1
|
Huang Y, Cao L, Chen T, Chang X, Fang Y, Wu L. Genome-wide identification of the ATP-dependent zinc metalloprotease (FtsH) in Triticeae species reveals that TaFtsH-1 regulates cadmium tolerance in Triticum aestivum. PLoS One 2024; 19:e0316486. [PMID: 39739686 DOI: 10.1371/journal.pone.0316486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members. Additionally, these proteins exhibit similar physicochemical characteristics as well as secondary and tertiary structures. The FtsH genes can be classified into eight groups, each characterized by similar structures and conserved motifs. Intraspecific and interspecific comparisons further revealed extensive gene duplications within the TaFtsH gene family, indicating a closer relationship to maize. Analysis of cis-acting elements in the promoter regions of TaFtsH genes revealed developmental and stress-responsive elements in most of the genes. Expression pattern analysis showed that TaFtsH genes are expressed in all wheat tissues, though with varying patterns. TaFtsH genes displayed differential responses to CdCl2, ZnSO4, and MnSO4 stress treatments. Gene Ontology (GO) enrichment analysis indicated that TaFtsH genes are involved in protein hydrolysis. Barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) technology confirmed the function of TaFtsH-1, indicating that silencing TaFtsH-1 enhances common wheat's resistance to cadmium (Cd) toxicity. In summary, this study offers an in-depth understanding of the FtsH gene family in wheat, establishing a solid basis for comprehending its functions, genetic mechanisms, and improving wheat's tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Yuxi Huang
- Henan Academy of Sciences, Zhengzhou, China
| | - Lifan Cao
- Henan Academy of Sciences, Zhengzhou, China
| | | | | | - Yumei Fang
- Henan Academy of Sciences, Zhengzhou, China
| | - Liuliu Wu
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
2
|
Didaran F, Kordrostami M, Ghasemi-Soloklui AA, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. The mechanisms of photoinhibition and repair in plants under high light conditions and interplay with abiotic stressors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113004. [PMID: 39137703 DOI: 10.1016/j.jphotobiol.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
Collapse
Affiliation(s)
- Fardad Didaran
- Department of Horticulture, Aburaihan Campus, University of Tehran, Iran
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Pavel Pashkovskiy
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir Kuznetsov
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology RAS, Botanicheskaya Street 35, Moscow, 127276, Russia
| |
Collapse
|
3
|
Nazari M, Kordrostami M, Ghasemi-Soloklui AA, Eaton-Rye JJ, Pashkovskiy P, Kuznetsov V, Allakhverdiev SI. Enhancing Photosynthesis and Plant Productivity through Genetic Modification. Cells 2024; 13:1319. [PMID: 39195209 PMCID: PMC11352682 DOI: 10.3390/cells13161319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Enhancing crop photosynthesis through genetic engineering technologies offers numerous opportunities to increase plant productivity. Key approaches include optimizing light utilization, increasing cytochrome b6f complex levels, and improving carbon fixation. Modifications to Rubisco and the photosynthetic electron transport chain are central to these strategies. Introducing alternative photorespiratory pathways and enhancing carbonic anhydrase activity can further increase the internal CO2 concentration, thereby improving photosynthetic efficiency. The efficient translocation of photosynthetically produced sugars, which are managed by sucrose transporters, is also critical for plant growth. Additionally, incorporating genes from C4 plants, such as phosphoenolpyruvate carboxylase and NADP-malic enzymes, enhances the CO2 concentration around Rubisco, reducing photorespiration. Targeting microRNAs and transcription factors is vital for increasing photosynthesis and plant productivity, especially under stress conditions. This review highlights potential biological targets, the genetic modifications of which are aimed at improving photosynthesis and increasing plant productivity, thereby determining key areas for future research and development.
Collapse
Affiliation(s)
- Mansoureh Nazari
- Department of Horticultural Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Mojtaba Kordrostami
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Ali Akbar Ghasemi-Soloklui
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj 31485-498, Iran;
| | - Julian J. Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya St. 35, Moscow 127276, Russia; (P.P.); (V.K.)
- Faculty of Engineering and Natural Sciences, Bahcesehir University, 34349 Istanbul, Turkey
| |
Collapse
|
4
|
Gao J, Lu C, Wei Y, Xie Q, Jin J, Li J, Yang F, Zhu G. Phosphorylation of 399S at CsHsp70 of Cymbidium sinense is essential to maintain chlorophyll stability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108518. [PMID: 38744085 DOI: 10.1016/j.plaphy.2024.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 05/16/2024]
Abstract
The Chinese orchids symbolise nobility and gentility in China, and the variation of leaf color makes Cymbidium sinense more diversified and valuable. However, its color variations especially at the protein level still remain largely unexplored. In this study, the proteomics and phosphoproteomics of Cymbidium sinense leaf color variation mutants were studied. A total of 1059 differentially abundant proteins (DAPs) and 1127 differentially abundant phosphorylation sites belonging to 644 phosphoproteins (DAPPs) were identified in the yellow section of leaf variegation mutant of Cymbidium sinense (MY) compared with the green section (MG). Moreover, 349 co-expressing proteins were found in both omics' datasets, while only 26 proteins showed the same expression patterns in the two omics. The interaction network analysis of kinases and phosphatases showed that DAPs and DAPPs in photosynthesis, response to hormones, pigment metabolic process, phosphorylation, glucose metabolic process, and dephosphorylation might contribute to leaf color variation. The abundance of 28 Hsps and 28 phosphorylation sites belonging to 10 Hsps showed significant differences between MG and MY. CsHsp70 was selected to explore the function in Cymbidium sinense leaf variegation. The results showed CsHsp70 is essential for maintaining photosynthetic pigment content and the 399S phosphorylation site is crucial to the function of CsHsp70. Collectively, our findings construct a comprehensive coverage of protein and protein phosphorylation in leaf variegation of C. sinense, providing valuable insights into its formation mechanisms.
Collapse
Affiliation(s)
- Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
5
|
Melicher P, Dvořák P, Řehák J, Šamajová O, Pechan T, Šamaj J, Takáč T. Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:405-421. [PMID: 37728561 PMCID: PMC10735431 DOI: 10.1093/jxb/erad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.
Collapse
Affiliation(s)
- Pavol Melicher
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, USA
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
6
|
Bellin L, Melzer M, Hilo A, Garza Amaya DL, Keller I, Meurer J, Möhlmann T. Nucleotide Limitation Results in Impaired Photosynthesis, Reduced Growth and Seed Yield Together with Massively Altered Gene Expression. PLANT & CELL PHYSIOLOGY 2023; 64:1494-1510. [PMID: 37329302 DOI: 10.1093/pcp/pcad063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/04/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
Nucleotide limitation and imbalance is a well-described phenomenon in animal research but understudied in the plant field. A peculiarity of pyrimidine de novo synthesis in plants is the complex subcellular organization. Here, we studied two organellar localized enzymes in the pathway, with chloroplast aspartate transcarbamoylase (ATC) and mitochondrial dihydroorotate dehydrogenase (DHODH). ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine nucleotides, a low energy state, reduced photosynthetic capacity and accumulation of reactive oxygen species. Furthermore, altered leaf morphology and chloroplast ultrastructure were observed in ATC mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Thus, DHODH might not only be regulated by respiration but also exert a regulatory function on this process. Transcriptome analysis of an ATC-amiRNA line revealed massive alterations in gene expression with central metabolic pathways being downregulated and stress response and RNA-related pathways being upregulated. In addition, genes involved in central carbon metabolism, intracellular transport and respiration were markedly downregulated in ATC mutants, being most likely responsible for the observed impaired growth. We conclude that impairment of the first committed step in pyrimidine metabolism, catalyzed by ATC, leads to nucleotide limitation and by this has far-reaching consequences on metabolism and gene expression. DHODH might closely interact with mitochondrial respiration, as seen in delayed germination, which is the reason for its localization in this organelle.
Collapse
Affiliation(s)
- Leo Bellin
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Michael Melzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Alexander Hilo
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, Seeland, OT Gatersleben 06466, Germany
| | - Diana Laura Garza Amaya
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Isabel Keller
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| | - Jörg Meurer
- Plant Sciences, Department Biology I, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, Planegg-Martinsried 82152, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Kaiserslautern D-67663, Germany
| |
Collapse
|
7
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
8
|
Zhu X, Yu A, Zhang Y, Yu Q, Long R, Kang J, Yang Q, Guo C, Li M. Genome-wide identification and characterization of filamentation temperature-sensitive H (FtsH) genes and expression analysis in response to multiple stresses in Medicago truncatula. Mol Biol Rep 2023; 50:10097-10109. [PMID: 37910387 DOI: 10.1007/s11033-023-08851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Filamentation temperature-sensitive H (FtsH) is an AAA+ ATP-dependent protease that plays a vital role in plant environmental adaption and tolerance. However, little is known about the function of the FtsH gene family in the most important legume model plant, Medicago truncatula. METHODS AND RESULTS To identify and investigate the potential stress adaptation roles of FtsH gene family in M. truncatula, we conducted a series of genome-wide characterization and expression analyses. Totally, twenty MtFtsH genes were identified, which were unevenly distributed across eight chromosomes and classified into six evolution groups based on their phylogenetic relationships, with each group containing similar structures and motifs. Furthermore, MtFtsH genes exhibited a high degree of collinearity and homology with leguminous plants such as alfalfa and soybean. Multiple cis-elements in the upstream region of MtFtsH genes were also identified that responded to light, abiotic stress, and phytohormones. Public RNA-seq data indicated that MtFtsH genes were induced under both salt and drought stresses, and our transcript expression analysis showed that MtFtsH genes of MtFtsH1, MtFtsH2, MtFtsH4, MtFtsH9, and MtFtsH10 were up-regulated after ABA, H2O2, PEG, and NaCl treatments. These results suggest that MtFtsH genes may play a critical role in drought and high salt stress responses and the adaption processes of plants. CONCLUSIONS This study provides a systematic analysis of FtsH gene family in M. truncatula, serving as a valuable molecular theoretical basis for future functional investigations. Our findings also extend the pool of potential candidate genes for the genetic improvement of abiotic stress tolerance in legume crops.
Collapse
Affiliation(s)
- Xiaoxi Zhu
- College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Andong Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yingying Zhang
- College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Qianwen Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China.
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Shan Q, Zhou B, Wang Y, Hao F, Zhu L, Liu Y, Wang N, Wang F, Li X, Dong Y, Xu K, Zhou Y, Li H, Liu W, Gao H. Genome-Wide Identification and Comprehensive Analysis of the FtsH Gene Family in Soybean ( Glycine max). Int J Mol Sci 2023; 24:16996. [PMID: 38069319 PMCID: PMC10707429 DOI: 10.3390/ijms242316996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The filamentation temperature-sensitive H (FtsH) gene family is critical in regulating plant chloroplast development and photosynthesis. It plays a vital role in plant growth, development, and stress response. Although FtsH genes have been identified in a wide range of plants, there is no detailed study of the FtsH gene family in soybean (Glycine max). Here, we identified 34 GmFtsH genes, which could be categorized into eight groups, and GmFtsH genes in the same group had similar structures and conserved protein motifs. We also performed intraspecific and interspecific collinearity analysis and found that the GmFtsH family has large-scale gene duplication and is more closely related to Arabidopsis thaliana. Cis-acting elements analysis in the promoter region of the GmFtsH genes revealed that most genes contain developmental and stress response elements. Expression patterns based on transcriptome data and real-time reverse transcription quantitative PCR (qRT-PCR) showed that most of the GmFtsH genes were expressed at the highest levels in leaves. Then, GO enrichment analysis indicated that GmFtsH genes might function as a protein hydrolase. In addition, the GmFtsH13 protein was confirmed to be localized in chloroplasts by a transient expression experiment in tobacco. Taken together, the results of this study lay the foundation for the functional determination of GmFtsH genes and help researchers further understand the regulatory network in soybean leaf development.
Collapse
Affiliation(s)
- Qi Shan
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Baihui Zhou
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuanxin Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Feiyu Hao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Lin Zhu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuhan Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Fawei Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Xiaowei Li
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuanyuan Dong
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Keheng Xu
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Yonggang Zhou
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Haiyan Li
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Weican Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Hongtao Gao
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| |
Collapse
|
10
|
Kato Y, Kuroda H, Ozawa SI, Saito K, Dogra V, Scholz M, Zhang G, de Vitry C, Ishikita H, Kim C, Hippler M, Takahashi Y, Sakamoto W. Characterization of tryptophan oxidation affecting D1 degradation by FtsH in the photosystem II quality control of chloroplasts. eLife 2023; 12:RP88822. [PMID: 37986577 PMCID: PMC10665015 DOI: 10.7554/elife.88822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Photosynthesis is one of the most important reactions for sustaining our environment. Photosystem II (PSII) is the initial site of photosynthetic electron transfer by water oxidation. Light in excess, however, causes the simultaneous production of reactive oxygen species (ROS), leading to photo-oxidative damage in PSII. To maintain photosynthetic activity, the PSII reaction center protein D1, which is the primary target of unavoidable photo-oxidative damage, is efficiently degraded by FtsH protease. In PSII subunits, photo-oxidative modifications of several amino acids such as Trp have been indeed documented, whereas the linkage between such modifications and D1 degradation remains elusive. Here, we show that an oxidative post-translational modification of Trp residue at the N-terminal tail of D1 is correlated with D1 degradation by FtsH during high-light stress. We revealed that Arabidopsis mutant lacking FtsH2 had increased levels of oxidative Trp residues in D1, among which an N-terminal Trp-14 was distinctively localized in the stromal side. Further characterization of Trp-14 using chloroplast transformation in Chlamydomonas indicated that substitution of D1 Trp-14 to Phe, mimicking Trp oxidation enhanced FtsH-mediated D1 degradation under high light, although the substitution did not affect protein stability and PSII activity. Molecular dynamics simulation of PSII implies that both Trp-14 oxidation and Phe substitution cause fluctuation of D1 N-terminal tail. Furthermore, Trp-14 to Phe modification appeared to have an additive effect in the interaction between FtsH and PSII core in vivo. Together, our results suggest that the Trp oxidation at its N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation by FtsH.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Faculty of Agriculture, Setsunan UniversityOsakaJapan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Keisuke Saito
- Research Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of MünsterMünsterGermany
| | - Guoxian Zhang
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique and Sorbonne Université Pierre et Marie CurieParisFrance
| | - Hiroshi Ishikita
- Research Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesShanghaiChina
| | - Michael Hippler
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
- Institute of Plant Biology and Biotechnology, University of MünsterMünsterGermany
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama UniversityOkayamaJapan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR), Okayama UniversityOkayamaJapan
| |
Collapse
|
11
|
Miyagishima SY. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems. Commun Biol 2023; 6:1150. [PMID: 37952050 PMCID: PMC10640588 DOI: 10.1038/s42003-023-05544-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023] Open
Abstract
An ancestral eukaryote acquired photosynthesis by genetically integrating a cyanobacterial endosymbiont as the chloroplast. The chloroplast was then further integrated into many other eukaryotic lineages through secondary endosymbiotic events of unicellular eukaryotic algae. While photosynthesis enables autotrophy, it also generates reactive oxygen species that can cause oxidative stress. To mitigate the stress, photosynthetic eukaryotes employ various mechanisms, including regulating chloroplast light absorption and repairing or removing damaged chloroplasts by sensing light and photosynthetic status. Recent studies have shown that, besides algae and plants with innate chloroplasts, several lineages of numerous unicellular eukaryotes engage in acquired phototrophy by hosting algal endosymbionts or by transiently utilizing chloroplasts sequestrated from algal prey in aquatic ecosystems. In addition, it has become evident that unicellular organisms engaged in acquired phototrophy, as well as those that feed on algae, have also developed mechanisms to cope with photosynthetic oxidative stress. These mechanisms are limited but similar to those employed by algae and plants. Thus, there appear to be constraints on the evolution of those mechanisms, which likely began by incorporating photosynthetic cells before the establishment of chloroplasts by extending preexisting mechanisms to cope with oxidative stress originating from mitochondrial respiration and acquiring new mechanisms.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
12
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
13
|
Sun Y, Li J, Zhang L, Lin R. Regulation of chloroplast protein degradation. J Genet Genomics 2023; 50:375-384. [PMID: 36863685 DOI: 10.1016/j.jgg.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Chloroplasts are unique organelles that not only provide sites for photosynthesis and many metabolic processes, but also are sensitive to various environmental stresses. Chloroplast proteins are encoded by genes from both nuclear and chloroplast genomes. During chloroplast development and responses to stresses, the robust protein quality control systems are essential for regulation of protein homeostasis and the integrity of chloroplast proteome. In this review, we summarize the regulatory mechanisms of chloroplast protein degradation refer to protease system, ubiquitin-proteasome system, and the chloroplast autophagy. These mechanisms symbiotically play a vital role in chloroplast development and photosynthesis under both normal or stress conditions.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
14
|
Liu K, Lee KP, Duan J, Kim EY, Singh RM, Di M, Meng Z, Kim C. Cooperative role of AtRsmD and AtRimM proteins in modification and maturation of 16S rRNA in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:310-324. [PMID: 36752655 DOI: 10.1111/tpj.16135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Chloroplast pre-ribosomal RNA (rRNA) undergoes maturation, which is critical for ribosome assembly. While the central and auxiliary factors in rRNA maturation have been elucidated in bacteria, their mode of action remains largely unexplored in chloroplasts. We now reveal chloroplast-specific factors involved in 16S rRNA maturation, Arabidopsis thaliana orthologs of bacterial RsmD methyltransferase (AtRsmD) and ribosome maturation factor RimM (AtRimM). A forward genetic screen aimed to find suppressors of the Arabidopsis yellow variegated 2 (var2) mutant defective in photosystem II quality control found a causal nonsense mutation in AtRsmD. The substantially impaired 16S rRNA maturation and translation due to the mutation rescued the leaf variegation phenotype by lowering the levels of chloroplast-encoded proteins, including photosystem II core proteins, in var2. The subsequent co-immunoprecipitation coupled with mass spectrometry analyses and bimolecular fluorescence complementation assay found that AtRsmD interacts with AtRimM. Consistent with their interaction, loss of AtRimM also considerably impairs 16S rRNA maturation with decelerated m2 G915 modification in 16S rRNA catalyzed by AtRsmD. The atrimM mutation also rescued var2 mutant phenotypes, corroborating the functional interplay between AtRsmD and AtRimM towards modification and maturation of 16S rRNA and chloroplast proteostasis. The maturation and post-transcriptional modifications of rRNA are critical to assembling ribosomes responsible for protein translation. Here, we revealed that the cooperative regulation of 16S rRNA m2 G915 modifications by AtRsmD methyltransferase and ribosome assembly factor AtRimM contributes to 16S rRNA maturation, ribosome assembly, and proteostasis in chloroplasts.
Collapse
Affiliation(s)
- Kaiwei Liu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianli Duan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Eun Yu Kim
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rahul Mohan Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Minghui Di
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuoling Meng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
15
|
Di T, Wu Y, Peng J, Wang J, Wang H, He M, Li N, Hao X, Yang Y, Ni D, Wang L, Wang X. CsCIPK11-Regulated Metalloprotease CsFtsH5 Mediates the Cold Response of Tea Plants. Int J Mol Sci 2023; 24:ijms24076288. [PMID: 37047263 PMCID: PMC10094637 DOI: 10.3390/ijms24076288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Photosystem II repair in chloroplasts is a critical process involved in maintaining a plant’s photosynthetic activity under cold stress. FtsH (filamentation temperature-sensitive H) is an essential metalloprotease that is required for chloroplast photosystem II repair. However, the role of FtsH in tea plants and its regulatory mechanism under cold stress remains elusive. In this study, we cloned a FtsH homolog gene in tea plants, named CsFtsH5, and found that CsFtsH5 was located in the chloroplast and cytomembrane. RT-qPCR showed that the expression of CsFtsH5 was increased with leaf maturity and was significantly induced by light and cold stress. Transient knockdown CsFtsH5 expression in tea leaves using antisense oligonucleotides resulted in hypersensitivity to cold stress, along with higher relative electrolyte leakage and lower Fv/Fm values. To investigate the molecular mechanism underlying CsFtsH5 involvement in the cold stress, we focused on the calcineurin B-like-interacting protein kinase 11 (CsCIPK11), which had a tissue expression pattern similar to that of CsFtsH5 and was also upregulated by light and cold stress. Yeast two-hybrid and dual luciferase (Luc) complementation assays revealed that CsFtsH5 interacted with CsCIPK11. Furthermore, the Dual-Luc assay showed that CsCIPK11-CsFtsH5 interaction might enhance CsFtsH5 stability. Altogether, our study demonstrates that CsFtsH5 is associated with CsCIPK11 and plays a positive role in maintaining the photosynthetic activity of tea plants in response to low temperatures.
Collapse
|
16
|
Contrasting Metabolisms in Green and White Leaf Sectors of Variegated Pelargonium zonale—An Integrative Transcriptomic and Metabolomic Study. Int J Mol Sci 2023; 24:ijms24065288. [PMID: 36982362 PMCID: PMC10048803 DOI: 10.3390/ijms24065288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin–Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.
Collapse
|
17
|
Xu K, Li N, Zhang Y, Gao S, Yin Y, Yao M, Wang F. Silencing of Pepper CaFtsH1 or CaFtsH8 Genes Alters Normal Leaf Development. Int J Mol Sci 2023; 24:ijms24054927. [PMID: 36902361 PMCID: PMC10003178 DOI: 10.3390/ijms24054927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Filamentation temperature-sensitive H (FtsH) is a proteolytic enzyme that plays an important role in plant photomorphogenesis and stress resistance. However, information regarding the FtsH family genes in pepper is limited. In our research, through genome-wide identification, 18 members of the pepper FtsH family (including five FtsHi members) were identified and renamed based on phylogenetic analysis. CaFtsH1 and CaFtsH8 were found to be essential for pepper chloroplast development and photosynthesis because FtsH5 and FtsH2 were lost in Solanaceae diploids. We found that the CaFtsH1 and CaFtsH8 proteins were located in the chloroplasts and specifically expressed in pepper green tissues. Meanwhile, CaFtsH1 and CaFtsH8-silenced plants created by virus-induced gene silencing exhibited albino leaf phenotypes. In addition, CaFtsH1-silenced plants were observed to contain very few dysplastic chloroplasts and lost the capacity for photoautotrophic growth. Transcriptome analysis revealed that the expression of chloroplast-related genes such as those coding the photosynthesis-antenna protein and structural proteins was downregulated in CaFtsH1-silenced plants, resulting in the inability to form normal chloroplasts. This study improves our understanding of pepper chloroplast formation and photosynthesis through the identification and functional study of CaFtsH genes.
Collapse
|
18
|
Liu G, Zhang R, Li S, Ullah R, Yang F, Wang Z, Guo W, You M, Li B, Xie C, Wang L, Liu J, Ni Z, Sun Q, Liang R. TaMADS29 interacts with TaNF-YB1 to synergistically regulate early grain development in bread wheat. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2286-0. [PMID: 36802319 DOI: 10.1007/s11427-022-2286-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023]
Abstract
Grain development is a crucial determinant of yield and quality in bread wheat (Triticum aestivum L.). However, the regulatory mechanisms underlying wheat grain development remain elusive. Here we report how TaMADS29 interacts with TaNF-YB1 to synergistically regulate early grain development in bread wheat. The tamads29 mutants generated by CRISPR/Cas9 exhibited severe grain filling deficiency, coupled with excessive accumulation of reactive oxygen species (ROS) and abnormal programmed cell death that occurred in early developing grains, while overexpression of TaMADS29 increased grain width and 1,000-kernel weight. Further analysis revealed that TaMADS29 interacted directly with TaNF-YB1; null mutation in TaNF-YB1 caused grain developmental deficiency similar to tamads29 mutants. The regulatory complex composed of TaMADS29 and TaNF-YB1 exercises its possible function that inhibits the excessive accumulation of ROS by regulating the genes involved in chloroplast development and photosynthesis in early developing wheat grains and prevents nucellar projection degradation and endosperm cell death, facilitating transportation of nutrients into the endosperm and wholly filling of developing grains. Collectively, our work not only discloses the molecular mechanism of MADS-box and NF-Y TFs in facilitating bread wheat grain development, but also indicates that caryopsis chloroplast might be a central regulator of grain development rather than merely a photosynthesis organelle. More importantly, our work offers an innovative way to breed high-yield wheat cultivars by controlling the ROS level in developing grains.
Collapse
Affiliation(s)
- Guoyu Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Runqi Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Sen Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Rehmat Ullah
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Fengping Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingshan You
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Baoyun Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Liangsheng Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Rongqi Liang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory for Agrobiotechnology, State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Fu W, Cui Z, Guo J, Cui X, Han G, Zhu Y, Hu J, Gao X, Li Y, Xu M, Fu A, Wang F. Immunophilin CYN28 is required for accumulation of photosystem II and thylakoid FtsH protease in Chlamydomonas. PLANT PHYSIOLOGY 2023; 191:1002-1016. [PMID: 36417279 PMCID: PMC9922407 DOI: 10.1093/plphys/kiac524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Excess light causes severe photodamage to photosystem II (PSII) where the primary charge separation for electron transfer takes place. Dissection of mechanisms underlying the PSII maintenance and repair cycle in green algae promotes the usage of genetic engineering and synthetic biology to improve photosynthesis and biomass production. In this study, we systematically analyzed the high light (HL) responsive immunophilin genes in Chlamydomonas (Chlamydomonas reinhardtii) and identified one chloroplast lumen-localized immunophilin, CYN28, as an essential player in HL tolerance. Lack of CYN28 caused HL hypersensitivity, severely reduced accumulation of PSII supercomplexes and compromised PSII repair in cyn28. The thylakoid FtsH (filamentation temperature-sensitive H) is an essential AAA family metalloprotease involved in the degradation of photodamaged D1 during the PSII repair cycle and was identified as one potential target of CYN28. In the cyn28 mutant, the thylakoid FtsH undergoes inefficient turnover under HL conditions. The CYN28-FtsH1/2 interaction relies on the FtsH N-terminal proline residues and is strengthened particularly under HL. Further analyses demonstrated CYN28 displays peptidyl-prolyl isomerase (PPIase) activity, which is necessary for its physiological function. Taken together, we propose that immunophilin CYN28 participates in PSII maintenance and regulates the homeostasis of FtsH under HL stress via its PPIase activity.
Collapse
Affiliation(s)
- Weihan Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Zheng Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jia Guo
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiayu Cui
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Guomao Han
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yunpeng Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Jinju Hu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaoling Gao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Yeqing Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| | - Fei Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
20
|
Wang W, Zhang C, Shang M, Lv H, Liang B, Li J, Zhou W. Hydrogen peroxide regulates the biosynthesis of phenolic compounds and antioxidant quality enhancement in lettuce under low nitrogen condition. Food Chem X 2022; 16:100481. [PMID: 36299865 PMCID: PMC9589012 DOI: 10.1016/j.fochx.2022.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022] Open
Abstract
Reduced nitrogen availability is an efficient strategy for increasing the accumulation of phenolic compounds in vegetables, but related mechanisms remain unknown. Here, the production of hydrogen peroxide (H2O2) and its potential roles in regulating phenolic biosynthesis and enhancing the antioxidant quality of lettuce under low nitrogen (LN) conditions were investigated. The LN treatment caused a rapid production of H2O2, which effectively increased lettuce quality by enhancing the levels of phenolic compounds and other nutrients such as ascorbic acid, glutathione, soluble sugar, and soluble protein. The increased phenolic content was related to the higher expression levels of phenolic biosynthesis genes, including PAL, CHS, DFR, F35H, and UFGT, and higher photosynthetic capacity after H2O2 addition under LN conditions. However, these positive effects were suppressed by dimethylthiourea (DMTU), a scavenger of H2O2. These results suggest that H2O2 as an important signal molecular mediates the LN-caused phenolic accumulation and antioxidant quality enhancement in lettuce.
Collapse
|
21
|
Chloroplast envelope ATPase PGA1/AtFtsH12 is required for chloroplast protein accumulation and cytosol-chloroplast protein homeostasis in Arabidopsis. J Biol Chem 2022; 298:102489. [PMID: 36113581 PMCID: PMC9574505 DOI: 10.1016/j.jbc.2022.102489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
The establishment of photosynthetic protein complexes during chloroplast development requires the influx of a large number of chloroplast proteins that are encoded by the nuclear genome, which is critical for cytosol and chloroplast protein homeostasis and chloroplast development. However, the mechanisms regulating this process are still not well understood in higher plants. Here, we report the isolation and characterization of the pale green Arabidopsis pga1-1 mutant, which is defective in chloroplast development and chloroplast protein accumulation. Using genetic and biochemical evidence, we reveal that PGA1 encodes AtFtsH12, a chloroplast envelope-localized protein of the FtsH family proteins. We determined a G703R mutation in the GAD motif of the conserved ATPase domain renders the pga1-1 a viable hypomorphic allele of the essential gene AtFtsH12. In de-etiolation assays, we showed that the accumulation of photosynthetic proteins and the expression of photosynthetic genes were impaired in pga1-1. Using the FNRctp-GFP and pTAC2-GFP reporters, we demonstrated that AtFtsH12 was required for the accumulation of chloroplast proteins in vivo. Interestingly, we identified an increase in expression of the mutant AtFtsH12 gene in pga1-1, suggesting a feedback regulation. Moreover, we found that cytosolic and chloroplast proteostasis responses were triggered in pga1-1. Together, taking advantage of the novel pga1-1 mutant, we demonstrate the function of AtFtsH12 in chloroplast protein homeostasis and chloroplast development.
Collapse
|
22
|
Wang X, Li Q, Zhang Y, Pan M, Wang R, Sun Y, An L, Liu X, Yu F, Qi Y. VAR2/AtFtsH2 and EVR2/BCM1/CBD1 synergistically regulate the accumulation of PSII reaction centre D1 protein during de-etiolation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2395-2409. [PMID: 35610189 DOI: 10.1111/pce.14368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Thylakoid FtsH complex participates in PSII repair cycle during high light-induced photoinhibition. The Arabidopsis yellow variegated2 (var2) mutants are defective in the VAR2/AtFtsH2 subunit of thylakoid FtsH complex. Taking advantage of the var2 leaf variegation phenotype, dissections of genetic enhancer loci have yielded novel paradigms in understanding functions of thylakoid FtsH complex. Here, we report the isolation of a new var2 enhancer, enhancer of variegation2-1 (evr2-1). We confirmed that EVR2 encodes a chloroplast protein that was known as BALANCE OF CHLOROPHYLL METABOLISM 1 (BCM1), or CHLOROPHYLL BIOSYNTHETIC DEFECT 1 (CBD1). We showed that EVR2/BCM1/CBD1 was involved in the oligomerization of photosystem I complexes. Genetic assays indicated that general defects in chlorophyll biosynthesis and the accumulation of photosynthetic complexes do not necessarily enhance var2 leaf variegation. In addition, we found that VAR2/AtFtsH2 is required for the accumulation of photosynthetic proteins during de-etiolation. Moreover, we identified PSII core proteins D1 and PsbC as potential EVR2-associated proteins using Co-IP/MS. Furthermore, the accumulation of D1 protein was greatly compromised in the var2-5 evr2-1 double mutant during de-etiolation. Together, our findings reveal a functional link between VAR2/AtFtsH2 and EVR2/BCM1/CBD1 in regulating chloroplast development and the accumulation of PSII reaction centre D1 protein during de-etiolation.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Qinglong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yalin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Mi Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ruijuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yifan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
23
|
Li JY, Yang C, Tian YY, Liu JX. Regulation of Chloroplast Development and Function at Adverse Temperatures in Plants. PLANT & CELL PHYSIOLOGY 2022; 63:580-591. [PMID: 35141744 DOI: 10.1093/pcp/pcac022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The chloroplast is essential for photosynthesis, plant growth and development. As semiautonomous organelles, the biogenesis and development of chloroplasts need to be well-regulated during plant growth and stress responses. Low or high ambient temperatures are adverse environmental stresses that affect crop growth and productivity. As sessile organisms, plants regulate the development and function of chloroplasts in a fluctuating temperature environment to maintain normal photosynthesis. This review focuses on the molecular mechanisms and regulatory factors required for chloroplast biogenesis and development under cold or heat stress conditions and highlights the importance of chloroplast gene transcription, RNA metabolism, ribosome function and protein homeostasis essential for chloroplast development under adverse temperature conditions.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Ying-Ying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
24
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
25
|
Annacondia ML, Martinez G. Reprogramming of RNA silencing triggered by cucumber mosaic virus infection in Arabidopsis. Genome Biol 2021; 22:340. [PMID: 34911561 PMCID: PMC8672585 DOI: 10.1186/s13059-021-02564-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND RNA silencing has an important role mediating sequence-specific virus resistance in plants. The complex interaction of viruses with RNA silencing involves the loading of viral small interfering RNAs (vsiRNAs) into its host ARGONAUTE (AGO) proteins. As a side effect of their antiviral activity, vsiRNAs loading into AGO proteins can also mediate the silencing of endogenous genes. Here, we analyze at the genome-wide level both aspects of the interference of cucumber mosaic virus (CMV) with the RNA silencing machinery of Arabidopsis thaliana. RESULTS We observe CMV-derived vsiRNAs affect the levels of endogenous sRNA classes. Furthermore, we analyze the incorporation of vsiRNAs into AGO proteins with a described antiviral role and the viral suppressor of RNA silencing (VSR) 2b, by combining protein immunoprecipitation with sRNA high-throughput sequencing. Interestingly, vsiRNAs represent a substantial percentage of AGO-loaded sRNAs and displace other endogenous sRNAs. As a countermeasure, the VSR 2b loaded vsiRNAs and mRNA-derived siRNAs, which affect the expression of the genes they derive from. Additionally, we analyze how vsiRNAs incorporate into the endogenous RNA silencing pathways by exploring their target mRNAs using parallel analysis of RNA end (PARE) sequencing, which allow us to identify vsiRNA-targeted genes genome-wide. CONCLUSIONS This work exemplifies the complex relationship of RNA viruses with the endogenous RNA silencing machinery and the multiple aspects of virus resistance and virulence that this interaction induces.
Collapse
Affiliation(s)
- Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
26
|
Sharma P, Gayen D. Plant protease as regulator and signaling molecule for enhancing environmental stress-tolerance. PLANT CELL REPORTS 2021; 40:2081-2095. [PMID: 34173047 DOI: 10.1007/s00299-021-02739-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Proteases are ubiquitous in prokaryotes and eukaryotes. Plant proteases are key regulators of various physiological processes, including protein homeostasis, organelle development, senescence, seed germination, protein processing, environmental stress response, and programmed cell death. Proteases are involved in the breakdown of peptide bonds resulting in irreversible posttranslational modification of the protein. Proteases act as signaling molecules that specifically regulate cellular function by cleaving and triggering receptor molecules. Peptides derived from proteolysis regulate ROS signaling under oxidative stress in the plant. It degrades misfolded and abnormal proteins into amino acids to repair the cell damage and regulates the biological process in response to environmental stress. Proteases modulate the biogenesis of phytohormones which control plant growth, development, and environmental stresses. Protein homeostasis, the overall balance between protein synthesis and proteolysis, is required for plant growth and development. Abiotic and biotic stresses are major factors that negatively impact cellular survivability, biomass production, and reduced crop yield potentials. Therefore, the identification of various stress-responsive proteases and their molecular functions may elucidate valuable information for the development of stress-resilient crops with higher yield potentials. However, the understanding of molecular mechanisms of plant protease remains unexplored. This review provides an overview of proteases related to development, signaling, and growth regulation to acclimatize environmental stress in plants.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Dipak Gayen
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
27
|
Wu Q, Han T, Yang L, Wang Q, Zhao Y, Jiang D, Ruan X. The essential roles of OsFtsH2 in developing the chloroplast of rice. BMC PLANT BIOLOGY 2021; 21:445. [PMID: 34598671 PMCID: PMC8485545 DOI: 10.1186/s12870-021-03222-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/20/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Filamentation temperature-sensitive H (FtsH) is an ATP-dependent zinc metalloprotease with ATPase activity, proteolysis activity and molecular chaperone-like activity. For now, a total of nine FtsH proteins have been encoded in rice, but their functions have not revealed in detail. In order to investigate the molecular mechanism of OsFtsH2 here, several osftsh2 knockout mutants were successfully generated by the CRISPR/Cas9 gene editing technology. RESULTS All the mutants exhibited a phenotype of striking albino leaf and could not survive through the stage of three leaves. OsFtsH2 was located in the chloroplast and preferentially expressed in green tissues. In addition, osftsh2 mutants could not form normal chloroplasts and had lost photosynthetic autotrophic capacity. RNA sequencing analysis indicated that many biological processes such as photosynthesis-related pathways and plant hormone signal transduction were significantly affected in osftsh2 mutants. CONCLUSIONS Overall, the results suggested OsFtsH2 to be essential for chloroplast development in rice.
Collapse
Affiliation(s)
- Qingfei Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Tiantian Han
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| | - Yingxian Zhao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Dean Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Ruan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China.
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China.
| |
Collapse
|
28
|
What Antarctic Plants Can Tell Us about Climate Changes: Temperature as a Driver for Metabolic Reprogramming. Biomolecules 2021; 11:biom11081094. [PMID: 34439761 PMCID: PMC8392395 DOI: 10.3390/biom11081094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Global warming is strongly affecting the maritime Antarctica climate and the consequent melting of perennial snow and ice covers resulted in increased colonization by plants. Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Antarctic Peninsula and understanding how the plant is responding to global warming is a new challenging target for modern cell physiology. To this aim, we performed differential proteomic analysis on C. quitensis plants grown in natural conditions compared to plants grown for one year inside open top chambers (OTCs) which determine an increase of about 4 °C at midday, mimicking the effect of global warming. A thorough analysis of the up- and downregulated proteins highlighted an extensive metabolism reprogramming leading to enhanced photoprotection and oxidative stress control as well as reduced content of cell wall components. Overall, OTCs growth seems to be advantageous for C. quitensis plants which could benefit from a better CO2 diffusion into the mesophyll and a reduced ROS-mediated photodamage.
Collapse
|
29
|
Zhang Y, Xia G, Zhu Q. Conserved and Unique Roles of Chaperone-Dependent E3 Ubiquitin Ligase CHIP in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:699756. [PMID: 34305988 PMCID: PMC8299108 DOI: 10.3389/fpls.2021.699756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/17/2021] [Indexed: 05/09/2023]
Abstract
Protein quality control (PQC) is essential for maintaining cellular homeostasis by reducing protein misfolding and aggregation. Major PQC mechanisms include protein refolding assisted by molecular chaperones and the degradation of misfolded and aggregated proteins using the proteasome and autophagy. A C-terminus of heat shock protein (Hsp) 70-interacting protein [carboxy-terminal Hsp70-interacting protein (CHIP)] is a chaperone-dependent and U-box-containing E3 ligase. CHIP is a key molecule in PQC by recognizing misfolded proteins through its interacting chaperones and targeting their degradation. CHIP also ubiquitinates native proteins and plays a regulatory role in other cellular processes, including signaling, development, DNA repair, immunity, and aging in metazoans. As a highly conserved ubiquitin ligase, plant CHIP plays an important role in response to a broad spectrum of biotic and abiotic stresses. CHIP protects chloroplasts by coordinating chloroplast PQC both outside and inside the important photosynthetic organelle of plant cells. CHIP also modulates the activity of protein phosphatase 2A (PP2A), a crucial component in a network of plant signaling, including abscisic acid (ABA) signaling. In this review, we discuss the structure, cofactors, activities, and biological function of CHIP with an emphasis on both its conserved and unique roles in PQC, stress responses, and signaling in plants.
Collapse
Affiliation(s)
| | | | - Qianggen Zhu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, China
| |
Collapse
|
30
|
Tian YN, Zhong RH, Wei JB, Luo HH, Eyal Y, Jin HL, Wu LJ, Liang KY, Li YM, Chen SZ, Zhang ZQ, Pang XQ. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. MOLECULAR PLANT 2021; 14:1149-1167. [PMID: 33857689 DOI: 10.1016/j.molp.2021.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The proteolytic degradation of the photodamaged D1 core subunit during the photosystem II (PSII) repair cycle is well understood, but chlorophyll turnover during D1 degradation remains unclear. Here, we report that Arabidopsis thaliana CHLOROPHYLLASE 1 (CLH1) plays important roles in the PSII repair process. The abundance of CLH1 and CLH2 peaks in young leaves and is induced by high-light exposure. Seedlings of clh1 single and clh1-1/2-2 double mutants display increased photoinhibition after long-term high-light exposure, whereas seedlings overexpressing CLH1 have enhanced light tolerance compared with the wild type. CLH1 is localized in the developing chloroplasts of young leaves and associates with the PSII-dismantling complexes RCC1 and RC47, with a preference for the latter upon exposure to high light. Furthermore, degradation of damaged D1 protein is retarded in young clh1-1/2-2 leaves after 18-h high-light exposure but is rescued by the addition of recombinant CLH1 in vitro. Moreover, overexpression of CLH1 in a variegated mutant (var2-2) that lacks thylakoid protease FtsH2, with which CLH1 interacts, suppresses the variegation and restores D1 degradation. A var2-2 clh1-1/2-2 triple mutant shows more severe variegation and seedling death. Taken together, these results establish CLH1 as a long-sought chlorophyll dephytylation enzyme that is involved in PSII repair and functions in long-term adaptation of young leaves to high-light exposure by facilitating FtsH-mediated D1 degradation.
Collapse
Affiliation(s)
- Ya-Nan Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Rui-Hao Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jun-Bin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hong-Hui Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Horticulture, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yoram Eyal
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - La-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ke-Ying Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ying-Man Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shu-Zhen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhao-Qi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Horticulture, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Xue-Qun Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, South China Agricultural University, Guangzhou 510642, People's Republic of China; College of Life Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
31
|
Messant M, Krieger-Liszkay A, Shimakawa G. Dynamic Changes in Protein-Membrane Association for Regulating Photosynthetic Electron Transport. Cells 2021; 10:cells10051216. [PMID: 34065690 PMCID: PMC8155901 DOI: 10.3390/cells10051216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Photosynthesis has to work efficiently in contrasting environments such as in shade and full sun. Rapid changes in light intensity and over-reduction of the photosynthetic electron transport chain cause production of reactive oxygen species, which can potentially damage the photosynthetic apparatus. Thus, to avoid such damage, photosynthetic electron transport is regulated on many levels, including light absorption in antenna, electron transfer reactions in the reaction centers, and consumption of ATP and NADPH in different metabolic pathways. Many regulatory mechanisms involve the movement of protein-pigment complexes within the thylakoid membrane. Furthermore, a certain number of chloroplast proteins exist in different oligomerization states, which temporally associate to the thylakoid membrane and modulate their activity. This review starts by giving a short overview of the lipid composition of the chloroplast membranes, followed by describing supercomplex formation in cyclic electron flow. Protein movements involved in the various mechanisms of non-photochemical quenching, including thermal dissipation, state transitions and the photosystem II damage–repair cycle are detailed. We highlight the importance of changes in the oligomerization state of VIPP and of the plastid terminal oxidase PTOX and discuss the factors that may be responsible for these changes. Photosynthesis-related protein movements and organization states of certain proteins all play a role in acclimation of the photosynthetic organism to the environment.
Collapse
Affiliation(s)
- Marine Messant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France;
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France;
- Correspondence:
| | - Ginga Shimakawa
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan;
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
32
|
Yang S, Overlander M, Fiedler J. Genetic analysis of the barley variegation mutant, grandpa1.a. BMC PLANT BIOLOGY 2021; 21:134. [PMID: 33711931 PMCID: PMC7955646 DOI: 10.1186/s12870-021-02915-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/04/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Providing the photosynthesis factory for plants, chloroplasts are critical for crop biomass and economic yield. However, chloroplast development is a complicated process, coordinated by the cross-communication between the nucleus and plastids, and the underlying biogenesis mechanism has not been fully revealed. Variegation mutants have provided ideal models to identify genes or factors involved in chloroplast development. Well-developed chloroplasts are present in the green tissue areas, while the white areas contain undifferentiated plastids that are deficient in chlorophyll. Unlike albino plants, variegation mutants survive to maturity and enable investigation into the signaling pathways underlying chloroplast biogenesis. The allelic variegated mutants in barley, grandpa 1 (gpa1), have long been identified but have not been genetically characterized. RESULTS We characterized and genetically analyzed the grandpa1.a (gpa1.a) mutant. The chloroplast ultrastructure was evaluated using transmission electron microscopy (TEM), and it was confirmed that chloroplast biogenesis was disrupted in the white sections of gpa1.a. To determine the precise position of Gpa1, a high-resolution genetic map was constructed. Segregating individuals were genotyped with the barley 50 k iSelect SNP Array, and the linked SNPs were converted to PCR-based markers for genetic mapping. The Gpa1 gene was mapped to chromosome 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. In the variegated gpa1.a mutant, we identified a large deletion in this gene cluster that eliminates a putative plastid terminal oxidase (PTOX). CONCLUSIONS Here we characterized and genetically mapped the gpa1.a mutation causing a variegation phenotype in barley. The PTOX-encoding gene in the delimited region is a promising candidate for Gpa1. Therefore, the present study provides a foundation for the cloning of Gpa1, which will elevate our understanding of the molecular mechanisms underlying chloroplast biogenesis, particularly in monocot plants.
Collapse
Affiliation(s)
- Shengming Yang
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
| | - Megan Overlander
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA
| | - Jason Fiedler
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
33
|
Nishimura K, Nakagawa R, Hachisuga C, Nakajima Munekage Y. Deciphering the Proteotoxic Stress Responses Triggered by the Perturbed Thylakoid Proteostasis in Arabidopsis. PLANTS 2021; 10:plants10030519. [PMID: 33802194 PMCID: PMC8001255 DOI: 10.3390/plants10030519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Here, we explored heat dependent thylakoid FtsH protease substrates and investigated proteotoxicity induced by thermal damage and processive protease dysfunction on the thylakoid membrane. Through our thylakoid enriched proteome analysis and biochemical experiments, carbonylated stromal proteins were suggested as possible FtsH targets. Furthermore, we observed in the thylakoid fractions in the absence of FtsH stromal reactive oxygen species-detoxifying enzymes, as well as heat shock proteins and chaperones, which are known to be upregulated at the transcriptional level when this protease is absent, which is called the damaged protein response, resembling unfolded protein response in eukaryotic cells. Interestingly, the thylakoid-enriched high-density fractions included stromal translation factors and RNA-binding proteins, along with aminoacyl-tRNA synthetase, reminiscent of the formation of stress granules. Unexpectedly, extraplastid proteins such as mitochondrial chaperones, peroxidase, tricarboxylic acid cycle and respiratory chain enzymes, as well as cytosolic ribosomes, translation factors, heat shock proteins, antioxidants and metabolic enzymes, were also found deposited in the high-density fractions depending on the loss of thylakoid FtsH, with more prominent effects of thermal stress on the cytosolic proteins. This may reflect intracellular adaptation to the proteotoxic influences from the organelle.
Collapse
Affiliation(s)
- Kenji Nishimura
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan; (C.H.); (Y.N.M.)
- Correspondence: ; Tel.: +81-79-565-7351
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics in RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Hyogo, Japan;
| | - Chisato Hachisuga
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan; (C.H.); (Y.N.M.)
| | - Yuri Nakajima Munekage
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Hyogo, Japan; (C.H.); (Y.N.M.)
| |
Collapse
|
34
|
Li D, Wang M, Zhang T, Chen X, Li C, Liu Y, Brestic M, Chen THH, Yang X. Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants. PHOTOSYNTHESIS RESEARCH 2021; 147:301-315. [PMID: 33394352 DOI: 10.1007/s11120-020-00810-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Photosystem II (PSII), especially the D1 protein, is highly sensitive to the detrimental impact of heat stress. Photoinhibition always occurs when the rate of photodamage exceeds the rate of D1 protein repair. Here, genetically engineered codA-tomato with the capability to accumulate glycinebetaine (GB) was established. After photoinhibition treatment at high temperature, the transgenic lines displayed more thermotolerance to heat-induced photoinhibition than the control line. GB maintained high expression of LeFtsHs and LeDegs and degraded the damaged D1 protein in time. Meanwhile, the increased transcription of synthesis-related genes accelerated the de novo synthesis of D1 protein. Low ROS accumulation reduced the inhibition of D1 protein translation in the transgenic plants, thereby reducing protein damage. The increased D1 protein content and decreased phosphorylated D1 protein (pD1) in the transgenic plants compared with control plants imply that GB may minimize photodamage and maximize D1 protein stability. As D1 protein exhibits a high turnover, PSII maybe repaired rapidly and efficiently in transgenic plants under photoinhibition treatment at high temperature, with the resultant mitigation of photoinhibition of PSII.
Collapse
Affiliation(s)
- Daxing Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Mengwei Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Xiao Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Tony H H Chen
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, China.
| |
Collapse
|
35
|
Xu K, Wu Y, Song J, Hu K, Wu Z, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J. Fine Mapping and Identification of BnaC06.FtsH1, a Lethal Gene That Regulates the PSII Repair Cycle in Brassica napus. Int J Mol Sci 2021; 22:ijms22042087. [PMID: 33669866 PMCID: PMC7923215 DOI: 10.3390/ijms22042087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Photosystem II (PSII) is an important component of the chloroplast. The PSII repair cycle is crucial for the relief of photoinhibition and may be advantageous when improving stress resistance and photosynthetic efficiency. Lethal genes are widely used in the efficiency detection and method improvement of gene editing. In the present study, we identified the naturally occurring lethal mutant 7-521Y with etiolated cotyledons in Brassica napus, controlled by double-recessive genes (named cyd1 and cyd2). By combining whole-genome resequencing and map-based cloning, CYD1 was fine-mapped to a 29 kb genomic region using 15,167 etiolated individuals. Through cosegregation analysis and functional verification of the transgene, BnaC06.FtsH1 was determined to be the target gene; it encodes an filamentation temperature sensitive protein H 1 (FtsH1) hydrolase that degrades damaged PSII D1 in Arabidopsis thaliana. The expression of BnaC06.FtsH1 was high in the cotyledons, leaves, and flowers of B. napus, and localized in the chloroplasts. In addition, the expression of EngA (upstream regulation gene of FtsH) increased and D1 decreased in 7-521Y. Double mutants of FtsH1 and FtsH5 were lethal in A. thaliana. Through phylogenetic analysis, the loss of FtsH5 was identified in Brassica, and the remaining FtsH1 was required for PSII repair cycle. CYD2 may be a homologous gene of FtsH1 on chromosome A07 of B. napus. Our study provides new insights into lethal mutants, the findings may help improve the efficiency of the PSII repair cycle and biomass accumulation in oilseed rape.
Collapse
|
36
|
Liu YL, Zheng HL. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. Int J Mol Sci 2021; 22:ijms22031055. [PMID: 33494455 PMCID: PMC7865619 DOI: 10.3390/ijms22031055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The mangrove plant Acanthus ilicifolius and its relative, Acanthus mollis, have been previously proved to possess diverse pharmacological effects. Therefore, evaluating the differentially expressed proteins of these species under tidal flooding stress is essential to fully exploit and benefit from their medicinal values. The roots of A. ilicifolius and A. mollis were exposed to 6 h of flooding stress per day for 10 days. The dry weight, hydrogen peroxide (H2O2) content, anatomical characteristics, carbon and energy levels, and two-dimensional electrophoresis coupled with MALDI-TOF/TOF MS technology were used to reveal the divergent flooding resistant strategies. A. ilicifolius performed better under tidal flooding stress, which was reflected in the integrity of the morphological structure, more efficient use of carbon and energy, and a higher percentage of up-regulated proteins associated with carbon and energy metabolism. A. mollis could not survive in flooding conditions for a long time, as revealed by disrupting cell structures of the roots, less efficient use of carbon and energy, and a higher percentage of down-regulated proteins associated with carbon and energy metabolism. Energy provision and flux balance played a role in the flooding tolerance of A. ilicifolius and A. mollis.
Collapse
|
37
|
Sun JL, Li JY, Wang MJ, Song ZT, Liu JX. Protein Quality Control in Plant Organelles: Current Progress and Future Perspectives. MOLECULAR PLANT 2021; 14:95-114. [PMID: 33137518 DOI: 10.1016/j.molp.2020.10.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum, chloroplasts, and mitochondria are major plant organelles for protein synthesis, photosynthesis, metabolism, and energy production. Protein homeostasis in these organelles, maintained by a balance between protein synthesis and degradation, is essential for cell functions during plant growth, development, and stress resistance. Nucleus-encoded chloroplast- and mitochondrion-targeted proteins and ER-resident proteins are imported from the cytosol and undergo modification and maturation within their respective organelles. Protein folding is an error-prone process that is influenced by both developmental signals and environmental cues; a number of mechanisms have evolved to ensure efficient import and proper folding and maturation of proteins in plant organelles. Misfolded or damaged proteins with nonnative conformations are subject to degradation via complementary or competing pathways: intraorganelle proteases, the organelle-associated ubiquitin-proteasome system, and the selective autophagy of partial or entire organelles. When proteins in nonnative conformations accumulate, the organelle-specific unfolded protein response operates to restore protein homeostasis by reducing protein folding demand, increasing protein folding capacity, and enhancing components involved in proteasome-associated protein degradation and autophagy. This review summarizes recent progress on the understanding of protein quality control in the ER, chloroplasts, and mitochondria in plants, with a focus on common mechanisms shared by these organelles during protein homeostasis.
Collapse
Affiliation(s)
- Jing-Liang Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Ze-Ting Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
38
|
Wang Y, Wang D, Tao Z, Yang Y, Gao Z, Zhao G, Chang X. Impacts of Nitrogen Deficiency on Wheat ( Triticum aestivum L.) Grain During the Medium Filling Stage: Transcriptomic and Metabolomic Comparisons. FRONTIERS IN PLANT SCIENCE 2021; 12:674433. [PMID: 34421938 PMCID: PMC8371442 DOI: 10.3389/fpls.2021.674433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/02/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) supplementation is essential to the yield and quality of bread wheat (Triticum aestivum L.). The impact of N-deficiency on wheat at the seedling stage has been previously reported, but the impact of distinct N regimes applied at the seedling stage with continuous application on filling and maturing wheat grains is lesser known, despite the filling stage being critical for final grain yield and flour quality. Here, we compared phenotype characteristics such as grain yield, grain protein and sugar quality, plant growth, leaf photosynthesis of wheat under N-deficient and N-sufficient conditions imposed prior to sowing (120 kg/hm2) and in the jointing stage (120 kg/hm2), and then evaluated the effects of this continued stress through RNA-seq and GC-MS metabolomics profiling of grain at the mid-filling stage. The results showed that except for an increase in grain size and weight, and in the content of total sugar, starch, and fiber in bran fraction and white flour, the other metrics were all decreased under N-deficiency conditions. A total of 761 differentially expressed genes (DEGs) and 77 differentially accumulated metabolites (DAMs) were identified. Under N-deficiency, 51 down-regulated DEGs were involved in the process of impeding chlorophyll synthesis, chloroplast development, light harvesting, and electron transfer functions of photosystem, which resulted in the SPAD and Pn value decreased by 32 and 15.2% compared with N-sufficiency, inhibited photosynthesis. Twenty-four DEGs implicated the inhibition of amino acids synthesis and protein transport, in agreement with a 17-42% reduction in ornithine, cysteine, aspartate, and tyrosine from metabolome, and an 18.6% reduction in grain protein content. However, 14 DEGs were implicated in promoting sugar accumulation in the cell wall and another six DEGs also enhanced cell wall synthesis, which significantly increased fiber content in the endosperm and likely contributed to increasing the thousands-grain weight (TGW). Moreover, RNA-seq profiling suggested that wheat grain can improve the capacity of DNA repair, iron uptake, disease and abiotic stress resistance, and oxidative stress scavenging through increasing the content levels of anthocyanin, flavonoid, GABA, galactose, and glucose under N-deficiency condition. This study identified candidate genes and metabolites related to low N adaption and tolerance that may provide new insights into a comprehensive understanding of the genotype-specific differences in performance under N-deficiency conditions.
Collapse
Affiliation(s)
- Yanjie Wang
- Center for Crop Management and Farming System, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
| | - Demei Wang
- Center for Crop Management and Farming System, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
| | - Zhiqiang Tao
- Center for Crop Management and Farming System, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
| | - Yushuang Yang
- Center for Crop Management and Farming System, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
| | - Zhenxian Gao
- Wheat Research Center, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Guangcai Zhao
- Center for Crop Management and Farming System, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
- *Correspondence: Guangcai Zhao
| | - Xuhong Chang
- Center for Crop Management and Farming System, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing, China
- Xuhong Chang
| |
Collapse
|
39
|
Li JY, Sun JL, Tian YY, Liu JX. The FtsH-Inactive Protein FtsHi5 Is Required for Chloroplast Development and Protein Accumulation in Chloroplasts at Low Ambient Temperature in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:830390. [PMID: 35185971 PMCID: PMC8850778 DOI: 10.3389/fpls.2021.830390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 05/03/2023]
Abstract
Chloroplasts are indispensable for higher plants. The growth and development of plants are very sensitive to environmental temperature changes, and chloroplast development is also regulated by adverse environmental temperatures. However, the molecular mechanism of how plants coordinate chloroplast development and environmental temperature changes remains largely unknown. Here, a temperature-conditioned chloroplast development defective mutant thermo-sensitive mutant in leaf color 2 (tsl2) of Arabidopsis was obtained through a forward genetic screening. The tsl2 mutant showed a weak yellowish phenotype at normal growth temperature (22°C), and the phenotype was more pronounced at low growth temperature (16°C) and largely rescued at high growth temperature (29°C). Bulk Segregant Analysis (BSA) revealed that TSL2 encodes FtsH-Inactive Protein 5 (FtsHi5). Genetic complementation analysis confirmed that complemented expression of FtsHi5 rescued the chlorophyll content and thylakoid development defects observed in tsl2 mutants at 16°C. Quantitative mass spectrometry analysis with Tandem Mass Tag (TMT) isobaric labeling revealed broad changes in the chloroplast proteome of tsl2 mutant plants at low temperature, which is agreed with the impaired chloroplast biogenesis and function in tsl2 plants. Together, our data demonstrates that FtsHi5/TSL2 plays an important role in chloroplast development and protein accumulation in chloroplasts, especially at low environmental temperatures in Arabidopsis.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing-Liang Sun
- College of Environment and Resources, Dalian Nationalities University, Dalian, China
| | - Ying-Ying Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian-Xiang Liu,
| |
Collapse
|
40
|
Midorikawa K, Tsuchiya K, Law SSY, Miyagi Y, Asai T, Iino T, Ozeki Y, Kodama Y, Numata K. Cellular internalization mechanism of novel Raman probes designed for plant cells. RSC Chem Biol 2020; 1:204-208. [PMID: 34458759 PMCID: PMC8341950 DOI: 10.1039/d0cb00128g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Diphenylacetylene derivatives containing different polymeric components, poly(l-lysine) (pLys) or tetra(ethylene glycol) (TEG) were designed as novel Raman imaging probes with high Raman sensitivity and low cytotoxicity in living plant cells. The pLys-conjugated probe is internalized via an endocytosis-dependent pathway, whereas TEG-conjugated probe most likely induces direct penetration into the plant cells. Diphenyl acetylene derivatives containing various polymeric components have been designed as new Raman imaging probes. These are taken up by plant cells via different pathways, and the internalization of exogenous molecules can be visualized.![]()
Collapse
Affiliation(s)
- Keiko Midorikawa
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan .,Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyoto-Daigaku-Katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Simon Sau Yin Law
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yu Miyagi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, The University of Tokyo Tokyo 113-8656 Japan
| | - Takanori Iino
- Department of Electrical Engineering and Information Systems, The University of Tokyo Tokyo 113-8656 Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo Tokyo 113-8656 Japan
| | - Yutaka Kodama
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan .,Center for Bioscience Research and Education, Utsunomiya University Tochigi 321-5805 Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan .,Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyoto-Daigaku-Katsura Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
41
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 DOI: 10.21203/rs.3.rs-17010/v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. RESULTS We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. CONCLUSIONS This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
42
|
Foucher J, Ruh M, Préveaux A, Carrère S, Pelletier S, Briand M, Serre RF, Jacques MA, Chen NWG. Common bean resistance to Xanthomonas is associated with upregulation of the salicylic acid pathway and downregulation of photosynthesis. BMC Genomics 2020; 21:566. [PMID: 32811445 PMCID: PMC7437933 DOI: 10.1186/s12864-020-06972-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. Results We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. Conclusions This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.
Collapse
Affiliation(s)
- Justine Foucher
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Anne Préveaux
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Sébastien Carrère
- CNRS, UMR 2594, Laboratoire des Interactions Plantes-Microorganismes (LIPM), F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | | | - Marie-Agnès Jacques
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRAE, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, F-49071, Beaucouzé, France.
| |
Collapse
|
43
|
Sugimoto H, Hirano M, Tanaka H, Tanaka T, Kitagawa-Yogo R, Muramoto N, Mitsukawa N. Plastid-targeted forms of restriction endonucleases enhance the plastid genome rearrangement rate and trigger the reorganization of its genomic architecture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1042-1057. [PMID: 31925982 DOI: 10.1111/tpj.14687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/25/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Plant cells have acquired chloroplasts (plastids) with a unique genome (ptDNA), which developed during the evolution of endosymbiosis. The gene content and genome structure of ptDNAs in land plants are considerably stable, although those of algal ptDNAs are highly varied. Plant cells seem, therefore, to be intolerant of any structural or organizational changes in the ptDNA. Genome rearrangement functions as a driver of genomic evolutionary divergence. Here, we aimed to create various types of rearrangements in the ptDNA of Arabidopsis genomes using plastid-targeted forms of restriction endonucleases (pREs). Arabidopsis plants expressing each of the three specific pREs, i.e., pTaqI, pHinP1I, and pMseI, were generated; they showed the leaf variegation phenotypes associated with impaired chloroplast development. We confirmed that these pREs caused double-stranded breaks (DSB) at their recognition sites in ptDNAs. Genome-wide analysis of ptDNAs revealed that the transgenic lines exhibited a large number of rearrangements such as inversions and deletions/duplications, which were dominantly repaired by microhomology-mediated recombination and microhomology-mediated end-joining, and less by non-homologous end-joining. Notably, pHinP1I, which recognized a small number of sites in ptDNA, induced drastic structural changes, including regional copy number variations throughout ptDNAs. In contrast, the transient expression of either pTaqI or pMseI, whose recognition site numbers were relatively larger, resulted in small-scale changes at the whole genome level. These results indicated that DSB frequencies and their distribution are major determinants in shaping ptDNAs.
Collapse
Affiliation(s)
- Hiroki Sugimoto
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Minoru Hirano
- Bio System Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Hidenori Tanaka
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Tomoko Tanaka
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Ritsuko Kitagawa-Yogo
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Nobuhiko Muramoto
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Norihiro Mitsukawa
- Genome Engineering Program, Strategic Research Division, Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
44
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
45
|
A salvage pathway maintains highly functional respiratory complex I. Nat Commun 2020; 11:1643. [PMID: 32242014 PMCID: PMC7118099 DOI: 10.1038/s41467-020-15467-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Regulation of the turnover of complex I (CI), the largest mitochondrial respiratory chain complex, remains enigmatic despite huge advancement in understanding its structure and the assembly. Here, we report that the NADH-oxidizing N-module of CI is turned over at a higher rate and largely independently of the rest of the complex by mitochondrial matrix protease ClpXP, which selectively removes and degrades damaged subunits. The observed mechanism seems to be a safeguard against the accumulation of dysfunctional CI arising from the inactivation of the N-module subunits due to attrition caused by its constant activity under physiological conditions. This CI salvage pathway maintains highly functional CI through a favorable mechanism that demands much lower energetic cost than de novo synthesis and reassembly of the entire CI. Our results also identify ClpXP activity as an unforeseen target for therapeutic interventions in the large group of mitochondrial diseases characterized by the CI instability. Maintenance and quality control of the mitochondrial respiratory chain complexes responsible for bulk energy production are unclear. Here, the authors show that the mitochondrial protease ClpXP is required for the rapid turnover of the core N-module of respiratory complex I, which happens independently of other modules in the complex.
Collapse
|
46
|
Hendron RW, Kelly S. Subdivision of Light Signaling Networks Contributes to Partitioning of C 4 Photosynthesis. PLANT PHYSIOLOGY 2020; 182:1297-1309. [PMID: 31862840 PMCID: PMC7054874 DOI: 10.1104/pp.19.01053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 05/29/2023]
Abstract
Plants coordinate the expression of photosynthesis-related genes in response to growth and environmental changes. In species that conduct two-cell C4 photosynthesis, expression of photosynthesis genes is partitioned such that leaf mesophyll and bundle sheath cells accumulate different components of the photosynthetic pathway. The identities of the regulatory networks that facilitate this partitioning are unknown. Here, we show that differences in light perception between mesophyll and bundle sheath cells facilitate differential regulation and accumulation of photosynthesis gene transcripts in the C4 crop maize (Zea mays). Key components of the photosynthesis gene regulatory network differentially accumulated between mesophyll and bundle sheath cells, indicative of differential network activity across cell types. We further show that blue (but not red) light is necessary and sufficient to activate photosystem II assembly in mesophyll cells in etiolated maize. Finally, we demonstrate that 61% of all light-induced mesophyll and bundle sheath genes were induced only by blue light or only by red light, but not both. These findings provide evidence that subdivision of light signaling networks is a component of cellular partitioning of C4 photosynthesis in maize.
Collapse
Affiliation(s)
- Ross-W Hendron
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
47
|
Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, Lee J, Marri S, Pogson BJ. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. eLife 2020; 9:45310. [PMID: 32003746 PMCID: PMC6994220 DOI: 10.7554/elife.45310] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are a core plastid component and yet their regulatory function during plastid biogenesis remains enigmatic. A unique carotenoid biosynthesis mutant, carotenoid chloroplast regulation 2 (ccr2), that has no prolamellar body (PLB) and normal PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) levels, was used to demonstrate a regulatory function for carotenoids and their derivatives under varied dark-light regimes. A forward genetics approach revealed how an epistatic interaction between a ζ-carotene isomerase mutant (ziso-155) and ccr2 blocked the biosynthesis of specific cis-carotenes and restored PLB formation in etioplasts. We attributed this to a novel apocarotenoid retrograde signal, as chemical inhibition of carotenoid cleavage dioxygenase activity restored PLB formation in ccr2 etioplasts during skotomorphogenesis. The apocarotenoid acted in parallel to the repressor of photomorphogenesis, DEETIOLATED1 (DET1), to transcriptionally regulate PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR), PHYTOCHROME INTERACTING FACTOR3 (PIF3) and ELONGATED HYPOCOTYL5 (HY5). The unknown apocarotenoid signal restored POR protein levels and PLB formation in det1, thereby controlling plastid development.
Collapse
Affiliation(s)
| | - Xin Hou
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yagiz Alagoz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - John Rivers
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australia
| | - Shashikanth Marri
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Barry J Pogson
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
48
|
The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
49
|
Possa KF, Silva JAG, Resende MLV, Tenente R, Pinheiro C, Chaves I, Planchon S, Monteiro ACA, Renaut J, Carvalho MAF, Ricardo CP, Guerra-Guimarães L. Primary Metabolism Is Distinctly Modulated by Plant Resistance Inducers in Coffea arabica Leaves Infected by Hemileia vastatrix. FRONTIERS IN PLANT SCIENCE 2020; 11:309. [PMID: 32265962 PMCID: PMC7099052 DOI: 10.3389/fpls.2020.00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/03/2020] [Indexed: 05/06/2023]
Abstract
Epidemics of coffee leaf rust (CLR) leads to great yield losses and huge depreciation of coffee marketing values, if no control measures are applied. Societal expectations of a more sustainable coffee production are increasingly imposing the replacement of fungicide treatments by alternative solutions. A protection strategy is to take advantage of the plant immune system by eliciting constitutive defenses. Based on such concept, plant resistance inducers (PRIs) have been developed. The Greenforce CuCa formulation, similarly to acibenzolar-S-methyl (ASM), shows promising results in the control of CLR (Hemileia vastatrix) in Coffea arabica cv. Mundo Novo. The molecular mechanisms of PRIs action are poorly understood. In order to contribute to its elucidation a proteomic, physiological (leaf gas-exchange) and biochemical (enzymatic) analyses were performed. Coffee leaves treated with Greenforce CuCa and ASM and inoculation with H. vastatrix were considered. Proteomics revealed that both PRIs lead to metabolic adjustments but, inducing distinct proteins. These proteins were related with photosynthesis, protein metabolism and stress responses. Greenforce CuCa increased photosynthesis and stomatal conductance, while ASM caused a decrease in these parameters. It was further observed that Greenforce CuCa reinforces the redox homeostasis of the leaf, while ASM seems to affect preferentially the secondary metabolism and the stress-related proteins. So, the PRIs prepare the plant to resist CLR but, inducing different defense mechanisms upon pathogen infection. The existence of a link between the primary metabolism and defense responses was evidenced. The identification of components of the plant primary metabolism, essential for plant growth and development that, simultaneously, participate in the plant defense responses can open new perspectives for plant breeding programs.
Collapse
Affiliation(s)
- Kátia Ferreira Possa
- Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Brazil
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Rita Tenente
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Pinheiro
- Instituto de Tecnologia Química e Biológica (ITQB NOVA), Universidade NOVA de Lisboa, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Inês Chaves
- Instituto de Tecnologia Química e Biológica (ITQB NOVA), Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Sebastien Planchon
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belval, Luxembourg
| | | | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Belval, Luxembourg
| | | | - Cândido Pinto Ricardo
- Instituto de Tecnologia Química e Biológica (ITQB NOVA), Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Leonor Guerra-Guimarães
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Leonor Guerra-Guimarães,
| |
Collapse
|
50
|
Qi Y, Wang X, Lei P, Li H, Yan L, Zhao J, Meng J, Shao J, An L, Yu F, Liu X. The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis. J Biol Chem 2019; 295:1036-1046. [PMID: 31836664 DOI: 10.1074/jbc.ra119.011853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
Chloroplast development and photosynthesis require the proper assembly and turnover of photosynthetic protein complexes. Chloroplasts harbor a repertoire of proteases to facilitate proteostasis and development. We have previously used an Arabidopsis leaf variegation mutant, yellow variegated2 (var2), defective in thylakoid FtsH protease complexes, as a tool to dissect the genetic regulation of chloroplast development. Here, we report a new genetic enhancer mutant of var2, enhancer of variegation3-1 (evr3-1). We confirm that EVR3 encodes a chloroplast metalloprotease, reported previously as ethylene-dependent gravitropism-deficient and yellow-green1 (EGY1)/ammonium overly sensitive1 (AMOS1). We observed that mutations in EVR3/EGY1/AMOS1 cause more severe leaf variegation in var2-5 and synthetic lethality in var2-4 Using a modified blue-native PAGE system, we reveal abnormal accumulations of photosystem I, photosystem II, and light-harvesting antenna complexes in EVR3/EGY1/AMOS1 mutants. Moreover, we discover distinct roles of VAR2 and EVR3/EGY1/AMOS1 in the turnover of photosystem II reaction center under high light stress. In summary, our findings indicate that two chloroplast metalloproteases, VAR2/AtFtsH2 and EVR3/EGY1/AMOS1, function coordinately to regulate chloroplast development and reveal new roles of EVR3/EGY1/AMOS1 in regulating chloroplast proteostasis in Arabidopsis.
Collapse
Affiliation(s)
- Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liru Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|