1
|
Moser M, Groves NR, Meier I. The Arabidopsis KASH protein SINE3 is involved in male and female gametogenesis. PLANT REPRODUCTION 2024; 37:521-534. [PMID: 39285059 PMCID: PMC11511747 DOI: 10.1007/s00497-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024]
Abstract
KEY MESSAGE The Arabidopsis KASH protein SINE3 is involved in male and female gametophyte development, likely affecting the first post-meiotic mitosis in both cases, and is required for full seed set. Linker of nucleoskeleton and cytoskeleton (LINC) complexes are protein complexes spanning the inner and outer membranes of the nuclear envelope (NE) and are key players in nuclear movement and positioning. Through their roles in nuclear movement and cytoskeletal reorganization, plant LINC complexes affect processes as diverse as pollen tube rupture and stomatal development and function. KASH proteins are the outer nuclear membrane component of the LINC complex, with conserved C-termini but divergent N-terminal cytoplasmic domains. Of the known Arabidopsis KASH proteins, SUN-INTERACTING NUCLEAR ENVELOPE PROTEIN 3 (SINE3) has not been functionally characterized. Here, we show that SINE3 is expressed at all stages of male and female gametophyte development. It is located at the NE in male and female gametophytes. Loss of SINE3 results in a female-derived seed set defect, with sine3 mutant ovules arresting at stage FG1. Pollen viability is also significantly reduced, with microspores arresting prior to pollen mitosis I. In addition, sine3 mutants have a minor male meiosis defect, with some tetrads containing more than four spores. Together, these results demonstrate that the KASH protein SINE3 plays a crucial role in male and female gametophyte development, likely affecting the first post-meiotic nuclear division in both cases.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Institute of Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Gutiérrez-Valencia J, Fracassetti M, Horvath R, Laenen B, Désamore A, Drouzas AD, Friberg M, Kolář F, Slotte T. Genomic Signatures of Sexual Selection on Pollen-Expressed Genes in Arabis alpina. Mol Biol Evol 2021; 39:6456311. [PMID: 34878144 PMCID: PMC8788238 DOI: 10.1093/molbev/msab349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Robert Horvath
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamore
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magne Friberg
- Department of Biology, Lund University, Lund, Sweden
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Lee CH, Hawker NP, Peters JR, Lonhienne TGA, Gursanscky NR, Matthew L, Brosnan CA, Mann CWG, Cromer L, Taochy C, Ngo QA, Sundaresan V, Schenk PM, Kobe B, Borges F, Mercier R, Bowman JL, Carroll BJ. DEFECTIVE EMBRYO AND MERISTEMS genes are required for cell division and gamete viability in Arabidopsis. PLoS Genet 2021; 17:e1009561. [PMID: 33999950 PMCID: PMC8158957 DOI: 10.1371/journal.pgen.1009561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
The DEFECTIVE EMBRYO AND MERISTEMS 1 (DEM1) gene encodes a protein of unknown biochemical function required for meristem formation and seedling development in tomato, but it was unclear whether DEM1’s primary role was in cell division or alternatively, in defining the identity of meristematic cells. Genome sequence analysis indicates that flowering plants possess at least two DEM genes. Arabidopsis has two DEM genes, DEM1 and DEM2, which we show are expressed in developing embryos and meristems in a punctate pattern that is typical of genes involved in cell division. Homozygous dem1 dem2 double mutants were not recovered, and plants carrying a single functional DEM1 allele and no functional copies of DEM2, i.e. DEM1/dem1 dem2/dem2 plants, exhibit normal development through to the time of flowering but during male reproductive development, chromosomes fail to align on the metaphase plate at meiosis II and result in abnormal numbers of daughter cells following meiosis. Additionally, these plants show defects in both pollen and embryo sac development, and produce defective male and female gametes. In contrast, dem1/dem1 DEM2/dem2 plants showed normal levels of fertility, indicating that DEM2 plays a more important role than DEM1 in gamete viability. The increased importance of DEM2 in gamete viability correlated with higher mRNA levels of DEM2 compared to DEM1 in most tissues examined and particularly in the vegetative shoot apex, developing siliques, pollen and sperm. We also demonstrate that gamete viability depends not only on the number of functional DEM alleles inherited following meiosis, but also on the number of functional DEM alleles in the parent plant that undergoes meiosis. Furthermore, DEM1 interacts with RAS-RELATED NUCLEAR PROTEIN 1 (RAN1) in yeast two-hybrid and pull-down binding assays, and we show that fluorescent proteins fused to DEM1 and RAN1 co-localize transiently during male meiosis and pollen development. In eukaryotes, RAN is a highly conserved GTPase that plays key roles in cell cycle progression, spindle assembly during cell division, reformation of the nuclear envelope following cell division, and nucleocytoplasmic transport. Our results demonstrate that DEM proteins play an essential role in cell division in plants, most likely through an interaction with RAN1. Up to half of the genes predicted from genome projects lack a known biological and biochemical function. Many of these genes are likely to play essential roles but it is difficult to reveal their function because minor changes in the genetic sequence can result in lethality and genetic redundancy can obscure analysis. Genome projects predict that flowering plants have at least two DEM genes that encode a protein of unknown cellular and biochemical function. In this paper, we use multiple combinations of dem mutants in Arabidopsis to show that DEM genes are essential for cell division and gamete viability. Interestingly, gamete viability depends not only on the number of functional copies of DEM genes in the gametes, but also on the number of functional copies of DEM genes in the parent plant that produces the gametes. We also show that DEM proteins interact with RAN, a highly conserved protein that controls cell division in all eukaryotic organisms.
Collapse
Affiliation(s)
- Chin Hong Lee
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Nathaniel P. Hawker
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Jonathan R. Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Thierry G. A. Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Nial R. Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Louisa Matthew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Christopher A. Brosnan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Laurence Cromer
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Taochy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Quy A. Ngo
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Venkatesan Sundaresan
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
| | - Peer M. Schenk
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - John L. Bowman
- Section of Plant Biology, One Shields Avenue, University of California at Davis, Davis, California, United States of America
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
- * E-mail: (JLB); (BJC)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
- * E-mail: (JLB); (BJC)
| |
Collapse
|
4
|
Kodera C, Just J, Da Rocha M, Larrieu A, Riglet L, Legrand J, Rozier F, Gaude T, Fobis-Loisy I. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics 2021; 22:268. [PMID: 33853522 PMCID: PMC8048354 DOI: 10.1186/s12864-021-07503-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background Fertilization in flowering plants depends on the early contact and acceptance of pollen grains by the receptive papilla cells of the stigma. Deciphering the specific transcriptomic response of both pollen and stigmatic cells during their interaction constitutes an important challenge to better our understanding of this cell recognition event. Results Here we describe a transcriptomic analysis based on single nucleotide polymorphisms (SNPs) present in two Arabidopsis thaliana accessions, one used as female and the other as male. This strategy allowed us to distinguish 80% of transcripts according to their parental origins. We also developed a tool which predicts male/female specific expression for genes without SNP. We report an unanticipated transcriptional activity triggered in stigma upon incompatible pollination and show that following compatible interaction, components of the pattern-triggered immunity (PTI) pathway are induced on the female side. Conclusions Our work unveils the molecular signatures of compatible and incompatible pollinations both at the male and female side. We provide invaluable resource and tools to identify potential new molecular players involved in pollen-stigma interaction. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07503-7.
Collapse
Affiliation(s)
- Chie Kodera
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France. .,Present Address: Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France.
| | - Jérémy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Martine Da Rocha
- INRAE, Université Côte d'Azur, CNRS, ISA 400 route des Chappes BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lucie Riglet
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.,Present Address: Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Jonathan Legrand
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Thierry Gaude
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France
| | - Isabelle Fobis-Loisy
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69342, Lyon, France.
| |
Collapse
|
5
|
Stephan OOH. Implications of ionizing radiation on pollen performance in comparison with diverse models of polar cell growth. PLANT, CELL & ENVIRONMENT 2021; 44:665-691. [PMID: 33124689 DOI: 10.1111/pce.13929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Research concerning the effects of ionizing radiation (IR) on plant systems is essential for numerous aspects of human society, as for instance, in terms of agriculture and plant breeding, but additionally for elucidating consequences of radioactive contamination of the ecosphere. This comprehensive survey analyses effects of x- and γ-irradiation on male gametophytes comprising primarily in vitro but also in vivo data of diverse plant species. The IR-dose range for pollen performance was compiled and 50% inhibition doses (ID50 ) for germination and tube growth were comparatively related to physiological characteristics of the microgametophyte. Factors influencing IR-susceptibility of mature pollen and polarized tube growth were evaluated, such as dose-rate, environmental conditions, or species-related variations. In addition, all available reports suggesting bio-positive IR-effects particularly on pollen performance were examined. Most importantly, for the first time influences of IR specifically on diverse phylogenetic models of polar cell growth were comparatively analysed, and thus demonstrated that the gametophytic system of pollen is extremely resistant to IR, more than plant sporophytes and especially much more than comparable animal cells. Beyond that, this study develops hypotheses regarding a molecular basis for the extreme IR-resistance of the plant microgametophyte and highlights its unique rank among organismal systems.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
6
|
Kenney P, Sankaranarayanan S, Balogh M, Indriolo E. Expression of Brassica napus GLO1 is sufficient to breakdown artificial self-incompatibility in Arabidopsis thaliana. PLANT REPRODUCTION 2020; 33:159-171. [PMID: 32862319 DOI: 10.1007/s00497-020-00392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Members of the Brassicaceae family have the ability to regulate pollination events occurring on the stigma surface. In Brassica species, self-pollination leads to an allele-specific interaction between the pollen small cysteine-rich peptide ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK) that activates the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of various compatibility factors including glyoxalase I (GLO1) which is necessary for successful pollination. In Brassica napus, the suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. Here, we verified if BnGLO1 could function as a compatibility factor in the artificial self-incompatibility system of Arabidopsis thaliana expressing AlSCRb, AlSRKb and AlARC1 proteins from A. lyrata. Overexpression of BnGLO1 is sufficient to breakdown self-incompatibility response in A. thaliana stigmas. Therefore, GLO1 has an indisputable role as a compatibility factor in the stigma in regulating pollen attachment and pollen tube growth. Lastly, this study demonstrates the usefulness of an artificial self-incompatibility system in A. thaliana for interspecific self-incompatibility studies.
Collapse
Affiliation(s)
- Patrick Kenney
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
- Division of Plant Sciences, University of Missouri, Waters Hall 1112 University Ave, Columbia, MO, 65201, USA
| | | | - Michael Balogh
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
| | - Emily Indriolo
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA.
| |
Collapse
|
7
|
Beaudry FE, Rifkin JL, Barrett SC, Wright SI. Evolutionary Genomics of Plant Gametophytic Selection. PLANT COMMUNICATIONS 2020; 1:100115. [PMID: 33367268 PMCID: PMC7748008 DOI: 10.1016/j.xplc.2020.100115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 05/26/2023]
Abstract
It has long been recognized that natural selection during the haploid gametophytic phase of the plant life cycle may have widespread importance for rates of evolution and the maintenance of genetic variation. Recent theoretical advances have further highlighted the significance of gametophytic selection for diverse evolutionary processes. Genomic approaches offer exciting opportunities to address key questions about the extent and effects of gametophytic selection on plant evolution and adaptation. Here, we review the progress and prospects for integrating functional and evolutionary genomics to test theoretical predictions, and to examine the importance of gametophytic selection on genetic diversity and rates of evolution. There is growing evidence that selection during the gametophyte phase of the plant life cycle has important effects on both gene and genome evolution and is likely to have important pleiotropic effects on the sporophyte. We discuss the opportunities to integrate comparative population genomics, genome-wide association studies, and experimental approaches to further distinguish how differential selection in the two phases of the plant life cycle contributes to genetic diversity and adaptive evolution.
Collapse
Affiliation(s)
- Felix E.G. Beaudry
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Joanna L. Rifkin
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Spencer C.H. Barrett
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, The University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
8
|
Mou W, Kao YT, Michard E, Simon AA, Li D, Wudick MM, Lizzio MA, Feijó JA, Chang C. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction. Nat Commun 2020; 11:4082. [PMID: 32796832 PMCID: PMC7429864 DOI: 10.1038/s41467-020-17819-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses. Here, we demonstrate that ACC exhibits ethylene-independent signaling in Arabidopsis thaliana reproduction. By analyzing an acs octuple mutant with reduced seed set, we find that ACC signaling in ovular sporophytic tissue is involved in pollen tube attraction, and promotes secretion of the pollen tube chemoattractant LURE1.2. ACC activates Ca2+-containing ion currents via GLUTAMATE RECEPTOR-LIKE (GLR) channels in root protoplasts. In COS-7 cells expressing moss PpGLR1, ACC induces the highest cytosolic Ca2+ elevation compared to all twenty proteinogenic amino acids. In ovules, ACC stimulates transient Ca2+ elevation, and Ca2+ influx in octuple mutant ovules rescues LURE1.2 secretion. These findings uncover a novel ACC function and provide insights for unraveling new physiological implications of ACC in plants.
Collapse
Affiliation(s)
- Wangshu Mou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.,Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Yun-Ting Kao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Dongdong Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.,Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.,Institute for Molecular Physiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Michael A Lizzio
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
9
|
FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature 2020; 579:561-566. [DOI: 10.1038/s41586-020-2106-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
|
10
|
Di Marzo M, Roig-Villanova I, Zanchetti E, Caselli F, Gregis V, Bardetti P, Chiara M, Guazzotti A, Caporali E, Mendes MA, Colombo L, Kater MM. MADS-Box and bHLH Transcription Factors Coordinate Transmitting Tract Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:526. [PMID: 32435255 PMCID: PMC7219087 DOI: 10.3389/fpls.2020.00526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 05/14/2023]
Abstract
The MADS-domain transcription factor SEEDSTICK (STK) controls several aspects of plant reproduction. STK is co-expressed with CESTA (CES), a basic Helix-Loop-Helix (bHLH) transcription factor-encoding gene. CES was reported to control redundantly with the brassinosteroid positive signaling factors BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) and BEE3 the development of the transmitting tract. Combining the stk ces-4 mutants led to a reduction in ovule fertilization due to a defect in carpel fusion which, caused the formation of holes at the center of the septum where the transmitting tract differentiates. Combining the stk mutant with the bee1 bee3 ces-4 triple mutant showed an increased number of unfertilized ovules and septum defects. The transcriptome profile of this quadruple mutant revealed a small subset of differentially expressed genes which are mainly involved in cell death, extracellular matrix and cell wall development. Our data evidence a regulatory gene network controlling transmitting tract development regulated directly or indirectly by a STK-CES containing complex and reveal new insights in the regulation of transmitting tract development by bHLH and MADS-domain transcription factors.
Collapse
|
11
|
Domingos P, Dias PN, Tavares B, Portes MT, Wudick MM, Konrad KR, Gilliham M, Bicho A, Feijó JA. Molecular and electrophysiological characterization of anion transport in Arabidopsis thaliana pollen reveals regulatory roles for pH, Ca 2+ and GABA. THE NEW PHYTOLOGIST 2019; 223:1353-1371. [PMID: 31132313 DOI: 10.1111/nph.15863] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth in Arabidopsis thaliana (Col-0). Patch-clamp whole-cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+ ]cyt ). We investigated the pollen-expressed proteins AtSLAH3, AtALMT12, AtTMEM16 and AtCCC as the putative anion transporters responsible for these currents. AtCCC-GFP was observed at the shank and AtSLAH3-GFP at the tip and shank of the PT plasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip of PTs with an anion vibrating probe were significantly lower in slah3-/- and ccc-/- mutants, but unaffected in almt12-/- and tmem16-/- . We further characterised the effect of pH and GABA by patch clamp. Strong regulation by extracellular pH was observed in the wild-type, but not in tmem16-/- . Our results are compatible with AtTMEM16 functioning as an anion/H+ cotransporter and therefore, as a putative pH sensor. GABA presence: (1) inhibited the overall currents, an effect that is abrogated in the almt12-/- and (2) reduced the current in AtALMT12 transfected COS-7 cells, strongly suggesting the direct interaction of GABA with AtALMT12. Our data show that AtSLAH3 and AtCCC activity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linking PT growth modulation by pH, GABA, and [Ca2+ ]cyt through anionic transporters.
Collapse
Affiliation(s)
- Patrícia Domingos
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Pedro N Dias
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | | | - Maria Teresa Portes
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Würzburg, Würzburg, 97082, Germany
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, Waite Research Institute & School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Ana Bicho
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 Bioscience Research Building, 4066 Campus Dr. College Park, College Park, MD, 20742-5815, USA
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| |
Collapse
|
12
|
Joly V, Tebbji F, Nantel A, Matton DP. Pollination Type Recognition from a Distance by the Ovary Is Revealed Through a Global Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E185. [PMID: 31238522 PMCID: PMC6630372 DOI: 10.3390/plants8060185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Sexual reproduction in flowering plants involves intimate contact and continuous interactions between the growing pollen tube and the female reproductive structures. These interactions can trigger responses in distal regions of the flower well ahead of fertilization. While pollination-induced petal senescence has been studied extensively, less is known about how pollination is perceived at a distance in the ovary, and how specific this response is to various pollen genotypes. To address this question, we performed a global transcriptomic analysis in the ovary of a wild potato species, Solanum chacoense, at various time points following compatible, incompatible, and heterospecific pollinations. In all cases, pollen tube penetration in the stigma was initially perceived as a wounding aggression. Then, as the pollen tubes grew in the style, a growing number of genes became specific to each pollen genotype. Functional classification analyses revealed sharp differences in the response to compatible and heterospecific pollinations. For instance, the former induced reactive oxygen species (ROS)-related genes while the latter affected genes associated to ethylene signaling. In contrast, incompatible pollination remained more akin to a wound response. Our analysis reveals that every pollination type produces a specific molecular signature generating diversified and specific responses at a distance in the ovary in preparation for fertilization.
Collapse
Affiliation(s)
- Valentin Joly
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| | - Faïza Tebbji
- CRCHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada.
| | - André Nantel
- National Research Council Canada, Montréal, QC H4P 2R2, Canada.
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
13
|
Abstract
With the origin of pollination in ancient seed plants, the male gametophyte ("pollen") began to evolve a new and unique life history stage, the progamic phase, a post-pollination period in which pollen sexual maturation occurs in interaction with sporophyte-derived tissues. Pollen performance traits mediate the timing of the fertilization process, often in competition with other pollen, via the speed of pollen germination, sperm development, and pollen tube growth. Studies of pollen development rarely address the issue of performance or its evolution, which involves linking variation in developmental rates to relative fitness within populations or to adaptations on a macroevolutionary scale. Modifications to the pollen tube pathway and changes in the intensity of pollen competition affect the direction and strength of selection on pollen performance. Hence, pollen developmental evolution is always contextual-it involves both the population biology of pollen reaching stigmas and the co-evolution of sporophytic traits, such as the pollen tube pathway and mating system. For most species, performance evolution generally reflects a wandering history of periods of directional selection and relaxed selection, channeled by developmental limitations, a pattern that favors the accumulation of diversity and redundancy in developmental mechanisms and the genetic machinery. Developmental biologists are focused on finding universal mechanisms that underlie pollen function, and these are largely mechanisms that have evolved through their effects on performance. Here, we suggest ways in which studies of pollen performance or function could progress by cross-fertilization between the "evo" and "devo" fields.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States.
| | - John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
14
|
Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying gametophyte factor 2-Mediated Cross-Incompatibility in Maize. Int J Mol Sci 2018; 19:ijms19061757. [PMID: 29899298 PMCID: PMC6032218 DOI: 10.3390/ijms19061757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
In maize (Zea mays L.), unilateral cross-incompatibility (UCI) is controlled by Gametophyte factors (Ga), including Ga1, Ga2, and Tcb1; however, the molecular mechanisms underpinning this process remain unexplored. Here, we report the pollination phenotype of an inbred line, 511L, which carries a near-dominant Ga2-S allele. We performed a high-throughput RNA sequencing (RNA-Seq) analysis of the compatible and incompatible crosses between 511L and B73, to identify the transcriptomic differences associated with Ga2-mediated UCI. An in vivo kinetics analysis revealed that the growth of non-self pollen tubes was blocked at the early stages after pollination in 511L, maintaining the UCI barrier in Ga2. In total, 25,759 genes were expressed, of which, 2063 differentially expressed genes (DEGs) were induced by pollination (G_GG, G_GB, B_BB, B_BG). A gene ontology (GO) enrichment analysis revealed that these genes were specifically enriched in functions involved in cell wall strength and pectic product modification. Moreover, 1839, 4382, and 5041 genes were detected to differentially express under same pollination treatments, including B_G, BG_GG, and BB_GB, respectively. A total of 1467 DEGs were constitutively expressed between the two inbred lines following pollination treatments, which were enriched in metabolic processes, flavonoid biosynthesis, cysteine biosynthesis, and vacuole functions. Furthermore, we confirmed 14 DEGs related to cell wall modification and stress by qRT-PCR, which might be involved in Ga2-S-mediated UCI. Our results provide a comprehensive foundation for the molecular mechanisms involved in silks of UCI mediated by Ga2-S.
Collapse
|
15
|
Borghi M, Fernie AR. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. PLANT PHYSIOLOGY 2017; 175:1510-1524. [PMID: 28986424 PMCID: PMC5717749 DOI: 10.1104/pp.17.01164] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
New discoveries open up future directions in the study of the primary metabolism of flowers.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
16
|
Edlund AF, Olsen K, Mendoza C, Wang J, Buckley T, Nguyen M, Callahan B, Owen HA. Pollen wall degradation in the Brassicaceae permits cell emergence after pollination. AMERICAN JOURNAL OF BOTANY 2017; 104:1266-1273. [PMID: 29756225 DOI: 10.3732/ajb.1700201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/26/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Despite attempts to degrade the sporopollenin in pollen walls, this material has withstood a hundred years of experimental treatments and thousands of years of environmental attack in insects and soil. We present evidence that sporopollenin, nonetheless, locally degrades only minutes after pollination in Arabidopsis thaliana flowers, and describe here a two-part pollen germination mechanism in A. thaliana involving both chemical weakening of the exine wall and swelling of the underlying intine. METHODS We explored naturally occurring components from pollen and stigma surfaces and found a tripartite mix of hydrogen peroxide, peroxidase and catalase enzymes (all at high levels at the pollination interface) to be experimentally sufficient to degrade the sporopollenin of some Brassicaceae family members. KEY RESULTS At pollination, factors carried on the pollen surface may mix with factors on the stigma surface in a reaction that locally oxidizes the exine pollen wall. Hydrogen peroxide, catalases, and peroxidases are biologically present at the right time and place and, when mixed experimentally, are sufficient to degrade the walls of susceptible pollen. CONCLUSIONS Our work on native biochemistry for breaching sporopollenin suggests new research directions in pollen aperture evolution and could aid efforts to analyze sporopollenin's composition, needed for application of this corrosion-resistant, but long-intractable material.
Collapse
Affiliation(s)
- Anna F Edlund
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Katrina Olsen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| | - Christian Mendoza
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Jing Wang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| | - Trudyann Buckley
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Mai Nguyen
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Brooke Callahan
- Biology Department, Lafayette College, Easton, Pennsylvania 18042 USA
| | - Heather A Owen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 North Maryland Avenue, Milwaukee, Wisconsin 53211 USA
| |
Collapse
|
17
|
Padmanaban S, Czerny DD, Levin KA, Leydon AR, Su RT, Maugel TK, Zou Y, Chanroj S, Cheung AY, Johnson MA, Sze H. Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embryo development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3165-3178. [PMID: 28338823 PMCID: PMC5853877 DOI: 10.1093/jxb/erw483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 05/20/2023]
Abstract
Flowering plant genomes encode multiple cation/H+ exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the egg or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. As pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.
Collapse
Affiliation(s)
- Senthilkumar Padmanaban
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Daniel D Czerny
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kara A Levin
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Alexander R Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Robert T Su
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Timothy K Maugel
- Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD, USA
| | - Yanjiao Zou
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Salil Chanroj
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
- Department of Biotechnology, Burapha University, Chon-Buri, Thailand
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Heven Sze
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
- Correspondence:
| |
Collapse
|
18
|
Leydon AR, Weinreb C, Venable E, Reinders A, Ward JM, Johnson MA. The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-Informed RNA-Sequencing. THE PLANT CELL 2017; 29:984-1006. [PMID: 28400492 PMCID: PMC5466024 DOI: 10.1105/tpc.16.00816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/30/2017] [Accepted: 04/10/2017] [Indexed: 05/25/2023]
Abstract
The molecular interactions between reproductive cells are critical for determining whether sexual reproduction between individuals results in fertilization and can result in barriers to interspecific hybridization. However, it is a challenge to define the complete molecular exchange between reproductive partners because parents contribute to a complex mixture of cells during reproduction. We unambiguously defined male- and female-specific patterns of gene expression during Arabidopsis thaliana reproduction using single nucleotide polymorphism-informed RNA-sequencing analysis. Importantly, we defined the repertoire of pollen tube-secreted proteins controlled by a group of MYB transcription factors that are required for sperm release from the pollen tube to the female gametes, a critical barrier to interspecific hybridization. Our work defines the pollen tube gene products that respond to the pistil and are required for reproductive success; moreover, we find that these genes are highly evolutionarily plastic both at the level of coding sequence and expression across A. thaliana accessions.
Collapse
Affiliation(s)
- Alexander R Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Caleb Weinreb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Elena Venable
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Anke Reinders
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108-6106
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
19
|
Broz AK, Guerrero RF, Randle AM, Baek YS, Hahn MW, Bedinger PA. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC PLANT BIOLOGY 2017; 17:81. [PMID: 28438120 PMCID: PMC5402651 DOI: 10.1186/s12870-017-1032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. RESULTS We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. CONCLUSIONS Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | | | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117 USA
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
20
|
Control of DEMETER DNA demethylase gene transcription in male and female gamete companion cells in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:2078-2083. [PMID: 28130550 DOI: 10.1073/pnas.1620592114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DEMETER (DME) DNA glycosylase initiates active DNA demethylation via the base-excision repair pathway and is vital for reproduction in Arabidopsis thaliana DME-mediated DNA demethylation is preferentially targeted to small, AT-rich, and nucleosome-depleted euchromatic transposable elements, influencing expression of adjacent genes and leading to imprinting in the endosperm. In the female gametophyte, DME expression and subsequent genome-wide DNA demethylation are confined to the companion cell of the egg, the central cell. Here, we show that, in the male gametophyte, DME expression is limited to the companion cell of sperm, the vegetative cell, and to a narrow window of time: immediately after separation of the companion cell lineage from the germline. We define transcriptional regulatory elements of DME using reporter genes, showing that a small region, which surprisingly lies within the DME gene, controls its expression in male and female companion cells. DME expression from this minimal promoter is sufficient to rescue seed abortion and the aberrant DNA methylome associated with the null dme-2 mutation. Within this minimal promoter, we found short, conserved enhancer sequences necessary for the transcriptional activities of DME and combined predicted binding motifs with published transcription factor binding coordinates to produce a list of candidate upstream pathway members in the genetic circuitry controlling DNA demethylation in gamete companion cells. These data show how DNA demethylation is regulated to facilitate endosperm gene imprinting and potential transgenerational epigenetic regulation, without subjecting the germline to potentially deleterious transposable element demethylation.
Collapse
|
21
|
Reimann R, Kost B, Dettmer J. TETRASPANINs in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:545. [PMID: 28458676 PMCID: PMC5394113 DOI: 10.3389/fpls.2017.00545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
Tetraspanins are small transmembrane proteins that laterally associate with each other and cluster with numerous partner proteins as well as lipids. These interactions result in the formation of a distinct class of membrane domains, the tetraspanin-enriched microdomains (TEMs), which influence numerous cellular processes such as cell adhesion and fusion, intracellular membrane trafficking, signaling, morphogenesis, motility as well as interaction with pathogens and cancer development. The majority of information available about tetraspanins is based on studies using animal models or cell lines, but tetraspanins are also present in fungi and plants. Recent studies indicate that tetraspanins have important functions in plant development, reproduction and stress responses. Here we provide a brief summary of the current state of tetraspanin research in plants.
Collapse
|
22
|
Michard E, Simon AA, Tavares B, Wudick MM, Feijó JA. Signaling with Ions: The Keystone for Apical Cell Growth and Morphogenesis in Pollen Tubes. PLANT PHYSIOLOGY 2017; 173:91-111. [PMID: 27895207 PMCID: PMC5210754 DOI: 10.1104/pp.16.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/19/2016] [Indexed: 05/18/2023]
Abstract
Ion homeostasis and signaling are crucial to regulate pollen tube growth and morphogenesis and affect upstream membrane transporters and downstream targets.
Collapse
Affiliation(s)
- Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Bárbara Tavares
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - Michael M Wudick
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (E.M., A.A.S., M.M.W., J.A.F.); and
- Instituto Gulbenkian de Ciência, Oeiras 2780-901, Portugal (B.T.)
| |
Collapse
|
23
|
Pereira AM, Lopes AL, Coimbra S. Arabinogalactan Proteins as Interactors along the Crosstalk between the Pollen Tube and the Female Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:1895. [PMID: 28018417 PMCID: PMC5159419 DOI: 10.3389/fpls.2016.01895] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 05/19/2023]
Abstract
Arabinogalactan proteins (AGPs) have long been considered to be implicated in several steps of the reproductive process of flowering plants. Pollen tube growth along the pistil tissues requires a multiplicity of signaling pathways to be activated and turned off precisely, at crucial timepoints, to guarantee successful fertilization and seed production. In the recent years, an outstanding effort has been made by the plant reproduction scientific community in order to better understand this process. This resulted in the discovery of a fairly substantial number of new players essential for reproduction, as well as their modes of action and interactions. Besides all the indications of AGPs involvement in reproduction, there were no convincing evidences about it. Recently, several studies came out to prove what had long been suggested about this complex family of glycoproteins. AGPs consist of a large family of hydroxyproline-rich proteins, predicted to be anchored to the plasma membrane and extremely rich in sugars. These two last characteristics always made them perfect candidates to be involved in signaling mechanisms, in several plant developmental processes. New findings finally relate AGPs to concrete functions in plant reproduction. In this review, it is intended not only to describe how different molecules and signaling pathways are functioning to achieve fertilization, but also to integrate the recent discoveries about AGPs along this process.
Collapse
Affiliation(s)
- Ana M. Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Ana L. Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do PortoPorto, Portugal
- Biosystems and Integrative Sciences InstitutePorto, Portugal
| |
Collapse
|
24
|
Hedhly A, Vogler H, Schmid MW, Pazmino D, Gagliardini V, Santelia D, Grossniklaus U. Starch Turnover and Metabolism during Flower and Early Embryo Development. PLANT PHYSIOLOGY 2016; 172:2388-2402. [PMID: 27794100 PMCID: PMC5129708 DOI: 10.1104/pp.16.00916] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/25/2016] [Indexed: 05/06/2023]
Abstract
The accumulation of starch within photosynthetic tissues and within dedicated storage organs has been characterized extensively in many species, and a function in buffering carbon availability or in fueling later growth phases, respectively, has been proposed. However, developmentally regulated starch turnover within heterotrophic tissues other than dedicated storage organs is poorly characterized, and its function is not well understood. Here, we report on the characterization of starch turnover during flower, early embryo, and silique development in Arabidopsis (Arabidopsis thaliana) using a combined clearing-staining technique on whole-mount tissue. Besides the two previously documented waves of transient starch accumulation in the stamen envelope, occurring during meiosis and pollen mitosis I, we identified a novel, third wave of starch amylogenesis/amylolysis during the last stages of stamen development. To gain insights into the underlying molecular mechanisms, we analyzed publicly available microarray data, which revealed a developmentally coordinated expression of carbohydrate transport and metabolism genes during these waves of transient starch accumulation. Based on this analysis, we characterized starch dynamics in mutants affecting hexose phosphate metabolism and translocation, and identified the Glc-6-phosphate/phosphate antiporter GPT1 as the putative translocator of Glc-6-phosphate for starch biosynthesis in reproductive tissues. Based on these results, we propose a model of starch synthesis within the pollen grain and discuss the nutrient transport route feeding the embryo within the developing seed.
Collapse
Affiliation(s)
- Afif Hedhly
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Hannes Vogler
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Marc W Schmid
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Diana Pazmino
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Diana Santelia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
25
|
RLKs orchestrate the signaling in plant male-female interaction. SCIENCE CHINA-LIFE SCIENCES 2016; 59:867-77. [DOI: 10.1007/s11427-016-0118-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022]
|
26
|
Pease JB, Guerrero RF, Sherman NA, Hahn MW, Moyle LC. Molecular mechanisms of postmating prezygotic reproductive isolation uncovered by transcriptome analysis. Mol Ecol 2016; 25:2592-608. [DOI: 10.1111/mec.13679] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/22/2022]
Affiliation(s)
- James B. Pease
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Rafael F. Guerrero
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Natasha A. Sherman
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Matthew W. Hahn
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
- School of Informatics and Computing Indiana University 1001 East Third Street Bloomington IN 47405 USA
| | - Leonie C. Moyle
- Department of Biology Indiana University 1001 East Third Street Bloomington IN 47405 USA
| |
Collapse
|
27
|
Di Giorgio JAP, Bienert GP, Ayub ND, Yaneff A, Barberini ML, Mecchia MA, Amodeo G, Soto GC, Muschietti JP. Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana. THE PLANT CELL 2016; 28:1053-77. [PMID: 27095837 PMCID: PMC4904668 DOI: 10.1105/tpc.15.00776] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/22/2016] [Accepted: 04/14/2016] [Indexed: 05/18/2023]
Abstract
In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2 Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination.
Collapse
Affiliation(s)
- Juliana Andrea Pérez Di Giorgio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), C1428ADN Buenos Aires, Argentina
| | - Gerd Patrick Bienert
- Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Nicolás Daniel Ayub
- Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, CC25 (1712) Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET-UBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina
| | - María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), C1428ADN Buenos Aires, Argentina
| | - Martín Alejandro Mecchia
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), C1428ADN Buenos Aires, Argentina
| | - Gabriela Amodeo
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET-UBA), Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina
| | - Gabriela Cynthia Soto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), C1428ADN Buenos Aires, Argentina Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, CC25 (1712) Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina
| | - Jorge Prometeo Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), C1428ADN Buenos Aires, Argentina Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
28
|
Lora J, Hormaza JI, Herrero M. The Diversity of the Pollen Tube Pathway in Plants: Toward an Increasing Control by the Sporophyte. FRONTIERS IN PLANT SCIENCE 2016; 7:107. [PMID: 26904071 PMCID: PMC4746263 DOI: 10.3389/fpls.2016.00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 05/06/2023]
Abstract
Plants, unlike animals, alternate multicellular diploid, and haploid generations in their life cycle. While this is widespread all along the plant kingdom, the size and autonomy of the diploid sporophyte and the haploid gametophyte generations vary along evolution. Vascular plants show an evolutionary trend toward a reduction of the gametophyte, reflected both in size and lifespan, together with an increasing dependence from the sporophyte. This has resulted in an overlooking of the importance of the gametophytic phase in the evolution of higher plants. This reliance on the sporophyte is most notorious along the pollen tube journey, where the male gametophytes have to travel a long way inside the sporophyte to reach the female gametophyte. Along evolution, there is a change in the scenery of the pollen tube pathway that favors pollen competition and selection. This trend, toward apparently making complicated what could be simple, appears to be related to an increasing control of the sporophyte over the gametophyte with implications for understanding plant evolution.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - José I. Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - María Herrero
- Department of Pomology, Estación Experimental Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
29
|
Pathania S, Bagler G, Ahuja PS. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus. FRONTIERS IN PLANT SCIENCE 2016; 7:1229. [PMID: 27588023 PMCID: PMC4988974 DOI: 10.3389/fpls.2016.01229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 08/02/2016] [Indexed: 05/07/2023]
Abstract
Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.
Collapse
Affiliation(s)
- Shivalika Pathania
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- *Correspondence: Shivalika Pathania
| | - Ganesh Bagler
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Center for Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi)New Delhi, India
- Centre for Biologically Inspired System Science, Indian Institute of Technology JodhpurJodhpur, India
- Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagar, India
- Ganesh Bagler
| | - Paramvir S. Ahuja
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial ResearchPalampur, India
- Indian Institute of Science Education and Research (IISER) MohaliMohali, India
| |
Collapse
|
30
|
Jiménez-Quesada MJ, Traverso JÁ, Alché JDD. NADPH Oxidase-Dependent Superoxide Production in Plant Reproductive Tissues. FRONTIERS IN PLANT SCIENCE 2016; 7:359. [PMID: 27066025 PMCID: PMC4815025 DOI: 10.3389/fpls.2016.00359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/07/2016] [Indexed: 05/02/2023]
Abstract
In the life cycle of a flowering plant, the male gametophyte (pollen grain) produced in the anther reaches the stigmatic surface and initiates the pollen-pistil interaction, an important step in plant reproduction, which ultimately leads to the delivery of two sperm cells to the female gametophyte (embryo sac) inside the ovule. The pollen tube undergoes a strictly apical expansion characterized by a high growth rate, whose targeting should be tightly regulated. A continuous exchange of signals therefore takes place between the haploid pollen and diploid tissue of the pistil until fertilization. In compatible interactions, theses processes result in double fertilization to form a zygote (2n) and the triploid endosperm. Among the large number of signaling mechanisms involved, the redox network appears to be particularly important. Respiratory burst oxidase homologs (Rbohs) are superoxide-producing enzymes involved in a broad range of processes in plant physiology. In this study, we review the latest findings on understanding Rboh activity in sexual plant reproduction, with a particular focus on the male gametophyte from the anther development stages to the crowning point of fertilization. Rboh isoforms have been identified in both the male and female gametophyte and have proven to be tightly regulated. Their role at crucial points such as proper growth of pollen tube, self-incompatibility response and eventual fertilization is discussed.
Collapse
Affiliation(s)
- María J. Jiménez-Quesada
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC)Granada, Spain
| | - José Á. Traverso
- Department of Cell Biology, Faculty of Sciences, University of GranadaGranada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC)Granada, Spain
- *Correspondence: Juan de Dios Alché,
| |
Collapse
|
31
|
Li M, Wang K, Li S, Yang P. Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. J Proteomics 2015; 131:214-226. [PMID: 26546731 DOI: 10.1016/j.jprot.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED Pollen-stigma interaction is a multi-step and complex physiological process which contains different signaling and biochemical pathways. However, little is known about the molecular mechanism underlying this process in rice (Oryza sativa). In this study, the changes of gene expression were investigated through a combination study of transcriptome and proteome profiles in rice pistil during pollination. Totally, 1117 differentially expressed genes were identified, among which 962 and 167 were detected at transcriptional and protein level respectively. Functional categorization analysis showed that the genes involved in central metabolism were up-regulated, which can lead to the enhancement of these metabolisms. The reactive oxygen species (ROS) were over-accumulated in the stigma. In response to this, the proteins or transcripts involved in redox homeostasis regulation were differentially expressed. Furthermore, significant changes of protein ubiquitination and its related genes or proteins, especially some E3 ligases encoding genes, indicate that protein ubiquitination might play important roles in cell signal transduction during the pollination process. Our study sheds some lights on gene and protein expression profiles of rice pistil pollination process, and gives us a comprehensive understanding of the basic molecular mechanisms controlling pollination in rice. BIOLOGICAL SIGNIFICANCE Using RNA-seq, 2-DE and iTRAQ assays, we have generated the large-scale transcriptomic and proteomic data containing abundant information on genes involved in pollen and pistil interaction. Our results showed that ROS were significantly accumulated in stigma after pollination, and the abundance of genes involve in redox homeostasis system were changed variously. We also show that, changes of some E3 ligases encoding genes might indicate that protein ubiquitination play important roles in cell signal transduction during the pollination process. Data in this study might be helpful to deeply understand the pollination in rice.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
32
|
Xu Z, Xu J, Ji A, Zhu Y, Zhang X, Hu Y, Song J, Chen S. Genome-wide selection of superior reference genes for expression studies in Ganoderma lucidum. Gene 2015; 574:352-8. [PMID: 26277249 DOI: 10.1016/j.gene.2015.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/29/2015] [Accepted: 08/11/2015] [Indexed: 11/30/2022]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is widely used for the accurate analysis of gene expression. However, high homology among gene families might result in unsuitability of reference genes, which leads to the inaccuracy of qRT-PCR analysis. The release of the Ganoderma lucidum genome has triggered numerous studies to be done on the homology among gene families with the purpose of selecting reliable reference genes. Based on the G. lucdum genome and transcriptome database, 38 candidate reference genes including 28 novel genes were systematically selected and evaluated for qRT-PCR normalization. The result indicated that commonly used polyubiquitin (PUB), beta-actin (BAT), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were unsuitable reference genes because of the high sequence similarity and low primer specificity. According to the evaluation of RefFinder, cyclophilin 5 (CYP5) was ranked as the most stable reference gene for 27 tested samples under all experimental conditions and eighteen mycelial samples. Based on sequence analysis and expression analysis, our study suggested that gene characteristic, primer specificity of high homologous genes, allele-specificity expression of candidate genes and under-evaluation of reference genes influenced the accuracy and sensitivity of qRT-PCR analysis. This investigation not only revealed potential factors influencing the unsuitability of reference genes but also selected the superior reference genes from more candidate genes and testing samples than those used in the previous study. Furthermore, our study established a model for reference gene analysis by using the genomic sequence.
Collapse
Affiliation(s)
- Zhichao Xu
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Jiang Xu
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China.
| | - Aijia Ji
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China.
| | - Xin Zhang
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yuanlei Hu
- School of Life Sciences, Peking University, Beijing 100871, China.
| | - Jingyuan Song
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China.
| | - Shilin Chen
- The National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Science, Beijing 100700, China.
| |
Collapse
|
33
|
Rutley N, Twell D. A decade of pollen transcriptomics. PLANT REPRODUCTION 2015; 28:73-89. [PMID: 25761645 PMCID: PMC4432081 DOI: 10.1007/s00497-015-0261-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/24/2015] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Overview of pollen transcriptome studies. Pollen development is driven by gene expression, and knowledge of the molecular events underlying this process has undergone a quantum leap in the last decade through studies of the transcriptome. Here, we outline historical evidence for male haploid gene expression and review the wealth of pollen transcriptome data now available. Knowledge of the transcriptional capacity of pollen has progressed from genetic studies to the direct analysis of RNA and from gene-by-gene studies to analyses on a genomic scale. Microarray and/or RNA-seq data can now be accessed for all phases and cell types of developing pollen encompassing 10 different angiosperms. These growing resources have accelerated research and will undoubtedly inspire new directions and the application of system-based research into the mechanisms that govern the development, function and evolution of angiosperm pollen.
Collapse
Affiliation(s)
- Nicholas Rutley
- Department of Biology, University of Leicester, Leicester, LE1 7RH UK
| | - David Twell
- Department of Biology, University of Leicester, Leicester, LE1 7RH UK
| |
Collapse
|
34
|
Estrada AD, Freese NH, Blakley IC, Loraine AE. Analysis of pollen-specific alternative splicing in Arabidopsis thaliana via semi-quantitative PCR. PeerJ 2015; 3:e919. [PMID: 25945312 PMCID: PMC4419537 DOI: 10.7717/peerj.919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/08/2015] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing enables a single gene to produce multiple mRNA isoforms by varying splice site selection. In animals, alternative splicing of mRNA isoforms between cell types is widespread and supports cellular differentiation. In plants, at least 20% of multi-exon genes are alternatively spliced, but the extent and significance of tissue-specific splicing is less well understood, partly because it is difficult to isolate cells of a single type. Pollen is a useful model system to study tissue-specific splicing in higher plants because pollen grains contain only two cell types and can be collected in large amounts without damaging cells. Previously, we identified pollen-specific splicing patterns by comparing RNA-Seq data from Arabidopsis pollen and leaves. Here, we used semi-quantitative PCR to validate pollen-specific splicing patterns among genes where RNA-Seq data analysis indicated splicing was most different between pollen and leaves. PCR testing confirmed eight of nine alternative splicing patterns, and results from the ninth were inconclusive. In four genes, alternative transcriptional start sites coincided with alternative splicing. This study highlights the value of the low-cost PCR assay as a method of validating RNA-Seq results.
Collapse
Affiliation(s)
- April D Estrada
- Department of Bioinformatics and Genomics, North Carolina Research Campus, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Nowlan H Freese
- Department of Bioinformatics and Genomics, North Carolina Research Campus, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Ivory C Blakley
- Department of Bioinformatics and Genomics, North Carolina Research Campus, University of North Carolina at Charlotte , Charlotte, NC , USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, North Carolina Research Campus, University of North Carolina at Charlotte , Charlotte, NC , USA
| |
Collapse
|
35
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|
36
|
Chien CH, Chow CN, Wu NY, Chiang-Hsieh YF, Hou PF, Chang WC. EXPath: a database of comparative expression analysis inferring metabolic pathways for plants. BMC Genomics 2015; 16 Suppl 2:S6. [PMID: 25708775 PMCID: PMC4331720 DOI: 10.1186/1471-2164-16-s2-s6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In general, the expression of gene alters conditionally to catalyze a specific metabolic pathway. Microarray-based datasets have been massively produced to monitor gene expression levels in parallel with numerous experimental treatments. Although several studies facilitated the linkage of gene expression data and metabolic pathways, none of them are amassed for plants. Moreover, advanced analysis such as pathways enrichment or how genes express under different conditions is not rendered. DESCRIPTION Therefore, EXPath was developed to not only comprehensively congregate the public microarray expression data from over 1000 samples in biotic stress, abiotic stress, and hormone secretion but also allow the usage of this abundant resource for coexpression analysis and differentially expression genes (DEGs) identification, finally inferring the enriched KEGG pathways and gene ontology (GO) terms of three model plants: Arabidopsis thaliana, Oryza sativa, and Zea mays. Users can access the gene expression patterns of interest under various conditions via five main functions (Gene Search, Pathway Search, DEGs Search, Pathways/GO Enrichment, and Coexpression analysis) in EXPath, which are presented by a user-friendly interface and valuable for further research. CONCLUSIONS In conclusion, EXPath, freely available at http://expath.itps.ncku.edu.tw, is a database resource that collects and utilizes gene expression profiles derived from microarray platforms under various conditions to infer metabolic pathways for plants.
Collapse
|
37
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
38
|
Proteomics Advances in the Understanding of Pollen-Pistil Interactions. Proteomes 2014; 2:468-484. [PMID: 28250391 PMCID: PMC5302694 DOI: 10.3390/proteomes2040468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022] Open
Abstract
The first key point to the successful pollination and fertilization in plants is the pollen-pistil interaction, referring to the cellular and molecular levels, which mainly involve the haploid pollen and the diploid pistil. The process is defined as “siphonogamy”, which starts from the capture of pollen by the epidermis of stigma and ends up with the fusion of sperm with egg. So far, the studies of the pollen-pistil interaction have been explicated around the self-compatibility and self-incompatibility (SI) process in different species from the molecular genetics and biochemistry to cellular and signal levels, especially the mechanism of SI system. Among them, numerous proteomics studies based on the advanced technologies from gel-system to gel-free system were conducted, focusing on the interaction, in order to uncover the mechanism of the process. The current review mainly focuses on the recent developments in proteomics of pollen-pistil interaction from two aspects: self-incompatible and compatible pollination. It might provide a comprehensive insight on the proteins that were involved in the regulation of pollen-pistil interaction.
Collapse
|
39
|
Yue X, Gao XQ, Wang F, Dong Y, Li X, Zhang XS. Transcriptional evidence for inferred pattern of pollen tube-stigma metabolic coupling during pollination. PLoS One 2014; 9:e107046. [PMID: 25215523 PMCID: PMC4162560 DOI: 10.1371/journal.pone.0107046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/07/2014] [Indexed: 01/08/2023] Open
Abstract
It is difficult to derive all qualitative proteomic and metabolomic experimental data in male (pollen tube) and female (pistil) reproductive tissues during pollination because of the limited sensitivity of current technology. In this study, genome-scale enzyme correlation network models for plants (Arabidopsis/maize) were constructed by analyzing the enzymes and metabolic routes from a global perspective. Then, we developed a data-driven computational pipeline using the "guilt by association" principle to analyze the transcriptional coexpression profiles of enzymatic genes in the consecutive steps for metabolic routes in the fast-growing pollen tube and stigma during pollination. The analysis identified an inferred pattern of pollen tube-stigma ethanol coupling. When the pollen tube elongates in the transmitting tissue (TT) of the pistil, this elongation triggers the mobilization of energy from glycolysis in the TT cells of the pistil. Energy-rich metabolites (ethanol) are secreted that can be taken up by the pollen tube, where these metabolites are incorporated into the pollen tube's tricarboxylic acid (TCA) cycle, which leads to enhanced ATP production for facilitating pollen tube growth. In addition, our analysis also provided evidence for the cooperation of kaempferol, dTDP-alpha-L-rhamnose and cell-wall-related proteins; phosphatidic-acid-mediated Ca2+ oscillations and cytoskeleton; and glutamate degradation IV for γ-aminobutyric acid (GABA) signaling activation in Arabidopsis and maize stigmas to provide the signals and materials required for pollen tube tip growth. In particular, the "guilt by association" computational pipeline and the genome-scale enzyme correlation network models (GECN) developed in this study was initiated with experimental "omics" data, followed by data analysis and data integration to determine correlations, and could provide a new platform to assist inachieving a deeper understanding of the co-regulation and inter-regulation model in plant research.
Collapse
Affiliation(s)
- Xun Yue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xin-Qi Gao
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Fang Wang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - YuXiu Dong
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - XingGuo Li
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Xian Sheng Zhang
- College of Information Sciences and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
40
|
Wang K, Zhao Y, Li M, Gao F, Yang MK, Wang X, Li S, Yang P. Analysis of phosphoproteome in rice pistil. Proteomics 2014; 14:2319-34. [PMID: 25074045 DOI: 10.1002/pmic.201400004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 11/07/2022]
Abstract
As the female reproductive part of a flower, the pistil consists of the ovary, style, and stigma, and is a critical organ for the process from pollen recognition to fertilization and seed formation. Previous studies on pollen-pistil interaction mainly focused on gene expression changes with comparative transcriptomics or proteomics method. However, studies on protein PTMs are still lacking. Here we report a phosphoproteomic study on mature pistil of rice. Using IMAC enrichment, hydrophilic interaction chromatography fraction and high-accuracy MS instrument (TripleTOF 5600), 2347 of high-confidence (Ascore ≥ 19, p ≤ 0.01), phosphorylation sites corresponding to 1588 phosphoproteins were identified. Among them, 1369 phosphorylation sites within 654 phosphoproteins were newly identified; 41 serine phosphorylation motifs, which belong to three groups: proline-directed, basophilic, and acidic motifs were identified after analysis by motif-X. Two hundred and one genes whose phosphopeptides were identified here showed tissue-specific expression in pistil based on information mining of previous microarray data. All MS data have been deposited in the ProteomeXchange with identifier PXD000923 (http://proteomecentral.proteomexchange.org/dataset/PXD000923). This study will help us to understand pistil development and pollination on the posttranslational level.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gibbs PE. Late-acting self-incompatibility--the pariah breeding system in flowering plants. THE NEW PHYTOLOGIST 2014; 203:717-34. [PMID: 24902632 DOI: 10.1111/nph.12874] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/12/2014] [Indexed: 05/03/2023]
Abstract
It is estimated that around half of all species of flowering plants show self-incompatibility (SI). However, the great majority of species alleged to have SI simply comply with 'the inability of a fully fertile hermaphrodite plant to produce zygotes when self-pollinated'--a definition that is neutral as to cause. Surprisingly few species have been investigated experimentally to determine whether their SI has the type of genetic control found in one of the three established mechanisms, that is, homomorphic gametophytic, homomorphic sporophytic or heteromorphic SI. Furthermore, our knowledge of the molecular basis of homomorphic SI derives from a few species in just five families--a small sample that has nevertheless revealed the existence of three different molecular mechanisms. Importantly, a sizeable cohort of species are self-sterile despite the fact that self-pollen tubes reach the ovary and in most cases penetrate ovules, a phenomenon called late-acting self-incompatibility (LSI). This review draws attention to the confusion between species that show 'self-incompatibility' and those that possess one of the 'conventional SI mechanisms' and to argue the case for recognition of LSI as having a widespread occurrence and as a mechanism that inhibits selfing and promotes outbreeding in many plant species.
Collapse
Affiliation(s)
- Peter E Gibbs
- School of Biology, The University of St Andrews, St Andrews, KY16 9TH, UK
| |
Collapse
|
42
|
Becker JD, Takeda S, Borges F, Dolan L, Feijó JA. Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC PLANT BIOLOGY 2014; 14:197. [PMID: 25080170 PMCID: PMC4236730 DOI: 10.1186/s12870-014-0197-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/14/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Current views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants. RESULTS We developed a new method for isolation of growing and mature root hair cells, analysed their transcriptome by microarray analysis, and further compared it with pollen and other single cell transcriptomics data. Principal component analysis shows a statistical relation between the datasets of RHs and PTs which is suggestive of a common transcriptional profile pattern for the apical growing cells in a plant, with overlapping profiles and clear similarities at the level of small GTPases, vesicle-mediated transport and various specific metabolic responses. Furthermore, cis-regulatory element analysis of co-regulated genes between RHs and PTs revealed conserved binding sequences that are likely required for the expression of genes comprising the apical signature. This included a significant occurrence of motifs associated to a defined transcriptional response upon anaerobiosis. CONCLUSIONS Our results suggest that maintaining apical growth mechanisms synchronized with energy yielding might require a combinatorial network of transcriptional regulation. We propose that this study should constitute the foundation for further genetic and physiological dissection of the mechanisms underlying apical growth of plant cells.
Collapse
Affiliation(s)
- Jörg D Becker
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Seiji Takeda
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Present address: Cell and Genome Biology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kitaina-Yazuma Oji 74, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Filipe Borges
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor 11724, NY, USA
| | - Liam Dolan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - José A Feijó
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park 20742-5815, MD, USA
| |
Collapse
|
43
|
Wolf S, Höfte H. Growth Control: A Saga of Cell Walls, ROS, and Peptide Receptors. THE PLANT CELL 2014; 26:1848-1856. [PMID: 24808052 PMCID: PMC4079354 DOI: 10.1105/tpc.114.125518] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/19/2014] [Accepted: 04/22/2014] [Indexed: 05/18/2023]
Abstract
Despite an increasingly detailed understanding of endogenous and environmental growth-controlling signals and their signaling networks, little is known on how these networks are integrated with the cell expansion machinery. Members of the CrRLK1L family control cell wall properties and cell expansion in a variety of developmental and environmental contexts. Two recent reports provide exciting new insights into the mode of action of these RLKs. One study shows that one family member, FERONIA (FER), is required for the production of hydroxyl radicals in the female gametophyte, which causes pollen tube rupture and sperm cell release during fertilization. Another study shows that FER is a receptor for a signaling peptide (Rapid Alkalinization Factor 1 [RALF1]) that triggers cell wall alkalinization and growth arrest, possibly through the inhibition of plasma membrane H+-ATPase activity. RALF1 belongs to a large gene family, with a wide range of expression patterns. Other CrRLK1L family members therefore may also be receptors for RALF-like peptides. These findings have important implications for our understanding of the control of cell wall integrity during growth and raise new intriguing questions.
Collapse
Affiliation(s)
- Sebastian Wolf
- Centre for Organismal Studies Heidelberg, 69120 Heidelberg, Germany
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech, Saclay Plant Science, INRA, 78000 Versailles, France
| |
Collapse
|
44
|
Moyle LC, Jewell CP, Kostyun JL. Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:16-23. [PMID: 24457825 DOI: 10.1016/j.pbi.2013.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 05/11/2023]
Abstract
In sexually reproducing organisms, speciation involves the evolution of mechanisms that confer reproductive isolation between diverging lineages. Here we discuss recent research on the molecular basis of traits that mediate these barriers during premating and postmating, prezygotic stages of reproduction. In some cases, the specific loci underlying the expression of reproductive barriers are known, most notably when premating isolation is due to flower color or scent differences, and when postmating isolation is due to divergent gamete signaling. In addition, emerging work in molecular biology and genomics is revealing the mechanistic basis of prezygotic reproductive traits within species, and therefore establishing clear candidates for future work examining their potential role in reproductive isolation between species.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Cathleen P Jewell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jamie L Kostyun
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
45
|
Evolutionarily conserved mechanisms of male germline development in flowering plants and animals. Biochem Soc Trans 2014; 42:377-82. [DOI: 10.1042/bst20130261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline.
Collapse
|
46
|
Lin SY, Chen PW, Chuang MH, Juntawong P, Bailey-Serres J, Jauh GY. Profiling of translatomes of in vivo-grown pollen tubes reveals genes with roles in micropylar guidance during pollination in Arabidopsis. THE PLANT CELL 2014; 26:602-18. [PMID: 24532595 PMCID: PMC3967028 DOI: 10.1105/tpc.113.121335] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Transcriptome profiling has been used to identify genes expressed in pollen tubes elongating in vitro; however, little is known of the transcriptome of in vivo-grown pollen tubes due to the difficulty of collecting pollen that is elongating within the solid maternal gynoecium. Using a pollen-specific promoter (ProLAT52) to generate epitope-tagged polysomal-RNA complexes that could be affinity purified, we obtained mRNAs undergoing translation (the translatome) of in vivo-grown pollen tubes from self-pollinated gynoecia of Arabidopsis thaliana. Translatomes of pollen grains as well as in vivo- and in vitro-cultured pollen tubes were assayed by microarray analyses, revealing over 500 transcripts specifically enriched in in vivo-elongating pollen tubes. Functional analyses of several in vivo mutants (iv) of these pollination-enhanced transcripts revealed partial pollination/fertilization and seed formation defects in siliques (iv2, iv4, and iv6). Cytological observation confirmed the involvement of these genes in specialized processes including micropylar guidance (IV6 and IV4), pollen tube burst (IV2), and repulsion of multiple pollen tubes in embryo sac (IV2). In summary, the selective immunopurification of transcripts engaged with polysomes in pollen tubes within self-fertilized florets has identified a cohort of pollination-enriched transcripts that facilitated the identification of genes important in in vivo pollen tube biology.
Collapse
Affiliation(s)
- Shih-Yun Lin
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Pei-Wei Chen
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiang Chuang
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Piyada Juntawong
- Center for Plant Cell Biology and Department Botany and
Plant Sciences, University of California, Riverside, California 92521
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department Botany and
Plant Sciences, University of California, Riverside, California 92521
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan
International Graduate Program, National Chung-Hsing University–Academia
Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University,
Taichung 40227, Taiwan
- Address correspondence to
| |
Collapse
|
47
|
Boavida LC, Qin P, Broz M, Becker JD, McCormick S. Arabidopsis tetraspanins are confined to discrete expression domains and cell types in reproductive tissues and form homo- and heterodimers when expressed in yeast. PLANT PHYSIOLOGY 2013; 163:696-712. [PMID: 23946353 PMCID: PMC3793051 DOI: 10.1104/pp.113.216598] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/10/2013] [Indexed: 05/19/2023]
Abstract
Tetraspanins are evolutionary conserved transmembrane proteins present in all multicellular organisms. In animals, they are known to act as central organizers of membrane complexes and thought to facilitate diverse biological processes, such as cell proliferation, movement, adhesion, and fusion. The genome of Arabidopsis (Arabidopsis thaliana) encodes 17 members of the tetraspanin family; however, little is known about their functions in plant development. Here, we analyzed their phylogeny, protein topology, and domain structure and surveyed their expression and localization patterns in reproductive tissues. We show that, despite their low sequence identity with metazoan tetraspanins, plant tetraspanins display the typical structural topology and most signature features of tetraspanins in other multicellular organisms. Arabidopsis tetraspanins are expressed in diverse tissue domains or cell types in reproductive tissues, and some accumulate at the highest levels in response to pollination in the transmitting tract and stigma, male and female gametophytes and gametes. Arabidopsis tetraspanins are preferentially targeted to the plasma membrane, and they variously associate with specialized membrane domains, in a polarized fashion, to intercellular contacts or plasmodesmata. A membrane-based yeast (Saccharomyces cerevisiae) two-hybrid system established that tetraspanins can physically interact, forming homo- and heterodimer complexes. These results, together with a likely genetic redundancy, suggest that, similar to their metazoan counterparts, plant tetraspanins might be involved in facilitating intercellular communication, whose functions might be determined by the composition of tetraspanin complexes and their binding partners at the cell surface of specific cell types.
Collapse
|
48
|
Ungerer MC, Kawakami T. Transcriptional dynamics of LTR retrotransposons in early generation and ancient sunflower hybrids. Genome Biol Evol 2013; 5:329-37. [PMID: 23335122 PMCID: PMC3590766 DOI: 10.1093/gbe/evt006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hybridization and abiotic stress are natural agents hypothesized to influence activation and proliferation of transposable elements in wild populations. In this report, we examine the effects of these agents on expression dynamics of both quiescent and transcriptionally active sublineages of long terminal repeat (LTR) retrotransposons in wild sunflower species with a notable history of transposable element proliferation. For annual sunflower species Helianthus annuus and H. petiolaris, neither early generation hybridization nor abiotic stress, alone or in combination, induced transcriptional activation of quiescent sublineages of LTR retrotransposons. These treatments also failed to further induce expression of sublineages that are transcriptionally active; instead, expression of active sublineages in F1 and backcross hybrids was nondistinguishable from, or intermediate relative to, parental lines, and abiotic stress generally decreased normalized expression relative to controls. In contrast to findings for early generation hybridization between H. annuus and H. petiolaris, ancient sunflower hybrid species derived from these same two species and which have undergone massive proliferation events of LTR retrotransposons display 2× to 6× higher expression levels of transcriptionally active sublineages relative to parental sunflower species H. annuus and H. petiolaris. Implications and possible explanations for these findings are discussed.
Collapse
|
49
|
Gamisch A, Staedler YM, Schönenberger J, Fischer GA, Comes HP. Histological and micro-CT evidence of stigmatic rostellum receptivity promoting auto-pollination in the madagascan orchid Bulbophyllum bicoloratum. PLoS One 2013; 8:e72688. [PMID: 23967332 PMCID: PMC3742538 DOI: 10.1371/journal.pone.0072688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/11/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The rostellum, a projecting part of the gynostemium in orchid flowers, separates the anther(s) from the stigma and thus commonly prevents auto-pollination. Nonetheless, as a modified (usually distal) portion of the median stigma lobe, the rostellum has been frequently invoked of having re-gained a stigmatic function in rare cases of orchid auto-pollination. Here it is shown that a newly discovered selfing variant of Madagascan Bulbophyllumbicoloratum has evolved a modified rostellum allowing the penetration of pollen tubes from in situ pollinia. METHODS Gynostemium micro-morphology and anatomy of selfing and outcrossing variants of B. bicoloratum was studied by using light and scanning electron microscopy and histological sections. Pollen tube growth in the selfing variant was further observed via X-ray computed microtomography (micro-CT), providing 3D reconstructions of floral tissues at a micron scale. FINDINGS Selfing variants possess a suberect ('displaced') rostellum rather than the conventional, erect type. Very early in anthesis, the pollinia of selfers are released from the anther and slide down onto the suberect rostellum, where pollen tube growth preferentially occurs through the non-vascularized, i.e. rear (adaxial) and (semi-) lateral parts. This penetrated tissue is comprised of a thin layer of elongate and loosely arranged cells, embedded in stigmatic exudates, as also observed in the stigmatic cavity of both selfing and outcrossing variants. CONCLUSIONS Our results provide the first solid evidence of a stigmatic function for the rostellum in orchid flowers, thereby demonstrating for the first time the feasibility of the micro-CT technique for accurately visualizing pollen tube growth in flowering plants. Rostellum receptivity in B. bicoloratum probably uniquely evolved as an adaptation for reproductive assurance from an outcrossing ancestor possessing an erect (non-receptive) rostellum. These findings open up new avenues in the investigation of an organ that apparently re-gained its 'primordial function' of being penetrated by pollen tubes.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Organismic Biology, University of Salzburg, Salzburg, Austria.
| | | | | | | | | |
Collapse
|
50
|
The Arabidopsis Plant Intracellular Ras-group LRR (PIRL) Family and the Value of Reverse Genetic Analysis for Identifying Genes that Function in Gametophyte Development. PLANTS 2013; 2:507-20. [PMID: 27137390 PMCID: PMC4844374 DOI: 10.3390/plants2030507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/02/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Abstract
Arabidopsis thaliana has proven a powerful system for developmental genetics, but identification of gametophytic genes with developmental mutants can be complicated by factors such as gametophyte-lethality, functional redundancy, or poor penetrance. These issues are exemplified by the Plant Intracellular Ras-group LRR (PIRL) genes, a family of nine genes encoding a class of leucine-rich repeat proteins structurally related to animal and fungal LRR proteins involved in developmental signaling. Previous analysis of T-DNA insertion mutants showed that two of these genes, PIRL1 and PIRL9, have an essential function in pollen formation but are functionally redundant. Here, we present evidence implicating three more PIRLs in gametophyte development. Scanning electron microscopy revealed that disruption of either PIRL2 or PIRL3 results in a low frequency of pollen morphological abnormalities. In addition, molecular analysis of putative pirl6 insertion mutants indicated that knockout alleles of this gene are not represented in current Arabidopsis mutant populations, suggesting gametophyte lethality may hinder mutant recovery. Consistent with this, available microarray and RNA-seq data have documented strongest PIRL6 expression in developing pollen. Taken together, these results now implicate five PIRLs in gametophyte development. Systematic reverse genetic analysis of this novel LRR family has therefore identified gametophytically active genes that otherwise would likely be missed by forward genetic screens.
Collapse
|