1
|
González DA, de la Torre VSG, Fernández RR, Barreau L, Merlot S. Divergent roles of IREG/Ferroportin transporters from the nickel hyperaccumulator Leucocroton havanensis. PHYSIOLOGIA PLANTARUM 2024; 176:e14261. [PMID: 38527955 DOI: 10.1111/ppl.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
In response to our ever-increasing demand for metals, phytotechnologies are being developed to limit the environmental impact of conventional metal mining. However, the development of these technologies, which rely on plant species able to tolerate and accumulate metals, is partly limited by our lack of knowledge of the underlying molecular mechanisms. In this work, we aimed to better understand the role of metal transporters of the IRON REGULATED 1/FERROPORTIN (IREG/FPN) family from the nickel hyperaccumulator Leucocroton havanensis from the Euphorbiaceae family. Using transcriptomic data, we identified two homologous genes, LhavIREG1 and LhavIREG2, encoding divalent metal transporters of the IREG/FPN family. Both genes are expressed at similar levels in shoots, but LhavIREG1 shows higher expression in roots. The heterologous expression of these transporters in A. thaliana revealed that LhavIREG1 is localized to the plasma membrane, whereas LhavIREG2 is located on the vacuole. In addition, the expression of each gene induced a significant increase in nickel tolerance. Taken together, our data suggest that LhavIREG2 is involved in nickel sequestration in vacuoles of leaf cells, whereas LhavIREG1 is mainly involved in nickel translocation from roots to shoots, but could also be involved in metal sequestration in cell walls. Our results suggest that paralogous IREG/FPN transporters may play complementary roles in nickel hyperaccumulation in plants.
Collapse
Affiliation(s)
- Dubiel Alfonso González
- Jardín Botánico Nacional, Universidad de La Habana, La Habana, Cuba
- Universidad Agraria de La Habana, Facultad de Agronomía, San José de las Lajas, Mayabeque, Cuba
| | | | - Rolando Reyes Fernández
- Universidad Agraria de La Habana, Facultad de Agronomía, San José de las Lajas, Mayabeque, Cuba
| | - Louise Barreau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sylvain Merlot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Laboratoire de Recherche en Sciences Végétales (LRSV), UMR5546 CNRS/UPS/INPT, France
| |
Collapse
|
2
|
Müller B. Iron transport mechanisms and their evolution focusing on chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154059. [PMID: 37586271 DOI: 10.1016/j.jplph.2023.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
3
|
Sági-Kazár M, Sárvári É, Cseh B, Illés L, May Z, Hegedűs C, Barócsi A, Lenk S, Solymosi K, Solti Á. Iron uptake of etioplasts is independent from photosynthesis but applies the reduction-based strategy. FRONTIERS IN PLANT SCIENCE 2023; 14:1227811. [PMID: 37636109 PMCID: PMC10457162 DOI: 10.3389/fpls.2023.1227811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Introduction Iron (Fe) is one of themost important cofactors in the photosynthetic apparatus, and its uptake by chloroplasts has also been associated with the operation of the photosynthetic electron transport chain during reduction-based plastidial Fe uptake. Therefore, plastidial Fe uptake was considered not to be operational in the absence of the photosynthetic activity. Nevertheless, Fe is also required for enzymatic functions unrelated to photosynthesis, highlighting the importance of Fe acquisition by non-photosynthetic plastids. Yet, it remains unclear how these plastids acquire Fe in the absence of photosynthetic function. Furthermore, plastids of etiolated tissues should already possess the ability to acquire Fe, since the biosynthesis of thylakoid membrane complexes requires a massive amount of readily available Fe. Thus, we aimed to investigate whether the reduction-based plastidial Fe uptake solely relies on the functioning photosynthetic apparatus. Methods In our combined structure, iron content and transcript amount analysis studies, we used Savoy cabbage plant as a model, which develops natural etiolation in the inner leaves of the heads due to the shading of the outer leaf layers. Results Foliar and plastidial Fe content of Savoy cabbage leaves decreased towards the inner leaf layers. The leaves of the innermost leaf layers proved to be etiolated, containing etioplasts that lacked the photosynthetic machinery and thus were photosynthetically inactive. However, we discovered that these etioplasts contained, and were able to take up, Fe. Although the relative transcript abundance of genes associated with plastidial Fe uptake and homeostasis decreased towards the inner leaf layers, both ferric chelate reductase FRO7 transcripts and activity were detected in the innermost leaf layer. Additionally, a significant NADP(H) pool and NAD(P)H dehydrogenase activity was detected in the etioplasts of the innermost leaf layer, indicating the presence of the reducing capacity that likely supports the reduction-based Fe uptake of etioplasts. Discussion Based on these findings, the reduction-based plastidial Fe acquisition should not be considered exclusively dependent on the photosynthetic functions.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Levente Illés
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csaba Hegedűs
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
4
|
Chen P, Yu K, He Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. ENVIRONMENT INTERNATIONAL 2023; 176:107986. [PMID: 37257204 DOI: 10.1016/j.envint.2023.107986] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Yang B, Xu C, Cheng Y, Jia T, Hu X. Research progress on the biosynthesis and delivery of iron-sulfur clusters in the plastid. PLANT CELL REPORTS 2023:10.1007/s00299-023-03024-7. [PMID: 37160773 DOI: 10.1007/s00299-023-03024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ancient protein cofactors ubiquitously exist in organisms. They are involved in many important life processes. Plastids are semi-autonomous organelles with a double membrane and it is believed to originate from a cyanobacterial endosymbiont. By learning form the research in cyanobacteria, a Fe-S cluster biosynthesis and delivery pathway has been proposed and partly demonstrated in plastids, including iron uptake, sulfur mobilization, Fe-S cluster assembly and delivery. Fe-S clusters are essential for the downstream Fe-S proteins to perform their normal biological functions. Because of the importance of Fe-S proteins in plastid, researchers have made a lot of research progress on this pathway in recent years. This review summarizes the detail research progress made in recent years. In addition, the scientific problems remained in this pathway are also discussed.
Collapse
Affiliation(s)
- Bing Yang
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chenyun Xu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Cheng
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Gržinić G, Piotrowicz-Cieślak A, Klimkowicz-Pawlas A, Górny RL, Ławniczek-Wałczyk A, Piechowicz L, Olkowska E, Potrykus M, Tankiewicz M, Krupka M, Siebielec G, Wolska L. Intensive poultry farming: A review of the impact on the environment and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160014. [PMID: 36368402 DOI: 10.1016/j.scitotenv.2022.160014] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Poultry farming is one of the most efficient animal husbandry methods and it provides nutritional security to a significant number of the world population. Using modern intensive farming techniques, global production has reached 133.4 mil. t in 2020, with a steady growth each year. Such intensive growth methods however lead to a significant environmental footprint. Waste materials such as poultry litter and manure can pose a serious threat to environmental and human health, and need to be managed properly. Poultry production and waste by-products are linked to NH3, N2O and CH4 emissions, and have an impact on global greenhouse gas emissions, as well as animal and human health. Litter and manure can contain pesticide residues, microorganisms, pathogens, pharmaceuticals (antibiotics), hormones, metals, macronutrients (at improper ratios) and other pollutants which can lead to air, soil and water contamination as well as formation of antimicrobial/multidrug resistant strains of pathogens. Dust emitted from intensive poultry production operations contains feather and skin fragments, faeces, feed particles, microorganisms and other pollutants, which can adversely impact poultry health as well as the health of farm workers and nearby inhabitants. Fastidious odours are another problem that can have an adverse impact on health and quality of life of workers and surrounding population. This study discusses the current knowledge on the impact of intensive poultry farming on environmental and human health, as well as taking a look at solutions for a sustainable future.
Collapse
Affiliation(s)
- Goran Gržinić
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland.
| | - Agnieszka Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Rafał L Górny
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Anna Ławniczek-Wałczyk
- Laboratory of Biohazards, Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Czerniakowska Str. 16, 00-701 Warsaw, Poland
| | - Lidia Piechowicz
- Department of Microbiology, Faculty of Medicine, Medical University of Gdansk, Dębowa Str. 25, 80-204 Gdansk, Poland
| | - Ewa Olkowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Marta Potrykus
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Maciej Tankiewicz
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| | - Magdalena Krupka
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Str. 1A, 10-719 Olsztyn, Poland
| | - Grzegorz Siebielec
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation - State Research Institute, Czartoryskich Str. 8, 24-100 Puławy, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Dębowa Str. 23A, 80-204 Gdansk, Poland
| |
Collapse
|
7
|
Mentewab A, Mwaura BW, Kumbale CM, Rono C, Torres-Patarroyo N, Vlčko T, Ohnoutková L, Voit EO. A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1147598. [PMID: 37143881 PMCID: PMC10151686 DOI: 10.3389/fpls.2023.1147598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/24/2023] [Indexed: 05/06/2023]
Abstract
Arabidopsis plants exposed to the antibiotic kanamycin (Kan) display altered metal homeostasis. Further, mutation of the WBC19 gene leads to increased sensitivity to kanamycin and changes in iron (Fe) and zinc (Zn) uptake. Here we propose a model that explain this surprising relationship between metal uptake and exposure to Kan. We first use knowledge about the metal uptake phenomenon to devise a transport and interaction diagram on which we base the construction of a dynamic compartment model. The model has three pathways for loading Fe and its chelators into the xylem. One pathway, involving an unknown transporter, loads Fe as a chelate with citrate (Ci) into the xylem. This transport step can be significantly inhibited by Kan. In parallel, FRD3 transports Ci into the xylem where it can chelate with free Fe. A third critical pathway involves WBC19, which transports metal-nicotianamine (NA), mainly as Fe-NA chelate, and possibly NA itself. To permit quantitative exploration and analysis, we use experimental time series data to parameterize this explanatory and predictive model. Its numerical analysis allows us to predict responses by a double mutant and explain the observed differences between data from wildtype, mutants and Kan inhibition experiments. Importantly, the model provides novel insights into metal homeostasis by permitting the reverse-engineering of mechanistic strategies with which the plant counteracts the effects of mutations and of the inhibition of iron transport by kanamycin.
Collapse
Affiliation(s)
- Ayalew Mentewab
- Biology Department, Spelman College, Atlanta, GA, United States
- *Correspondence: Ayalew Mentewab,
| | | | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, United States
| | - Catherine Rono
- Biology Department, Spelman College, Atlanta, GA, United States
| | | | - Tomáš Vlčko
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Ludmila Ohnoutková
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, United States
| |
Collapse
|
8
|
Kan M, Fujiwara T, Kamiya T. Golgi-Localized OsFPN1 is Involved in Co and Ni Transport and Their Detoxification in Rice. RICE (NEW YORK, N.Y.) 2022; 15:36. [PMID: 35817888 PMCID: PMC9273799 DOI: 10.1186/s12284-022-00583-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/04/2022] [Indexed: 05/13/2023]
Abstract
Cobalt (Co) and nickel (Ni) are beneficial and essential elements for plants, respectively, with the latter required for urease activity, which hydrolyzes urea into ammonium in plants. However, excess Co and Ni are toxic to plants and their transport mechanisms in rice are unclear. Here, we analyzed an ethyl methanesulfonate (EMS)-mutagenized rice mutant, 1187_n, with increased Co and Ni contents in its brown rice and shoots. 1187_n has a mutation in OsFPN1, which was correlated with a high Co and Ni phenotype in F2 crosses between the parental line and mutant. In addition, CRISPR/Cas9 mutants exhibited a phenotype similar to that of 1187_n, demonstrating that OsFPN1 is the causal gene of the mutant. In addition to the high Co and Ni in brown rice and shoots, the mutant also exhibited high Co and Ni concentrations in the xylem sap, but low concentrations in the roots, suggesting that OsFPN1 is involved in the root-to-shoot translocation of Co and Ni. The growth of 1187_n and CRISPR/Cas9 lines were suppressed under high Co and Ni condition, indicating OsFPN1 is required for the normal growth under high Co and Ni. An OsFPN1-green fluorescent protein (GFP) fusion protein was localized to the Golgi apparatus. Yeast carrying GFP-OsFPN1 increased sensitivity to high Co contents and decreased Co and Ni accumulation. These results suggest that OsFPN1 can transport Co and Ni and is vital detoxification in rice.
Collapse
Affiliation(s)
- Manman Kan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
9
|
Therby-Vale R, Lacombe B, Rhee SY, Nussaume L, Rouached H. Mineral nutrient signaling controls photosynthesis: focus on iron deficiency-induced chlorosis. TRENDS IN PLANT SCIENCE 2022; 27:502-509. [PMID: 34848140 DOI: 10.1016/j.tplants.2021.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic organisms convert light energy into chemical energy stored in carbohydrates. To perform this process, an adequate supply of essential mineral elements, such as iron, is required in the chloroplast. Because iron plays a crucial role during electron transport and chlorophyll formation, iron deficiency alters photosynthesis and promotes chlorosis, or the yellowing of leaves. Intriguingly, iron deficiency-induced chlorosis can be reverted by the depletion of other micronutrients [i.e., manganese (Mn)] or macronutrients [i.e., sulfur (S) or phosphorus (P)], raising the question of how plants integrate nutrient status to control photosynthesis. Here, we review how improving our understanding of the complex relationship between nutrient homeostasis and photosynthesis has great potential for crop improvement.
Collapse
Affiliation(s)
| | - Benoit Lacombe
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier, France
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Laurent Nussaume
- DRF/BIAM/SBVME/SAVE UMR 7265 CEA-CNRS-Université Aix Marseille-CEA Cadarache, 13108 St Paul lez Durance, France
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1717-1734. [PMID: 35104334 PMCID: PMC9486929 DOI: 10.1093/jxb/erac030] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Iron (Fe) is an essential transition metal. Based on its redox-active nature under biological conditions, various Fe compounds serve as cofactors in redox enzymes. In plants, the photosynthetic machinery has the highest demand for Fe. In consequence, the delivery and incorporation of Fe into cofactors of the photosynthetic apparatus is the focus of Fe metabolism in leaves. Disturbance of foliar Fe homeostasis leads to impaired biosynthesis of chlorophylls and composition of the photosynthetic machinery. Nevertheless, mitochondrial function also has a significant demand for Fe. The proper incorporation of Fe into proteins and cofactors as well as a balanced intracellular Fe status in leaf cells require the ability to sense Fe, but may also rely on indirect signals that report on the physiological processes connected to Fe homeostasis. Although multiple pieces of information have been gained on Fe signalling in roots, the regulation of Fe status in leaves has not yet been clarified in detail. In this review, we give an overview on current knowledge of foliar Fe homeostasis, from the chemical forms to the allocation and sensing of Fe in leaves.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary
| |
Collapse
|
11
|
Rahman H, Fukushima C, Kaya H, Yaeno T, Kobayashi K. Knockout of Tobacco Homologs of Arabidopsis Multi-Antibiotic Resistance 1 Gene Confers a Limited Resistance to Aminoglycoside Antibiotics. Int J Mol Sci 2022; 23:2006. [PMID: 35216118 PMCID: PMC8878083 DOI: 10.3390/ijms23042006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022] Open
Abstract
To explore a possible recessive selective marker for future DNA-free genome editing by direct delivery of a CRISPR/Cas9-single guide RNA (sgRNA) ribonucleoprotein complex, we knocked out homologs of the Arabidopsis Multi-Antibiotic Resistance 1 (MAR1)/RTS3 gene, mutations of which confer aminoglycoside resistance, in tobacco plants by an efficient Agrobacterium-mediated gene transfer. A Cas9 gene was introduced into Nicotiana tabacum and Nicotiana sylvestris together with an sgRNA gene for one of three different target sequences designed to perfectly match sequences in both S- and T-genome copies of N. tabacum MAR1 homologs (NtMAR1hs). All three sgRNAs directed the introduction of InDels into NtMAR1hs, as demonstrated by CAPS and amplicon sequencing analyses, albeit with varying efficiency. Leaves of regenerated transformant shoots were evaluated for aminoglycoside resistance on shoot-induction media containing different aminoglycoside antibiotics. All transformants tested were as sensitive to those antibiotics as non-transformed control plants, regardless of the mutation rates in NtMAR1hs. The NtMAR1hs-knockout seedlings of the T1 generation showed limited aminoglycoside resistance but failed to form shoots when cultured on shoot-induction media containing kanamycin. The results suggest that, like Arabidopsis MAR1, NtMAR1hs have a role in plants' sensitivity to aminoglycoside antibiotics, and that tobacco has some additional functional homologs.
Collapse
Affiliation(s)
- Hafizur Rahman
- The United Graduate School of Agricultural Sciences, Ehime University, Tarumi, Matsuyama 790-8566, Japan; (H.R.); (H.K.); (T.Y.)
| | - Chika Fukushima
- Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
| | - Hidetaka Kaya
- The United Graduate School of Agricultural Sciences, Ehime University, Tarumi, Matsuyama 790-8566, Japan; (H.R.); (H.K.); (T.Y.)
- Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
- Research Unit for Citromics, Ehime University, Matsuyama 790-8566, Japan
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Tarumi, Matsuyama 790-8566, Japan; (H.R.); (H.K.); (T.Y.)
- Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
- Research Unit for Citromics, Ehime University, Matsuyama 790-8566, Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Tarumi, Matsuyama 790-8566, Japan; (H.R.); (H.K.); (T.Y.)
- Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan;
- Research Unit for Citromics, Ehime University, Matsuyama 790-8566, Japan
| |
Collapse
|
12
|
Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. PHYSIOLOGIA PLANTARUM 2021; 173:259-275. [PMID: 33586164 DOI: 10.1111/ppl.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal toxicity is one of the major concerns for agriculture and health. Accumulation of toxic heavy metals at high concentrations in edible parts of crop plants is the primary cause of disease in humans and cattle. A dramatic increase in industrialization, urbanization, and other high anthropogenic activities has led to the accumulation of heavy metals in agricultural soil, which has consequently disrupted soil conditions and affected crop yield. By now, plants have developed several mechanisms to cope with heavy metal stress. However, not all plants are equally effective in dealing with the toxicity of high heavy metal concentrations. Plants have modified their anatomy, morphophysiology, and molecular networks to survive under changing environmental conditions. Heavy metal sequestration is one of the essential processes evolved by some plants to deal with heavy metals' toxic concentration. Some plants even have the ability to accumulate metals in high quantities in the shoots/organelles without toxic effects. For intercellular and interorganeller metal transport, plants harbor spatially distributed various transporters which mainly help in uptake, translocation, and redistribution of metals. This review discusses different heavy metal transporters in different organelles and their roles in metal sequestration and redistribution to help plants cope with heavy metal stress. A good understanding of the processes at stake helps in developing more tolerant crops without affecting their productivity.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
13
|
Rinne J, Witte CP, Herde M. Loss of MAR1 Function is a Marker for Co-Selection of CRISPR-Induced Mutations in Plants. Front Genome Ed 2021; 3:723384. [PMID: 34713265 PMCID: PMC8525433 DOI: 10.3389/fgeed.2021.723384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we describe the establishment of the knockout marker gene MAR1 for selection of CRISPR/Cas9-edited Arabidopsis seedlings and tomato explants in tissue culture. MAR1 encodes a transporter that is located in mitochondria and chloroplasts and is involved in iron homeostasis. It also opportunistically transports aminoglycoside antibiotics into these organelles and defects of the gene render plants insensitive to those compounds. Here, we show that mutations of MAR1 induced by the CRISPR system confer kanamycin-resistance to Arabidopsis plants and tomato tissues. MAR1 is single-copy in a variety of plant species and the corresponding proteins form a distinct phylogenetic clade allowing easy identification of MAR1 orthologs in different plants. We demonstrate that in multiplexing approaches, where Arabidopsis seedlings were selected via a CRISPR/Cas9-induced kanamycin resistance mediated by MAR1 mutation, a mutation in a second target gene was observed with higher frequency than in a control population only selected for the presence of the transgene. This so called co-selection has not been shown before to occur in plants. The technique can be employed to select for edited plants, which might be particularly useful if editing events are rare.
Collapse
Affiliation(s)
- Jannis Rinne
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz University Hanover, Hanover, Germany
| | | | | |
Collapse
|
14
|
Kim LJ, Tsuyuki KM, Hu F, Park EY, Zhang J, Iraheta JG, Chia JC, Huang R, Tucker AE, Clyne M, Castellano C, Kim A, Chung DD, DaVeiga CT, Parsons EM, Vatamaniuk OK, Jeong J. Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:215-236. [PMID: 33884692 PMCID: PMC8316378 DOI: 10.1111/tpj.15286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 05/26/2023]
Abstract
Mitochondria and chloroplasts are organelles with high iron demand that are particularly susceptible to iron-induced oxidative stress. Despite the necessity of strict iron regulation in these organelles, much remains unknown about mitochondrial and chloroplast iron transport in plants. Here, we propose that Arabidopsis ferroportin 3 (FPN3) is an iron exporter that is dual-targeted to mitochondria and chloroplasts. FPN3 is expressed in shoots, regardless of iron conditions, but its transcripts accumulate under iron deficiency in roots. fpn3 mutants cannot grow as well as the wild type under iron-deficient conditions and their shoot iron levels are lower compared with the wild type. Analyses of iron homeostasis gene expression in fpn3 mutants and inductively coupled plasma mass spectrometry (ICP-MS) measurements show that iron levels in the mitochondria and chloroplasts are increased relative to the wild type, consistent with the proposed role of FPN3 as a mitochondrial/plastid iron exporter. In iron-deficient fpn3 mutants, abnormal mitochondrial ultrastructure was observed, whereas chloroplast ultrastructure was not affected, implying that FPN3 plays a critical role in the mitochondria. Overall, our study suggests that FPN3 is essential for optimal iron homeostasis.
Collapse
Affiliation(s)
- Leah J. Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Fengling Hu
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Emily Y. Park
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jingwen Zhang
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Ithaca, New York 14853
| | - Avery E. Tucker
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Madeline Clyne
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Claire Castellano
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Angie Kim
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Daniel D. Chung
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | | | | | - Olena K. Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
15
|
Escudero V, Abreu I, Tejada-Jiménez M, Rosa-Núñez E, Quintana J, Prieto RI, Larue C, Wen J, Villanova J, Mysore KS, Argüello JM, Castillo-Michel H, Imperial J, González-Guerrero M. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. THE NEW PHYTOLOGIST 2020; 228:194-209. [PMID: 32367515 DOI: 10.1111/nph.16642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Julia Quintana
- Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Camille Larue
- EcoLab, CNRS, Université de Toulouse, Toulouse, 31326, France
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Julie Villanova
- ID16 Beamline. European Synchrotron Radiation Facility, Grenoble, 38043, France
| | | | | | | | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
16
|
Schmidt SB, Eisenhut M, Schneider A. Chloroplast Transition Metal Regulation for Efficient Photosynthesis. TRENDS IN PLANT SCIENCE 2020; 25:817-828. [PMID: 32673582 DOI: 10.1016/j.tplants.2020.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/14/2020] [Accepted: 03/04/2020] [Indexed: 05/24/2023]
Abstract
Plants require sunlight, water, CO2, and essential nutrients to drive photosynthesis and fulfill their life cycle. The photosynthetic apparatus resides in chloroplasts and fundamentally relies on transition metals as catalysts and cofactors. Accordingly, chloroplasts are particularly rich in iron (Fe), manganese (Mn), and copper (Cu). Owing to their redox properties, those metals need to be carefully balanced within the cell. However, the regulation of transition metal homeostasis in chloroplasts is poorly understood. With the availability of the arabidopsis genome information and membrane protein databases, a wider catalogue for searching chloroplast metal transporters has considerably advanced the study of transition metal regulation. This review provides an updated overview of the chloroplast transition metal requirements and the transporters involved for efficient photosynthesis in higher plants.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Marion Eisenhut
- Biochemie der Pflanzen, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany.
| |
Collapse
|
17
|
Kroh GE, Pilon M. Regulation of Iron Homeostasis and Use in Chloroplasts. Int J Mol Sci 2020; 21:E3395. [PMID: 32403383 PMCID: PMC7247011 DOI: 10.3390/ijms21093395] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
Iron (Fe) is essential for life because of its role in protein cofactors. Photosynthesis, in particular photosynthetic electron transport, has a very high demand for Fe cofactors. Fe is commonly limiting in the environment, and therefore photosynthetic organisms must acclimate to Fe availability and avoid stress associated with Fe deficiency. In plants, adjustment of metabolism, of Fe utilization, and gene expression, is especially important in the chloroplasts during Fe limitation. In this review, we discuss Fe use, Fe transport, and mechanisms of acclimation to Fe limitation in photosynthetic lineages with a focus on the photosynthetic electron transport chain. We compare Fe homeostasis in Cyanobacteria, the evolutionary ancestors of chloroplasts, with Fe homeostasis in green algae and in land plants in order to provide a deeper understanding of how chloroplasts and photosynthesis may cope with Fe limitation.
Collapse
Affiliation(s)
| | - Marinus Pilon
- Department of Biology, Colorado State University Department of Biology, Fort Collins, CO 80523, USA;
| |
Collapse
|
18
|
Pham HD, Pólya S, Müller B, Szenthe K, Sági-Kazár M, Bánkúti B, Bánáti F, Sárvári É, Fodor F, Tamás L, Philippar K, Solti Á. The developmental and iron nutritional pattern of PIC1 and NiCo does not support their interdependent and exclusive collaboration in chloroplast iron transport in Brassica napus. PLANTA 2020; 251:96. [PMID: 32297017 PMCID: PMC7214486 DOI: 10.1007/s00425-020-03388-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/04/2020] [Indexed: 05/05/2023]
Abstract
The accumulation of NiCo following the termination of the accumulation of iron in chloroplast suggests that NiCo is not solely involved in iron uptake processes of chloroplasts. Chloroplast iron (Fe) uptake is thought to be operated by a complex containing permease in chloroplast 1 (PIC1) and nickel-cobalt transporter (NiCo) proteins, whereas the role of other Fe homeostasis-related transporters such as multiple antibiotic resistance protein 1 (MAR1) is less characterized. Although pieces of information exist on the regulation of chloroplast Fe uptake, including the effect of plant Fe homeostasis, the whole system has not been revealed in detail yet. Thus, we aimed to follow leaf development-scale changes in the chloroplast Fe uptake components PIC1, NiCo and MAR1 under deficient, optimal and supraoptimal Fe nutrition using Brassica napus as model. Fe deficiency decreased both the photosynthetic activity and the Fe content of plastids. Supraoptimal Fe nutrition caused neither Fe accumulation in chloroplasts nor any toxic effects, thus only fully saturated the need for Fe in the leaves. In parallel with the increasing Fe supply of plants and ageing of the leaves, the expression of BnPIC1 was tendentiously repressed. Though transcript and protein amount of BnNiCo tendentiously increased during leaf development, it was even markedly upregulated in ageing leaves. The relative transcript amount of BnMAR1 increased mainly in ageing leaves facing Fe deficiency. Taken together chloroplast physiology, Fe content and transcript amount data, the exclusive participation of NiCo in the chloroplast Fe uptake is not supported. Saturation of the Fe requirement of chloroplasts seems to be linked to the delay of decomposing the photosynthetic apparatus and keeping chloroplast Fe homeostasis in a rather constant status together with a supressed Fe uptake machinery.
Collapse
Affiliation(s)
- Hong Diep Pham
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sára Pólya
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kálmán Szenthe
- RT-Europe Nonprofit Research Ltd., Mosonmagyaróvár, Hungary
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Ferenc Bánáti
- RT-Europe Nonprofit Research Ltd., Mosonmagyaróvár, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - László Tamás
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katrin Philippar
- Center for Human - and Molecular Biology, Plant Biology, Saarland University, Saarbrücken, Germany
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
19
|
Cramer GR, Cochetel N, Ghan R, Destrac-Irvine A, Delrot S. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. BMC PLANT BIOLOGY 2020; 20:41. [PMID: 31992236 PMCID: PMC6986057 DOI: 10.1186/s12870-020-2251-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/14/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Grape berry ripening is influenced by climate, the main component of the "terroir" of a place. Light and temperature are major factors in the vineyard that affect berry development and fruit metabolite composition. RESULTS To better understand the effect of "place" on transcript abundance during the late stages of berry ripening, Cabernet Sauvignon berries grown in Bordeaux and Reno were compared at similar sugar levels (19 to 26 °Brix (total soluble solids)). Day temperatures were warmer and night temperatures were cooler in Reno. °Brix was lower in Bordeaux berries compared to Reno at maturity levels considered optimum for harvest. RNA-Seq analysis identified 5528 differentially expressed genes between Bordeaux and Reno grape skins at 22°Brix. Weighted Gene Coexpression Network Analysis for all expressed transcripts for all four °Brix levels measured indicated that the majority (75%) of transcript expression differed significantly between the two locations. Top gene ontology categories for the common transcript sets were translation, photosynthesis, DNA metabolism and catabolism. Top gene ontology categories for the differentially expressed genes at 22°Brix involved response to stimulus, biosynthesis and response to stress. Some differentially expressed genes encoded terpene synthases, cell wall enzymes, kinases, transporters, transcription factors and photoreceptors. Most circadian clock genes had higher transcript abundance in Bordeaux. Bordeaux berries had higher transcript abundance with differentially expressed genes associated with seed dormancy, light, auxin, ethylene signaling, powdery mildew infection, phenylpropanoid, carotenoid and terpenoid metabolism, whereas Reno berries were enriched with differentially expressed genes involved in water deprivation, cold response, ABA signaling and iron homeostasis. CONCLUSIONS Transcript abundance profiles in the berry skins at maturity were highly dynamic. RNA-Seq analysis identified a smaller (25% of total) common core set of ripening genes that appear not to depend on rootstock, vineyard management, plant age, soil and climatic conditions. Much of the gene expression differed between the two locations and could be associated with multiple differences in environmental conditions that may have affected the berries in the two locations; some of these genes may be potentially controlled in different ways by the vinegrower to adjust final berry composition and reach a desired result.
Collapse
Affiliation(s)
- Grant R. Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557 USA
| | - Agnès Destrac-Irvine
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| | - Serge Delrot
- UMR Ecophysiology and Grape Functional Genomics, Institut des Sciences de la Vigne et du Vin, University of Bordeaux, Villenave d’Ornon, France
| |
Collapse
|
20
|
Cai Z, Xian P, Lin R, Cheng Y, Lian T, Ma Q, Nian H. Characterization of the Soybean GmIREG Family Genes and the Function of GmIREG3 in Conferring Tolerance to Aluminum Stress. Int J Mol Sci 2020; 21:E497. [PMID: 31941034 PMCID: PMC7013977 DOI: 10.3390/ijms21020497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 11/17/2022] Open
Abstract
The IREG (IRON REGULATED/ferroportin) family of genes plays vital roles in regulating the homeostasis of iron and conferring metal stress. This study aims to identify soybean IREG family genes and characterize the function of GmIREG3 in conferring tolerance to aluminum stress. Bioinformatics and expression analyses were conducted to identify six soybean IREG family genes. One GmIREG, whose expression was significantly enhanced by aluminum stress, GmIREG3, was studied in more detail to determine its possible role in conferring tolerance to such stress. In total, six potential IREG-encoding genes with the domain of Ferroportin1 (PF06963) were characterized in the soybean genome. Analysis of the GmIREG3 root tissue expression patterns, subcellular localizations, and root relative elongation and aluminum content of transgenic Arabidopsis overexpressing GmIREG3 demonstrated that GmIREG3 is a tonoplast localization protein that increases transgenic Arabidopsis aluminum resistance but does not alter tolerance to Co and Ni. The systematic analysis of the GmIREG gene family reported herein provides valuable information for further studies on the biological roles of GmIREGs in conferring tolerance to metal stress. GmIREG3 contributes to aluminum resistance and plays a role similar to that of FeIREG3. The functions of other GmIREG genes need to be further clarified in terms of whether they confer tolerance to metal stress or other biological functions.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (P.X.); (R.L.); (Y.C.); (T.L.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (P.X.); (R.L.); (Y.C.); (T.L.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Rongbin Lin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (P.X.); (R.L.); (Y.C.); (T.L.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (P.X.); (R.L.); (Y.C.); (T.L.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (P.X.); (R.L.); (Y.C.); (T.L.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (P.X.); (R.L.); (Y.C.); (T.L.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (P.X.); (R.L.); (Y.C.); (T.L.); (Q.M.)
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
21
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
22
|
Rydzyński D, Piotrowicz-Cieślak AI, Grajek H, Wasilewski J. Investigation of chlorophyll degradation by tetracycline. CHEMOSPHERE 2019; 229:409-417. [PMID: 31082708 DOI: 10.1016/j.chemosphere.2019.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics represent a novel type of environment pollutants which modify chlorophyll content in plants. Spectroscopic methods were employed to investigate the effect of tetracycline on chlorophyll degradation. Changes in absorbance and fluorescence demonstrated that tetracycline reaction with chlorophyll results in the formation of pheophytin, which was confirmed by new bands typical of pheophytin which appeared in the absorbance spectrum. The rate of pheophytin formation depended on ratio tetracycline to chlorophyll concentration in solution. In solutions with chlorophyll concentration of C = 1 × 10-5 M and tetracycline concentrations of C = 1 × 10-3 M and C = 1 × 10-2 M, pheophytin was formed after 28 h and 25 min, respectively. The obtained lifetime for pheophytin formed during chlorophyll reaction - with tetracycline hydrochloride was τ = 5.71 ± 0.02 ns and its value coincides, within the error limits, with the value obtained for pure pheophytin purchased from ChromaDex. The experiment demonstrated two mechanisms of chlorophyll degradation to pheophytin by tetracycline hydrochloride, i.e. 1) loss of Mg2+ ions from the chlorophyll molecule as a result of the presence of H+ ions in solution (i.e. as a result of medium acidification), and 2) removal of Mg2+ ions directly from chlorophyll by tetracycline which binds Mg2+ ions from the chlorophyll. We demonstrated that magnesium occurring in low concentrations attached to a tetracycline molecule in the BCD ring, and that the second ion of Mg2+ may attach to the A ring of tetracycline at higher Mg2+ concentrations. Two fluorescence bands appeared which indicated such magnesium attachments indeed occurred.
Collapse
Affiliation(s)
- Dariusz Rydzyński
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland; Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| | - Agnieszka I Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland.
| | - Hanna Grajek
- Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719, Olsztyn, Poland
| | - Janusz Wasilewski
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718, Olsztyn, Poland
| |
Collapse
|
23
|
Vigani G, Solti ÏDM, Thomine SB, Philippar K. Essential and Detrimental - an Update on Intracellular Iron Trafficking and Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1420-1439. [PMID: 31093670 DOI: 10.1093/pcp/pcz091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/06/2019] [Indexed: 05/22/2023]
Abstract
Chloroplasts, mitochondria and vacuoles represent characteristic organelles of the plant cell, with a predominant function in cellular metabolism. Chloroplasts are the site of photosynthesis and therefore basic and essential for photoautotrophic growth of plants. Mitochondria produce energy during respiration and vacuoles act as internal waste and storage compartments. Moreover, chloroplasts and mitochondria are sites for the biosynthesis of various compounds of primary and secondary metabolism. For photosynthesis and energy generation, the internal membranes of chloroplasts and mitochondria are equipped with electron transport chains. To perform proper electron transfer and several biosynthetic functions, both organelles contain transition metals and here iron is by far the most abundant. Although iron is thus essential for plant growth and development, it becomes toxic when present in excess and/or in its free, ionic form. The harmful effect of the latter is caused by the generation of oxidative stress. As a consequence, iron transport and homeostasis have to be tightly controlled during plant growth and development. In addition to the corresponding transport and homeostasis proteins, the vacuole plays an important role as an intracellular iron storage and release compartment at certain developmental stages. In this review, we will summarize current knowledge on iron transport and homeostasis in chloroplasts, mitochondria and vacuoles. In addition, we aim to integrate the physiological impact of intracellular iron homeostasis on cellular and developmental processes.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, via Quarello 15/A, Turin I, Italy
| | - Ï Dï M Solti
- Department of Plant Physiology and Molecular Plant Biology, E�tv�s Lor�nd University, Budapest H, Hungary
| | - Sï Bastien Thomine
- Institut de Biologie Int�grative de la Cellule, CNRS, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Katrin Philippar
- Plant Biology, Center for Human- and Molecular Biology (ZHMB), Saarland University, Campus A2.4, Saarbr�cken D, Germany
| |
Collapse
|
24
|
The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int J Mol Sci 2019; 20:ijms20102424. [PMID: 31100819 PMCID: PMC6566170 DOI: 10.3390/ijms20102424] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/31/2023] Open
Abstract
Iron is an essential element for plant growth and development. While abundant in soil, the available Fe in soil is limited. In this regard, plants have evolved a series of mechanisms for efficient iron uptake, allowing plants to better adapt to iron deficient conditions. These mechanisms include iron acquisition from soil, iron transport from roots to shoots, and iron storage in cells. The mobilization of Fe in plants often occurs via chelating with phytosiderophores, citrate, nicotianamine, mugineic acid, or in the form of free iron ions. Recent work further elucidates that these genes’ response to iron deficiency are tightly controlled at transcriptional and posttranscriptional levels to maintain iron homeostasis. Moreover, increasing evidences shed light on certain factors that are identified to be interconnected and integrated to adjust iron deficiency. In this review, we highlight the molecular and physiological bases of iron acquisition from soil to plants and transport mechanisms for tolerating iron deficiency in dicotyledonous plants and rice.
Collapse
|
25
|
Müller B, Kovács K, Pham HD, Kavak Y, Pechoušek J, Machala L, Zbořil R, Szenthe K, Abadía J, Fodor F, Klencsár Z, Solti Á. Chloroplasts preferentially take up ferric-citrate over iron-nicotianamine complexes in Brassica napus. PLANTA 2019; 249:751-763. [PMID: 30382344 DOI: 10.1007/s00425-018-3037-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 05/22/2023]
Abstract
Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.
Collapse
Affiliation(s)
- Brigitta Müller
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Krisztina Kovács
- Laboratory of Nuclear Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Hong-Diep Pham
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Yusuf Kavak
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Jiři Pechoušek
- Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Libor Machala
- Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Radek Zbořil
- Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Kálmán Szenthe
- RT-Europe Nonprofit Research Ltd., Vár tér 2, E Building, Mosonmagyaróvár, 9200, Hungary
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station, Spanish Council for Scientific Research (CSIC), P.O. Box 13034, 50080, Saragossa, Spain
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Zoltán Klencsár
- Centre for Energy Research, Hungarian Academy of Sciences, Konkoly Thege Miklós út 29-33, Budapest, 1121, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
26
|
Pufal G, Memmert J, Leonhardt SD, Minden V. Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:531-544. [PMID: 30466072 DOI: 10.1016/j.envpol.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown. We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Gesine Pufal
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany.
| | - Jörg Memmert
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany
| | - Sara Diana Leonhardt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Vanessa Minden
- Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany; Department of Biology, Ecology and Biodiversity, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
27
|
Gudiño ME, Blanco-Touriñán N, Arbona V, Gómez-Cadenas A, Blázquez MA, Navarro-García F. β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:2086-2098. [PMID: 29986082 DOI: 10.1093/pcp/pcy128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The presence of antibiotics in soils could be due to natural production by soil microorganisms or to the effect of anthropogenic activities. However, the impact of these compounds on plant physiology has not been thoroughly investigated. To evaluate the effect of β-lactam antibiotics (carbenicillin and penicillin) on the growth and development of Arabidopsis thaliana roots, plants were grown in the presence of different amounts and we found a reduction in root size, an increase in the size of root hairs as well as an abnormal position closer to the tip of the roots. Those phenomena were dependent on the accumulation of both antibiotics inside root tissues and also correlated with a decrease in size of the root apical meristem not related to an alteration in cell division but to a decrease in cell expansion. Using an RNA sequencing analysis, we detected an increase in the expression of genes related to the response to oxidative stress, which would explain the increase in the levels of endogenous reactive oxygen species found in the presence of those antibiotics. Moreover, some auxin-responsive genes were misregulated, especially an induction of CYP79B3, possibly explaining the increase in auxin levels in the presence of carbenicillin and the decrease in the amount of indole glucosinolates, involved in the control of fungal infections. Accordingly, penicillin-treated plants were hypersensitive to the endophyte fungus Colletotrichum tofieldiae. These results underscore the risks for plant growth of β-lactam antibiotics in agricultural soils, and suggest a possible function for these compounds as fungus-produced signaling molecules to modify plant behavior.
Collapse
Affiliation(s)
- Marco E Gudiño
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Federico Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Zhao C, Haigh AM, Holford P, Chen ZH. Roles of Chloroplast Retrograde Signals and Ion Transport in Plant Drought Tolerance. Int J Mol Sci 2018; 19:E963. [PMID: 29570668 PMCID: PMC5979362 DOI: 10.3390/ijms19040963] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023] Open
Abstract
Worldwide, drought affects crop yields; therefore, understanding plants' strategies to adapt to drought is critical. Chloroplasts are key regulators of plant responses, and signals from chloroplasts also regulate nuclear gene expression during drought. However, the interactions between chloroplast-initiated retrograde signals and ion channels under stress are still not clear. In this review, we summarise the retrograde signals that participate in regulating plant stress tolerance. We compare chloroplastic transporters that modulate retrograde signalling through retrograde biosynthesis or as critical components in retrograde signalling. We also discuss the roles of important plasma membrane and tonoplast ion transporters that are involved in regulating stomatal movement. We propose how retrograde signals interact with ion transporters under stress.
Collapse
Affiliation(s)
- Chenchen Zhao
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Anthony M Haigh
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Paul Holford
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
29
|
Nakata MT, Sato M, Wakazaki M, Sato N, Kojima K, Sekine A, Nakamura S, Shikanai T, Toyooka K, Tsukaya H, Horiguchi G. Plastid translation is essential for lateral root stem cell patterning in Arabidopsis thaliana. Biol Open 2018; 7:bio028175. [PMID: 29367414 PMCID: PMC5861355 DOI: 10.1242/bio.028175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The RFC3 gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of β/γ proteobacterial origin. The rfc3 mutant developed lateral roots with disrupted stem cell patterning and associated with decreased leaf photosynthetic activity, reduced accumulation of plastid rRNAs in roots, altered root plastid gene expression, and changes in expression of several root stem cell regulators. These results suggest that deficiencies in plastid function affect lateral root stem cells. Treatment with the plastid translation inhibitor spectinomycin phenocopied the defective stem cell patterning in lateral roots and altered plastid gene expression observed in the rfc3 mutant. Additionally, when prps17 defective in a plastid ribosomal protein was treated with low concentrations of spectinomycin, it also phenocopied the lateral root phenotypes of rfc3 The spectinomycin treatment and rfc3 mutation also negatively affected symplasmic connectivity between primary root and lateral root primordia. This study highlights previously unrecognized functions of plastid translation in the stem cell patterning in lateral roots.
Collapse
Affiliation(s)
- Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Wakazaki
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Nozomi Sato
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akihiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Shiori Nakamura
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Toshiharu Shikanai
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kiminori Toyooka
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hirokazu Tsukaya
- Graduate school of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Gorou Horiguchi
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
30
|
Zhang XY, Zhang X, Zhang Q, Pan XX, Yan LC, Ma XJ, Zhao WZ, Qi XT, Yin LP. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:147-163. [PMID: 28103409 DOI: 10.1111/tpj.13482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 05/25/2023]
Abstract
Iron (Fe)-homeostasis in the plastids is closely associated with Fe transport proteins that prevent Fe from occurring in its toxic free ionic forms. However, the number of known protein families related to Fe transport in the plastids (about five) and the function of iron in non-green plastids is limited. In the present study, we report the functional characterization of Zea mays Fe deficiency-related 4 (ZmFDR4), which was isolated from a differentially expressed clone of a cDNA library of Fe deficiency-induced maize roots. ZmFDR4 is homologous to the bacterial FliP superfamily, coexisted in both algae and terrestrial plants, and capable of restoring the normal growth of the yeast mutant fet3fet4, which possesses defective Fe uptake systems. ZmFDR4 mRNA is ubiquitous in maize and is inducible by iron deficiency in wheat. Transient expression of the 35S:ZmFDR4-eGFP fusion protein in rice protoplasts indicated that ZmFDR4 maybe localizes to the plastids envelope and thylakoid. In 35S:c-Myc-ZmFDR4 transgenic tobacco, immunohistochemistry and immunoblotting confirmed that ZmFDR4 is targeted to both the chloroplast envelope and thylakoid. Meanwhile, ultrastructure analysis indicates that ZmFDR4 promotes the density of plastids and accumulation of starch grains. Moreover, Bathophenanthroline disulfonate (BPDS) colorimetry and inductively coupled plasma mass spectrometry (ICP-MS) indicate that ZmFDR4 is related to Fe uptake by plastids and increases seed Fe content. Finally, 35S:c-Myc-ZmFDR4 transgenic tobacco show enhanced photosynthetic efficiency. Therefore, the results of the present study demonstrate that ZmFDR4 functions as an iron transporter in monocot plastids and provide insight into the process of Fe uptake by plastids.
Collapse
Affiliation(s)
- Xiu-Yue Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xi Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Qi Zhang
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Xi Pan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Luo-Chen Yan
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Juan Ma
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Wei-Zhong Zhao
- Institute of Mathematics and Interdisciplinary Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Xiao-Ting Qi
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| | - Li-Ping Yin
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan North Street, Haidian District, Beijing, 100048, China
| |
Collapse
|
31
|
López-Millán AF, Duy D, Philippar K. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology. FRONTIERS IN PLANT SCIENCE 2016; 7:178. [PMID: 27014281 DOI: 10.3389/fpls201600178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 05/22/2023]
Abstract
Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Collapse
Affiliation(s)
- Ana F López-Millán
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service, Houston TX, USA
| | - Daniela Duy
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| | - Katrin Philippar
- Plastid Fatty Acid and Iron Transport - Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
32
|
López-Millán AF, Duy D, Philippar K. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology. FRONTIERS IN PLANT SCIENCE 2016; 7:178. [PMID: 27014281 PMCID: PMC4780311 DOI: 10.3389/fpls.2016.00178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/02/2016] [Indexed: 05/08/2023]
Abstract
Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Collapse
Affiliation(s)
- Ana F. López-Millán
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, United States Department of Agriculture/Agricultural Research Service, HoustonTX, USA
| | - Daniela Duy
- Plastid Fatty Acid and Iron Transport – Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of MunichMunich, Germany
| | - Katrin Philippar
- Plastid Fatty Acid and Iron Transport – Plant Biochemistry and Physiology, Department Biology I, Ludwig-Maximilians-University of MunichMunich, Germany
- *Correspondence: Katrin Philippar,
| |
Collapse
|
33
|
Wang X, Ryu D, Houtkooper RH, Auwerx J. Antibiotic use and abuse: a threat to mitochondria and chloroplasts with impact on research, health, and environment. Bioessays 2015; 37:1045-53. [PMID: 26347282 PMCID: PMC4698130 DOI: 10.1002/bies.201500071] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, several studies have demonstrated that tetracyclines, the antibiotics most intensively used in livestock and that are also widely applied in biomedical research, interrupt mitochondrial proteostasis and physiology in animals ranging from round worms, fruit flies, and mice to human cell lines. Importantly, plant chloroplasts, like their mitochondria, are also under certain conditions vulnerable to these and other antibiotics that are leached into our environment. Together these endosymbiotic organelles are not only essential for cellular and organismal homeostasis stricto sensu, but also have an important role to play in the sustainability of our ecosystem as they maintain the delicate balance between autotrophs and heterotrophs, which fix and utilize energy, respectively. Therefore, stricter policies on antibiotic usage are absolutely required as their use in research confounds experimental outcomes, and their uncontrolled applications in medicine and agriculture pose a significant threat to a balanced ecosystem and the well-being of these endosymbionts that are essential to sustain health.
Collapse
Affiliation(s)
- Xu Wang
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Dongryeol Ryu
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic DiseasesAcademic Medical CenterAmsterdamThe Netherlands
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
34
|
Mentewab A, Matheson K, Adebiyi M, Robinson S, Elston B. RNA-seq analysis of the effect of kanamycin and the ABC transporter AtWBC19 on Arabidopsis thaliana seedlings reveals changes in metal content. PLoS One 2014; 9:e109310. [PMID: 25310285 PMCID: PMC4195610 DOI: 10.1371/journal.pone.0109310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Plants are exposed to antibiotics produced by soil microorganisms, but little is known about their responses at the transcriptional level. Likewise, few endogenous mechanisms of antibiotic resistance have been reported. The Arabidopsis thaliana ATP Binding Cassette (ABC) transporter AtWBC19 (ABCG19) is known to confer kanamycin resistance, but the exact mechanism of resistance is not well understood. Here we examined the transcriptomes of control seedlings and wbc19 mutant seedlings using RNA-seq analysis. Exposure to kanamycin indicated changes in the organization of the photosynthetic apparatus, metabolic fluxes and metal uptake. Elemental analysis showed a 60% and 80% reduction of iron uptake in control and wbc19 mutant seedlings respectively, upon exposure to kanamycin. The drop in iron content was accompanied by the upregulation of the gene encoding for FERRIC REDUCTION OXIDASE 6 (FRO6) in mutant seedlings but not by the differential expression of other transport genes known to be induced by iron deficiency. In addition, wbc19 mutants displayed a distinct expression profile in the absence of kanamycin. Most notably the expression of several zinc ion binding proteins, including ZINC TRANSPORTER 1 PRECURSOR (ZIP1) was increased, suggesting abnormal zinc uptake. Elemental analysis confirmed a 50% decrease of zinc content in wbc19 mutants. Thus, the antibiotic resistance gene WBC19 appears to also have a role in zinc uptake.
Collapse
Affiliation(s)
- Ayalew Mentewab
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- * E-mail:
| | - Kinnari Matheson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- Molecular Biology Department, Princeton University, Princeton, New Jersey, United States of America
| | - Morayo Adebiyi
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- The Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Shanice Robinson
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
| | - Brianna Elston
- Biology Department, Spelman College, Atlanta, Georgia, United States of America
- College of Health Care Sciences, Nova Southeastern University, Davie, Florida, United States of America
| |
Collapse
|
35
|
Ions channels/transporters and chloroplast regulation. Cell Calcium 2014; 58:86-97. [PMID: 25454594 DOI: 10.1016/j.ceca.2014.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/28/2022]
Abstract
Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
Collapse
|
36
|
Kuhlmann M, Finke A, Mascher M, Mette MF. DNA methylation maintenance consolidates RNA-directed DNA methylation and transcriptional gene silencing over generations in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:269-81. [PMID: 25070184 DOI: 10.1111/tpj.12630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 05/22/2023]
Abstract
In plants, 24 nucleotide short interfering RNAs serve as a signal to direct cytosine methylation at homologous DNA regions in the nucleus. If the targeted DNA has promoter function, this RNA-directed DNA methylation may result in transcriptional gene silencing. In a genetic screen for factors involved in RNA-directed transcriptional silencing of a ProNOS-NPTII reporter transgene in Arabidopsis thaliana, we captured alleles of DOMAINS REARRANGED METHYLTRANSFERASE 2, the gene encoding the DNA methyltransferase that is mainly responsible for de novo DNA methylation in the context of RNA-directed DNA methylation. Interestingly, methylation of the reporter gene ProNOS was not completely erased in these mutants, but persisted in the symmetric CG context, indicating that RNA-directed DNA methylation had been consolidated by DNA methylation maintenance. Taking advantage of the segregation of the transgenes giving rise to ProNOS short interfering RNAs and carrying the ProNOS-NPTII reporter in our experimental system, we found that ProNOS DNA methylation maintenance was first evident after two generations of ongoing RNA-directed DNA methylation, and then increased in extent with further generations. As ProNOS DNA methylation had already reached its final level in the first generation of RNA-directed DNA methylation, our findings suggest that establishment of DNA methylation at a particular region may be divided into distinct stages. An initial phase of efficient, but still fully reversible, de novo DNA methylation and transcriptional gene silencing is followed by transition to efficient maintenance of cytosine methylation in a symmetric sequence context accompanied by persistence of gene silencing.
Collapse
Affiliation(s)
- Markus Kuhlmann
- Research Group Epigenetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Gatersleben, Germany
| | | | | | | |
Collapse
|
37
|
Merlot S, Hannibal L, Martins S, Martinelli L, Amir H, Lebrun M, Thomine S. The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1551-64. [PMID: 24510940 DOI: 10.1093/jxb/eru025] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Nickel is an economically important metal and phytotechnologies are being developed to limit the impact of nickel mining on the environment. More than 300 plant species are known to hyperaccumulate nickel. However, our knowledge of the mechanisms involved in nickel accumulation in plants is very limited because it has not yet been possible to study these hyperaccumulators at the genomic level. Here, we used next-generation sequencing technologies to sequence the transcriptome of the nickel hyperaccumulator Psychotria gabriellae of the Rubiaceae family, and used yeast and Arabidopsis as heterologous systems to study the activity of identified metal transporters. We characterized the activity of three metal transporters from the NRAMP and IREG/FPN families. In particular, we showed that PgIREG1 is able to confer nickel tolerance when expressed in yeast and in transgenic plants, where it localizes in the tonoplast. In addition, PgIREG1 shows higher expression in P. gabriellae than in the related non-accumulator species Psychotria semperflorens. Our results designate PgIREG1 as a candidate gene for nickel tolerance and hyperaccumulation in P. gabriellae. These results also show how next-generation sequencing technologies can be used to access the transcriptome of non-model nickel hyperaccumulators to identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sylvain Merlot
- CNRS, Institut des Sciences du Végétal, Labex SPS, Avenue de la terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Jain A, Wilson GT, Connolly EL. The diverse roles of FRO family metalloreductases in iron and copper homeostasis. FRONTIERS IN PLANT SCIENCE 2014; 5:100. [PMID: 24711810 PMCID: PMC3968747 DOI: 10.3389/fpls.2014.00100] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/02/2014] [Indexed: 05/18/2023]
Abstract
Iron and copper are essential for plants and are important for the function of a number of protein complexes involved in photosynthesis and respiration. As the molecular mechanisms that control uptake, trafficking and storage of these nutrients emerge, the importance of metalloreductase-catalyzed reactions in iron and copper metabolism has become clear. This review focuses on the ferric reductase oxidase (FRO) family of metalloreductases in plants and highlights new insights into the roles of FRO family members in metal homeostasis. Arabidopsis FRO2 was first identified as the ferric chelate reductase that reduces ferric iron-chelates at the root surface-rhizosphere interface. The resulting ferrous iron is subsequently transported across the plasma membrane of root epidermal cells by the ferrous iron transporter, IRT1. Recent work has shown that two other members of the FRO family (FRO4 and FRO5) function redundantly to reduce copper to facilitate its uptake from the soil. In addition, FROs appear to play important roles in subcellular compartmentalization of iron as FRO7 is known to contribute to delivery of iron to chloroplasts while mitochondrial family members FRO3 and FRO8 are hypothesized to influence mitochondrial metal ion homeostasis. Finally, recent studies have underscored the importance of plasma membrane-localized ferric reductase activity in leaves for photosynthetic efficiency. Taken together, these studies highlight a number of diverse roles for FROs in both iron and copper metabolism in plants.
Collapse
Affiliation(s)
| | | | - Erin L. Connolly
- *Correspondence: Erin L. Connolly, Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA e-mail:
| |
Collapse
|
39
|
Rodas-Junco BA, Cab-Guillen Y, Muñoz-Sanchez JA, Vázquez-Flota F, Monforte-Gonzalez M, Hérnandez-Sotomayor SMT. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.26752. [PMID: 24494241 PMCID: PMC4091082 DOI: 10.4161/psb.26752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 05/03/2023]
Abstract
Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.
Collapse
Affiliation(s)
- Beatriz A Rodas-Junco
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, México
| | - Yahaira Cab-Guillen
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, México
| | - J Armando Muñoz-Sanchez
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, México
| | - Felipe Vázquez-Flota
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, México
| | - Miriam Monforte-Gonzalez
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, México
| | - S M Teresa Hérnandez-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, México
| |
Collapse
|
40
|
Thomine S, Vert G. Iron transport in plants: better be safe than sorry. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:322-7. [PMID: 23415557 DOI: 10.1016/j.pbi.2013.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 05/03/2023]
Abstract
Iron is essential for plant cell function and more specifically for photosynthesis. Plants have evolved highly efficient systems to take up iron from the soil. However, activating iron uptake is a double jeopardy: not only iron itself is toxic but iron uptake systems are poorly selective and allow the entry of other potentially toxic metals. Plants therefore tightly control iron uptake at the transcriptional and post-translational level and have evolved mechanisms to cope with the concomitant entry of toxic metals. In plant cells, iron has to be distributed to chloroplasts and mitochondria or may be stored safely in vacuole. Distinct transcriptional networks regulating uptake and intracellular distribution are being uncovered, while iron sensing mechanisms remain elusive.
Collapse
Affiliation(s)
- Sébastien Thomine
- Institut des Sciences du Végétal, CNRS Unité Propre de Recherche 2355, Avenue de la Terrasse Bâtiment 23, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
41
|
González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. WATER RESEARCH 2013; 47:2050-64. [PMID: 23399078 DOI: 10.1016/j.watres.2013.01.020] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 12/07/2012] [Accepted: 01/10/2013] [Indexed: 05/24/2023]
Abstract
The individual and combined toxicities of amoxicillin, erythromycin, levofloxacin, norfloxacin and tetracycline have been examined in two organisms representative of the aquatic environment, the cyanobacterium Anabaena CPB4337 as a target organism and the green alga Pseudokirchneriella subcapitata as a non-target organism. The cyanobacterium was more sensitive than the green alga to the toxic effect of antibiotics. Erythromycin was highly toxic for both organisms; tetracycline was more toxic to the green algae whereas the quinolones levofloxacin and norfloxacin were more toxic to the cyanobacterium than to the green alga. Amoxicillin also displayed toxicity to the cyanobacterium but showed no toxicity to the green alga. The toxicological interactions of antibiotics in the whole range of effect levels either in binary or multicomponent mixtures were analyzed using the Combination Index (CI) method. In most cases, synergism clearly predominated both for the green alga and the cyanobacterium. The CI method was compared with the classical models of additivity Concentration Addition (CA) and Independent Action (IA) finding that CI could accurately predict deviations from additivity. Risk assessment was performed by calculating the ratio between Measured Environmental Concentration (MEC) and the Predicted No Effect Concentration (PNEC). A MEC/PNEC ratio higher than 1 was found for the binary erythromycin and tetracycline mixture in wastewater effluents, a combination which showed a strong synergism at low effect levels in both organisms. From the tested antibiotic mixtures, it can be concluded that certain specific combinations may pose a potential ecological risk for aquatic ecosystems with the present environmentally measured concentrations.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Divol F, Couch D, Conéjéro G, Roschzttardtz H, Mari S, Curie C. The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast. THE PLANT CELL 2013; 25:1040-1055. [PMID: 23512854 DOI: 10.1105/tpc112107672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function. Knocking out both YSL4 and YSL6 greatly reduces the plant's ability to cope with excess iron. Biochemical and immunolocalization analyses showed that YSL6 resides in the chloroplast envelope. Elemental analysis and histochemical staining indicate that iron is trapped in the chloroplasts of the ysl4 ysl6 double mutants, which also accumulate ferritins. Also, vacuolar iron remobilization and NRAMP3/4 expression are inhibited. Furthermore, ubiquitous expression of YSL4 or YSL6 dramatically reduces plant tolerance to iron deficiency and decreases chloroplastic iron content. These data demonstrate a fundamental role for YSL4 and YSL6 in managing chloroplastic iron. YSL4 and YSL6 expression patterns support their physiological role in detoxifying iron during plastid dedifferentiation occurring in embryogenesis and senescence.
Collapse
Affiliation(s)
- Fanchon Divol
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004/Institut National de la Recherche Agronomique/SupAgro/Université Montpellier 1, F-34060 Montpellier cedex 2, France
| | | | | | | | | | | |
Collapse
|
43
|
Divol F, Couch D, Conéjéro G, Roschzttardtz H, Mari S, Curie C. The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast. THE PLANT CELL 2013; 25:1040-55. [PMID: 23512854 PMCID: PMC3634676 DOI: 10.1105/tpc.112.107672] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 05/18/2023]
Abstract
In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function. Knocking out both YSL4 and YSL6 greatly reduces the plant's ability to cope with excess iron. Biochemical and immunolocalization analyses showed that YSL6 resides in the chloroplast envelope. Elemental analysis and histochemical staining indicate that iron is trapped in the chloroplasts of the ysl4 ysl6 double mutants, which also accumulate ferritins. Also, vacuolar iron remobilization and NRAMP3/4 expression are inhibited. Furthermore, ubiquitous expression of YSL4 or YSL6 dramatically reduces plant tolerance to iron deficiency and decreases chloroplastic iron content. These data demonstrate a fundamental role for YSL4 and YSL6 in managing chloroplastic iron. YSL4 and YSL6 expression patterns support their physiological role in detoxifying iron during plastid dedifferentiation occurring in embryogenesis and senescence.
Collapse
|
44
|
|
45
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
46
|
Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. THE PLANT CELL 2012; 24:3921-48. [PMID: 23043051 PMCID: PMC3517228 DOI: 10.1105/tpc.112.102491] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/31/2012] [Accepted: 09/12/2012] [Indexed: 05/03/2023]
Abstract
We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, Vitamin C 2 (VTC2), monodehydroascorbate reductase 1 (MDAR1), and conserved in the green lineage and diatoms 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron.
Collapse
Affiliation(s)
- Eugen I. Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Hiroaki Yamasaki
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Scott I. Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Lital N. Adler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven J. Karpowicz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of California, Los Angeles, California 90095
| |
Collapse
|
47
|
Finke A, Kuhlmann M, Mette MF. IDN2 has a role downstream of siRNA formation in RNA-directed DNA methylation. Epigenetics 2012; 7:950-60. [PMID: 22810086 PMCID: PMC3427290 DOI: 10.4161/epi.21237] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In plants, a particular class of short interfering (si)RNAs can serve as a signal to induce cytosine methylation at homologous genomic regions. If the targeted DNA has promoter function, this RNA-directed DNA methylation (RdDM) can result in transcriptional gene silencing (TGS). RNA-directed transcriptional gene silencing (RdTGS) of transgenes provides a versatile system for the study of epigenetic gene regulation. We used transcription of a nopaline synthase promoter (ProNOS)-inverted repeat (IR) to provide a RNA signal that triggers de novo cytosine methylation and TGS of a homologous ProNOS copy in trans. Utilizing a ProNOS-NPTII reporter gene showing high sensitivity to silencing in this two component system, a forward genetic screen for EMS-induced no rna-directed transcriptional silencing (nrd) mutations was performed in Arabidopsis thaliana. Three nrd mutant lines were found to contain one novel loss-of-function allele of idn2/rdm12 and two of nrpd2a/nrpe2a. IDN2/RDM12 encodes a XH/XS domain protein that is able to bind double-stranded RNA with 5′ overhangs, while NRPD2a/NRPE2a encodes the common second-largest subunit of the plant specific DNA-dependent RNA polymerases IV and V involved in silencing processes. Both idn2/rdm12 and nrpd2a/nrpe2a release target transgene expression and reduce CHH context methylation at transgenic as well as endogenous RdDM target regions to similar extents. Nevertheless, accumulation of IR-derived siRNA is not affected, allowing us to present a refined model for the pathway of RdDM and RdTGS that positions function of IDN2 downstream of siRNA formation and points to an important role for its XH domain.
Collapse
Affiliation(s)
- Andreas Finke
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | | |
Collapse
|
48
|
Nomura Y, Takabayashi T, Kuroda H, Yukawa Y, Sattasuk K, Akita M, Nozawa A, Tozawa Y. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro. PLANT MOLECULAR BIOLOGY 2012; 78:185-96. [PMID: 22108865 DOI: 10.1007/s11103-011-9858-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/08/2011] [Indexed: 05/08/2023]
Abstract
Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.
Collapse
Affiliation(s)
- Yuhta Nomura
- Division of Biomolecular Engineering, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Ehime, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nouet C, Motte P, Hanikenne M. Chloroplastic and mitochondrial metal homeostasis. TRENDS IN PLANT SCIENCE 2011; 16:395-404. [PMID: 21489854 DOI: 10.1016/j.tplants.2011.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/25/2011] [Accepted: 03/07/2011] [Indexed: 05/03/2023]
Abstract
Transition metal deficiency has a strong impact on the growth and survival of an organism. Indeed, transition metals, such as iron, copper, manganese and zinc, constitute essential cofactors for many key cellular functions. Both photosynthesis and respiration rely on metal cofactor-mediated electron transport chains. Chloroplasts and mitochondria are, therefore, organelles with high metal ion demand and represent essential components of the metal homeostasis network in photosynthetic cells. In this review, we describe the metal requirements of chloroplasts and mitochondria, the acclimation of their functions to metal deficiency and recent advances in our understanding of their contributions to cellular metal homeostasis, the control of the cellular redox status and the synthesis of metal cofactors.
Collapse
Affiliation(s)
- Cécile Nouet
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering, Department of Life Sciences (B22), University of Liège, Belgium
| | | | | |
Collapse
|
50
|
Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Alvarez-Fernández A, López-Millán AF. Towards a knowledge-based correction of iron chlorosis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:471-82. [PMID: 21349731 DOI: 10.1016/j.plaphy.2011.01.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 05/20/2023]
Abstract
Iron (Fe) deficiency-induced chlorosis is a major nutritional disorder in crops growing in calcareous soils. Iron deficiency in fruit tree crops causes chlorosis, decreases in vegetative growth and marked fruit yield and quality losses. Therefore, Fe fertilizers, either applied to the soil or delivered to the foliage, are used every year to control Fe deficiency in these crops. On the other hand, a substantial body of knowledge is available on the fundamentals of Fe uptake, long and short distance Fe transport and subcellular Fe allocation in plants. Most of this basic knowledge, however, applies only to Fe deficiency, with studies involving Fe fertilization (i.e., with Fe-deficient plants resupplied with Fe) being still scarce. This paper reviews recent developments in Fe-fertilizer research and the state-of-the-art of the knowledge on Fe acquisition, transport and utilization in plants. Also, the effects of Fe-fertilization on the plant responses to Fe deficiency are reviewed. Agronomical Fe-fertilization practices should benefit from the basic knowledge on plant Fe homeostasis already available; this should be considered as a long-term goal that can optimize fertilizer inputs, reduce grower's costs and minimize the environmental impact of fertilization.
Collapse
Affiliation(s)
- Javier Abadía
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), P.O. BOX 13034, E-50080 Zaragoza, Spain.
| | | | | | | | | | | | | |
Collapse
|