OsSIDP301 (OE) in plants conferred salt hypersensitivity and reduced grain size, whereas plants with OsSIDP301 RNA interference (RNAi) exhibited salt tolerance and increased grain size in rice. OsSIDP301 determines salt stress tolerance by modulating genes involved in the salt-response and ABA signaling pathways. Further studies suggest that OsSIDP301 regulates grain size by influencing cell expansion in spikelet hulls. Moreover, OsSIDP301 interacts with OsBUL1 COMPLEX1 (OsBC1), which positively regulates grain size in rice. Our findings reveal that OsSIDP301 functions as a negative regulator of salt stress and grain size, and repressing its expression represents a promising strategy for improving salt stress tolerance and yield in rice.
Collapse
Affiliation(s)
- Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hongming Guo
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiu Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Chiming Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, China
| | - Han Bao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linjuan Huang
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
29
|
Chen H, Xiao Z, Ding B, Diggle PK, Yuan YW. Modular regulation of floral traits by a PRE1 homolog in Mimulus verbenaceus: implications for the role of pleiotropy in floral integration. HORTICULTURE RESEARCH 2022; 9:uhac168. [PMID: 36204206 PMCID: PMC9531339 DOI: 10.1093/hr/uhac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Floral traits often show correlated variation within and among species. For species with fused petals, strong correlations among corolla tube, stamen, and pistil length are particularly prevalent, and these three traits are considered an intra-floral functional module. Pleiotropy has long been implicated in such modular integration of floral traits, but empirical evidence based on actual gene function is scarce. We tested the role of pleiotropy in the expression of intra-floral modularity in the monkeyflower species Mimulus verbenaceus by transgenic manipulation of a homolog of Arabidopsis PRE1. Downregulation of MvPRE1 by RNA interference resulted in simultaneous decreases in the lengths of corolla tube, petal lobe, stamen, and pistil, but little change in calyx and leaf lengths or organ width. Overexpression of MvPRE1 caused increased corolla tube and stamen lengths, with little effect on other floral traits. Our results suggest that genes like MvPRE1 can indeed regulate multiple floral traits in a functional module but meanwhile have little effect on other modules, and that pleiotropic effects of these genes may have played an important role in the evolution of floral integration and intra-floral modularity.
Collapse
Affiliation(s)
| | | | - Baoqing Ding
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
30
|
Ahmar S, Gruszka D. In-Silico Study of Brassinosteroid Signaling Genes in Rice Provides Insight Into Mechanisms Which Regulate Their Expression. Front Genet 2022; 13:953458. [PMID: 35873468 PMCID: PMC9299959 DOI: 10.3389/fgene.2022.953458] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) regulate a diverse spectrum of processes during plant growth and development and modulate plant physiology in response to environmental fluctuations and stress factors. Thus, the BR signaling regulators have the potential to be targeted for gene editing to optimize the architecture of plants and make them more resilient to environmental stress. Our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process accumulated in the model dicot species - Arabidopsis thaliana. A deeper understanding of the BR signaling and response during plant growth and adaptation to continually changing environmental conditions will provide insight into mechanisms that govern the coordinated expression of the BR signaling genes in rice (Oryza sativa) which is a model for cereal crops. Therefore, in this study a comprehensive and detailed in silico analysis of promoter sequences of rice BR signaling genes was performed. Moreover, expression profiles of these genes during various developmental stages and reactions to several stress conditions were analyzed. Additionally, a model of interactions between the encoded proteins was also established. The obtained results revealed that promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice. Different transcription factor-binding sites and cis-regulatory elements in the gene promoters were identified which are involved in regulation of the genes’ expression during plant development and reactions to stress conditions. The in-silico analysis of BR signaling genes in O. sativa provides information about mechanisms which regulate the coordinated expression of these genes during rice development and in response to other phytohormones and environmental factors. Since rice is both an important crop and the model species for other cereals, this information may be important for understanding the regulatory mechanisms that modulate the BR signaling in monocot species. It can also provide new ways for the plant genetic engineering technology by providing novel potential targets, either cis-elements or transcriptional factors, to create elite genotypes with desirable traits.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
31
|
Li J, Gong J, Zhang L, Shen H, Chen G, Xie Q, Hu Z. Overexpression of SlPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153698. [PMID: 35461174 DOI: 10.1016/j.jplph.2022.153698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/22/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors play vital regulatory roles in a series of metabolic, physiological, and developmental processes of plants. Here, SlPRE5, an atypical bHLH gene, was isolated from tomato. SlPRE5 was noticeably expressed in young leaves, sepals, and flowers. SlPRE5-overexpressing plants exhibited rolling leaves with reduced chlorophyll content, increased stem internode length, leaf angle, and compound leaf length. The water loss rate of mature leaves and the content of starch were significantly reduced, while the content of gibberellin was significantly increased in transgenic plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) showed that SlPRE5 could interact with SlAIF1, SlAIF2, and SlPAR1. qRT-PCR and RNA-seq results revealed that the expression levels of genes related to chloroplast development, chlorophyll metabolism, gibberellin metabolism and signal transduction, starch, photosynthesis, and cell expansion were significantly altered in SlPRE5-overexpression plants. Collectively, our results suggest that SlPRE5 is a crucial transcription factor involved in plant morphology and chlorophyll accumulation in tomato leaves.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jun Gong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Chen X, Huang Z, Fu D, Fang J, Zhang X, Feng X, Xie J, Wu B, Luo Y, Zhu M, Qi Y. Identification of Genetic Loci for Sugarcane Leaf Angle at Different Developmental Stages by Genome-Wide Association Study. FRONTIERS IN PLANT SCIENCE 2022; 13:841693. [PMID: 35693186 PMCID: PMC9185841 DOI: 10.3389/fpls.2022.841693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 06/09/2023]
Abstract
Sugarcane (Saccharum spp.) is an efficient crop mainly used for sugar and bioethanol production. High yield and high sucrose of sugarcane are always the fundamental demands in sugarcane growth worldwide. Leaf angle and size of sugarcane can be attributed to planting density, which was associated with yield. In this study, we performed genome-wide association studies (GWAS) with a panel of 216 sugarcane core parents and their derived lines (natural population) to determine the genetic basis of leaf angle and key candidate genes with +2, +3, and +4 leaf at the seedling, elongation, and mature stages. A total of 288 significantly associated loci of sugarcane leaf angle at different developmental stages (eight phenotypes) were identified by GWAS with 4,027,298 high-quality SNP markers. Among them, one key locus and 11 loci were identified in all three stages and two stages, respectively. An InDel marker (SNP Ss6A_102766953) linked to narrow leaf angle was obtained. Overall, 4,089 genes were located in the confidence interval of significant loci, among which 3,892 genes were functionally annotated. Finally, 13 core parents and their derivatives tagged with SNPs were selected for marker-assisted selection (MAS). These candidate genes are mainly related to MYB transcription factors, auxin response factors, serine/threonine protein kinases, etc. They are directly or indirectly associated with leaf angle in sugarcane. This research provided a large number of novel genetic resources for the improvement of leaf angles and simultaneously to high yield and high bioethanol production.
Collapse
Affiliation(s)
- Xinglong Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenghui Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danwen Fu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Junteng Fang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaomin Feng
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Jinfang Xie
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Bin Wu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yiji Luo
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Mingfeng Zhu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yongwen Qi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
33
|
Ma Y, Li D, Xu Z, Gu R, Wang P, Fu J, Wang J, Du W, Zhang H. Dissection of the Genetic Basis of Yield Traits in Line per se and Testcross Populations and Identification of Candidate Genes for Hybrid Performance in Maize. Int J Mol Sci 2022; 23:5074. [PMID: 35563470 PMCID: PMC9102962 DOI: 10.3390/ijms23095074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
Dissecting the genetic basis of yield traits in hybrid populations and identifying the candidate genes are important for molecular crop breeding. In this study, a BC1F3:4 population, the line per se (LPS) population, was constructed by using elite inbred lines Zheng58 and PH4CV as the parental lines. The population was genotyped with 55,000 SNPs and testcrossed to Chang7-2 and PH6WC (two testers) to construct two testcross (TC) populations. The three populations were evaluated for hundred kernel weight (HKW) and yield per plant (YPP) in multiple environments. Marker-trait association analysis (MTA) identified 24 to 151 significant SNPs in the three populations. Comparison of the significant SNPs identified common and specific quantitative trait locus/loci (QTL) in the LPS and TC populations. Genetic feature analysis of these significant SNPs proved that these SNPs were associated with the tested traits and could be used to predict trait performance of both LPS and TC populations. RNA-seq analysis was performed using maize hybrid varieties and their parental lines, and differentially expressed genes (DEGs) between hybrid varieties and parental lines were identified. Comparison of the chromosome positions of DEGs with those of significant SNPs detected in the TC population identified potential candidate genes that might be related to hybrid performance. Combining RNA-seq analysis and MTA results identified candidate genes for hybrid performance, providing information that could be useful for maize hybrid breeding.
Collapse
Affiliation(s)
- Yuting Ma
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China;
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Dongdong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Zhenxiang Xu
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Riliang Gu
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Pingxi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Junjie Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| | - Jianhua Wang
- Center for Seed Science and Technology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (Z.X.); (R.G.); (J.W.)
| | - Wanli Du
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China;
| | - Hongwei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.L.); (P.W.); (J.F.)
| |
Collapse
|
34
|
Zhang Y, Dong G, Chen F, Xiong E, Liu H, Jiang Y, Xiong G, Ruan B, Qian Q, Zeng D, Ma D, Yu Y, Wu L. The kinesin-13 protein BR HYPERSENSITIVE 1 is a negative brassinosteroid signaling component regulating rice growth and development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1751-1766. [PMID: 35258682 DOI: 10.1007/s00122-022-04067-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phytohormones performed critical roles in regulating plant architecture and thus determine grain yield in rice. However, the roles of brassinosteroids (BRs) compared to other phytohormones in shaping rice architecture are less studied. In this study, we report that BR hypersensitive1 (BHS1) plays a negative role in BR signaling and regulate rice architecture. BHS1 encodes the kinesin-13a protein and regulates grain length. We found that bhs1 was hypersensitive to BR, while BHS1-overexpression was less sensitive to BR compare to WT. BHS1 was down-regulated at RNA and protein level upon exogenous BR treatment, and proteasome inhibitor MG132 delayed the BHS1 degradation, indicating that both the transcriptional and posttranscriptional regulation machineries are involved in BHS1-mediated regulation of plant growth and development. Furthermore, we found that the BR-induced degradation of BHS1 was attenuated in Osbri1 and Osbak1 mutants, but not in Osbzr1 and Oslic mutants. Together, these results suggest that BHS1 is a novel component which is involved in negative regulation of the BR signaling downstream player of BRI1.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huijie Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yaohuang Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, 310036, China.
| |
Collapse
|
35
|
Song Y, Niu R, Yu H, Guo J, Du C, Zhang Z, Wei Y, Li J, Zhang S. OsSLA1 functions in leaf angle regulation by enhancing the interaction between OsBRI1 and OsBAK1 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1111-1127. [PMID: 35275421 DOI: 10.1111/tpj.15727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf angle is an important trait in plants. Here, we demonstrate that the leucine-rich repeat receptor-like kinase OsSLA1 plays an important role in leaf angle regulation in rice (Oryza sativa). OsSLA1 mutant plants exhibited a small leaf angle phenotype due to changes of adaxial cells in the lamina joint. GUS staining revealed that OsSLA1 was highly expressed in adaxial cells of the lamina joint. The OsSLA1 mutant plants were insensitive to exogenous epibrassinolide (eBL) and showed upregulated expression of DWARF and CPD, but downregulated expression of BU1, BUL1, and ILI1, indicating that brassinosteroid (BR) signal transduction was blocked. Fluorescence microscopy showed that OsSLA1 was localized to the plasma membrane and nearby periplasmic vesicles. Further study showed that OsSLA1 interacts with OsBRI1 and OsBAK1 via its intracellular domain and promotes the interaction between OsBRI1 and OsBAK1. In addition, phosphorylation experiments revealed that OsSLA1 does not possess kinase activity, but that it can be phosphorylated by OsBRI1 in vitro. Knockout of OsSLA1 in the context of d61 caused exacerbation of the mutant phenotype. These results demonstrate that OsSLA1 regulates leaf angle formation via positive regulation of BR signaling by enhancing the interaction of OsBRI1 with OsBAK1.
Collapse
Affiliation(s)
- Yajing Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruofan Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Hongli Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Chunhui Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zilun Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ying Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jiaxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Suqiao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
36
|
Khan Y, Xiong Z, Zhang H, Liu S, Yaseen T, Hui T. Expression and roles of GRAS gene family in plant growth, signal transduction, biotic and abiotic stress resistance and symbiosis formation-a review. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:404-416. [PMID: 34854195 DOI: 10.1111/plb.13364] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The GRAS (derived from GAI, RGA and SCR) gene family consists of plant-specific genes, works as a transcriptional regulator and plays a key part in the regulation of plant growth and development. The past decade has witnessed significant progress in understanding and advances on GRAS transcription factors in various plants. A notable concern is to what extent the mechanisms found in plants, particularly crops, are shared by other species, and what other characteristics are dependent on GRAS transcription factor (TFS)-mediated gene expression. GRAS are involved in many processes that are intimately linked to plant growth regulation. However, GRAS also perform additional roles against environmental stresses, allowing plants to function more efficiently. GRAS increase plant growth and development by improving several physiological processes, such as phytohormone, biosynthetic and signalling pathways. Furthermore, the GRAS gene family plays an important role in response to abiotic stresses, e.g. photooxidative stress. Moreover, evidence shows the involvement of GRAS in arbuscule development during plant-mycorrhiza associations. In this review, the diverse roles of GRAS in plant systems are highlighted that could be useful in enhancing crop productivity through genetic modification, especially of crops. This is the first review to report the role and function of the GRAS gene family in plant systems. Furthermore, a large number of studies are reviewed, and several limitations and research gaps identified that must be addressed in future studies.
Collapse
Affiliation(s)
- Y Khan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Z Xiong
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - H Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - S Liu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - T Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - T Hui
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resource and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
37
|
Albertos P, Wlk T, Griffiths J, Pimenta Lange MJ, Unterholzner SJ, Rozhon W, Lange T, Jones AM, Poppenberger B. Brassinosteroid-regulated bHLH transcription factor CESTA induces the gibberellin 2-oxidase GA2ox7. PLANT PHYSIOLOGY 2022; 188:2012-2025. [PMID: 35148416 PMCID: PMC8968292 DOI: 10.1093/plphys/kiac008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/10/2021] [Indexed: 05/14/2023]
Abstract
Brassinosteroids (BRs) are plant steroids that have growth-promoting capacities, which are partly enabled by an ability to induce biosynthesis of gibberellins (GAs), a second class of plant hormones. In addition, BRs can also activate GA catabolism; here we show that in Arabidopsis (Arabidopsis thaliana) the basic helix-loop-helix transcription factor CESTA (CES) and its homologues BRASSINOSTEROID-ENHANCED EXPRESSION (BEE) 1 and 3 contribute to this activity. CES and the BEEs are BR-regulated at the transcriptional and posttranslational level and participate in different physiological processes, including vegetative and reproduction development, shade avoidance, and cold stress responses. We show that CES/BEEs can induce the expression of the class III GA 2-oxidase GA2ox7 and that this activity is increased by BRs. In BR signaling - and CES/BEE-deficient mutants, GA2ox7 expression decreased, yielding reduced levels of GA110, a product of GA2ox7 activity. In plants that over-express CES, GA2ox7 expression is hyper-responsive to BR, GA110 levels are elevated and amounts of bioactive GA are reduced. We provide evidence that CES directly binds to the GA2ox7 promoter and is activated by BRs, but can also act by BR-independent means. Based on these results, we propose a model for CES activity in GA catabolism where CES can be recruited for GA2ox7 induction not only by BR, but also by other factors.
Collapse
Affiliation(s)
| | | | | | - Maria J Pimenta Lange
- Institute of Plant Biology, Technical University of Braunschweig, Braunschweig, Germany
| | | | | | - Theo Lange
- Institute of Plant Biology, Technical University of Braunschweig, Braunschweig, Germany
| | | | | |
Collapse
|
38
|
Li T, Shi Y, Zhu B, Zhang T, Feng Z, Wang X, Li X, You C. Genome-Wide Identification of Apple Atypical bHLH Subfamily PRE Members and Functional Characterization of MdPRE4.3 in Response to Abiotic Stress. Front Genet 2022; 13:846559. [PMID: 35401662 PMCID: PMC8987198 DOI: 10.3389/fgene.2022.846559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 11/29/2022] Open
Abstract
Paclobutrazol Resistance (PRE) genes encode atypical basic helix–loop–helix (bHLH) transcription factor family. Typical bHLH proteins contain a bifunctional structure with a basic region involved in DNA binding and an adjacent helix–loop–helix domain involved in protein–protein interaction. PRE members lack the basic region but retain the HLH domain, which interacts with other typical bHLH proteins to suppress or enhance their DNA-binding activity. PRE proteins are involved in phytohormone responses, light signal transduction, and fruit pigment accumulation. However, apple (Malus domestica) PRE protein functions have not been studied. In this study, nine MdPRE genes were identified from the apple GDDH13 v1.1 reference genome and were mapped to seven chromosomes. The cis-acting element analysis revealed that MdPRE promoters possessed various elements related to hormones, light, and stress responses. Expression pattern analysis showed that MdPRE genes have different tissue expression profiles. Hormonal and abiotic stress treatments can induce the expression of several MdPRE genes. Moreover, we provide molecular and genetic evidence showing that MdPRE4.3 increases the apple’s sensitivity to NaCl, abscisic acid (ABA), and indoleacetic acid (IAA) and improves tolerance to brassinosteroids (BR); however, it does not affect the apple’s response to gibberellin (GA). Finally, the protein interaction network among the MdPRES proteins was predicted, which could help us elucidate the molecular and biological functions of atypical bHLH transcription factors in the apple.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiuming Li
- *Correspondence: Xiuming Li, ; Chunxiang You,
| | | |
Collapse
|
39
|
Cao Y, Zhong Z, Wang H, Shen R. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:426-436. [PMID: 35075761 PMCID: PMC8882799 DOI: 10.1111/pbi.13780] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 05/12/2023]
Abstract
High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high-density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high-density planting.
Collapse
Affiliation(s)
- Yingying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhuojun Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
40
|
Gao X, Zhang J, Cai G, Du H, Li J, Wang R, Wang Y, Yin J, Zhang W, Zhang H, Huang J. qGL3/OsPPKL1 induces phosphorylation of 14-3-3 protein OsGF14b to inhibit OsBZR1 function in brassinosteroid signaling. PLANT PHYSIOLOGY 2022; 188:624-636. [PMID: 34662408 PMCID: PMC8774794 DOI: 10.1093/plphys/kiab484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 05/11/2023]
Abstract
Brassinosteroids (BRs) play essential roles in regulating plant growth and development, however, gaps still remain in our understanding of the BR signaling network. We previously cloned a grain length quantitative trait locus qGL3, encoding a rice (Oryza sativa L.) protein phosphatase with Kelch-like repeat domain (OsPPKL1), that negatively regulates grain length and BR signaling. To further explore the BR signaling network, we performed phosphoproteomic analysis to screen qGL3-regulated downstream components. We selected a 14-3-3 protein OsGF14b from the phosphoproteomic data for further analysis. qGL3 promoted the phosphorylation of OsGF14b and induced the interaction intensity between OsGF14b and OsBZR1. In addition, phosphorylation of OsGF14b played an important role in regulating nucleocytoplasmic shuttling of OsBZR1. The serine acids (Ser258Ser259) residues of OsGF14b play an essential role in BR-mediated responses and plant development. Genetic and molecular analyses indicated that OsGF14b functions as a negative regulator in BR signaling and represses the transcriptional activation activity of OsBZR1. Collectively, these results demonstrate that qGL3 induces the phosphorylation of OsGF14b, which modulates nucleocytoplasmic shuttling and transcriptional activation activity of OsBZR1, to eventually negatively regulate BR signaling and grain length in rice.
Collapse
Affiliation(s)
- Xiuying Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jiaqi Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Guang Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Huaying Du
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jianbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ruqin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Yuji Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Jing Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Wencai Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Provincial Engineering Research Center of Seed Industry Science and Technology, Nanjing 210095, China
| |
Collapse
|
41
|
Jin Y, Li J, Zhu Q, Du X, Liu F, Li Y, Ahmar S, Zhang X, Sun J, Xue F. GhAPC8 regulates leaf blade angle by modulating multiple hormones in cotton (Gossypium hirsutum L.). Int J Biol Macromol 2022; 195:217-228. [PMID: 34896470 DOI: 10.1016/j.ijbiomac.2021.11.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
Leaf angle, including leaf petiole angle (LPA) and leaf blade angle (LBA), is an important trait affecting plant architecture. Anaphase-promoting complex/cyclosome (APC/C) genes play a vital role in plant growth and development, including regulation of leaf angle. Here, we identified and characterized the APC genes in Upland cotton (G. hirsutum L.) with a focus on GhAPC8, a homolog of soybean GmILPA1 involved in regulation of LPA. We showed that independently silencing the At or Dt sub-genome homoeolog of GhAPC8 using virus-induced gene silencing reduced plant height and LBA, and that reduction of LBA could be caused by uneven growth of cortex parenchyma cells on the adaxial and abaxial sides of the junction between leaf blade and leaf petiole. The junction between leaf blade and leaf petiole of the GhAPC8-silenced plants had an elevated level of brassinosteroid (BR) and a decreased levels of auxin and gibberellin. Consistently, comparative transcriptome analysis found that silencing GhAPC8 activated genes of the BR biosynthesis and signaling pathways as well as genes related to ubiquitin-mediated proteolysis. Weighted gene co-expression network analysis (WGCNA) identified gene modules significantly associated with plant height and LBA, and candidate genes bridging GhAPC8, the pathways of BR biosynthesis and signaling and ubiquitin-mediated proteolysis. These results demonstrated a role of GhAPC8 in regulating LBA, likely achieved by modulating the accumulation and signaling of multiple phytohormones.
Collapse
Affiliation(s)
- Yanlong Jin
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jinghui Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Sunny Ahmar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| |
Collapse
|
42
|
Jin SK, Zhang MQ, Leng YJ, Xu LN, Jia SW, Wang SL, Song T, Wang RA, Yang QQ, Tao T, Cai XL, Gao JP. OsNAC129 Regulates Seed Development and Plant Growth and Participates in the Brassinosteroid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:905148. [PMID: 35651773 PMCID: PMC9149566 DOI: 10.3389/fpls.2022.905148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Grain size and the endosperm starch content determine grain yield and quality in rice. Although these yield components have been intensively studied, their regulatory mechanisms are still largely unknown. In this study, we show that loss-of-function of OsNAC129, a member of the NAC transcription factor gene family that has its highest expression in the immature seed, greatly increased grain length, grain weight, apparent amylose content (AAC), and plant height. Overexpression of OsNAC129 had the opposite effect, significantly decreasing grain width, grain weight, AAC, and plant height. Cytological observation of the outer epidermal cells of the lemma using a scanning electron microscope (SEM) revealed that increased grain length in the osnac129 mutant was due to increased cell length compared with wild-type (WT) plants. The expression of OsPGL1 and OsPGL2, two positive grain-size regulators that control cell elongation, was consistently upregulated in osnac129 mutant plants but downregulated in OsNAC129 overexpression plants. Furthermore, we also found that several starch synthase-encoding genes, including OsGBSSI, were upregulated in the osnac129 mutant and downregulated in the overexpression plants compared with WT plants, implying a negative regulatory role for OsNAC129 both in grain size and starch biosynthesis. Additionally, we found that the expression of OsNAC129 was induced exclusively by abscisic acid (ABA) in seedlings, but OsNAC129-overexpressing plants displayed reduced sensitivity to exogenous brassinolide (BR). Therefore, the results of our study demonstrate that OsNAC129 negatively regulates seed development and plant growth, and further suggest that OsNAC129 participates in the BR signaling pathway.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xiu-Ling Cai,
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Ji-Ping Gao,
| |
Collapse
|
43
|
Zhan P, Wei X, Xiao Z, Wang X, Ma S, Lin S, Li F, Bu S, Liu Z, Zhu H, Liu G, Zhang G, Wang S. GW10, a member of P450 subfamily regulates grain size and grain number in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3941-3950. [PMID: 34420062 DOI: 10.1007/s00122-021-03939-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/11/2021] [Indexed: 05/02/2023]
Abstract
A quantitative trait locus GW10 is located on Chromosome 10 by map-based cloning, which encodes a P450 Subfamily protein. The GW10 regulates grain size and grain number in rice involved in the BR pathway. Grain size and grain number play extremely important roles in rice grain yield. Here, we identify GW10, which encodes a P450 subfamily protein and controls grain size and grain number by using Lemont (tropical japonica) as donor parent and HJX74 (indica) as recipient parent. The GW10 locus was mapped into a 14.6 kb region in HJX74 genomic on the long arm of chromosome 10. Lower expression of the gw10 in panicle is contributed to the shorter and narrower rice grain, and the increased number of grains per panicle. In contrast, overexpression of GW10 is contributed to longer and wider rice grain. Furthermore, the higher expression levels of some of the brassinosteroid (BR) biosynthesis and response genes are associated with the NIL-GW10. The sensitivity of the leaf angle to exogenous BR in NIL-GW10 is lower than that in NIL-gw10 and in the KO-GW10, which implied that the GW10 should involve in the brassinosteroid-mediated regulation of rice grain size and grain number.
Collapse
Affiliation(s)
- Penglin Zhan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Wei
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhili Xiao
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoling Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shuaipeng Ma
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Shaojun Lin
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Suhong Bu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zupei Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Guifu Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaokui Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
44
|
Ding Y, Gardiner DM, Powell JJ, Colgrave ML, Park RF, Kazan K. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. PLANT, CELL & ENVIRONMENT 2021; 44:3526-3544. [PMID: 34591319 DOI: 10.1111/pce.14195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.
Collapse
Affiliation(s)
- Yi Ding
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Jonathan J Powell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle L Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Australian Research Council, Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Robert F Park
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
45
|
Zhu CL, Xing B, Teng SZ, Deng C, Shen ZY, Ai PF, Lu TG, Zhang SW, Zhang ZG. OsRELA Regulates Leaf Inclination by Repressing the Transcriptional Activity of OsLIC in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:760041. [PMID: 34659326 PMCID: PMC8519309 DOI: 10.3389/fpls.2021.760041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Leaf angle is one of the most important agronomic traits in rice, and changes in leaf angle can alter plant architecture to affect photosynthetic efficiency and thus determine grain yield. Therefore, it is important to identify key genes controlling leaf angle and elucidate the molecular mechanisms to improve rice yield. We obtained a mutant rela (regulator of leaf angle) with reduced leaf angle in rice by EMS mutagenesis, and map-based cloning revealed that OsRELA encodes a protein of unknown function. Coincidentally, DENSE AND ERECT PANICLE 2 (DEP2) was reported in a previous study with the same gene locus. RNA-seq analysis revealed that OsRELA is involved in regulating the expression of ILI and Expansin family genes. Biochemical and genetic analyses revealed that OsRELA is able to interact with OsLIC, a negative regulator of BR signaling, through its conserved C-terminal domain, which is essential for OsRELA function in rice. The binding of OsRELA can activate the expression of downstream genes repressed by OsLIC, such as OsILI1, a positive regulator of leaf inclination in rice. Therefore, our results suggest that OsRELA can act as a transcriptional regulator and is involved in the regulation of leaf inclination by regulating the transcriptional activity of OsLIC.
Collapse
Affiliation(s)
- Chen-li Zhu
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Xing
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shou-zhen Teng
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chen Deng
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen-yong Shen
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Peng-fei Ai
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Tie-gang Lu
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sheng-wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhi-guo Zhang
- Joint CAAS/IRRI Laboratory for Photosynthetic Enhancement, Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
46
|
Tian X, He M, Mei E, Zhang B, Tang J, Xu M, Liu J, Li X, Wang Z, Tang W, Guan Q, Bu Q. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. THE PLANT CELL 2021; 33:2753-2775. [PMID: 34003966 PMCID: PMC8408444 DOI: 10.1093/plcell/koab137] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/06/2021] [Indexed: 05/27/2023]
Abstract
In rice (Oryza sativa) and other plants, plant architecture and seed size are closely related to yield. Brassinosteroid (BR) signaling and the mitogen-activated protein kinase (MAPK) pathway (MAPK kinase kinase 10 [MAPKKK10]-MAPK kinase 4 [MAPKK4]-MAPK6) are two major regulatory pathways that control rice architecture and seed size. However, their possible relationship and crosstalk remain elusive. Here, we show that WRKY53 mediated the crosstalk between BR signaling and the MAPK pathway. Biochemical and genetic assays demonstrated that glycogen synthase kinase-2 (GSK2) phosphorylates WRKY53 and lowers its stability, indicating that WRKY53 is a substrate of GSK2 in BR signaling. WRKY53 interacted with BRASSINAZOLE-RESISTANT 1(BZR1); they function synergistically to regulate BR-related developmental processes. We also provide genetic evidence showing that WRKY53 functions in a common pathway with the MAPKKK10-MAPKK4-MAPK6 cascade in leaf angle and seed size control, suggesting that WRKY53 is a direct substrate of this pathway. Moreover, GSK2 phosphorylated MAPKK4 to suppress MAPK6 activity, suggesting that GSK2-mediated BR signaling might also regulated MAPK pathway. Together, our results revealed a critical role for WRKY53 and uncovered sophisticated levels of interplay between BR signaling and the MAPK pathway in regulating rice architecture and seed size.
Collapse
Affiliation(s)
- Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Mingliang He
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enyang Mei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaqi Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenyu Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Xu J, Wang JJ, Xue HW, Zhang GH. Leaf direction: Lamina joint development and environmental responses. PLANT, CELL & ENVIRONMENT 2021; 44:2441-2454. [PMID: 33866581 DOI: 10.1111/pce.14065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Plant architecture plays a major role in canopy photosynthesis and biomass production, and plants adjust their growth (and thus architecture) in response to changing environments. Leaf angle is one of the most important traits in rice (Oryza sativa L.) plant architecture, because leaf angle strongly affects leaf direction and rice production, with more-erect leaves being advantageous for high-density plantings. The degree of leaf bending depends on the morphology of the lamina joint, which connects the leaf and the sheath. In this review, we discuss cell morphology in different lamina joint tissues and describe the underlying genetic network that governs this morphology and thus regulates leaf direction. Furthermore, we focus on the mechanism by how environmental factors influence rice leaf angle. Our review provides a theoretical framework for the future genetic improvement of rice leaf orientation and plant architecture.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jia-Jia Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Heng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
48
|
Guo J, Li W, Shang L, Wang Y, Yan P, Bai Y, Da X, Wang K, Guo Q, Jiang R, Mao C, Mo X. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. THE NEW PHYTOLOGIST 2021; 230:1953-1966. [PMID: 33638214 DOI: 10.1111/nph.17303] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 05/27/2023]
Abstract
Leaf angle is an important agronomic trait in cereals that helps determine plant yield by affecting planting density. However, the regulation mechanism of leaf angle remained elusive. Here, we show that OsbHLH98, a rice bHLH transcription factor, negatively regulates leaf angle. osbhlh98 mutant leaves formed a larger leaf angle, whereas transgenic plants overexpressing OsbHLH98 exhibited a slight reduction in leaf angle. We determined that the changes in leaf angle resulted from increased number and size of parenchyma cells on the adaxial side of the lamina joint in osbhlh98 mutants. Experiments using reporter constructs showed that OsbHLH98 is expressed on the adaxial side of lamina joints, consistent with its proposed function in regulating leaf angle. Furthermore, we established by chromatin immunoprecipitation and CUT&RUN that OsBUL1 is a direct downstream target of OsbHLH98. Transactivation assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis indicated that OsbHLH98 represses OsBUL1 transcription. Our results demonstrate that OsbHLH98 negatively regulates leaf angle by counteracting brassinosteroid-induced cell elongation via the repression of OsBUL1 transcription. The characterization of OsbHLH98 and its role in determining leaf angle will lay the foundation to develop the ideal plant architecture for adaptation to high planting density.
Collapse
Affiliation(s)
- Jiangfan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianguang Shang
- Lingnan Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yuguang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Peng Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youhuang Bai
- Department of Bioinformatics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaowen Da
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qianqian Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruirui Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
49
|
Liu X, Zhao C, Gao Y, Xu Y, Wang S, Li C, Xie Y, Chen P, Yang P, Yuan L, Wang X, Huang L, Ma F, Feng H, Guan Q. A multifaceted module of BRI1 ETHYLMETHANE SULFONATE SUPRESSOR1 (BES1)-MYB88 in growth and stress tolerance of apple. PLANT PHYSIOLOGY 2021; 185:1903-1923. [PMID: 33793930 PMCID: PMC8133677 DOI: 10.1093/plphys/kiaa116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The R2R3 transcription factor MdMYB88 has previously been reported to function in biotic and abiotic stress responses. Here, we identify BRI1 ETHYLMETHANE SULFONATE SUPRESSOR1 (MdBES1), a vital component of brassinosteroid (BR) signaling in apple (Malus × domestica) that directly binds to the MdMYB88 promoter, regulating the expression of MdMYB88 in a dynamic and multifaceted mode. MdBES1 positively regulated expression of MdMYB88 under cold stress and pathogen attack, but negatively regulated its expression under control and drought conditions. Consistently, MdBES1 was a positive regulator for cold tolerance and disease resistance in apple, but a negative regulator for drought tolerance. In addition, MdMYB88 participated in BR biosynthesis by directly regulating the BR biosynthetic genes DE ETIOLATED 2 (MdDET2), DWARF 4 (MdDWF4), and BRASSINOSTEROID 6 OXIDASE 2 (MdBR6OX2). Applying exogenous BR partially rescued the erect leaf and dwarf phenotypes, as well as defects in stress tolerance in MdMYB88/124 RNAi plants. Moreover, knockdown of MdMYB88 in MdBES1 overexpression (OE) plants decreased resistance to a pathogen and C-REPEAT BINDING FACTOR1 expression, whereas overexpressing MdMYB88 in MdBES1 OE plants increased expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (MdSPL3) and BR biosynthetic genes, suggesting that MdMYB88 contributes to MdBES1 function during BR biosynthesis and the stress response. Taken together, our results reveal multifaceted regulation of MdBES1 on MdMYB88 in BR biosynthesis and stress tolerance.
Collapse
Affiliation(s)
- Xiaofang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caide Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shujin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
50
|
Genetic architecture affecting maize agronomic traits identified by variance heterogeneity association mapping. Genomics 2021; 113:1681-1688. [PMID: 33839267 DOI: 10.1016/j.ygeno.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
Conventional genome-wide association studies (GWAS) focused on the phenotypic mean differences (mGWAS) but often ignored genetic variants influencing differences in the variance between genotypes. In this study, we performed variance heterogeneity GWAS (vGWAS) analysis for 13 previously measured agronomic traits in a maize population. We discovered a total of 129 significant SNPs. We demonstrated that the genetic loci influencing mean differences and variance heterogeneity formed distinct groups, suggesting that breeders were able to independently select for phenotype mean and variance values. Moreover, vGWAS served as a tractable approach to effectively identify 214 epistatic interaction pairs. In addition, we documented four agronomic traits with decreasing phenotype variance during modern maize breeding history and identified the potential genetic variants influencing this process. In summary, we discovered additional non-additive effects contributing to missing heritability and valuable genetic variants used for breeding varieties with desired phenotypic variance.
Collapse
|