1
|
Campa A, Geffroy V, Bitocchi E, Noly A, Papa R, Ferreira JJ. Screening for resistance to four fungal diseases and associated genomic regions in a snap bean diversity panel. FRONTIERS IN PLANT SCIENCE 2024; 15:1386877. [PMID: 38919821 PMCID: PMC11196787 DOI: 10.3389/fpls.2024.1386877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Anthracnose, white mold, powdery mildew, and root rot caused by Colletotrichum lindemuthianum, Scletorinia sclerotiorum, Erysiphe spp., and Pythium ultimum, respectively, are among the most frequent diseases that cause significant production losses worldwide in common bean (Phaseolus vulgaris L.). Reactions against these four fungal diseases were investigated under controlled conditions using a diversity panel of 311 bean lines for snap consumption (Snap bean Panel). The genomic regions involved in these resistance responses were identified based on a genome-wide association study conducted with 16,242 SNP markers. The highest number of resistant lines was observed against the three C. lindemuthianum isolates evaluated: 156 lines were resistant to CL124 isolate, 146 lines resistant to CL18, and 109 lines were resistant to C531 isolate. Two well-known anthracnose resistance clusters were identified, the Co-2 on chromosome Pv11 for isolates CL124 and CL18, and the Co-3 on chromosome Pv04 for isolates CL124 and C531. In addition, other lesser-known regions of anthracnose resistance were identified on chromosomes Pv02, Pv06, Pv08, and Pv10. For the white mold isolate tested, 24 resistant lines were identified and the resistance was localized to three different positions on chromosome Pv08. For the powdery mildew local isolate, only 12 resistant lines were identified, and along with the two previous resistance genes on chromosomes Pv04 and Pv11, a new region on chromosome Pv06 was also identified. For root rot caused by Pythium, 31 resistant lines were identified and two main regions were located on chromosomes Pv04 and Pv05. Relevant information for snap bean breeding programs was provided in this work. A total of 20 lines showed resistant or intermediate responses against four or five isolates, which can be suitable for sustainable farm production and could be used as resistance donors. Potential genes and genomic regions to be considered for targeted improvement were provided, including new or less characterized regions that should be validated in future works. Powdery mildew disease was identified as a potential risk for snap bean production and should be considered a main goal in breeding programs.
Collapse
Affiliation(s)
- Ana Campa
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Asturias, Spain
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona, Italy
| | - Alicia Noly
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif sur Yvette, France
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona, Italy
| | - Juan José Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Asturias, Spain
| |
Collapse
|
2
|
Meziadi C, Alvarez-Diaz JC, Thareau V, Gratias A, Marande W, Soler-Garzon A, Miklas PN, Pflieger S, Geffroy V. Fine-mapping and evolutionary history of R-BPMV, a dominant resistance gene to Bean pod mottle virus in Phaseolus vulgaris L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:8. [PMID: 38092992 DOI: 10.1007/s00122-023-04513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE R-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean. In common bean, BAT93 was reported to carry the R-BPMV resistance gene conferring resistance to BPMV and linked with the I resistance gene. To fine map R-BPMV, 182 recombinant inbred lines (RILs) derived from the cross BAT93 × JaloEEP558 were genotyped with polymerase chain reaction (PCR)-based markers developed using genome assemblies from G19833 and BAT93, as well as BAT93 BAC clone sequences. Analysis of RILs carrying key recombination events positioned R-BPMV to a target region containing at least 16 TIR-NB-LRR (TNL) sequences in BAT93. Because the I cluster presents a suppression of recombination and a large number of repeated sequences, none of the 16 TNLs could be excluded as R-BPMV candidate gene. The evolutionary history of the TNLs for the I cluster were reconstructed using microsynteny and phylogenetic analyses within the legume family. A single I TNL was present in Medicago truncatula and lost in soybean, mirroring the absence of complete BPMV resistance in soybean. Amplification of TNLs in the I cluster predates the divergence of the Phaseolus species, in agreement with the emergence of R-BPMV before the separation of the common bean wild centers of diversity. This analysis provides PCR-based markers useful in marker-assisted selection (MAS) and laid the foundation for cloning of R-BPMV resistance gene in order to transfer the resistance into soybean.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Juan-Camilo Alvarez-Diaz
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | | | - Alvaro Soler-Garzon
- Irrigated Agriculture Research and Extension Center, Washington State Univ, Prosser, WA, USA
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA ARS, Prosser, WA, USA
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91190, Gif Sur Yvette, France.
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Cité, CNRS, INRAE, 91190, Gif Sur Yvette, Rue Noetzlin, 91405, Orsay, France.
| |
Collapse
|
3
|
Ferraz ME, Ribeiro T, Sader M, Nascimento T, Pedrosa-Harand A. Comparative analysis of repetitive DNA in dysploid and non-dysploid Phaseolus beans. Chromosome Res 2023; 31:30. [PMID: 37812264 DOI: 10.1007/s10577-023-09739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.
Collapse
Affiliation(s)
- Maria Eduarda Ferraz
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Tiago Ribeiro
- Integrative Plant Research Lab, Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, MT, Brazil
| | - Mariela Sader
- Multidisciplinary Institute of Plant Biology, National Council for Scientific and Technical Research, National University of Córdoba, Córdoba, Argentina
| | - Thiago Nascimento
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Centre, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
4
|
Li J, Li H, Wang Y, Zhang W, Wang D, Dong Y, Ling Z, Bai H, Jin X, Hu X, Shi L. Decoupling subgenomes within hybrid lavandin provide new insights into speciation and monoterpenoid diversification of Lavandula. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2084-2099. [PMID: 37399213 PMCID: PMC10502749 DOI: 10.1111/pbi.14115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/17/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023]
Abstract
Polyploidization and transposon elements contribute to shape plant genome diversity and secondary metabolic variation in some edible crops. However, the specific contribution of these variations to the chemo-diversity of Lamiaceae, particularly in economic shrubs, is still poorly documented. The rich essential oils (EOs) of Lavandula plants are distinguished by monoterpenoids among the main EO-producing species, L. angustifolia (LA), L. × intermedia (LX) and L. latifolia (LL). Herein, the first allele-aware chromosome-level genome was assembled using a lavandin cultivar 'Super' and its hybrid origin was verified by two complete subgenomes (LX-LA and LX-LL). Genome-wide phylogenetics confirmed that LL, like LA, underwent two lineage-specific WGDs after the γ triplication event, and their speciation occurred after the last WGD. Chloroplast phylogenetic analysis indicated LA was the maternal source of 'Super', which produced premium EO (higher linalyl/lavandulyl acetate and lower 1,8-cineole and camphor) close to LA. Gene expression, especially the monoterpenoid biosynthetic genes, showed bias to LX-LA alleles. Asymmetric transposon insertions in two decoupling 'Super' subgenomes were responsible for speciation and monoterpenoid divergence of the progenitors. Both hybrid and parental evolutionary analysis revealed that LTR (long terminal repeat) retrotransposon associated with AAT gene loss cause no linalyl/lavandulyl acetate production in LL, and multi-BDH copies retained by tandem duplication and DNA transposon resulted in higher camphor accumulation of LL. Advances in allelic variations of monoterpenoids have the potential to revolutionize future lavandin breeding and EO production.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Hui Li
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Yiming Wang
- Novogene Bioinformatics InstituteBeijingChina
| | - Wenying Zhang
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Di Wang
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Yanmei Dong
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Zhengyi Ling
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Hongtong Bai
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Xiaohua Jin
- China National Botanical GardenBeijingChina
- State Key Laboratory of Systematic and Evolutionary BotanyInstitute of Botany, Chinese Academy of SciencesBeijingChina
| | - Xiaodi Hu
- Novogene Bioinformatics InstituteBeijingChina
| | - Lei Shi
- Key Laboratory of Plant ResourcesInstitute of Botany, Chinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| |
Collapse
|
5
|
Mir ZA, Chauhan D, Pradhan AK, Srivastava V, Sharma D, Budhlakoti N, Mishra DC, Jadon V, Sahu TK, Grover M, Gangwar OP, Kumar S, Bhardwaj SC, Padaria JC, Singh AK, Rai A, Singh GP, Kumar S. Comparative transcriptome profiling of near isogenic lines PBW343 and FLW29 to unravel defense related genes and pathways contributing to stripe rust resistance in wheat. Funct Integr Genomics 2023; 23:169. [PMID: 37209309 DOI: 10.1007/s10142-023-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.
Collapse
Affiliation(s)
- Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Divya Chauhan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | | | - Vivek Srivastava
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Divya Sharma
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | | | - Vasudha Jadon
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - Jasdeep C Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - G P Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| |
Collapse
|
6
|
Alvarez-Diaz JC, Laugé R, Delannoy E, Huguet S, Paysant-Le Roux C, Gratias A, Geffroy V. Genome-Wide Transcriptomic Analysis of the Effects of Infection with the Hemibiotrophic Fungus Colletotrichum lindemuthianum on Common Bean. PLANTS 2022; 11:plants11151995. [PMID: 35956473 PMCID: PMC9370732 DOI: 10.3390/plants11151995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Bean anthracnose caused by the hemibiotrophic fungus Colletotrichum lindemuthianum is one of the most important diseases of common bean (Phaseolus vulgaris) in the world. In the present study, the whole transcriptome of common bean infected with C. lindemuthianum during compatible and incompatible interactions was characterized at 48 and 72 hpi, corresponding to the biotrophy phase of the infection cycle. Our results highlight the prominent role of pathogenesis-related (PR) genes from the PR10/Bet vI family as well as a complex interplay of different plant hormone pathways including Ethylene, Salicylic acid (SA) and Jasmonic acid pathways. Gene Ontology enrichment analysis reveals that infected common bean seedlings responded by down-regulation of photosynthesis, ubiquitination-mediated proteolysis and cell wall modifications. In infected common bean, SA biosynthesis seems to be based on the PAL pathway instead of the ICS pathway, contrarily to what is described in Arabidopsis. Interestingly, ~30 NLR were up-regulated in both contexts. Overall, our results suggest that the difference between the compatible and incompatible reaction is more a question of timing and strength, than a massive difference in differentially expressed genes between these two contexts. Finally, we used RT-qPCR to validate the expression patterns of several genes, and the results showed an excellent agreement with deep sequencing.
Collapse
Affiliation(s)
- Juan C. Alvarez-Diaz
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Richard Laugé
- Université Paris-Saclay, INRAE UR 1290 BIOGER, Av. Lucien Bretignières, BP 01, 78850 Thiverval Grignon, France;
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christine Paysant-Le Roux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ariane Gratias
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; (J.C.A.-D.); (E.D.); (S.H.); (C.P.-L.R.); (A.G.)
- Université Paris-Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Correspondence: ; Tel.: +33-1-69-15-33-65
| |
Collapse
|
7
|
Chen NWG, Ruh M, Darrasse A, Foucher J, Briand M, Costa J, Studholme DJ, Jacques M. Common bacterial blight of bean: a model of seed transmission and pathological convergence. MOLECULAR PLANT PATHOLOGY 2021; 22:1464-1480. [PMID: 33942466 PMCID: PMC8578827 DOI: 10.1111/mpp.13067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Xanthomonas citri pv. fuscans (Xcf) and Xanthomonas phaseoli pv. phaseoli (Xpp) are the causal agents of common bacterial blight of bean (CBB), an important disease worldwide that remains difficult to control. These pathogens belong to distinct species within the Xanthomonas genus and have undergone a dynamic evolutionary history including the horizontal transfer of genes encoding factors probably involved in adaptation to and pathogenicity on common bean. Seed transmission is a key point of the CBB disease cycle, favouring both vertical transmission of the pathogen and worldwide distribution of the disease through global seed trade. TAXONOMY Kingdom: Bacteria; phylum: Proteobacteria; class: Gammaproteobacteria; order: Lysobacterales (also known as Xanthomonadales); family: Lysobacteraceae (also known as Xanthomonadaceae); genus: Xanthomonas; species: X. citri pv. fuscans and X. phaseoli pv. phaseoli (Xcf-Xpp). HOST RANGE The main host of Xcf-Xpp is the common bean (Phaseolus vulgaris). Lima bean (Phaseolus lunatus) and members of the Vigna genus (Vigna aconitifolia, Vigna angularis, Vigna mungo, Vigna radiata, and Vigna umbellata) are also natural hosts of Xcf-Xpp. Natural occurrence of Xcf-Xpp has been reported for a handful of other legumes such as Calopogonium sp., Pueraria sp., pea (Pisum sativum), Lablab purpureus, Macroptilium lathyroides, and Strophostyles helvola. There are conflicting reports concerning the natural occurrence of CBB agents on tepary bean (Phaseolus acutifolius) and cowpea (Vigna unguiculata subsp. unguiculata). SYMPTOMS CBB symptoms occur on all aerial parts of beans, that is, seedlings, leaves, stems, pods, and seeds. Symptoms initially appear as water-soaked spots evolving into necrosis on leaves, pustules on pods, and cankers on twigs. In severe infections, defoliation and wilting may occur. DISTRIBUTION CBB is distributed worldwide, meaning that it is frequently encountered in most places where bean is cultivated in the Americas, Asia, Africa, and Oceania, except for arid tropical areas. Xcf-Xpp are regulated nonquarantine pathogens in Europe and are listed in the A2 list by the European and Mediterranean Plant Protection Organization (EPPO). GENOME The genome consists of a single circular chromosome plus one to four extrachromosomal plasmids of various sizes, for a total mean size of 5.27 Mb with 64.7% GC content and an average predicted number of 4,181 coding sequences. DISEASE CONTROL Management of CBB is based on integrated approaches that comprise measures aimed at avoiding Xcf-Xpp introduction through infected seeds, cultural practices to limit Xcf-Xpp survival between host crops, whenever possible the use of tolerant or resistant bean genotypes, and chemical treatments, mainly restricted to copper compounds. The use of pathogen-free seeds is essential in an effective management strategy and requires appropriate sampling, detection, and identification methods. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPH, https://gd.eppo.int/taxon/XANTFF, and http://www.cost.eu/COST_Actions/ca/CA16107.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Mylène Ruh
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Armelle Darrasse
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Justine Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Martial Briand
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Joana Costa
- University of Coimbra, Centre for Functional Ecology ‐ Science for People & the Planet, Department of Life SciencesCoimbraPortugal
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | | |
Collapse
|
8
|
Wisser RJ, Oppenheim SJ, Ernest EG, Mhora TT, Dumas MD, Gregory NF, Evans TA, Donofrio NM. Genome assembly of a Mesoamerican derived variety of lima bean: a foundational cultivar in the Mid-Atlantic USA. G3 GENES|GENOMES|GENETICS 2021; 11:6326801. [PMID: 34542584 PMCID: PMC8527486 DOI: 10.1093/g3journal/jkab207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022]
Abstract
Lima bean, Phaseolus lunatus, is closely related to common bean and is high in fiber and protein, with a low glycemic index. Lima bean is widely grown in the state of Delaware, where late summer and early fall weather are conducive to pod production. The same weather conditions also promote diseases such as pod rot and downy mildew, the latter of which has caused previous epidemics. A better understanding of the genes underlying resistance to this and other pathogens is needed to keep this industry thriving in the region. Our current study sought to sequence, assemble, and annotate a commercially available cultivar called Bridgeton, which could then serve as a reference genome, a basis of comparison to other Phaseolus taxa, and a resource for the identification of potential resistance genes. Combined efforts of sequencing, linkage, and comparative analysis resulted in a 623 Mb annotated assembly for lima bean, as well as a better understanding of an evolutionarily dynamic resistance locus in legumes.
Collapse
Affiliation(s)
- Randall J Wisser
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux, INRAE, Univ. Montpellier, SupAgro, 34060 Montpellier, France
| | - Sara J Oppenheim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Emmalea G Ernest
- Cooperative Extension, University of Delaware, Georgetown, DE 19947, USA
| | - Terence T Mhora
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael D Dumas
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nancy F Gregory
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Thomas A Evans
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nicole M Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
9
|
Sahoo DK, Das A, Huang X, Cianzio S, Bhattacharyya MK. Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean. Sci Rep 2021; 11:16907. [PMID: 34413429 PMCID: PMC8377050 DOI: 10.1038/s41598-021-96425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The Phytophtora root and stem rot is a serious disease in soybean. It is caused by the oomycete pathogen Phytophthora sojae. Growing Phytophthora resistant cultivars is the major method of controlling this disease. Resistance is race- or gene-specific; a single gene confers immunity against only a subset of the P. sojae isolates. Unfortunately, rapid evolution of new Phytophthora sojae virulent pathotypes limits the effectiveness of an Rps ("resistance to Phytophthora sojae") gene to 8-15 years. The current study was designed to investigate the effectiveness of Rps12 against a set of P. sojae isolates using recombinant inbred lines (RILs) that contain recombination break points in the Rps12 region. Our study revealed a unique Rps gene linked to the Rps12 locus. We named this novel gene as Rps13 that confers resistance against P. sojae isolate V13, which is virulent to recombinants that contains Rps12 but lack Rps13. The genetic distance between the two Rps genes is 4 cM. Our study revealed that two tightly linked functional Rps genes with distinct race-specificity provide broad-spectrum resistance in soybean. We report here the molecular markers for incorporating the broad-spectrum Phytophthora resistance conferred by the two Rps genes in commercial soybean cultivars.
Collapse
Affiliation(s)
- Dipak K Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Anindya Das
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Silvia Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
10
|
Moghaddam SM, Oladzad A, Koh C, Ramsay L, Hart JP, Mamidi S, Hoopes G, Sreedasyam A, Wiersma A, Zhao D, Grimwood J, Hamilton JP, Jenkins J, Vaillancourt B, Wood JC, Schmutz J, Kagale S, Porch T, Bett KE, Buell CR, McClean PE. The tepary bean genome provides insight into evolution and domestication under heat stress. Nat Commun 2021; 12:2638. [PMID: 33976152 PMCID: PMC8113540 DOI: 10.1038/s41467-021-22858-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 01/07/2021] [Indexed: 02/03/2023] Open
Abstract
Tepary bean (Phaseolus acutifolis A. Gray), native to the Sonoran Desert, is highly adapted to heat and drought. It is a sister species of common bean (Phaseolus vulgaris L.), the most important legume protein source for direct human consumption, and whose production is threatened by climate change. Here, we report on the tepary genome including exploration of possible mechanisms for resilience to moderate heat stress and a reduced disease resistance gene repertoire, consistent with adaptation to arid and hot environments. Extensive collinearity and shared gene content among these Phaseolus species will facilitate engineering climate adaptation in common bean, a key food security crop, and accelerate tepary bean improvement.
Collapse
Affiliation(s)
- Samira Mafi Moghaddam
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Atena Oladzad
- Department of Plant Sciences and Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - Chushin Koh
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Hart
- USDA-ARS-Tropical Agriculture Research Station, Mayaguez, PR, USA
| | - Sujan Mamidi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Genevieve Hoopes
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | | - Andrew Wiersma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Dongyan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Joshua C Wood
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Timothy Porch
- USDA-ARS-Tropical Agriculture Research Station, Mayaguez, PR, USA.
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA.
- Michigan State University AgBioResearch, East Lansing, MI, USA.
| | - Phillip E McClean
- Department of Plant Sciences and Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
11
|
Li Y, Leveau A, Zhao Q, Feng Q, Lu H, Miao J, Xue Z, Martin AC, Wegel E, Wang J, Orme A, Rey MD, Karafiátová M, Vrána J, Steuernagel B, Joynson R, Owen C, Reed J, Louveau T, Stephenson MJ, Zhang L, Huang X, Huang T, Fan D, Zhou C, Tian Q, Li W, Lu Y, Chen J, Zhao Y, Lu Y, Zhu C, Liu Z, Polturak G, Casson R, Hill L, Moore G, Melton R, Hall N, Wulff BBH, Doležel J, Langdon T, Han B, Osbourn A. Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nat Commun 2021; 12:2563. [PMID: 33963185 PMCID: PMC8105312 DOI: 10.1038/s41467-021-22920-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.
Collapse
Affiliation(s)
- Yan Li
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | | | - Qiang Zhao
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qi Feng
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Hengyun Lu
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiashun Miao
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Zheyong Xue
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Eva Wegel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jing Wang
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Ryan Joynson
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Lei Zhang
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuehui Huang
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Tao Huang
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Danling Fan
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Congcong Zhou
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qilin Tian
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Wenjun Li
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yiqi Lu
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiaying Chen
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yan Zhao
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ying Lu
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chuanrang Zhu
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guy Polturak
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Rachel Melton
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Tim Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Bin Han
- National Centre for Gene Research, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Centre of Excellence for Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
12
|
Richard MMS, Gratias A, Alvarez Diaz JC, Thareau V, Pflieger S, Meziadi C, Blanchet S, Marande W, Bitocchi E, Papa R, Miklas PN, Geffroy V. A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus Colletotrichum lindemuthianum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3569-3581. [PMID: 33693665 DOI: 10.1093/jxb/erab082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/05/2021] [Indexed: 05/27/2023]
Abstract
Identifying the molecular basis of resistance to pathogens is critical to promote a chemical-free cropping system. In plants, nucleotide-binding leucine-rich repeat constitute the largest family of disease resistance (R) genes, but this resistance can be rapidly overcome by the pathogen, prompting research into alternative sources of resistance. Anthracnose, caused by the fungus Colletotrichum lindemuthianum, is one of the most important diseases of common bean. This study aimed to identify the molecular basis of Co-x, an anthracnose R gene conferring total resistance to the extremely virulent C. lindemuthianum strain 100. To that end, we sequenced the Co-x 58 kb target region in the resistant JaloEEP558 (Co-x) common bean and identified KTR2/3, an additional gene encoding a truncated and chimeric CRINKLY4 kinase, located within a CRINKLY4 kinase cluster. The presence of KTR2/3 is strictly correlated with resistance to strain 100 in a diversity panel of common beans. Furthermore, KTR2/3 expression is up-regulated 24 hours post-inoculation and its transient expression in a susceptible genotype increases resistance to strain 100. Our results provide evidence that Co-x encodes a truncated and chimeric CRINKLY4 kinase probably resulting from an unequal recombination event that occurred recently in the Andean domesticated gene pool. This atypical R gene may act as a decoy involved in indirect recognition of a fungal effector.
Collapse
Affiliation(s)
- Manon M S Richard
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Ariane Gratias
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Juan C Alvarez Diaz
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Vincent Thareau
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Stéphanie Pflieger
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Chouaib Meziadi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Sophie Blanchet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | | | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Phillip N Miklas
- USDA ARS, Grain Legume Genet & Physiol Res Unit, Prosser, WA, USA
| | - Valérie Geffroy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| |
Collapse
|
13
|
Marla SS, Mishra P, Maurya R, Singh M, Wankhede DP, Kumar A, Yadav MC, Subbarao N, Singh SK, Kumar R. Refinement of Draft Genome Assemblies of Pigeonpea ( Cajanus cajan). Front Genet 2020; 11:607432. [PMID: 33384719 PMCID: PMC7770131 DOI: 10.3389/fgene.2020.607432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Genome assembly of short reads from large plant genomes remains a challenge in computational biology despite major developments in next generation sequencing. Of late several draft assemblies have been reported in sequenced plant genomes. The reported draft genome assemblies of Cajanus cajan have different levels of genome completeness, a large number of repeats, gaps, and segmental duplications. Draft assemblies with portions of genome missing are shorter than the referenced original genome. These assemblies come with low map accuracy affecting further functional annotation and the prediction of gene components as desired by crop researchers. Genome coverage, i.e., the number of sequenced raw reads mapped onto a certain location of the genome is an important quality indicator of completeness and assembly quality in draft assemblies. The present work aimed to improve the coverage in reported de novo sequenced draft genomes (GCA_000340665.1 and GCA_000230855.2) of pigeonpea, a legume widely cultivated in India. The two recently sequenced assemblies, A1 and A2 comprised 72% and 75% of the estimated coverage of the genome, respectively. We employed an assembly reconciliation approach to compare the draft assemblies and merge them, filling the gaps by employing an algorithm size sorting mate-pair library to generate a high quality and near complete assembly with enhanced contiguity. The majority of gaps present within scaffolds were filled with right-sized mate-pair reads. The improved assembly reduced the number of gaps than those reported in draft assemblies resulting in an improved genome coverage of 82.4%. Map accuracy of the improved assembly was evaluated using various quality metrics and for the presence of specific trait-related functional genes. Employed pair-end and mate-pair local libraries helped us to reduce gaps, repeats, and other sequence errors resulting in lengthier scaffolds compared to the two draft assemblies. We reported the prediction of putative host resistance genes against Fusarium wilt disease by their performance and evaluated them both in wet laboratory and field phenotypic conditions.
Collapse
Affiliation(s)
- Soma S. Marla
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pallavi Mishra
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Maurya
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mohar Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Anil Kumar
- Directorate of Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Mahesh C. Yadav
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - N. Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanjeev K. Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
14
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 DOI: 10.21203/rs.3.rs-17010/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. RESULTS We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. CONCLUSIONS This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
15
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 PMCID: PMC7437933 DOI: 10.1186/s12864-020-06972-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. Results We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. Conclusions This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
16
|
Gratias A, Geffroy V. Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in Arabidopsis with Fluorescence Tagged Lines. Genes (Basel) 2020; 11:genes11070832. [PMID: 32708324 PMCID: PMC7397157 DOI: 10.3390/genes11070832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Plants are under strong evolutionary pressure to maintain surveillance against pathogens. One major disease resistance mechanism is based on NB-LRR (NLR) proteins that specifically recognize pathogen effectors. The cluster organization of the NLR gene family could favor sequence exchange between NLR genes via recombination, favoring their evolutionary dynamics. Increasing data, based on progeny analysis, suggest the existence of a link between the perception of biotic stress and the production of genetic diversity in the offspring. This could be driven by an increased rate of meiotic recombination in infected plants, but this has never been strictly demonstrated. In order to test if pathogen infection can increase DNA recombination in pollen meiotic cells, we infected Arabidopsis Fluorescent Tagged Lines (FTL) with the virulent bacteria Pseudomonas syringae. We measured the meiotic recombination rate in two regions of chromosome 5, containing or not an NLR gene cluster. In all tested intervals, no significant difference in genetic recombination frequency between infected and control plants was observed. Although it has been reported that pathogen exposure can sometimes increase the frequency of recombinant progeny in plants, our findings suggest that meiotic recombination rate in Arabidopsis may be resilient to at least some pathogen attack. Alternative mechanisms are discussed.
Collapse
Affiliation(s)
- Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Correspondence: ; Tel.: +33-1-69-15-33-65
| |
Collapse
|
17
|
Barilli E, Carrillo-Perdomo E, Cobos MJ, Kilian A, Carling J, Rubiales D. Identification of potential candidate genes controlling pea aphid tolerance in a Pisum fulvum high-density integrated DArTseq SNP-based genetic map. PEST MANAGEMENT SCIENCE 2020; 76:1731-1742. [PMID: 31758624 DOI: 10.1002/ps.5696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pea (Pisum sativum) is one of the most important temperate grain legumes in the world, and its production is severely constrained by the pea aphid (Acyrthosiphon pisum). Wild relatives, such as P. fulvum, are valuable sources of allelic diversity to improve the genetic resistance of cultivated pea species against A. pisum attack. To unravel the genetic control underlying resistance to the pea aphid attack, a quantitative trait loci (QTL) analysis was performed using the previously developed high density integrated genetic linkage map originated from an intraspecific recombinant inbred line (RIL) population (P. fulvum: IFPI3260 × IFPI3251). RESULTS We accurately evaluated specific resistance responses to pea aphid that allowed the identification, for the first time, of genomic regions that control plant damage and aphid reproduction. Eight QTLs associated with tolerance to pea aphid were identified in LGs I, II, III, IV and V, which individually explained from 17.0% to 51.2% of the phenotypic variation depending on the trait scored, and as a whole from 17.0% to 88.6%. The high density integrated genetic linkage map also allowed the identification of potential candidate genes co-located with the QTLs identified. CONCLUSIONS Our work shows how the survival of P. fulvum after the pea aphid attack depends on the triggering of a multi-component protection strategy that implies a quantitative tolerance. The genomic regions associated with the tolerance responses of P. fulvum during A. pisum infestation have provided six potential candidate genes that could be useful in marker-assisted selection (MAS) and genomic assisted breeding (GAB) after functional validation in the future. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Estefanía Carrillo-Perdomo
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
- Current address: Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | | | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, Australia
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, Australia
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| |
Collapse
|
18
|
Aznar-Fernández T, Barilli E, Cobos MJ, Kilian A, Carling J, Rubiales D. Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Bruchus pisorum) in a high-density integrated DArTseq SNP-based genetic map of pea. Sci Rep 2020; 10:33. [PMID: 31913335 PMCID: PMC6949260 DOI: 10.1038/s41598-019-56987-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
Pea weevil (Bruchus pisorum) is a damaging insect pest affecting pea (Pisum sativum) production worldwide. No resistant cultivars are available, although some levels of incomplete resistance have been identified in Pisum germplasm. To decipher the genetic control underlying the resistance previously identify in P. sativum ssp. syriacum, a recombinant inbred line (RIL F8:9) population was developed. The RIL was genotyped through Diversity Arrays Technology PL's DArTseq platform and screened under field conditions for weevil seed infestation and larval development along 5 environments. A newly integrated genetic linkage map was generated with a subset of 6,540 markers, assembled into seven linkage groups, equivalent to the number of haploid pea chromosomes. An accumulated distance of 2,503 cM was covered with an average density of 2.61 markers cM-1. The linkage map allowed the identification of three QTLs associated to reduced seed infestation along LGs I, II and IV. In addition, a QTL for reduced larval development was also identified in LGIV. Expression of these QTLs varied with the environment, being particularly interesting QTL BpSI.III that was detected in most of the environments studied. This high-saturated pea genetic map has also allowed the identification of seven potential candidate genes co-located with QTLs for marker-assisted selection, providing an opportunity for breeders to generate effective and sustainable strategies for weevil control.
Collapse
Affiliation(s)
| | - Eleonora Barilli
- Institute for Sustainable Agriculture, CSIC, Córdoba, E-14004, Spain.
| | - María J Cobos
- Institute for Sustainable Agriculture, CSIC, Córdoba, E-14004, Spain
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Kirinari St. Bruce, ACT2617, Australia
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, University of Canberra, Kirinari St. Bruce, ACT2617, Australia
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, E-14004, Spain
| |
Collapse
|
19
|
Marla SS, Mishra P, Maurya R, Singh M, Wankhede DP, Kumar A, Yadav MC, Subbarao N, Singh SK, Kumar R. Refinement of Draft Genome Assemblies of Pigeonpea ( Cajanus cajan). Front Genet 2020. [PMID: 33384719 DOI: 10.1101/2020.08.10.243949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Genome assembly of short reads from large plant genomes remains a challenge in computational biology despite major developments in next generation sequencing. Of late several draft assemblies have been reported in sequenced plant genomes. The reported draft genome assemblies of Cajanus cajan have different levels of genome completeness, a large number of repeats, gaps, and segmental duplications. Draft assemblies with portions of genome missing are shorter than the referenced original genome. These assemblies come with low map accuracy affecting further functional annotation and the prediction of gene components as desired by crop researchers. Genome coverage, i.e., the number of sequenced raw reads mapped onto a certain location of the genome is an important quality indicator of completeness and assembly quality in draft assemblies. The present work aimed to improve the coverage in reported de novo sequenced draft genomes (GCA_000340665.1 and GCA_000230855.2) of pigeonpea, a legume widely cultivated in India. The two recently sequenced assemblies, A1 and A2 comprised 72% and 75% of the estimated coverage of the genome, respectively. We employed an assembly reconciliation approach to compare the draft assemblies and merge them, filling the gaps by employing an algorithm size sorting mate-pair library to generate a high quality and near complete assembly with enhanced contiguity. The majority of gaps present within scaffolds were filled with right-sized mate-pair reads. The improved assembly reduced the number of gaps than those reported in draft assemblies resulting in an improved genome coverage of 82.4%. Map accuracy of the improved assembly was evaluated using various quality metrics and for the presence of specific trait-related functional genes. Employed pair-end and mate-pair local libraries helped us to reduce gaps, repeats, and other sequence errors resulting in lengthier scaffolds compared to the two draft assemblies. We reported the prediction of putative host resistance genes against Fusarium wilt disease by their performance and evaluated them both in wet laboratory and field phenotypic conditions.
Collapse
Affiliation(s)
- Soma S Marla
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pallavi Mishra
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Maurya
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mohar Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Anil Kumar
- Directorate of Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Mahesh C Yadav
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - N Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanjeev K Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
20
|
Ribeiro T, Vasconcelos E, Dos Santos KGB, Vaio M, Brasileiro-Vidal AC, Pedrosa-Harand A. Diversity of repetitive sequences within compact genomes of Phaseolus L. beans and allied genera Cajanus L. and Vigna Savi. Chromosome Res 2019; 28:139-153. [PMID: 31734754 DOI: 10.1007/s10577-019-09618-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
Abstract
Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within tribe Phaseoleae (Fabaceae), some genera, such as Phaseolus, Vigna, and Cajanus, show small genome and mostly stable chromosome number. Here, we applied a combined computational and cytological approach to study the organization and diversification of repetitive elements in some species of these genera. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons, especially Ogre and Chromovirus elements, making up most of genomes, other than P. acutifolius and Vigna species. Satellite DNAs (SatDNAs) were less representative, but highly diverse among species, showing a clear phylogenetic relationship. In situ localization revealed preferential location at pericentromeres and centromeres for both types of sequences, suggesting a heterogeneous composition, especially for centromeres. Few elements showed subterminal accumulation. Copy number variation among chromosomes within and among species was observed for all nine identified SatDNAs. Altogether, our data pointed two main elements (Ty3/Gypsy retrotransponsons and SatDNAs) to the diversification on the repetitive landscape in Phaseoleae, with a typical set of repeats in each species. The high turnover of these sequences, however, did not affect total genome size.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Integrative Plant Research Laboratory, Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Boa Esperança, Cuiabá, MT, 78060900, Brazil.
| | - Emanuelle Vasconcelos
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, s/n, Cidade Universitária, Recife, PE, 50670420, Brazil
| | - Magdalena Vaio
- Laboratory of Plant Genome Evolution and Domestication, Department of Plant Biology, Faculty of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Ana Christina Brasileiro-Vidal
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Recife, PE, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Av. Prof. Moraes Rêgo, s/n, Cidade Universitária, Recife, PE, 50670420, Brazil.
| |
Collapse
|
21
|
Murube E, Campa A, Ferreira JJ. Integrating genetic and physical positions of the anthracnose resistance genes described in bean chromosomes Pv01 and Pv04. PLoS One 2019; 14:e0212298. [PMID: 30763410 PMCID: PMC6375601 DOI: 10.1371/journal.pone.0212298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
A complex landscape of anthracnose resistance genes (Co-) located at the telomeric regions of the bean chromosomes Pv01 and Pv04 has been reported. The aim of this work was to investigate the genetic and physical positions of genes conferring resistance to races 6, 38, 39, 357, 65, and 73 as well as the relationships among the resistance genes identified herein and the previously described Co- genes in these telomeric regions. The linkage analysis using a genetic map of 497 SNPs from the recombinant inbred line population Xana/BAT93 revealed that the gene conferring resistance to race 65 in cultivar Xana (Co-165-X) was located in the Co-1 cluster, at the distal end of chromosome Pv01. The fine mapping of Co-165-X indicated that it was positioned between the physical positions 49,512,545 and 49,658,821 bp. This delimited physical position agrees with the positions of the previously mapped genes Co- 14, Co-x, Co-14, Co-1HY, and Co-Pa. Responses to races 6, 38, 39, and 357 in BAT93 exhibited co-segregation suggesting that the same gene, or very closely linked genes, were involved in the control. The linkage analysis showed that the resistance gene to race 38 in the genotype BAT93 (Co-338-B) was located at the beginning of chromosome Pv04, in the genetic position of the Co-3 cluster, and was flanked by markers with physical positions between 1,286,490 and 2,047,754 bp. Thus, the genes Co-3, Co-9, Co-10, Co-16, and Co-338-B, found in this work, form part of the same anthracnose resistance cluster at the beginning of chromosome Pv04, which is consistent with the discontinuous distribution of typical R genes annotated in the underlying genomic region. Resistance loci involved in the response to race 73 in the genotypes Xana (R) and BAT93 (R) were mapped to the same positions on clusters Co-1 and Co-3, respectively. The positioning of the resistance genes in the bean genome based on fine linkage mapping should play an important role in the characterization and differentiation of the anthracnose resistance genes. The assignment of Co- genes to clusters of race specific genes can help simplify the current scenario of anthracnose resistance.
Collapse
Affiliation(s)
- Ester Murube
- Plant Genetic Group, Area of Horticultural and Forest Crops, SERIDA, Villaviciosa Asturias, Spain
| | - Ana Campa
- Plant Genetic Group, Area of Horticultural and Forest Crops, SERIDA, Villaviciosa Asturias, Spain
| | - Juan José Ferreira
- Plant Genetic Group, Area of Horticultural and Forest Crops, SERIDA, Villaviciosa Asturias, Spain
| |
Collapse
|
22
|
Richard MMS, Gratias A, Meyers BC, Geffroy V. Molecular mechanisms that limit the costs of NLR-mediated resistance in plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2516-2523. [PMID: 30011120 PMCID: PMC6638094 DOI: 10.1111/mpp.12723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/25/2018] [Indexed: 05/25/2023]
Abstract
Crop diseases cause significant yield losses, and the use of resistant cultivars can effectively mitigate these losses and control many plant diseases. Most plant resistance (R) genes encode immune receptors composed of nucleotide-binding and leucine-rich repeat (NLR) domains. These proteins mediate the specific recognition of pathogen avirulence effectors to induce defence responses. However, NLR-triggered immunity can be associated with a reduction in growth and yield, so-called 'fitness costs'. Recent data have shown that plants use an elaborate interplay of different mechanisms to control NLR gene transcript levels, as well as NLR protein abundance and activity, to avoid the associated cost of resistance in the absence of a pathogen. In this review, we discuss the different levels of NLR regulation (transcriptional, post-transcriptional and at the protein level). We address the apparent need for plants to maintain diverse modes of regulation. A recent model suggesting an equilibrium 'ON/OFF state' of NLR proteins, in the absence of a pathogen, provides the context for our discussion.
Collapse
Affiliation(s)
- Manon M. S. Richard
- Molecular Plant PathologySILS, University of AmsterdamPO Box 942151090 GEAmsterdamthe Netherlands
| | - Ariane Gratias
- Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRA, Université Paris‐Saclay, Université Paris‐Sud, Université Evry, Université Paris‐Diderot, Sorbonne Paris‐CitéBâtiment 63091405OrsayFrance
| | - Blake C. Meyers
- Donald Danforth Plant Science Center975 North Warson RoadSt LouisMO63132USA
- Division of Plant Sciences52 Agriculture LabUniversity of MissouriColumbiaMO65211USA
| | - Valérie Geffroy
- Institute of Plant Sciences Paris‐Saclay IPS2, CNRS, INRA, Université Paris‐Saclay, Université Paris‐Sud, Université Evry, Université Paris‐Diderot, Sorbonne Paris‐CitéBâtiment 63091405OrsayFrance
| |
Collapse
|
23
|
Richard MMS, Gratias A, Thareau V, Kim KD, Balzergue S, Joets J, Jackson SA, Geffroy V. Genomic and epigenomic immunity in common bean: the unusual features of NB-LRR gene family. DNA Res 2018; 25:161-172. [PMID: 29149287 PMCID: PMC5909424 DOI: 10.1093/dnares/dsx046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022] Open
Abstract
In plants, a key class of genes comprising most of disease resistance (R) genes encodes Nucleotide-binding leucine-rich repeat (NL) proteins. Access to common bean (Phaseolus vulgaris) genome sequence provides unparalleled insight into the organization and evolution of this large gene family (∼400 NL) in this important crop. As observed in other plant species, most common bean NL are organized in cluster of genes. However, a particularity of common bean is that these clusters are often located in subtelomeric regions close to terminal knobs containing the satellite DNA khipu. Phylogenetically related NL are spread between different chromosome ends, suggesting frequent exchanges between non-homologous chromosomes. NL peculiar location, in proximity to heterochromatic regions, led us to study their DNA methylation status using a whole-genome cytosine methylation map. In common bean, NL genes displayed an unusual body methylation pattern since half of them are methylated in the three contexts, reminiscent of the DNA methylation pattern of repeated sequences. Moreover, 90 NL were also abundantly targeted by 24 nt siRNA, with 90% corresponding to methylated NL genes. This suggests the existence of a transcriptional gene silencing mechanism of NL through the RdDM (RNA-directed DNA methylation) pathway in common bean that has not been described in other plant species.
Collapse
Affiliation(s)
- Manon M S Richard
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 49071 Beaucouzé cedex, France
| | - Johann Joets
- GQE – Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602, USA
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris-Saclay, Univ Paris-Sud, Univ Evry, Univ Paris-Diderot, Sorbone Paris-Cité, 91405 Orsay, France
| |
Collapse
|
24
|
Chen NWG, Thareau V, Ribeiro T, Magdelenat G, Ashfield T, Innes RW, Pedrosa-Harand A, Geffroy V. Common Bean Subtelomeres Are Hot Spots of Recombination and Favor Resistance Gene Evolution. FRONTIERS IN PLANT SCIENCE 2018; 9:1185. [PMID: 30154814 PMCID: PMC6102362 DOI: 10.3389/fpls.2018.01185] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 05/10/2023]
Abstract
Subtelomeres of most eukaryotes contain fast-evolving genes usually involved in adaptive processes. In common bean (Phaseolus vulgaris), the Co-2 anthracnose resistance (R) locus corresponds to a cluster of nucleotide-binding-site leucine-rich-repeat (NL) encoding sequences, the prevalent class of plant R genes. To study the recent evolution of this R gene cluster, we used a combination of sequence, genetic and cytogenetic comparative analyses between common bean genotypes from two distinct gene pools (Andean and Mesoamerican) that diverged 0.165 million years ago. Co-2 is a large subtelomeric cluster on chromosome 11 comprising from 32 (Mesoamerican) to 52 (Andean) NL sequences embedded within khipu satellite repeats. Since the recent split between Andean and Mesoamerican gene pools, the Co-2 cluster has experienced numerous gene-pool specific NL losses, leading to distinct NL repertoires. The high proportion of solo-LTR retrotransposons indicates that the Co-2 cluster is located in a hot spot of unequal intra-strand homologous recombination. Furthermore, we observe large segmental duplications involving both Non-Homologous End Joining and Homologous Recombination double-strand break repair pathways. Finally, the identification of a Mesoamerican-specific subtelomeric sequence reveals frequent interchromosomal recombinations between common bean subtelomeres. Altogether, our results highlight that common bean subtelomeres are hot spots of recombination and favor the rapid evolution of R genes. We propose that chromosome ends could act as R gene incubators in many plant genomes.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
| | - Tiago Ribeiro
- Laboratory of Plant Cytogenetics, Federal University of Pernambuco, Recife, Brazil
| | - Ghislaine Magdelenat
- Genoscope/Commissariat à l’Energie Atomique-Centre National de Séquençage, Evry, France
| | - Tom Ashfield
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
- *Correspondence: Valérie Geffroy,
| |
Collapse
|
25
|
Dolatabadian A, Patel DA, Edwards D, Batley J. Copy number variation and disease resistance in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2479-2490. [PMID: 29043379 DOI: 10.1007/s00122-017-2993-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/27/2017] [Indexed: 05/06/2023]
Abstract
Plant genome diversity varies from single nucleotide polymorphisms to large-scale deletions, insertions, duplications, or re-arrangements. These re-arrangements of sequences resulting from duplication, gains or losses of DNA segments are termed copy number variations (CNVs). During the last decade, numerous studies have emphasized the importance of CNVs as a factor affecting human phenotype; in particular, CNVs have been associated with risks for several severe diseases. In plants, the exploration of the extent and role of CNVs in resistance against pathogens and pests is just beginning. Since CNVs are likely to be associated with disease resistance in plants, an understanding of the distribution of CNVs could assist in the identification of novel plant disease-resistance genes. In this paper, we review existing information about CNVs; their importance, role and function, as well as their association with disease resistance in plants.
Collapse
Affiliation(s)
- Aria Dolatabadian
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Dhwani Apurva Patel
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
26
|
González AM, Godoy L, Santalla M. Dissection of Resistance Genes to Pseudomonas syringae pv. phaseolicola in UI3 Common Bean Cultivar. Int J Mol Sci 2017; 18:E2503. [PMID: 29168746 PMCID: PMC5751106 DOI: 10.3390/ijms18122503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022] Open
Abstract
Few quantitative trait loci have been mapped for resistance to Pseudomonas syringae pv. phaseolicola in common bean. Two F₂ populations were developed from the host differential UI3 cultivar. The objective of this study was to further characterize the resistance to races 1, 5, 7 and 9 of Psp included in UI3. Using a QTL mapping approach, 16 and 11 main-effect QTLs for pod and primary leaf resistance were located on LG10, explaining up to 90% and 26% of the phenotypic variation, respectively. The homologous genomic region corresponding to primary leaf resistance QTLs detected tested positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL), Natural Resistance Associated Macrophage (NRAMP) and Pentatricopeptide Repeat family (PPR) proteins. It is worth noting that the main effect QTLs for resistance in pod were located inside a 3.5 Mb genomic region that included the Phvul.010G021200 gene, which encodes a protein that has the highest sequence similarity to the RIN4 gene of Arabidopsis, and can be considered an important candidate gene for the organ-specific QTLs identified here. These results support that resistance to Psp from UI3 might result from the immune response activated by combinations of R proteins, and suggest the guard model as an important mechanism in pod resistance to halo blight. The candidate genes identified here warrant functional studies that will help in characterizing the actual defense gene(s) in UI3 genotype.
Collapse
Affiliation(s)
- Ana M González
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Luís Godoy
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| | - Marta Santalla
- Grupo de Biología de Agrosistemas (BAS, www.bas-group.es), Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain.
| |
Collapse
|
27
|
Wu J, Zhu J, Wang L, Wang S. Genome-Wide Association Study Identifies NBS-LRR-Encoding Genes Related with Anthracnose and Common Bacterial Blight in the Common Bean. FRONTIERS IN PLANT SCIENCE 2017; 8:1398. [PMID: 28848595 PMCID: PMC5552710 DOI: 10.3389/fpls.2017.01398] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/26/2017] [Indexed: 05/03/2023]
Abstract
Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the largest and most important disease resistance genes in plants. The genome sequence of the common bean (Phaseolus vulgaris L.) provides valuable data for determining the genomic organization of NBS-LRR genes. However, data on the NBS-LRR genes in the common bean are limited. In total, 178 NBS-LRR-type genes and 145 partial genes (with or without a NBS) located on 11 common bean chromosomes were identified from genome sequences database. Furthermore, 30 NBS-LRR genes were classified into Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) types, and 148 NBS-LRR genes were classified into coiled-coil (CC)-NBS-LRR (CNL) types. Moreover, the phylogenetic tree supported the division of these PvNBS genes into two obvious groups, TNL types and CNL types. We also built expression profiles of NBS genes in response to anthracnose and common bacterial blight using qRT-PCR. Finally, we detected nine disease resistance loci for anthracnose (ANT) and seven for common bacterial blight (CBB) using the developed NBS-SSR markers. Among these loci, NSSR24, NSSR73, and NSSR265 may be located at new regions for ANT resistance, while NSSR65 and NSSR260 may be located at new regions for CBB resistance. Furthermore, we validated NSSR24, NSSR65, NSSR73, NSSR260, and NSSR265 using a new natural population. Our results provide useful information regarding the function of the NBS-LRR proteins and will accelerate the functional genomics and evolutionary studies of NBS-LRR genes in food legumes. NBS-SSR markers represent a wide-reaching resource for molecular breeding in the common bean and other food legumes. Collectively, our results should be of broad interest to bean scientists and breeders.
Collapse
Affiliation(s)
| | | | | | - Shumin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
28
|
Campa A, Ferreira JJ. Gene coding for an elongation factor is involved in resistance against powdery mildew in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:849-860. [PMID: 28233030 DOI: 10.1007/s00122-017-2864-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/24/2017] [Indexed: 05/29/2023]
Abstract
Genetic control of the resistance response against powdery mildew in common bean was studied combining genetic, genomic and transcriptomic analyses. A candidate resistance gene in cultivar Porrillo Sintetico was proposed. The species causing the fungal disease powdery mildew (PM) in the local common bean crop was identified as Erysiphe polygoni through the molecular analysis of the internal transcribed spacer region. A genetic analysis of the resistance in cultivar Porrillo Sintetico was conducted using different F2:3 populations, and a dominant gene conferring total resistance against a local PM isolate was physically located between 84,188 and 218,664 bp of chromosome Pv04. An in silico analysis of this region, based on the common bean reference sequence, revealed four genes candidate to be involved in the resistance reaction. Relative expression levels of these genes after PM infection showed a significant over-expression of the candidate gene Phvul.004G001500 in the resistant genotype Porrillo Sintetico. This gene was re-sequenced in the parental genotypes X2776 and Porrillo Sintetico to explain their different phenotypic responses against PM. Several substitutions where identified in exon regions, all of them synonymous, so differences in the produced amino acid sequence were not expected. However, a total of 37 mutations were identified in non-coding regions of the gene sequence, suggesting that intron variation could be responsible for the different gene expression levels after PM infection. No evidence of other regulatory mechanisms, such as alternative splicing or methylation, was identified. Candidate resistance gene Phvul.004G001500 codes for an elongation factor that is not a typical gene related to recognition of specific pathogens in plants, suggesting its involvement in the resistance through plant immune system.
Collapse
Affiliation(s)
- Ana Campa
- Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, Asturias, Spain.
| | - Juan José Ferreira
- Plant Genetics, Area of Horticultural and Forest Crops, SERIDA, Asturias, Spain
| |
Collapse
|
29
|
Ferreira JJ, Murube E, Campa A. Introgressed Genomic Regions in a Set of Near-Isogenic Lines of Common Bean Revealed by Genotyping-by-Sequencing. THE PLANT GENOME 2017; 10. [PMID: 28464066 DOI: 10.3835/plantgenome2016.08.0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genotyping-by-sequencing (GBS) was used to investigate and identify the introgressed genomic regions that corresponded to resistance alleles for anthracnose ( and ), (BCMV), and (BCMNV, and ) in a set of bean near-isogenic lines (NIL). The GBS analysis provided 12,697 single nucleotide polymorphisms (SNPs) although the densities along the chromosomes were not uniform, and some chromosomal regions, such as centromeric or pericentromeric regions, were less tagged. The backcrossing method resulted in the introgression of genomic regions into specific chromosomes. The number of introgressed region-tagging SNPs varied between 1 and 13, representing between 0.33 and 6.88% of the bean genome. The changes detected among the recurrent parent and NIL in chromosomal regions are candidate regions that may contain the introgressed genes. By comparing the NIL derived from the same resistance source, it was possible to delimit in chromosomes Pv02, Pv04, Pv06, and Pv11 the genomic regions containing the resistance genes , , , and . Results allowed verification of the physical positions of the resistance genes and a clearer physical position of the anthracnose resistance genes and . Two nonoverlapping regions were delimited in chromosome Pv11 from common regions in NIL with resistance loci mapped to the Co-2 cluster. Alleles of the loci included within these genomic regions show strong linkage disequilibrium. This knowledge can be used in selection programs involving these regions rich in resistance genes.
Collapse
|
30
|
Ribeiro T, Dos Santos KGB, Richard MMS, Sévignac M, Thareau V, Geffroy V, Pedrosa-Harand A. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans. PROTOPLASMA 2017; 254:791-801. [PMID: 27335007 DOI: 10.1007/s00709-016-0993-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Common bean (Phaseolus vulgaris) subtelomeres are highly enriched for khipu, the main satellite DNA identified so far in this genome. Here, we comparatively investigate khipu genomic organization in Phaseolus species from different clades. Additionally, we identified and characterized another satellite repeat, named jumper, associated to khipu. A mixture of P. vulgaris khipu clones hybridized in situ confirmed the presence of khipu-like sequences on subterminal chromosome regions in all Phaseolus species, with differences in the number and intensity of signals between species and when species-specific clones were used. Khipu is present as multimers of ∼500 bp and sequence analyses of cloned fragments revealed close relationship among khipu repeats. The new repeat, named jumper, is a 170-bp satellite sequence present in all Phaseolus species and inserted into the nontranscribed spacer (NTS) of the 5S rDNA in the P. vulgaris genome. Nevertheless, jumper was found as a high-copy repeat at subtelomeres and/or pericentromeres in the Phaseolus microcarpus lineage only. Our data argue for khipu as an important subtelomeric satellite DNA in the genus and for a complex satellite repeat composition of P. microcarpus subtelomeres, which also contain jumper. Furthermore, the differential amplification of these repeats in subtelomeres or pericentromeres reinforces the presence of a dynamic satellite DNA library in Phaseolus.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Karla G B Dos Santos
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Mireille Sévignac
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
31
|
Bassi D, Briñez B, Rosa JS, Oblessuc PR, Almeida CPD, Nucci SM, Silva LCDD, Chiorato AF, Vianello RP, Camargo LEA, Blair MW, Benchimol-Reis LL. Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genet Mol Biol 2017; 40:109-122. [PMID: 28222201 PMCID: PMC5409766 DOI: 10.1590/1678-4685-gmb-2015-0314] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/20/2016] [Indexed: 11/23/2022] Open
Abstract
Angular leaf spot (ALS) and powdery mildew (PWM) are two important fungi diseases
causing significant yield losses in common beans. In this study, a new genetic
linkage map was constructed using single sequence repeats (SSRs) and single
nucleotide polymorphisms (SNPs), in a segregating population derived from the AND 277
x SEA 5 cross, with 105 recombinant inbred lines. Phenotypic evaluations were
performed in the greenhouse to identify quantitative trait loci
(QTLs) associated with resistance by means of the composite interval mapping
analysis. Four QTLs were identified for ALS resistance. The QTL ALS11AS,
linked on the SNP BAR 5054, mapped on chromosome Pv11, showed the greatest effect
(R2 = 26.5%) on ALS phenotypic variance. For PWM resistance, two QTLs
were detected, PWM2AS and PWM11AS, on Pv2 and Pv11, explaining
7% and 66% of the phenotypic variation, respectively. Both QTLs on Pv11 were mapped
on the same genomic region, suggesting that it is a pleiotropic region. The present
study resulted in the identification of new markers closely linked to ALS and PWM
QTLs, which can be used for marker-assisted selection, fine mapping and positional
cloning.
Collapse
Affiliation(s)
- Denis Bassi
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Boris Briñez
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Juliana Santa Rosa
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Paula Rodrigues Oblessuc
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Caléo Panhoca de Almeida
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | - Stella Maris Nucci
- Centro de Recursos Genéticos Vegetais, Instituto Agronômico de Campinas (IAC), Campinas, SP, Brazil
| | | | | | | | - Luis Eduardo Aranha Camargo
- Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP, Brazil
| | - Matthew Wohlgemuth Blair
- Department of Agriculture and Environmental Sciences, Tennessee State University, Nashville, TN, USA
| | | |
Collapse
|
32
|
Song H, Wang P, Li C, Han S, Zhao C, Xia H, Bi Y, Guo B, Zhang X, Wang X. Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS One 2017; 12:e0171181. [PMID: 28158222 PMCID: PMC5291535 DOI: 10.1371/journal.pone.0171181] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Studies have demonstrated that nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes respond to pathogen attack in plants. Characterization of NBS-LRR genes in peanut is not well documented. The newly released whole genome sequences of Arachis duranensis and Arachis ipaënsis have allowed a global analysis of this important gene family in peanut to be conducted. In this study, we identified 393 (AdNBS) and 437 (AiNBS) NBS-LRR genes from A. duranensis and A. ipaënsis, respectively, using bioinformatics approaches. Full-length sequences of 278 AdNBS and 303 AiNBS were identified. Fifty-one orthologous, four AdNBS paralogous, and six AiNBS paralogous gene pairs were predicted. All paralogous gene pairs were located in the same chromosomes, indicating that tandem duplication was the most likely mechanism forming these paralogs. The paralogs mainly underwent purifying selection, but most LRR 8 domains underwent positive selection. More gene clusters were found in A. ipaënsis than in A. duranensis, possibly owing to tandem duplication events occurring more frequently in A. ipaënsis. The expression profile of NBS-LRR genes was different between A. duranensis and A. hypogaea after Aspergillus flavus infection. The up-regulated expression of NBS-LRR in A. duranensis was continuous, while these genes responded to the pathogen temporally in A. hypogaea.
Collapse
Affiliation(s)
- Hui Song
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Pengfei Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Changsheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - Suoyi Han
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chuanzhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Yuping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, Georgia, United States of America
| | - Xinyou Zhang
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xingjun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences; Shandong Provincial Key laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
33
|
Chen M, Wu J, Wang L, Mantri N, Zhang X, Zhu Z, Wang S. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.). PLoS One 2017; 12:e0169954. [PMID: 28076395 PMCID: PMC5226810 DOI: 10.1371/journal.pone.0169954] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/27/2016] [Indexed: 11/20/2022] Open
Abstract
Anthracnose is a destructive disease of the common bean (Phaseolus vulgaris L.). The Andean cultivar Hongyundou has been demonstrated to possess strong resistance to anthracnose race 81. To study the genetics of this resistance, the Hongyundou cultivar was crossed with a susceptible genotype Jingdou. Segregation of resistance for race 81 was assessed in the F2 population and F2:3 lines under controlled conditions. Results indicate that Hongyundou carries a single dominant gene for anthracnose resistance. An allele test by crossing Hongyundou with another resistant cultivar revealed that the resistance gene is in the Co-1 locus (therefore named Co-1HY). The physical distance between this locus and the two flanking markers was 46 kb, and this region included four candidate genes, namely, Phvul.001G243500, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. These candidate genes encoded serine/threonine-protein kinases. Expression analysis of the four candidate genes in the resistant and susceptible cultivars under control condition and inoculated treatment revealed that all the four candidate genes are expressed at significantly higher levels in the resistant genotype than in susceptible genotype. Phvul.001G243600 and Phvul.001G243700 are expressed nearly 15-fold and 90-fold higher in the resistant genotype than in the susceptible parent before inoculation, respectively. Four candidate genes will provide useful information for further research into the resistance mechanism of anthracnose in common bean. The closely linked flanking markers identified here may be useful for transferring the resistance allele Co-1HY from Hongyundou to elite anthracnose susceptible common bean lines.
Collapse
Affiliation(s)
- Mingli Chen
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
- Tobacco Research Institute, Chinese Academy of Agricultural Science, Qingdao, Shandong, China
| | - Jing Wu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nitin Mantri
- RMIT University, School of Science, Melbourne, Victoria, Australia
| | - Xiaoyan Zhang
- Qingdao Academy of Agricultural Sciences, Shandong, China
| | - Zhendong Zhu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Mhamdi A, Noctor G. High CO2 Primes Plant Biotic Stress Defences through Redox-Linked Pathways. PLANT PHYSIOLOGY 2016; 172:929-942. [PMID: 27578552 PMCID: PMC5047113 DOI: 10.1104/pp.16.01129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/29/2016] [Indexed: 05/19/2023]
Abstract
Industrial activities have caused tropospheric CO2 concentrations to increase over the last two centuries, a trend that is predicted to continue for at least the next several decades. Here, we report that growth of plants in a CO2-enriched environment activates responses that are central to defense against pathogenic attack. Salicylic acid accumulation was triggered by high-growth CO2 in Arabidopsis (Arabidopsis thaliana) and other plants such as bean (Phaseolus vulgaris). A detailed analysis in Arabidopsis revealed that elevated CO2 primes multiple defense pathways, leading to increased resistance to bacterial and fungal challenge. Analysis of gene-specific mutants provided no evidence that activation of plant defense pathways by high CO2 was caused by stomatal closure. Rather, the activation is partly linked to metabolic effects involving redox signaling. In support of this, genetic modification of redox components (glutathione contents and NADPH-generating enzymes) prevents full priming of the salicylic acid pathway and associated resistance by high CO2 The data point to a particularly influential role for the nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, a cytosolic enzyme whose role in plants remains unclear. Our observations add new information on relationships between high CO2 and oxidative signaling and provide novel insight into plant stress responses in conditions of increased CO2.
Collapse
Affiliation(s)
- Amna Mhamdi
- Institute of Plant Sciences Paris Saclay, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405 Orsay, France
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
35
|
Dynamics of a Novel Highly Repetitive CACTA Family in Common Bean (Phaseolus vulgaris). G3-GENES GENOMES GENETICS 2016; 6:2091-101. [PMID: 27185400 PMCID: PMC4938662 DOI: 10.1534/g3.116.028761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transposons are ubiquitous genomic components that play pivotal roles in plant gene and genome evolution. We analyzed two genome sequences of common bean (Phaseolus vulgaris) and identified a new CACTA transposon family named pvCACTA1. The family is extremely abundant, as more than 12,000 pvCACTA1 elements were found. To our knowledge, this is the most abundant CACTA family reported thus far. The computational and fluorescence in situ hybridization (FISH) analyses indicated that the pvCACTA1 elements were concentrated in terminal regions of chromosomes and frequently generated AT-rich 3 bp target site duplications (TSD, WWW, W is A or T). Comparative analysis of the common bean genomes from two domesticated genetic pools revealed that new insertions or excisions of pvCACTA1 elements occurred after the divergence of the two common beans, and some of the polymorphic elements likely resulted in variation in gene sequences. pvCACTA1 elements were detected in related species but not outside the Phaseolus genus. We calculated the molecular evolutionary rate of pvCACTA1 transposons using orthologous elements that indicated that most transposition events likely occurred before the divergence of the two gene pools. These results reveal unique features and evolution of this new transposon family in the common bean genome.
Collapse
|
36
|
Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives. G3-GENES GENOMES GENETICS 2016; 6:1013-22. [PMID: 26865698 PMCID: PMC4825637 DOI: 10.1534/g3.115.024984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fluorescence in situ hybridization (FISH)-based karyotyping is a powerful cytogenetics tool to study chromosome organization, behavior, and chromosome evolution. Here, we developed a FISH-based karyotyping system using a probe mixture comprised of centromeric and subtelomeric satellite repeats, 5S rDNA, and chromosome-specific BAC clones in common bean, which enables one to unambiguously distinguish all 11 chromosome pairs. Furthermore, we applied the karyotyping system to several wild relatives and landraces of common bean from two distinct gene pools, as well as other related Phaseolus species, to investigate repeat evolution in the genus Phaseolus. Comparison of karyotype maps within common bean indicates that chromosomal distribution of the centromeric and subtelomeric satellite repeats is stable, whereas the copy number of the repeats was variable, indicating rapid amplification/reduction of the repeats in specific genomic regions. In Phaseolus species that diverged approximately 2–4 million yr ago, copy numbers of centromeric repeats were largely reduced or diverged, and chromosomal distributions have changed, suggesting rapid evolution of centromeric repeats. We also detected variation in the distribution pattern of subtelomeric repeats in Phaseolus species. The FISH-based karyotyping system revealed that satellite repeats are actively and rapidly evolving, forming genomic features unique to individual common bean accessions and Phaseolus species.
Collapse
|
37
|
Iwata-Otsubo A, Lin JY, Gill N, Jackson SA. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Res 2016; 24:197-216. [PMID: 26758200 PMCID: PMC4856725 DOI: 10.1007/s10577-015-9515-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022]
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.,Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jer-Young Lin
- Department of Agronomy, Purdue University, 170 S. University Street, West Lafayette, IN, USA.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Navdeep Gill
- Department of Agronomy, Purdue University, 170 S. University Street, West Lafayette, IN, USA.,Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
38
|
Meziadi C, Richard MMS, Derquennes A, Thareau V, Blanchet S, Gratias A, Pflieger S, Geffroy V. Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:351-357. [PMID: 26566851 DOI: 10.1016/j.plantsci.2015.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 05/03/2023]
Abstract
Common bean (Phaseolus vulgaris) is the most important grain legume for direct human consumption in the world, particularly in developing countries where it constitutes the main source of protein. Unfortunately, common bean yield stability is constrained by a number of pests and diseases. As use of resistant genotypes is the most economic and ecologically safe means for controlling plant diseases, efforts have been made to genetically characterize resistance genes (R genes) in common bean. Despite its agronomic importance, genomic resources available in common bean were limited until the recent sequencing of common bean genome (Andean genotype G19833). Besides allowing the annotation of Nucleotide Binding-Leucine Rich Repeat (NB-LRR) encoding gene family, which is the prevalent class of disease R genes in plants, access to the whole genome sequence of common bean can be of great help for intense selection to increase the overall efficiency of crop improvement programs using marker-assisted selection (MAS). This review presents the state of the art of common bean NB-LRR gene clusters, their peculiar location in subtelomeres and correlation with genetically characterized monogenic R genes, as well as how the availability of the whole genome sequence can boost the development of molecular markers for MAS.
Collapse
Affiliation(s)
- Chouaïb Meziadi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Manon M S Richard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Amandine Derquennes
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Sophie Blanchet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Ariane Gratias
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Stéphanie Pflieger
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
39
|
Fonsêca A, Ferraz ME, Pedrosa-Harand A. Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy. Chromosoma 2015; 125:413-21. [PMID: 26490170 DOI: 10.1007/s00412-015-0548-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 11/28/2022]
Abstract
The genus Phaseolus L. has been subject of extensive cytogenetic studies due to its global economic importance. It is considered karyotypically stable, with most of its ca. 75 species having 2n = 22 chromosomes, and only three species (Phaseolus leptostachyus, Phaseolus macvaughii, and Phaseolus micranthus), which form the Leptostachyus clade, having 2n = 20. To test whether a simple chromosomal fusion was the cause of this descending dysploidy, mitotic chromosomes of P. leptostachyus (2n = 20) were comparatively mapped by fluorescent in situ hybridization (FISH) using bacterial artificial chromosomes (BACs) and ribosomal DNA (rDNA) probes. Our results corroborated the conservation of the 5S and 45S rDNA sites on ancestral chromosomes 10 and 6, respectively. The reduction from x = 11 to x = 10 was the result of the insertion of chromosome 10 into the centromeric region of chromosome 11, supporting a nested chromosome fusion (NCF) as the main cause of this dysploidy. Additionally, the terminal region of the long arm of chromosome 6 was translocated to this larger chromosome. Surprisingly, the NCF was accompanied by several additional translocations and inversions previously unknown for the genus, suggesting that the dysploidy may have been associated to a burst of genome reorganization in this otherwise stable, diploid plant genus.
Collapse
Affiliation(s)
- Artur Fonsêca
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil
| | - Maria Eduarda Ferraz
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves s/n, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
40
|
Kim KD, El Baidouri M, Abernathy B, Iwata-Otsubo A, Chavarro C, Gonzales M, Libault M, Grimwood J, Jackson SA. A Comparative Epigenomic Analysis of Polyploidy-Derived Genes in Soybean and Common Bean. PLANT PHYSIOLOGY 2015; 168:1433-47. [PMID: 26149573 PMCID: PMC4528746 DOI: 10.1104/pp.15.00408] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/03/2015] [Indexed: 05/02/2023]
Abstract
Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a paleopolyploidy (whole-genome duplication [WGD]) event, approximately 56.5 million years ago, followed by a genus Glycine-specific polyploidy, approximately 10 million years ago. Cytosine methylation is an epigenetic mark that plays an important role in the regulation of genes and transposable elements (TEs); however, the role of DNA methylation in the fate/evolution of genes following polyploidy and speciation has not been fully explored. Whole-genome bisulfite sequencing was used to produce nucleotide resolution methylomes for soybean and common bean. We found that, in soybean, CG body-methylated genes were abundant in WGD genes, which were, on average, more highly expressed than single-copy genes and had slower evolutionary rates than unmethylated genes, suggesting that WGD genes evolve more slowly than single-copy genes. CG body-methylated genes were also enriched in shared single-copy genes (single copy in both species) that may be responsible for the broad and high expression patterns of this class of genes. In addition, diverged methylation patterns in non-CG contexts between paralogs were due mostly to TEs in or near genes, suggesting a role for TEs and non-CG methylation in regulating gene expression post polyploidy. Reference methylomes for both soybean and common bean were constructed, providing resources for investigating epigenetic variation in legume crops. Also, the analysis of methylation patterns of duplicated and single-copy genes has provided insights into the functional consequences of polyploidy and epigenetic regulation in plant genomes.
Collapse
Affiliation(s)
- Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Moaine El Baidouri
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Michael Gonzales
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Marc Libault
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Jane Grimwood
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia 30602 (K.D.K., M.E.B., B.A., A.I.-O., C.C., M.G., S.A.J.);Department of Microbiology and Plant Biology, University of Oklahoma, Noman, Oklahoma 73019 (M.L.); andHudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806 (J.G.)
| |
Collapse
|
41
|
Trabanco N, Campa A, Ferreira JJ. Identification of a New Chromosomal Region Involved in the Genetic Control of Resistance to Anthracnose in Common Bean. THE PLANT GENOME 2015; 8:eplantgenome2014.10.0079. [PMID: 33228300 DOI: 10.3835/plantgenome2014.10.0079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/16/2015] [Indexed: 05/03/2023]
Abstract
Anthracnose caused by Colletotrichum lindemuthianum (Sacc. & Magnus) Lams.-Scrib. is a major disease affecting common bean (Phaseolus vulgaris L.) crops worldwide. Response to five C. lindemuthianum isolates, classified as races 3, 6, 7, 38, and 73, were analyzed in 156 F2:3 families derived from the cross between line SEL1308 and cultivar Michigan Dark Red Kidney (MDRK). SEL1308 was resistant to all five races, while MDRK was susceptible to all except for race 73. Segregation ratio for response to races 3 and 7 indicated that single dominant genes were responsible for the resistance reaction to each race. Recombination between both race-specific genes was observed and no linkage was found with any of the molecular markers tagging Co-genes or clusters previously described. Linkage analyses allowed the location of both genes at the beginning of linkage group (LG) Pv03, a region tentatively named as Co-17. Segregation ratio for response to races 6 and 38 indicated that two dominant and independent genes conferred resistance to these races. Contingency tests and subpopulation analyses suggested the implication of one region on LG Pv08, corresponding to the Co-4 cluster, and the Co-17 region. For reaction to race 73, the most likely scenario was that two dominant and independent genes conferred resistance: Co-1 in MDRK and Co-42 in SEL1308. Results indicated that, in addition to Co-42 , SEL1308 carries resistance genes located at the beginning of LG Pv03, in which no anthracnose resistance genes were previously mapped. In silico analysis revealed the presence of seven genes codifying typical resistance proteins (R-proteins) in the underlying physical position of the Co-17 region.
Collapse
Affiliation(s)
| | - Ana Campa
- Plant Genetic Program, SERIDA, Asturias, Spain
| | | |
Collapse
|
42
|
Chen JY, Huang JQ, Li NY, Ma XF, Wang JL, Liu C, Liu YF, Liang Y, Bao YM, Dai XF. Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC PLANT BIOLOGY 2015; 15:148. [PMID: 26084488 PMCID: PMC4471920 DOI: 10.1186/s12870-015-0508-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/27/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Gossypium raimondii is a Verticillium wilt-resistant cotton species whose genome encodes numerous disease resistance genes that play important roles in the defence against pathogens. However, the characteristics of resistance gene analogues (RGAs) and Verticillium dahliae response loci (VdRLs) have not been investigated on a global scale. In this study, the characteristics of RGA genes were systematically analysed using bioinformatics-driven methods. Moreover, the potential VdRLs involved in the defence response to Verticillium wilt were identified by RNA-seq and correlations with known resistance QTLs. RESULTS The G. raimondii genome encodes 1004 RGA genes, and most of these genes cluster in homology groups based on high levels of similarity. Interestingly, nearly half of the RGA genes occurred in 26 RGA-gene-rich clusters (Rgrcs). The homology analysis showed that sequence exchanges and tandem duplications frequently occurred within Rgrcs, and segmental duplications took place among the different Rgrcs. An RNA-seq analysis showed that the RGA genes play roles in cotton defence responses, forming 26 VdRLs inside in the Rgrcs after being inoculated with V. dahliae. A correlation analysis found that 12 VdRLs were adjacent to the known Verticillium wilt resistance QTLs, and that 5 were rich in NB-ARC domain-containing disease resistance genes. CONCLUSIONS The cotton genome contains numerous RGA genes, and nearly half of them are located in clusters, which evolved by sequence exchanges, tandem duplications and segmental duplications. In the Rgrcs, 26 loci were induced by the V. dahliae inoculation, and 12 are in the vicinity of known Verticillium wilt resistance QTLs.
Collapse
Affiliation(s)
- Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | | | - Nan-Yang Li
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xue-Feng Ma
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jin-Long Wang
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Chuan Liu
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
| | | | - Yong Liang
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China.
| | - Yu-Ming Bao
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Agro-Products Processing Science & Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
43
|
Cioffi MDB, Bertollo LAC, Villa MA, de Oliveira EA, Tanomtong A, Yano CF, Supiwong W, Chaveerach A. Genomic Organization of Repetitive DNA Elements and Its Implications for the Chromosomal Evolution of Channid Fishes (Actinopterygii, Perciformes). PLoS One 2015; 10:e0130199. [PMID: 26067030 PMCID: PMC4466321 DOI: 10.1371/journal.pone.0130199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Channid fishes, commonly referred to as "snakeheads", are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.
Collapse
Affiliation(s)
- Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Mateo Andres Villa
- Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, United States of America
| | | | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Weerayuth Supiwong
- Faculty of applied science and engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai, 43000, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
- Genetics and Environmental Toxicology Research Group, Khon Kaen University, Muang District, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
44
|
Keller B, Manzanares C, Jara C, Lobaton JD, Studer B, Raatz B. Fine-mapping of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:813-26. [PMID: 25740562 PMCID: PMC4544502 DOI: 10.1007/s00122-015-2472-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/31/2015] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE A major QTL for angular leaf spot resistance in the common bean accession G5686 was fine-mapped to a region containing 36 candidate genes. Markers have been developed for marker-assisted selection. Common bean (Phaseolus vulgaris L.) is an important grain legume and an essential protein source for human nutrition in developing countries. Angular leaf spot (ALS) caused by the pathogen Pseudocercospora griseola (Sacc.) Crous and U. Braun is responsible for severe yield losses of up to 80%. Breeding for resistant cultivars is the most ecological and economical means to control ALS and is particularly important for yield stability in low-input agriculture. Here, we report on a fine-mapping approach of a major quantitative trait locus (QTL) ALS4.1(GS, UC) for ALS resistance in a mapping population derived from the resistant genotype G5686 and the susceptible cultivar Sprite. 180 F3 individuals of the mapping population were evaluated for ALS resistance and genotyped with 22 markers distributed over 11 genome regions colocating with previously reported QTL for ALS resistance. Multiple QTL analysis identified three QTL regions, including one major QTL on chromosome Pv04 at 43.7 Mbp explaining over 75% of the observed variation for ALS resistance. Additional evaluation of 153 F4, 89 BC1F2 and 139 F4/F5/BC1F3 descendants with markers in the region of the major QTL delimited the region to 418 kbp harboring 36 candidate genes. Among these, 11 serine/threonine protein kinases arranged in a repetitive array constitute promising candidate genes for controlling ALS resistance. Single nucleotide polymorphism markers cosegregating with the major QTL for ALS resistance have been developed and constitute the basis for marker-assisted introgression of ALS resistance into advanced breeding germplasm of common bean.
Collapse
Affiliation(s)
- Beat Keller
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Chloe Manzanares
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Carlos Jara
- Agrobiodiversity Research Area, Bean Program, CIAT Cali-Palmira, A. A. 6713, Cali, Colombia
| | - Juan David Lobaton
- Agrobiodiversity Research Area, Bean Program, CIAT Cali-Palmira, A. A. 6713, Cali, Colombia
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Bodo Raatz
- Agrobiodiversity Research Area, Bean Program, CIAT Cali-Palmira, A. A. 6713, Cali, Colombia
| |
Collapse
|
45
|
Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromosome Res 2015; 23:253-66. [PMID: 25634499 DOI: 10.1007/s10577-014-9464-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 12/22/2022]
Abstract
Cowpea (Vigna unguiculata) is an annual legume grown in tropical and subtropical regions, which is economically relevant due to high protein content in dried beans, green pods, and leaves. In this work, a comparative cytogenetic study between V. unguiculata and Phaseolus vulgaris (common bean) was conducted using BAC-FISH. Sequences previously mapped in P. vulgaris chromosomes (Pv) were used as probes in V. unguiculata chromosomes (Vu), contributing to the analysis of macrosynteny between both legumes. Thirty-seven clones from P. vulgaris 'BAT93' BAC library, corresponding to its 11 linkage groups, were hybridized in situ. Several chromosomal rearrangements were identified, such as translocations (between BACs from Pv1 and Pv8; Pv2 and Pv3; as well as Pv2 and Pv11), duplications (BAC from Pv3), as well as paracentric and pericentric inversions (BACs from Pv3, and Pv4, respectively). Two BACs (from Pv2 and Pv7), which hybridized at terminal regions in almost all P. vulgaris chromosomes, showed single-copy signal in Vu. Additionally, 17 BACs showed no signal in V. unguiculata chromosomes. The present results demonstrate the feasibility of using BAC libraries in comparative chromosomal mapping and karyotype evolution studies between Phaseolus and Vigna species, and revealed several macrosynteny and collinearity breaks among both legumes.
Collapse
|
46
|
Oblessuc PR, Matiolli CC, Chiorato AF, Camargo LEA, Benchimol-Reis LL, Melotto M. Common bean reaction to angular leaf spot comprises transcriptional modulation of genes in the ALS10.1 QTL. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 25815001 DOI: 10.3389/fpls.2015.00152/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (QTL). In this study, we determined the gene content of the major QTL ALS10.1 located at the end of chromosome Pv10, and identified those that are responsive to ALS infection in resistant (CAL 143) and susceptible (IAC-UNA) genotypes. Based on the current version of the common bean reference genome, the ALS10.1 core region contains 323 genes. Gene Ontology (GO) analysis of these coding sequences revealed the presence of genes involved in signal perception and transduction, programmed cell death (PCD), and defense responses. Two putative R gene clusters were found at ALS10.1 containing evolutionary related coding sequences. Among them, the Phvul.010G025700 was consistently up-regulated in the infected IAC-UNA suggesting its contribution to plant susceptibility to the fungus. We identified six other genes that were regulated during common bean response to P. griseola; three of them might be negative regulators of immunity as they showed opposite expression patterns during resistant and susceptible reactions at the initial phase of fungal infection. Taken together, these findings suggest that common bean reaction to P. griseola involves transcriptional modulation of defense genes in the ALS10.1 locus, contributing to resistance or susceptibility depending on the plant-pathogen interaction.
Collapse
Affiliation(s)
- Paula R Oblessuc
- Department of Plant Sciences, University of California, Davis Davis, CA, USA ; Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil ; Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas-IAC Campinas, Brazil
| | - Cleverson C Matiolli
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Alisson F Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas-IAC Campinas, Brazil
| | - Luis E A Camargo
- Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Piracicaba, Brazil
| | - Luciana L Benchimol-Reis
- Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas-IAC Campinas, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis Davis, CA, USA
| |
Collapse
|
47
|
Oblessuc PR, Matiolli CC, Chiorato AF, Camargo LEA, Benchimol-Reis LL, Melotto M. Common bean reaction to angular leaf spot comprises transcriptional modulation of genes in the ALS10.1 QTL. FRONTIERS IN PLANT SCIENCE 2015; 6:152. [PMID: 25815001 PMCID: PMC4357252 DOI: 10.3389/fpls.2015.00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/25/2015] [Indexed: 05/11/2023]
Abstract
Genetic resistance of common bean (Phaseolus vulgaris L.) against angular leaf spot (ALS), caused by the fungus Pseudocercospora griseola, is conferred by quantitative trait loci (QTL). In this study, we determined the gene content of the major QTL ALS10.1 located at the end of chromosome Pv10, and identified those that are responsive to ALS infection in resistant (CAL 143) and susceptible (IAC-UNA) genotypes. Based on the current version of the common bean reference genome, the ALS10.1 core region contains 323 genes. Gene Ontology (GO) analysis of these coding sequences revealed the presence of genes involved in signal perception and transduction, programmed cell death (PCD), and defense responses. Two putative R gene clusters were found at ALS10.1 containing evolutionary related coding sequences. Among them, the Phvul.010G025700 was consistently up-regulated in the infected IAC-UNA suggesting its contribution to plant susceptibility to the fungus. We identified six other genes that were regulated during common bean response to P. griseola; three of them might be negative regulators of immunity as they showed opposite expression patterns during resistant and susceptible reactions at the initial phase of fungal infection. Taken together, these findings suggest that common bean reaction to P. griseola involves transcriptional modulation of defense genes in the ALS10.1 locus, contributing to resistance or susceptibility depending on the plant-pathogen interaction.
Collapse
Affiliation(s)
- Paula R. Oblessuc
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
- Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas—IACCampinas, Brazil
| | - Cleverson C. Matiolli
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| | - Alisson F. Chiorato
- Centro de Grãos e Fibras, Instituto Agronômico de Campinas—IACCampinas, Brazil
| | - Luis E. A. Camargo
- Departamento de Fitopatologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São PauloPiracicaba, Brazil
| | - Luciana L. Benchimol-Reis
- Centro de Pesquisa e Desenvolvimento em Recursos Genéticos Vegetais, Instituto Agronômico de Campinas—IACCampinas, Brazil
| | - Maeli Melotto
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- *Correspondence: Maeli Melotto, Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
48
|
Shao ZQ, Zhang YM, Hang YY, Xue JY, Zhou GC, Wu P, Wu XY, Wu XZ, Wang Q, Wang B, Chen JQ. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. PLANT PHYSIOLOGY 2014; 166:217-34. [PMID: 25052854 PMCID: PMC4149708 DOI: 10.1104/pp.114.243626] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/11/2014] [Indexed: 05/18/2023]
Abstract
Proper utilization of plant disease resistance genes requires a good understanding of their short- and long-term evolution. Here we present a comprehensive study of the long-term evolutionary history of nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes within and beyond the legume family. The small group of NBS-LRR genes with an amino-terminal RESISTANCE TO POWDERY MILDEW8 (RPW8)-like domain (referred to as RNL) was first revealed as a basal clade sister to both coiled-coil-NBS-LRR (CNL) and Toll/Interleukin1 receptor-NBS-LRR (TNL) clades. Using Arabidopsis (Arabidopsis thaliana) as an outgroup, this study explicitly recovered 31 ancestral NBS lineages (two RNL, 21 CNL, and eight TNL) that had existed in the rosid common ancestor and 119 ancestral lineages (nine RNL, 55 CNL, and 55 TNL) that had diverged in the legume common ancestor. It was shown that, during their evolution in the past 54 million years, approximately 94% (112 of 119) of the ancestral legume NBS lineages experienced deletions or significant expansions, while seven original lineages were maintained in a conservative manner. The NBS gene duplication pattern was further examined. The local tandem duplications dominated NBS gene gains in the total number of genes (more than 75%), which was not surprising. However, it was interesting from our study that ectopic duplications had created many novel NBS gene loci in individual legume genomes, which occurred at a significant frequency of 8% to 20% in different legume lineages. Finally, by surveying the legume microRNAs that can potentially regulate NBS genes, we found that the microRNA-NBS gene interaction also exhibited a gain-and-loss pattern during the legume evolution.
Collapse
Affiliation(s)
- Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Yan-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Yue-Yu Hang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Jia-Yu Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Guang-Can Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Ping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Xiao-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Xun-Zong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China (Z.-Q.S., Y.-M.Z., J.-Y.X., G.-C.Z., P.W., X.-Y.W., X.-Z.W., Q.W., B.W., J.-Q.C.); andJiangsu Province and Chinese Academy of Science, Institute of Botany, Nanjing 210014, China (Y.-M.Z., Y.-Y.H., J.-Y.X.)
| |
Collapse
|
49
|
Richard MMS, Pflieger S, Sévignac M, Thareau V, Blanchet S, Li Y, Jackson SA, Geffroy V. Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1653-66. [PMID: 24859268 DOI: 10.1007/s00122-014-2328-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/05/2014] [Indexed: 05/03/2023]
Abstract
The Co - x anthracnose R gene of common bean was fine-mapped into a 58 kb region at one end of chromosome 1, where no canonical NB-LRR-encoding genes are present in G19833 genome sequence. Anthracnose, caused by the phytopathogenic fungus Colletotrichum lindemuthianum, is one of the most damaging diseases of common bean, Phaseolus vulgaris. Various resistance (R) genes, named Co-, conferring race-specific resistance to different strains of C. lindemuthianum have been identified. The Andean cultivar JaloEEP558 was reported to carry Co-x on chromosome 1, conferring resistance to the highly virulent strain 100. To fine map Co-x, 181 recombinant inbred lines derived from the cross between JaloEEP558 and BAT93 were genotyped with polymerase chain reaction (PCR)-based markers developed using the genome sequence of the Andean genotype G19833. Analysis of RILs carrying key recombination events positioned Co-x at one end of chromosome 1 to a 58 kb region of the G19833 genome sequence. Annotation of this target region revealed eight genes: three phosphoinositide-specific phospholipases C (PI-PLC), one zinc finger protein and four kinases, suggesting that Co-x is not a classical nucleotide-binding leucine-rich encoding gene. In addition, we identified and characterized the seven members of common bean PI-PLC gene family distributed into two clusters located at the ends of chromosomes 1 and 8. Co-x is not a member of Co-1 allelic series since these two genes are separated by at least 190 kb. Comparative analysis between soybean and common bean revealed that the Co-x syntenic region, located at one end of Glycine max chromosome 18, carries Rhg1, a major QTL contributing to soybean cyst nematode resistance. The PCR-based markers generated in this study should be useful in marker-assisted selection for pyramiding Co-x with other R genes.
Collapse
Affiliation(s)
- Manon M S Richard
- CNRS, Institut de Biologie des Plantes, UMR 8618, Université Paris Sud, Saclay Plant Sciences (SPS), Rue Noetzlin, 91405, Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 2014; 46:707-13. [PMID: 24908249 PMCID: PMC7048698 DOI: 10.1038/ng.3008] [Citation(s) in RCA: 726] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 05/15/2014] [Indexed: 01/13/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.
Collapse
Affiliation(s)
- Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - G Albert Wu
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Steven B Cannon
- US Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, Iowa USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Qijian Song
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
| | - Carolina Chavarro
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | | | - Valerie Geffroy
- CNRS, Université Paris–Sud, Institut de Biologie des Plantes, UMR 8618, Saclay Plant Sciences (SPS), Orsay, France
- Institut National de la Recherche Agronomique (INRA), Université Paris–Sud, Unité Mixte de Recherche de Génétique Végétale, Gif-sur-Yvette, France
| | - Samira Mafi Moghaddam
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Matthew Blair
- Department of Agricultural and Natural Sciences, Tennessee State University, Nashville, Tennessee USA
| | - Mark A Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado USA
| | - Mansi Chovatia
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, Davis, California USA
| | - David M Goodstein
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Michael Gonzales
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| | - Uffe Hellsten
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - David L Hyten
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
- Present Address: Present addresses: Pioneer Hi-Bred International, Inc., Johnston, Iowa, USA (D.L.H.) and Genética e Melhoramento, Federal University of Viçosa, Viçosa, Brazil (J.R.).,
| | - Gaofeng Jia
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
| | - James D Kelly
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan USA
| | - Dave Kudrna
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona USA
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Manon M S Richard
- CNRS, Université Paris–Sud, Institut de Biologie des Plantes, UMR 8618, Saclay Plant Sciences (SPS), Orsay, France
| | - Phillip N Miklas
- US Department of Agriculture–Agricultural Research Service, Vegetable and Forage Crop Research Unit, Prosser, Washington USA
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota USA
| | - Josiane Rodrigues
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
- Present Address: Present addresses: Pioneer Hi-Bred International, Inc., Johnston, Iowa, USA (D.L.H.) and Genética e Melhoramento, Federal University of Viçosa, Viçosa, Brazil (J.R.).,
| | - Vincent Thareau
- CNRS, Université Paris–Sud, Institut de Biologie des Plantes, UMR 8618, Saclay Plant Sciences (SPS), Orsay, France
| | - Carlos A Urrea
- Panhandle Research and Extension Center, University of Nebraska, Scottsbluff, Nebraska USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Yeisoo Yu
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona USA
| | - Ming Zhang
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Rod A Wing
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona USA
| | - Perry B Cregan
- US Department of Agriculture–Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, Maryland USA
| | - Daniel S Rokhsar
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia USA
| |
Collapse
|