1
|
Garstecka Z, Antoszewski M, Mierek-Adamska A, Krauklis D, Niedojadło K, Kaliska B, Hrynkiewicz K, Dąbrowska GB. Trichoderma viride Colonizes the Roots of Brassica napus L., Alters the Expression of Stress-Responsive Genes, and Increases the Yield of Canola under Field Conditions during Drought. Int J Mol Sci 2023; 24:15349. [PMID: 37895028 PMCID: PMC10607854 DOI: 10.3390/ijms242015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this work, we present the results of the inoculation of canola seeds (Brassica napus L.) with Trichoderma viride strains that promote the growth of plants. Seven morphologically different strains of T. viride (TvI-VII) were shown to be capable of synthesizing auxins and exhibited cellulolytic and pectinolytic activities. To gain a deeper insight into the molecular mechanisms underlying canola-T. viride interactions, we analyzed the canola stress genes metallothioneins (BnMT1-3) and stringent response genes (BnRSH1-3 and BnCRSH). We demonstrated the presence of cis-regulatory elements responsive to fungal elicitors in the promoter regions of B. napus MT and RSH genes and observed changes in the levels of the transcripts of the above-mentioned genes in response to root colonization by the tested fungal strains. Of the seven tested strains, under laboratory conditions, T. viride VII stimulated the formation of roots and the growth of canola seedlings to the greatest extent. An experiment conducted under field conditions during drought showed that the inoculation of canola seeds with a suspension of T. viride VII spores increased yield by 16.7%. There was also a positive effect of the fungus on the height and branching of the plants, the number of siliques, and the mass of a thousand seeds. We suggest that the T. viride strain TvVII can be used in modern sustainable agriculture as a bioinoculant and seed coating to protect B. napus from drought.
Collapse
Affiliation(s)
- Zuzanna Garstecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Marcel Antoszewski
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Daniel Krauklis
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Beata Kaliska
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| |
Collapse
|
2
|
Ijaz S, Ul Haq I, Razzaq HA, Nasir B, Ali HM, Kaur S. In silico structural-functional characterization of three differentially expressed resistance gene analogs identified in Dalbergia sissoo against dieback disease reveals their role in immune response regulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1134806. [PMID: 37908834 PMCID: PMC10613980 DOI: 10.3389/fpls.2023.1134806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/19/2023] [Indexed: 11/02/2023]
Abstract
Plant immunity includes enemy recognition, signal transduction, and defensive response against pathogens. We experimented to identify the genes that contribute resistance against dieback disease to Dalbergia sissoo, an economically important timber tree. In this study, we investigated the role of three differentially expressed genes identified in the dieback-induced transcriptome in Dalbergia sissoo. The transcriptome was probed using DOP-rtPCR analysis. The identified RGAs were characterized in silico as the contributors of disease resistance that switch on under dieback stress. Their predicted fingerprints revealed involvement in stress response. Ds-DbRCaG-02-Rga.a, Ds-DbRCaG-04-Rga.b, and Ds-DbRCaG-06-Rga.c showed structural homology with the Transthyretin-52 domain, EAL associated YkuI_C domain, and Src homology-3 domain respectively, which are the attributes of signaling proteins possessing a role in regulating immune responses in plants. Based on in-silico structural and functional characterization, they were predicted to have a role in immune response regulation in D. sissoo.
Collapse
Affiliation(s)
- Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Hafiza Arooj Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Bukhtawer Nasir
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sukhwinder Kaur
- Department of Plant Pathology, University of California Davis, Davis, CA, United States
| |
Collapse
|
3
|
Zheng T, Zhang K, Sadeghnezhad E, Jiu S, Zhu X, Dong T, Liu Z, Guan L, Jia H, Fang J. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea. Mol Biol Rep 2020; 47:7349-7363. [PMID: 32914265 DOI: 10.1007/s11033-020-05791-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
Chitinases (Chi), an important resistance-related protein, act against fungal pathogens by catalyzing the fungal cell wall, whereas are involved in different biological pathways in grape. In this study, we found 42 Chi family genes in Vitis vinifera L. (VvChis) and evaluated their expression levels after Botrytis infection, stress hormones like ethylene (ETH) and methyl-jasmonate (MeJA), and abiotic stresses like salinity and temperature changes in ripened fruits. VvChis were categorized into five groups including A, B, C, D, and E belonged to glycoside hydrolase family 18 and 19 (GH18 and GH19) according to genes structure, which expression analysis showed distinct temporal and spatial expression patterns changed in different tissues and various development stages. Different responsive elements to biotic and abiotic stresses were determined in the promoter regions of VvChis, specially elicitor-responsive element that was conserved among all VvChis genes. The expression levels of VvChis in groups A, B, and E increased after Botrytis cinerea infection in leaves and berries. Meanwhile, VvChis in glycoside hydrolase family 18 (GH18) were up-regulated under MeJA and ETH treatment, although the induction of VvChis by low temperature was more significant than high temperature. The expression of VvChis was also positively correlated with the concentration of NaCl treatment. Furthermore, differential gene-overexpression of VvChi5, VvChi17, VvChi22, VvChi26, and VvChi31 in strawberry and tomato fruits demonstrated the involvement of various isoforms in resistance to Botrytis infection through antioxidant system and lignin accumulation, which led to a reduction of damage. Among different isoforms of VvChis, we confirmed the interaction of Chi17 with Metallothionein (MTL) as oxidative stress protection, which suggests VvChis can modulate oxidative stress during postharvest storage in ripened fruits.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, Shanghai City, 200030, Shanghai, People's Republic of China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
4
|
Kang YJ, Lee YK, Kim IJ. Identification of Differentially Up-regulated Genes in Apple with White Rot Disease. THE PLANT PATHOLOGY JOURNAL 2019; 35:530-537. [PMID: 31632227 PMCID: PMC6788408 DOI: 10.5423/ppj.nt.10.2018.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/10/2019] [Accepted: 06/27/2019] [Indexed: 05/06/2023]
Abstract
Fuji, a major apple cultivar in Korea, is susceptible to white rot. Apple white rot disease appears on the stem and fruit; the development of which deteriorates fruit quality, resulting in decreases in farmers' income. Thus, it is necessary to characterize molecular markers related to apple white rot resistance. In this study, we screened for differentially expressed genes between uninfected apple fruits and those infected with Botryosphaeria dothidea, the fungal pathogen that causes white rot. Antimicrobial tests suggest that a gene expression involved in the synthesis of the substance inhibiting the growth of B. dothidea in apples was induced by pathogen infection. We identified seven transcripts induced by the infection. The seven transcripts were homologous to genes encoding a flavonoid glucosyltransferase, a metallothionein-like protein, a senescence-induced protein, a chitinase, a wound-induced protein, and proteins of unknown function. These genes have functions related to responses to environmental stresses, including pathogen infections. Our results can be useful for the development of molecular markers for early detection of the disease or for use in breeding white rotresistant cultivars.
Collapse
Affiliation(s)
- Yeo-Jin Kang
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243,
Korea
| | - Young Koung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724,
USA
- Division of Biological Sciences and Institute for Basic Science, Wonkwang University, Iksan 54538,
Korea
| | - In-Jung Kim
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243,
Korea
- Corresponding author: Phone) +82-64-754-3357, FAX) +82-64-756-3351, E-mail)
| |
Collapse
|
5
|
Overexpression of a Metallothionein 2A Gene from Date Palm Confers Abiotic Stress Tolerance to Yeast and Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20122871. [PMID: 31212812 PMCID: PMC6627811 DOI: 10.3390/ijms20122871] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022] Open
Abstract
Although the date palm tree is an extremophile with tolerance to drought and certain levels of salinity, the damage caused by extreme salt concentrations in the soil, has created a need to explore stress-responsive traits and decode their mechanisms. Metallothioneins (MTs) are low-molecular-weight cysteine-rich proteins that are known to play a role in decreasing oxidative damage during abiotic stress conditions. Our previous study identified date palm metallothionein 2A (PdMT2A) as a salt-responsive gene, which has been functionally characterized in yeast and Arabidopsis in this study. The recombinant PdMT2A protein produced in Escherichia coli showed high reactivity against the substrate 5′-dithiobis-2-nitrobenzoic acid (DTNB), implying that the protein has the property of scavenging reactive oxygen species (ROS). Heterologous overexpression of PdMT2A in yeast (Saccharomyces cerevisiae) conferred tolerance to drought, salinity and oxidative stresses. The PdMT2A gene was also overexpressed in Arabidopsis, to assess its stress protective function in planta. Compared to the wild-type control, the transgenic plants accumulated less Na+ and maintained a high K+/Na+ ratio, which could be attributed to the regulatory role of the transgene on transporters such as HKT, as demonstrated by qPCR assay. In addition, transgenic lines exhibited higher chlorophyll content, higher superoxide dismutase (SOD) activity and improved scavenging ability for reactive oxygen species (ROS), coupled with a better survival rate during salt stress conditions. Similarly, the transgenic plants also displayed better drought and oxidative stress tolerance. Collectively, both in vitro and in planta studies revealed a role for PdMT2A in salt, drought, and oxidative stress tolerance.
Collapse
|
6
|
Buapet P, Mohammadi NS, Pernice M, Kumar M, Kuzhiumparambil U, Ralph PJ. Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:91-100. [PMID: 30553148 DOI: 10.1016/j.aquatox.2018.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 05/08/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants and as such is vital to many metabolic processes. Nevertheless, when present at elevated concentrations, Cu can exert toxic effects on plants by disrupting protein functions and promoting oxidative stress. Due to their proximity to the urbanised estuaries, seagrasses are vulnerable to chemical contamination via industrial runoff, waste discharges and leachates. Zostera muelleri is a common seagrass species that forms habitats in the intertidal areas along the temperate coast of Australia. Previous studies have shown the detrimental effects of Cu exposure on photosynthetic efficiency of Z. muelleri. The present study focuses on the impacts of sublethal Cu exposure on the physiological and molecular responses. By means of a single addition, plants were exposed to 250 and 500 μg Cu L-1 (corresponding to 3.9 and 7.8 μM, respectively) as well as uncontaminated artificial seawater (control) for 7 days. Chlorophyll fluorescence parameters, measured as the effective quantum yield (ϕPSII), the maximum quantum yield (Fv/Fm) and non-photochemical quenching (NPQ) were assessed daily, while Cu accumulation in leaf tissue, total reactive oxygen species (ROS) and the expression of genes involved in antioxidant activities and trace metal binding were determined after 1, 3 and 7 days of exposure. Z. muelleri accumulated Cu in the leaf tissue in a concentration-dependent manner and the bioaccumulation was saturated by day 3. Cu exposure resulted in an acute suppression of ϕPSII and Fv/Fm. These two parameters also showed a concentration- and time-dependent decline. NPQ increased sharply during the first few days before subsequently decreasing towards the end of the experiment. Cu accumulation induced oxidative stress in Z. muelleri as an elevated level of ROS was detected on day 7. Lower Cu concentration promoted an up-regulation of genes encoding Cu/Zn-superoxide dismutase (Cu/Zn-sod), ascorbate peroxidase (apx), catalase (cat) and glutathione peroxidase (gpx), whereas no significant change was detected with higher Cu concentration. Exposure to Cu at any concentration failed to induce regulation in the expression level of genes encoding metallothionein type 2 (mt2), metallothionein type 3 (mt3) and cytochrome c oxidase copper chaperone (cox17). It is concluded that chlorophyll fluorescence parameters provide timely probe of the status of photosynthetic machinery under Cu stress. In addition, when exposed to a moderate level of Cu, Z. muelleri mitigates any induced oxidative stress by up-regulating transcripts coding for antioxidant enzymes.
Collapse
Affiliation(s)
- Pimchanok Buapet
- Plant Physiology Laboratory, Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand; Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | | | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | - Manoj Kumar
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| | | | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, NSW, Australia
| |
Collapse
|
7
|
Cloning and characterization of metallothionein gene (HcMT) from Halostachys caspica and its expression in E. coli. Gene 2016; 585:221-7. [PMID: 27032460 DOI: 10.1016/j.gene.2016.03.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 02/06/2023]
Abstract
Halostachys caspica is a short shrub distributed in the semi-arid and saline-alkali area, which evolved various mechanisms for modulating salt and metal level. In the present study, a Type 2 metallothionein (HcMT) gene was cloned from the salt induced suppression subtractive hybridization (SSH) cDNA library of H.caspica. Quantitative real time PCR (qRT-PCR) analysis indicated that HcMT gene was up-regulated under the stress of Cu(2+), Zn(2+) and Cd(2+), and the tolerance of E. coli strain harboring with the recombinant HcMT (pET-32a-HcMT) to Cu(2+), Zn(2+) and Cd(2+) was enhanced compared to strain with control vector (pET-32a). Moreover, the purified TrxA-HcMT fusion protein from E. coli cells grown in the presence of 0.3mM CuSO4, 0.3mM ZnSO4, or 0.1mM CdCl2 could bind more metal ions than TrxA alone. The predicted 3D structure showed that HcMT could form a single metal-thiolate cluster, which confers the ability to bind five divalent metal ions through fourteen cysteine residues. These data indicate that HcMT may be involved in processes of metal tolerance in H. caspica and could be employed as a potential candidate for heavy metal phytoremediation.
Collapse
|
8
|
Kushwaha A, Rani R, Kumar S, Gautam A. Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. ENVIRONMENTAL REVIEWS 2016. [PMID: 0 DOI: 10.1139/er-2015-0010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heavy metals, such as cobalt, copper, manganese, molybdenum, and zinc, are essential in trace amounts for growth by plants and other living organisms. However, in excessive amounts these heavy metals have deleterious effects. Like other organisms, plants possess a variety of detoxification mechanisms to counter the harmful effects of heavy metals. These include the restriction of heavy metals by mycorrhizal association, binding with plant cell wall and root excretions, metal efflux from the plasma membrane, metal chelation by phytochelatins and metallothioneins, and compartmentalization within the vacuole. Phytoremediation is an emerging technology that uses plants and their associated rhizospheric microorganisms to remove pollutants from contaminated sites. This technology is inexpensive, efficient, and ecofriendly. This review focuses on potential cellular and molecular adaptations by plants that are necessary to tolerate heavy metal stress.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Sanjay Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| | - Aishvarya Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyar Ganj, Allahabad
| |
Collapse
|
9
|
Chyan CL, Lee TTT, Liu CP, Yang YC, Tzen JTC, Chou WM. Cloning and Expression of a Seed-Specific Metallothionein-Like Protein from Sesame. Biosci Biotechnol Biochem 2014; 69:2319-25. [PMID: 16377889 DOI: 10.1271/bbb.69.2319] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A cDNA clone, SiMT encoding an Ec type of metallothionein (MT)-like protein, was isolated from maturing seeds of sesame (Sesamum indicum L.), and its deduced protein sequence shared 47-65% similarity to other known Ec type of MT-like proteins with three highly conserved cysteine-rich segments. The transcript of SiMT was exclusively accumulated in maturing seeds from two weeks after flowering to the end of seed maturation. The results of a southern blot analysis suggested that one SiMT and one SiMT-like gene were present in the sesame genome. Recombinant SiMT fused with glutathione-S-transferase (GST) was over-expressed in Escherichia coli, and purified to homogeneity by affinity chromatography. Recombinant SiMT released from GST was harvested after factor Xa cleavage. Migration of the recombinant SiMT during SDS-PAGE was accelerated when its binding metal ions were depleted by EDTA. The metal-binding capability of recombinant SiMT was measured by inductively-coupled plasma atomic emission spectrometry. Our results show that the recombinant SiMT could trap zinc or copper ions, but not manganese ions, with a stoichiometric ratio (metal ion/SiMT) of approximately 2.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- DNA, Plant/biosynthesis
- DNA, Plant/genetics
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Metallothionein/biosynthesis
- Metallothionein/chemistry
- Metals/metabolism
- Molecular Sequence Data
- Protein Binding
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Seeds/chemistry
- Seeds/metabolism
- Sesamum/chemistry
- Sesamum/genetics
Collapse
Affiliation(s)
- Chia-Lin Chyan
- Department of Chemistry, National Dong Hwa University, Hwalien, Taiwan
| | | | | | | | | | | |
Collapse
|
10
|
Nezhad RM, Shahpiri A, Mirlohi A. Discrimination between two rice metallothionein isoforms belonging to type 1 and type 4 in metal-binding ability. Biotechnol Appl Biochem 2014; 60:275-82. [PMID: 23782215 DOI: 10.1002/bab.1078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/12/2012] [Indexed: 10/26/2022]
Abstract
Metallothioneins (MTs) are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. Plants have several MT isoforms, which are classified into four types based on the arrangement of Cys residues. In this study, two rice (Oryza sativa) MT isoforms, OsMTI-1b and OsMTII-1a from type 1 and type 4, respectively, were heterologously expressed in Escherichia coli as carboxy-terminal extensions of glutathione-S-transferase (GST). Transformed cells expressing GST-OsMTI-1b showed increased tolerance to Ni(2+) , Cd(2+) , and Zn(2+) and accumulated more metal ions compared with cells expressing GST alone. However, heterologous expression of GST-OsMTII-1a had no significant effects on metal tolerance or ion accumulation. The UV absorption spectra and competitive reactions of in vitro Cd-incubated proteins with 5-5'-dithiobis(2-nitrobenzoic) acid revealed that GST-OsMTI-1b, but not GST-OsMTII-1a, is able to form Cd-thiolate clusters. Furthermore, heterologous expression of both GST-OsMTI-1b and GST-OsMTII-1a conferred H2 O2 tolerance to E. coli cells. Taken together, the results presented here show that two different rice MT isoforms belonging to type 1 and type 4 differ in Ni(2+) , Cd(2+) , and Zn(2+) binding abilities, but they may have overlapping function in protection of cells against oxidative stress.
Collapse
Affiliation(s)
- Rezvan Mohammadi Nezhad
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | |
Collapse
|
11
|
Kim YO, Jung S, Kim K, Bae HJ. Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 64:25-32. [PMID: 23344478 DOI: 10.1016/j.plaphy.2012.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 12/03/2012] [Indexed: 05/11/2023]
Abstract
Metallothioneins (MTs) play a major role in metal homeostasis and/or detoxification in plants. In this study, a novel gene, pCeMT, was isolated from Colocasia esculenta and characterized. Our results indicate that Escherichia coli cells expressing pCeMT exhibited enhanced Cd, Cu, and Zn tolerance and accumulation compared with control cells. Furthermore, pCeMT-overexpressing tobacco seedlings displayed better growth under Cd, Cu, and Zn stresses and accumulated more Cd and Zn compared with the wild type. Interestingly, transgenic tobacco displayed markedly decreased hydrogen peroxide (H(2)O(2)) and lipid peroxidation levels under Cd, Cu, and Zn treatments. These results suggest that pCeMT could play an important role in the protection of plant cells from oxidative stress by reactive oxygen species (ROS) scavenging and in the detoxification of free metals by metal binding, leading to improved plant metal tolerance.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Bio-energy Research Institute, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Passos MAN, de Cruz VO, Emediato FL, de Teixeira CC, Azevedo VCR, Brasileiro ACM, Amorim EP, Ferreira CF, Martins NF, Togawa RC, Pappas GJ, da Silva OB, Miller RNG. Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. BMC Genomics 2013; 14:78. [PMID: 23379821 PMCID: PMC3635893 DOI: 10.1186/1471-2164-14-78] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 02/01/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores. RESULTS The study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases.Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82. CONCLUSIONS A large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci.
Collapse
Affiliation(s)
- Marco A N Passos
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | - Viviane Oliveira de Cruz
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | - Flavia L Emediato
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | | | - Vânia C Rennó Azevedo
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Ana C M Brasileiro
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Edson P Amorim
- EMBRAPA Mandioca e Fruticultura Tropical, Rua Embrapa, CEP 44.380-000, Cruz das Almas, BA, Brazil
| | - Claudia F Ferreira
- EMBRAPA Mandioca e Fruticultura Tropical, Rua Embrapa, CEP 44.380-000, Cruz das Almas, BA, Brazil
| | - Natalia F Martins
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Roberto C Togawa
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Georgios J Pappas
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| | - Orzenil Bonfim da Silva
- EMBRAPA Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília, D.F, Brazil
| | - Robert NG Miller
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, CEP 70.910-900, Brasília, D.F, Brazil
| |
Collapse
|
13
|
|
14
|
Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D. Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integr Genomics 2012; 12:635-47. [PMID: 23053198 DOI: 10.1007/s10142-012-0297-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/03/2012] [Accepted: 09/24/2012] [Indexed: 01/11/2023]
|
15
|
Saha P, Das D, Roy S, Chakrabarti A, Sen Raychaudhuri S. Effect of gamma irradiation on metallothionein protein expression in Plantago ovata Forsk. Int J Radiat Biol 2012; 89:88-96. [PMID: 23020665 DOI: 10.3109/09553002.2013.734940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The effect of gamma rays on metallothionein (MT) expression was studied using the medicinal plant Plantago ovata as the test system. MATERIALS AND METHODS Western blotting and Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) were used for this purpose. RESULTS Western blot analysis showed significant induction of metallothionein protein following gamma exposure and that induction was highest at 20 Gy gamma dose. At higher gamma doses (100 Gy) MT expression level declined due to degeneration of cells. MALDI-TOF MS analysis indicated the presence of low molecular weight (7-8 kD) MT molecules following the lower radiation doses. CONCLUSION It was concluded from the MALDI-TOF MS result that low gamma exposure leads to expression of MT-like protein. At high doses of gamma ray, MT homologues or MT-like protein were not identified, possibly because they might have precipitated due to uncontrolled cross-linking and non-specific aggregation.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | | | | | | | | |
Collapse
|
16
|
Zhang FQ, Wang YS, Sun CC, Lou ZP, Dong JD. A novel metallothionein gene from a mangrove plant Kandelia candel. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1633-1641. [PMID: 22711547 DOI: 10.1007/s10646-012-0952-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
A new metallothionein (MT) gene was cloned from Kandelia candel, a mangrove plant with constitutional tolerance to heavy metals, by rapid amplification of cDNA ends and named KMT, which is composed of two exons and one intron. The full length of KMT cDNA was 728 bp including 121 bp 5' noncoding domain, 240 bp open reading frame and 384 bp 3' termination. The coding region of KMT represented a putative 79 amino acid protein with a molecular weight of 7.75 kDa. At each of the amino- and carboxy-terminal of the putative protein, cysteine residues were arranged in Cys-Cys, Cys-X-Cys and Cys-X-X-Cys, indicating that the putative protein was a novel type 2 MT. Sequence and homology analysis showed the KMT protein sequence shared more than 60 % homology with other plant type 2 MT-like protein genes. At amino acid level, the KMT was shown homology with the MT of Quercus suber (83 %), of Ricinus communis (81 %) and of Arabidopsis thaliana (64 %). Function studies using protease-deficient Escherichia coli strain BL21 Star ™(DE3) confirmed the functional nature of this KMT gene in sequestering both essential (Zn) and non-essential metals (Cd and Hg) and the E. coli BL21 with KMT can live in 1,000 μmol/L Zn, 120 μmol/L Hg, and 2,000 μmol/L Cd. The information could provide more details of the causative molecular and biochemical mechanisms (including heavy metal sequestration) of the KMT in K. candel or a scientific basis for marine heavy-metal environment remediation with K. candel. This study also provides a great significance of protecting mangrove species and mangrove ecosystem.
Collapse
Affiliation(s)
- Feng-Qin Zhang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | |
Collapse
|
17
|
Passos MAN, de Oliveira Cruz V, Emediato FL, de Camargo Teixeira C, Souza MT, Matsumoto T, Rennó Azevedo VC, Ferreira CF, Amorim EP, de Alencar Figueiredo LF, Martins NF, de Jesus Barbosa Cavalcante M, Baurens FC, da Silva OB, Pappas GJ, Pignolet L, Abadie C, Ciampi AY, Piffanelli P, Miller RNG. Development of expressed sequence tag and expressed sequence tag-simple sequence repeat marker resources for Musa acuminata. AOB PLANTS 2012; 2012:pls030. [PMID: 23240072 PMCID: PMC3521319 DOI: 10.1093/aobpla/pls030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 09/14/2012] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS Banana (Musa acuminata) is a crop contributing to global food security. Many varieties lack resistance to biotic stresses, due to sterility and narrow genetic background. The objective of this study was to develop an expressed sequence tag (EST) database of transcripts expressed during compatible and incompatible banana-Mycosphaerella fijiensis (Mf) interactions. Black leaf streak disease (BLSD), caused by Mf, is a destructive disease of banana. Microsatellite markers were developed as a resource for crop improvement. METHODOLOGY cDNA libraries were constructed from in vitro-infected leaves from BLSD-resistant M. acuminata ssp. burmaniccoides Calcutta 4 (MAC4) and susceptible M. acuminata cv. Cavendish Grande Naine (MACV). Clones were 5'-end Sanger sequenced, ESTs assembled with TGICL and unigenes annotated using BLAST, Blast2GO and InterProScan. Mreps was used to screen for simple sequence repeats (SSRs), with markers evaluated for polymorphism using 20 diploid (AA) M. acuminata accessions contrasting in resistance to Mycosphaerella leaf spot diseases. PRINCIPAL RESULTS A total of 9333 high-quality ESTs were obtained for MAC4 and 3964 for MACV, which assembled into 3995 unigenes. Of these, 2592 displayed homology to genes encoding proteins with known or putative function, and 266 to genes encoding proteins with unknown function. Gene ontology (GO) classification identified 543 GO terms, 2300 unigenes were assigned to EuKaryotic orthologous group categories and 312 mapped to Kyoto Encyclopedia of Genes and Genomes pathways. A total of 624 SSR loci were identified, with trinucleotide repeat motifs the most abundant in MAC4 (54.1 %) and MACV (57.6 %). Polymorphism across M. acuminata accessions was observed with 75 markers. Alleles per polymorphic locus ranged from 2 to 8, totalling 289. The polymorphism information content ranged from 0.08 to 0.81. CONCLUSIONS This EST collection offers a resource for studying functional genes, including transcripts expressed in banana-Mf interactions. Markers are applicable for genetic mapping, diversity characterization and marker-assisted breeding.
Collapse
Affiliation(s)
- Marco A. N. Passos
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Viviane de Oliveira Cruz
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Flavia L. Emediato
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Cristiane de Camargo Teixeira
- Postgraduate Program in Genomic Science and
Biotechnology, Universidade Católica de
Brasília, SGAN 916, Módulo B, CEP 70.790-160,
Brasília, DF, Brazil
| | - Manoel T. Souza
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Takashi Matsumoto
- National Institute of Agrobiological Resources,
Tsukuba 305-8602, Japan
| | - Vânia C. Rennó Azevedo
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Claudia F. Ferreira
- EMBRAPA Mandioca e Fruticultura Tropical, Rua
Embrapa, CEP 44380-000, Cruz das Almas, BA, Brazil
| | - Edson P. Amorim
- EMBRAPA Mandioca e Fruticultura Tropical, Rua
Embrapa, CEP 44380-000, Cruz das Almas, BA, Brazil
| | - Lucio Flavio de Alencar Figueiredo
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
| | - Natalia F. Martins
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | | | | | - Orzenil Bonfim da Silva
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Georgios J. Pappas
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Luc Pignolet
- CIRAD/UMR BGPI, TA A 54/K Campus International de
Baillarguet, 34398 Montpellier Cedex 5, France
| | - Catherine Abadie
- CIRAD/UMR BGPI, TA A 54/K Campus International de
Baillarguet, 34398 Montpellier Cedex 5, France
| | - Ana Y. Ciampi
- EMBRAPA Recursos Genéticos e Biotecnologia,
Parque Estação Biológica, CP 02372, CEP 70.770-900, Brasília,
DF, Brazil
| | - Pietro Piffanelli
- CIRAD/UMR DAP 1098, TA A 96/03 Avenue Agropolis,
34098 Montpellier Cedex 5, France
- Present address: Genomics
Platform at Parco Tecnologico Padano, Via Einstein, Località Cascina Codazza, 26900
Lodi, Italy
| | - Robert N. G. Miller
- Universidade de Brasília,
Campus Universitário Darcy Ribeiro,
Instituto de Ciências Biológicas, Asa
Norte, CEP 70910-900, Brasília, DF, Brazil
- Corresponding author's e-mail address:
| |
Collapse
|
18
|
Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V. Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. PROTOPLASMA 2011; 248:839-47. [PMID: 21161305 DOI: 10.1007/s00709-010-0249-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 11/24/2010] [Indexed: 05/23/2023]
Abstract
Cicer microphyllum, a wild relative of cultivated chickpea, is a high altitude cold desert-adapted species distributed in western and trans-Himalayas. A complementary DNA (cDNA) encoding metallothionein-like protein has been identified from a cold-induced subtraction cDNA library from C. microphyllum. The sequence of the cloned metallothionein gene from C. microphyllum (GQ900702) contains 240-bp-long open reading frame and encodes predicted 79-amino acid protein of 7.9 kDa. Sequence analysis identified the motifs characteristic of type II metallothionein and designated as CmMet-2. Southern hybridization confirms a single copy of the CmMet-2 gene in C. microphyllum genome. In situ hybridization indicated spatial transcript regulation of CmMet-2 in root and aerial parts and also confirmed through real-time PCR-based quantitative transcript analysis. The data revealed a significantly low level of transcript in the aerial parts than the roots. Quantitative analysis using real-time PCR assay revealed induction of transcript in all parts of plants in response to cold stress at 4°C. The transcript abundance was found to increase exponentially with time course from 6 to 24 h after exposure. Further, regulation of transcript accumulation in response to abscisic acid application, polyethylene glycol (100 μM)-induced osmotic stress, or ZnSO(4) (1 μM) foliar spray indicated by Northern hybridization suggests the involvement of CmMet-2 in multiple stress response.
Collapse
Affiliation(s)
- Rupesh K Singh
- Molecular Biology and Genetic Engineering, Defence Institute of Bio Energy Research, Goraparao, Haldwani, Nainital, 263139, Uttarakhand, India
| | | | | | | | | | | |
Collapse
|
19
|
Alizadeh F, Abdullah SNA, Khodavandi A, Abdullah F, Yusuf UK, Chong PP. Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1106-1113. [PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
Collapse
Affiliation(s)
- Fahimeh Alizadeh
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
20
|
Yeom SI, Baek HK, Oh SK, Kang WH, Lee SJ, Lee JM, Seo E, Rose JKC, Kim BD, Choi D. Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:671-84. [PMID: 21542767 DOI: 10.1094/mpmi-08-10-0183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In plants, the primary defense against pathogens is mostly inducible and associated with cell wall modification and defense-related gene expression, including many secreted proteins. To study the role of secreted proteins, a yeast-based signal-sequence trap screening was conducted with the RNA from Phytophthora capsici-inoculated root of Capsicum annuum 'Criollo de Morelos 334' (CM334). In total, 101 Capsicum annuum secretome (CaS) clones were isolated and identified, of which 92 were predicted to have a secretory signal sequence at their N-terminus. To identify differences in expressed CaS genes between resistant and susceptible cultivars of pepper, reverse Northern blots and real-time reverse-transcription polymerase chain reaction were performed with RNA samples isolated at different time points following P. capsici inoculation. In an attempt to assign biological functions to CaS genes, we performed in planta knock-down assays using the Tobacco rattle virus-based gene-silencing method. Silencing of eight CaS genes in pepper resulted in suppression of the cell death induced by the non-host bacterial pathogen (Pseudomonas syringae pv. tomato T1). Three CaS genes induced phenotypic abnormalities in silenced plants and one, CaS259 (PR4-l), caused both cell death suppression and perturbed phenotypes. These results provide evidence that the CaS genes may play important roles in pathogen defense as well as developmental processes.
Collapse
Affiliation(s)
- Seon-In Yeom
- Department of Plant Science, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Soria-Guerra RE, Rosales-Mendoza S, Chang S, Haudenshield JS, Zheng D, Rao SS, Hartman GL, Ghabrial SA, Korban SS. Identifying differentially expressed genes in leaves of Glycine tomentella in the presence of the fungal pathogen Phakopsora pachyrhizi. PLANTA 2010; 232:1181-9. [PMID: 20711604 DOI: 10.1007/s00425-010-1251-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/15/2010] [Indexed: 05/07/2023]
Abstract
To compare transcription profiles in genotypes of Glycine tomentella that are differentially sensitive to soybean rust, caused by the fungal pathogen Phakopsora pachyrhizi, four cDNA libraries were constructed using the suppression subtractive hybridization method. Libraries were constructed from rust-infected and non-infected leaves of resistant (PI509501) and susceptible (PI441101) genotypes of G. tomentella, and subjected to subtractive hybridization. A total of 1,536 sequences were obtained from these cDNA libraries from which 195 contigs and 865 singletons were identified. Of these sequenced cDNA clones, functions of 646 clones (61%) were determined. In addition, 160 clones (15%) had significant homology to hypothetical proteins; while the remaining 254 clones (24%) did not reveal any hits. Of those 646 clones with known functions, different genes encoding protein products involved in metabolism, cell defense, energy, protein synthesis, transcription, and cellular transport were identified. These findings were subsequently confirmed by real time RT-PCR and dot blot hybridization.
Collapse
Affiliation(s)
- Ruth Elena Soria-Guerra
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61821, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen L, Ren F, Zhong H, Feng Y, Jiang W, Li X. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochim Biophys Sin (Shanghai) 2010; 42:154-64. [PMID: 20119627 DOI: 10.1093/abbs/gmp113] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High salinity and drought are the major abiotic stresses that adversely affect plant growth and agricultural productivity. To investigate genes that are involved in response to abiotic stresses in Brassica napus, a comprehensive survey of genes induced by high-salinity and drought stresses was done by macroarray analysis. In total, 536 clones were identified to be putative high-salinity-or drought-responsive genes. Among them, 172 and 288 clones are detected to be putative high-salinity- and drought-inducible genes, whereas 141 and 189 are candidates for high-salinity- and drought-suppressed genes, respectively. The functional classification of these genes are indicated that belonged to gene families encoding metabolic enzymes, regulatory factors, components of signal transduction, hormone responses, some abiotic stresses-related proteins, and other processes related to growth and development of B. napus. From the upregulated candidate genes, some interested genes were further demonstrated to be high-salinity- or/and drought-induced expression by real-time quantitative RT-PCR analysis. The experimental results also revealed that some genes may function in abscisic acid-dependent signaling pathway related to drought or salinity stress. Collectively, the data presented in this study will facilitate the understanding of molecular mechanism of B. napus in response to high-salinity and drought stresses, and also provide us the basis of effective genetic engineering strategies for improving stress tolerance of B. napus.
Collapse
Affiliation(s)
- Liang Chen
- Huazhong Normal University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
23
|
Huang GY, Wang YS. Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. CHEMOSPHERE 2009; 77:1026-1029. [PMID: 19716152 DOI: 10.1016/j.chemosphere.2009.07.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/14/2009] [Accepted: 07/30/2009] [Indexed: 05/28/2023]
Abstract
In this paper, we aimed to assess the roles of metallothioneins (MTs) in heavy metal tolerance by analyzing the expression level of BgMT2 in leaves of Bruguiera gymnorrhiza in response to heavy metals. Eight-month-old B. gymnorrhiza seedlings were exposed to different concentrations of zinc (Zn), copper (Cu) or lead (Pb) for 1, 3 and 7 d. A Real-time quantitative PCR protocol was developed to directly evaluate the expression of BgMT2, using 18S rRNA as a reference gene. Real-time quantitative PCR analysis demonstrated BgMT2 mRNA expression was regulated by Zn, Cu and Pb, but the regulation pattern was different for the three metals tested. Significant increase in the transcript level of BgMT2 was also found in response to Zn, Cu and Pb in some experimental conditions. Our results confirm that BgMT2 gene is involved in the regulation of Zn, Cu and Pb in B. gymnorrhiza leaves.
Collapse
Affiliation(s)
- Guo-Yong Huang
- Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | | |
Collapse
|
24
|
Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari P, Racchi M, Turchi A, Lingua G, Berta G, Carbonera D. Expression of the PsMTA1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2'-deoxyguanosine mediated-DNA damage. PLANT CELL REPORTS 2009; 28:1179-92. [PMID: 19506883 DOI: 10.1007/s00299-009-0719-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 05/27/2023]
Abstract
Marker-free transgenic white poplar (Populus alba L., cv 'Villafranca') plants, expressing the PsMT (A1) gene from Pisum sativum for a metallothionein-like protein, were produced by Agrobacterium tumefaciens-mediated transformation. The 35SCaMV-PsMT (A1)-NosT cassette was inserted into the ipt-type vector pMAT22. The occurrence of the abnormal ipt-shooty phenotype allowed the visual selection of transformants, while the yeast site-specific recombination R/RS system was responsible for the excision of the undesired vector sequences with the consequent recovery of normal marker-free transgenic plants. Molecular analyses confirmed the presence of the 35SCaMV-PsMT (A1)-NosT cassette and transgene expression. Five selected lines were further characterized, revealing the ability to withstand heavy metal toxicity. They survived 0.1 mM CuCl(2), a concentration which strongly affected the nontransgenic plants. Moreover, root development was only slightly affected by the ectopic expression of the transgene. Reactive oxygen species were accumulated to a lower extent in leaf tissues of multi-auto-transformation (MAT)-PsMT(A1) plants exposed to copper and zinc, compared to control plants. Tolerance to photo-oxidative stress induced by paraquat was another distinctive feature of the MAT-PsMT(A1) lines. Finally, low levels of DNA damage were detected by quantifying the amounts of 8-hydroxy-2'-deoxyguanosine in leaf tissues of the transgenic plants exposed to copper.
Collapse
Affiliation(s)
- Alma Balestrazzi
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ren Y, Zhao J. Functional analysis of the rice metallothionein gene OsMT2b promoter in transgenic Arabidopsis plants and rice germinated embryos. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2009; 176:528-538. [PMID: 26493143 DOI: 10.1016/j.plantsci.2009.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/17/2009] [Accepted: 01/19/2009] [Indexed: 06/05/2023]
Abstract
In this paper, the promoter of a type 2 metallothionein gene OsMT2b was cloned in indica rice Jiayu948 and its function was analyzed in transgenic Arabidopsis plant and rice germinated embryo aided by a GUS reporter gene. The result shows that the full promoter drives GUS expression predominantly in the vascular tissues of Arabidopsis, and the expression undergoes a unimodal pattern during the development, with peaking in the mature tissues in leaves and floral organs. Further promoter deletion analysis in Arabidopsis displays different function regions that are crucial for regulating gene expression: the -212/-21 region for keeping the minimal promoter activity and the expression in the initiation site of lateral root; the -924/-213 region for the expression in vegetative and reproductive organs; the -1227/-925 region for confining high expression in silique; and the -1502/-1228 and -1227/-925 regions for the balanceable control of high expression in embryo. And by using a transient expression system in rice germinated embryo, the similar promoter region-based regulation was observed. In addition, from studying the promoter activities under different stress conditions such as ABA, GA, ZT, PEG, cold, hot, NaCl, Cu, Zn and wounding, it is proposed that environmental stresses may regulate OsMT2b expression through the promoter cis-acing elements.
Collapse
Affiliation(s)
- Yujun Ren
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhao
- Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
26
|
Użarowska A, Dionisio G, Sarholz B, Piepho HP, Xu M, Ingvardsen CR, Wenzel G, Lübberstedt T. Validation of candidate genes putatively associated with resistance to SCMV and MDMV in maize (Zea mays L.) by expression profiling. BMC PLANT BIOLOGY 2009; 9:15. [PMID: 19187556 PMCID: PMC2669481 DOI: 10.1186/1471-2229-9-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/02/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions. RESULTS By employing time course microarray experiments we identified 68 significantly differentially expressed sequences within the different time points. The majority of differentially expressed genes differed between the near-isogenic line carrying Scmv1 resistance locus at chromosome 6 and the other isogenic lines. Most differentially expressed genes in the SCMV experiment (75%) were identified one hour after virus inoculation, and about one quarter at multiple time points. Furthermore, most of the identified mapped genes were localised outside the Scmv QTL regions. Annotation revealed differential expression of promising pathogenesis-related candidate genes, validated by qRT-PCR, coding for metallothionein-like protein, S-adenosylmethionine synthetase, germin-like protein or 26S ribosomal RNA. CONCLUSION Our study identified putative candidate genes and gene expression patterns related to resistance to SCMV. Moreover, our findings support the effectiveness and reliability of the combination of different expression profiling approaches for the identification and validation of candidate genes. Genes identified in this study represent possible future targets for manipulation of SCMV resistance in maize.
Collapse
Affiliation(s)
- Anna Użarowska
- Department of Plant Breeding, Technical University of Munich, Am Hochanger 2, 85350, Freising, Germany
| | - Giuseppe Dionisio
- Faculty of Agricultural Sciences, University of Aarhus, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse, DK-4200, Denmark
| | - Barbara Sarholz
- General Motors Powertrain Germany GmbH, 65423, Rüsselsheim, Germany
| | - Hans-Peter Piepho
- Department of Bioinformatics, University of Hohenheim, Fruwirthstrasse 23, 70593, Stuttgart, Germany
| | - Mingliang Xu
- National Maize Improvement Center of China, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100094, PR China
| | | | - Gerhard Wenzel
- Department of Plant Breeding, Technical University of Munich, Am Hochanger 2, 85350, Freising, Germany
| | - Thomas Lübberstedt
- Faculty of Agricultural Sciences, University of Aarhus, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Slagelse, DK-4200, Denmark
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, 50011 Ames, Iowa, USA
| |
Collapse
|
27
|
Wan X, Freisinger E. The plant metallothionein 2 from Cicer arietinum forms a single metal–thiolate cluster. Metallomics 2009; 1:489-500. [DOI: 10.1039/b906428a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Salvianti F, Bettini PP, Giordani E, Sacchetti P, Bellini E, Buiatti M. Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsylla pyri (Homoptera: Psyllidae). JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1808-1816. [PMID: 18343531 DOI: 10.1016/j.jplph.2007.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 05/26/2023]
Abstract
The molecular interaction between pear tree (Pyrus spp.) and the phloem-feeding psylla Cacopsylla pyri (Linnaeus) was investigated through the construction and characterization of cDNA subtracted libraries. Genes expressed upon insect infestation were identified in the susceptible pear cultivar Bartlett and in the resistant selection NY10355. In both interactions, genes involved in the plant defense response were induced, confirming the observed similarity between the response to pathogens and to insects with piercing/sucking mouthparts. However, the two expression profiles were found to be different, with more genes involved in the response to biotic and abiotic stress being activated in the resistant plant than in the susceptible one. Further characterization of the identified genes could lead to the development of molecular markers associated with tolerance/resistance to pear psylla.
Collapse
Affiliation(s)
- Francesca Salvianti
- Dipartimento di Biologia Animale e Genetica Leo Pardi, Università degli Studi di Firenze, via Romana 17-19, 50121 Firenze, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Quan XQ, Wang ZL, Zhang H, Bi YP. Cloning and characterization of TsMT3, a type 3 metallothionein gene from salt cress (Thellungiella salsuginea). ACTA ACUST UNITED AC 2008; 19:340-6. [PMID: 17852348 DOI: 10.1080/10425170701606201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A full-length type 3 plant metallothionein cDNA was isolated from 200 mM NaCl stressed shoots of the salt cress (Thellungiella salsuginea). The 447 bp TsMT3 cDNA sequence has a 207 bp open reading frame (ORF) and encodes a deduced 69 residue peptide of molecular weight 7.52 kDa. Southern blot analysis indicates that, there is only one copy of TsMT3 in the T. salsuginea genome. The accumulation of TsMT3 mRNA is enhanced by the stress imposed by PEG6000, 200 mM NaCl, 50 microM ABA, 4 degrees C, 40 microM CuSO(4) or 25 microM CdCl2. The expression vector pET28-TsMT3 was heterologously expressed in Escherichia coli to define the contribution of TsMT3 to heavy metal tolerance. In the presence of 2 mM CuSO4, 0.3 mM Pb(NO3)2 or 0.4 mM CdCl2, TsMT3 expressing cells exhibited enhanced metal tolerance and accumulated more metal than the controls. We believe that TsMT3 is probably involved in the processes of metal homeostasis, tolerance, and reactive oxygen species (ROS) scavenging.
Collapse
Affiliation(s)
- Xian Q Quan
- College of Life Sciences, Shandong Normal University, Shandong Jinan, PR China
| | | | | | | |
Collapse
|
30
|
Kim YC, Kim SY, Choi D, Ryu CM, Park JM. Molecular characterization of a pepper C2 domain-containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses. PLANTA 2008; 227:1169-79. [PMID: 18204857 DOI: 10.1007/s00425-007-0680-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 12/05/2007] [Indexed: 05/03/2023]
Abstract
Plants guard themselves against pathogen attack using multi-layered defense mechanism. Calcium represents an important secondary messenger during such defense responses. Upon examination of a pepper cDNA library, we observed that the gene CaSRC2-1 (Capsicum annum SRC2-1) was upregulated significantly in response to infection with the type II non-host pathogen Xanthomonas axonopodis pv. glycines 8 ra, which elicits a hypersensitive response. CaSRC2-1 encodes a protein that contains a C2 domain and it exhibits a high degree of homology to the protein Soybean genes regulated by cold 2 (SRC2). However, little is known about how SRC2 expression is elicited by biotic stresses such as pathogen challenge. Further sequence analysis indicated that the CaSRC2-1 C2 domain is unique and contain certain amino acids that are conserved within the C2 domains of other plants and animals. CaSRC2-1 transcription was up-regulated under both biotic and abiotic stress conditions, including bacterial and viral pathogen infection, CaCl(2) and cold treatment, but unaffected by treatment with plant defense-related chemicals such as salicylic acid, methyl jasmonic acid, ethephone, and abscisic acid. Intriguingly, under steady state conditions, CaSRC2-1 was expressed only in the root system. A CaSRC2-1-GFP fusion protein was used to determine localization to the plasma membrane. A fusion protein lacking the C2 domain failed to target the membrane but remained in the cytoplasm, indicating that the C2 domain plays a critical role in localization. Thus, CaSRC2-1 encodes a novel C2 domain-containing protein that targets the plasma membrane and plays a critical role in the abiotic stress and defense responses of pepper plants.
Collapse
|
31
|
Freisinger E. Plant MTs—long neglected members of the metallothionein superfamily. Dalton Trans 2008:6663-75. [DOI: 10.1039/b809789e] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Saito T, Matsukura C, Ban Y, Shoji K, Sugiyama M, Fukuda N, Nishimura S. Salinity Stress Affects Assimilate Metabolism at the Gene-expression Level during Fruit Development and Improves Fruit Quality in Tomato (Solanum lycopersicum L.). ACTA ACUST UNITED AC 2008. [DOI: 10.2503/jjshs1.77.61] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Moon DH, Salvatierra GR, Caldas DGG, Gallo de Carvalho MCC, Carneiro RT, Franceschini LM, Oda S, Labate CA. Comparison of the expression profiles of susceptible and resistant Eucalyptus grandis exposed to Puccinia psidii Winter using SAGE. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:1010-1018. [PMID: 32689429 DOI: 10.1071/fp07094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/18/2007] [Indexed: 05/02/2023]
Abstract
Eucalyptus grandis Hill ex Maiden and its hybrids are commonly planted by the Brazilian pulp and paper industry, but they are the most susceptible to the neotropical rust disease caused by Puccinia psidii Winter. In an initial attempt to understand the mechanisms of resistance, we constructed two contrasting Serial Analysis of Gene Expression (SAGE) libraries using susceptible and resistant individuals from a segregating half-sibling E. grandis population. Using the Z-test we identified tags differentially expressed between the libraries, preferentially 239 in the susceptible and 232 in the resistant type individuals. Using public (Expressed Sequence Tags) EST databases, 40 of the susceptible and 70 of the resistant tags matched ESTs and were annotated. By comparing the type of genes and their expression levels, distinct differences between the libraries were observed. Susceptible plants showed gene expression linked to leaf senescence, generalised stress responses and detoxification, and are apparently incapable of inducing a competent host defence response. On the other hand, resistant plants showed genes upregulated for cellular polarisation, cytoskeleton restructuring, vesicle transport, and cellulose and lignin biosynthesis. In the resistant individuals, evidence for systemic resistance, anti-oxidative responses and a hypersensitive response was also observed, although no R gene was identified.
Collapse
Affiliation(s)
- David H Moon
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Guillermo R Salvatierra
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Danielle G G Caldas
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Mayra C C Gallo de Carvalho
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Raphael T Carneiro
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Lívia M Franceschini
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Shinitiro Oda
- Suzano Papel e Celulose, Av. Brigadeiro Faria Lima n° 1355, 8° andar, CEP 01452-919, São Paulo-SP, Brasil
| | - Carlos A Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| |
Collapse
|
34
|
Sereno ML, Almeida RS, Nishimura DS, Figueira A. Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1499-515. [PMID: 17175063 DOI: 10.1016/j.jplph.2006.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/18/2006] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) offers the potential to be a phytoremediator species due to its outstanding biomass production, but its prospective metal accumulation and tolerance have not been fully characterized. Sugarcane plantlets were able to tolerate up to 100microM of copper in nutrient solution for 33 days, with no significant reduction in fresh weight, while accumulating 45mgCukg(-1) shoot dry weight. Higher levels of copper in solution (250 and 500microM) were lethal. Sugarcane displayed tolerance to 500microM Cd without symptoms of toxicity, accumulating 451mgCdkg(-1) shoot dry weight after 33 days, indicating its potential as Cd phytoremediator. DNA gel blot analyses detected 8 fragments using a metallothionein (MT) Type I probe, while 10 were revealed for the MT Type II and 8 for MT Type III. The number of genes for each type of MT in sugarcane might be similar to the ones identified in rice considering the interspecific origin of sugarcane cultivars. MT Type I gene appeared to present the highest level of constitutive expression, mainly in roots, followed by MT Type II, corroborating the expression pattern described based on large-scale expressed sequence tags sequencing. MT Type II and III genes were more expressed in shoots, where MT I was also importantly expressed. Increasing Cu concentration had little or no effect in modulating MT genes expression, while an apparent minor modulation of some of the MT genes could be detected in Cd treatments. However, the level of response was too small to explain the tolerance and/or accumulation of Cd in sugarcane tissues. Thus, cadmium tolerance and accumulation in sugarcane might derive from other mechanisms, although MT may be involved in oxidative responses to high levels of Cd. Sugarcane can be considered a potential candidate to be tested in Cd phytoremediation.
Collapse
Affiliation(s)
- Maria Lorena Sereno
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11 CP 83, Piracicaba, SP 13400-970, Brazil
| | | | | | | |
Collapse
|
35
|
Dardick C. Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1004-17. [PMID: 17722703 DOI: 10.1094/mpmi-20-8-1004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plant viruses cause a wide array of disease symptoms and cytopathic effects. Although some of these changes are virus specific, many appear to be common even among diverse viruses. Currently, little is known about the underlying molecular determinants. To identify gene expression changes that are concomitant with virus symptoms, we performed comparative expression profiling experiments on Nicotiana benthamiana leaves infected with one of three different fruit tree viruses that produce distinct symptoms: Plum pox potyvirus (PPV; leaf distortion and mosaic), Tomato ringspot nepovirus (ToRSV; tissue necrosis and general chlorosis), and Prunus necrotic ringspot ilarvirus (PNRSV; subtle chlorotic mottling). The numbers of statistically significant genes identified were consistent with the severity of the observed symptoms: 1,082 (ToRSV), 744 (PPV), and 89 (PNRSV). In all, 56% of the gene expression changes found in PPV-infected leaves also were altered by ToRSV, 87% of which changed in the same direction. Both PPV- and ToRSV-infected leaves showed widespread repression of genes associated with plastid functions. PPV uniquely induced the expression of large numbers of cytosolic ribosomal genes whereas ToRSV repressed the expression of plastidic ribosomal genes. How these and other observed expression changes might be associated with symptom development are discussed.
Collapse
Affiliation(s)
- Christopher Dardick
- United States Department of Agriculture-Agricultural Research Service, Appalachian Fruit Research Station, Kearneysville, WV, USA.
| |
Collapse
|
36
|
Hallmann A. A small cysteine-rich extracellular protein, VCRP, is inducible by the sex-inducer of Volvox carteri and by wounding. PLANTA 2007; 226:719-27. [PMID: 17431666 DOI: 10.1007/s00425-007-0519-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 03/22/2007] [Indexed: 05/14/2023]
Abstract
The green alga Volvox carteri represents one of the simplest multicellular organisms: it is composed of only two cell types, somatic and reproductive. Volvox is capable of both vegetative and sexual reproduction. Sexual development of males and females is triggered by a sex-inducer at concentrations as low as 10(-16) M. By differential screenings of cDNA libraries, a novel gene was identified that is under the control of this sex-inducer and that encodes a small cysteine-rich extracellular protein, named VCRP. Analysis of the VCRP polypeptide sequence suggests ten disulfide bonds and a dimetal-binding capacity. VCRP mRNA is detectable in males and females approximately 1 h after the spheroids' first contact with the sex-inducer, but transcription is restricted to the somatic cell-type. mRNA and protein synthesis is triggered not only by the sex-inducer, but also by wounding. VCRP does not share significant sequence similarity with any known protein sequence, but a potential EGF-like calcium-binding motif and a potential plant metallothionein family-15 motif have been identified. The characteristics of VCRP suggest a function as a signal transducer molecule, an extracellular second messenger from somatic cells to reproductive cells, or a role within the stress response.
Collapse
Affiliation(s)
- Armin Hallmann
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
37
|
De Nardi B, Dreos R, Del Terra L, Martellossi C, Asquini E, Tornincasa P, Gasperini D, Pacchioni B, Rathinavelu R, Pallavicini A, Graziosi G. Differential responses of Coffea arabica L. leaves and roots to chemically induced systemic acquired resistance. Genome 2007; 49:1594-605. [PMID: 17426774 DOI: 10.1139/g06-125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Collapse
|
38
|
Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S. High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). CHEMOSPHERE 2007; 67:1117-26. [PMID: 17223164 DOI: 10.1016/j.chemosphere.2006.11.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 05/13/2023]
Abstract
Poplar is a good candidate for phytoremediation purposes because of its rapid growth, extensive root system, and ease of propagation and transformation; however its tolerance to heavy metals has not been fully investigated yet. In the present work, an in vitro model system with shoot cultures was used to investigate the tolerance to high concentrations of zinc (Zn) of a commercial clone (Villafranca) of Populus alba. Based on chlorophyll content (leaf chlorosis) and the rate of adventitious root formation from shoot cuttings as parameters of damage, 0.5-4mM zinc concentrations were all toxic albeit to different extents. Northern blot and reverse transcriptase (RT)-PCR analyses were used to examine the expression profiles of types 1, 2 and 3 PaMT genes in stems, leaves and roots of plants exposed to Zn treatments. In leaves, MT1 and MT3 mRNA levels were enhanced by Zn, while MT2 transcripts were not affected. The PaMT expression profiles were differentially affected by Zn in an organ-specific manner, and the relationship with Zn concentration and exposure time was rarely linear. The developmental and molecular data reveal that the in vitro model is a sensitive and reliable system to study heavy metal stress responses.
Collapse
|
39
|
Divol F, Vilaine F, Thibivilliers S, Kusiak C, Sauge MH, Dinant S. Involvement of the xyloglucan endotransglycosylase/hydrolases encoded by celery XTH1 and Arabidopsis XTH33 in the phloem response to aphids. PLANT, CELL & ENVIRONMENT 2007; 30:187-201. [PMID: 17238910 DOI: 10.1111/j.1365-3040.2006.01618.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
During infestation, phloem-feeding insects induce transcriptional reprogramming in plants that may lead to protection. Transcripts of the celery XTH1 gene, encoding a xyloglucan endotransglycosylase/hydrolase (XTH), were previously found to accumulate systemically in celery (Apium graveolens) phloem, following infestation with the generalist aphid Myzus persicae. XTH1 induction was specific to the phloem but was not correlated with an increase in xyloglucan endotransglycosylase (XET) activity in the phloem. XTH1 is homologous to the Arabidopsis thaliana XTH33 gene. XTH33 expression was investigated following M. persicae infestation. The pattern of XTH33 expression is tightly controlled during development and indicates a possible role in cell expansion. An xth33 mutant was assayed for preference assay with M. persicae. Aphids settled preferentially on the mutant rather than on the wild type. This suggests that XTH33 is involved in protecting plants against aphids; therefore, that cell wall modification can alter the preference of aphids for a particular plant. Nevertheless, the ectopic expression of XTH33 in phloem tissue was not sufficient to confer protection, demonstrating that modifying the expression of this single gene does not readily alter plant-aphid interactions.
Collapse
Affiliation(s)
- Fanchon Divol
- Laboratoire de Biologie Cellulaire UR501, Institut National de la Recherche Agronomique (INRA), Versailles F-78026, France
| | | | | | | | | | | |
Collapse
|
40
|
Lee JM, Kim S, Lee JY, Yoo EY, Cho MC, Cho MR, Kim BD, Bahk YY. A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Proteomics 2006; 6:5248-59. [PMID: 16947123 DOI: 10.1002/pmic.200600326] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using proteomic analysis including 2-DE, image analysis, and protein identification with LC-MS/MS, an investigation aimed at a better understanding of the differentially expressed proteins and/or gene products was carried out with total cell extracts from placental tissues in nonpungent (Capsicum annuum cv. Saeng-Ryeog #213) and pungent peppers (C. annuum cv. Saeng-Ryeog #211). Mobilization of the most abundant proteins, which were on the gels of pH ranges of 4-7, 4.5-5.5, 5.5-6.7, and 6-9, and showed very similar profiles in the two tissues, revealing approximately 2600 protein spots consisting of 1200 on pH 4-7, 600 on 4.5-5.5, 550 on 5.5-6.7, 250 on 6-9. Of these, 37 protein spots, which appeared in only pungent tissues but not in nonpungent tissues or markedly increased in their staining intensities on the gels from pungent tissue, were selected, excised, in-gel trypsin digested, and analyzed by LC-ESI-MS/MS. Peptide MS/MS data were searched against publicly available protein and EST databases, and 22 proteins were identified. Based on this result, we tested and compared the differential expression during fruit development on the 2-DE gels with total cell extracts from placental tissues of pungent and nonpungent peppers at an interval of 10 days from 10 to 40 days after flowering. In addition, this differential protein expression was further confirmed for some subsets of candidates by Northern-blot analysis with RNA samples from placental tissues harvested from each pepper fruit at the same sampling intervals. In this study, the physiological implications, revealed from the experimental data in the levels of proteome and transcripts, are discussed in the context of a complex biosynthesis network of capsaicinoids in pepper cells responsive to pungency.
Collapse
Affiliation(s)
- Je Min Lee
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lü S, Gu H, Yuan X, Wang X, Wu AM, Qu L, Liu JY. The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 2006; 16:177-91. [PMID: 17146614 DOI: 10.1007/s11248-006-9035-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 08/21/2006] [Indexed: 10/23/2022]
Abstract
To gain a better understanding of the regulatory mechanism of plant metallothionein (MT) genes, a chimeric expression unit consisting of the beta-glucuronidase (gusA) reporter gene under the control of a 1,324 bp fragment of the rice MT (ricMT) promoter was introduced into Arabidopsis via Agrobacterium tumefaciens. The strongest histochemical staining for GUS activity was observed in the cotyledons and hypocotyls of the transgenic seedlings and in the stigma, filaments and anthers of young and mature flowers, and especially in the wounded tissues of transgenic plants. In contrast, a relatively low level of reporter gene expression was seen in the young roots of transgenic seedlings and no GUS activity was detected in the stems, seeds and leaves, but GUS activity was observed in cotyledons and the first two true leaves. Promoter analysis of 5' deletions further identified several important regions responsible for organ-specific expression including roots, flowers and wound induction, light and ABA, Cu and Zn responses. These findings demonstrate that a 1,324 bp fragment of the rice MT promoter performs a complicated transcriptional regulation with clearly functional regions in a model plant, and provide an important insight into the transcriptional regulation mechanisms that operate the temporal- and spatial-specific expression and stress responses of the rice MT gene. These results suggest that the ricMT promoter and its functional regions are potentially useful in genetic engineering of plants to express the desired genes whose products are preferentially needed in roots, flowers and wound induction.
Collapse
Affiliation(s)
- Shiyou Lü
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
When a potential pathogen attempts to infect a plant, biochemical and molecular communication takes place and leads to the induction of plant defence mechanisms. In the case of efficient defence, visible symptoms are restricted and the pathogen does not multiply (incompatible interaction); when defence is inefficient, the plant becomes rapidly infected (compatible interaction). During the last 30 years, a growing body of knowledge on plant-pathogen interactions has been gathered, and a large number of studies investigate the induction of various plant defence reactions by pathogens or by pathogen-derived compounds. However, as most papers focus on incompatible interactions, there is still a lack of understanding about the similarities and differences between compatible and incompatible situations. This review targets the question of specificity in Solanaceae-pathogen interactions, by comparing defence patterns in plants challenged with virulent or avirulent pathogens (or with pathogen-associated molecular patterns from these). A special emphasis is made on analysing whether defence reactions in Solanaceae depend primarily on the type of elicitor, on the plant genotype/species, or on the type of interaction (compatible or incompatible).
Collapse
Affiliation(s)
- Sabine Desender
- UMR BiO3P, Biologie des Organismes et des Populations Appliquée à la Protection des Plantes, INRA-Agrocampus Rennes, 65 Rue de Saint Brieuc, 35042 Rennes Cedex, France
| | | | | |
Collapse
|
43
|
Dauch AL, Jabaji-Hare SH. Metallothionein and bZIP Transcription Factor Genes from Velvetleaf and Their Differential Expression Following Colletotrichum coccodes Infection. PHYTOPATHOLOGY 2006; 96:1116-1123. [PMID: 18943500 DOI: 10.1094/phyto-96-1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Colletotrichum coccodes is a biocontrol agent of velvetleaf (Abutilon theophrasti), a noxious weed of corn and soybean. Metallothioneins (MTs) and basic region/leucine zipper motif (bZIP) are heavy-metal-binding proteins and transcription factors, respectively, that have been related to several plant processes, including the responses of plants to pathogen attack. Previous investigation of the determinants involved in the velvet-leaf-C. coccodes interaction had shed light on particular plant and fungal genes expressed in this pathosystem. Here, we report on the temporal expression patterns of two distinct types (2 and 3) of MT and bZIP transcription factor genes in velvetleaf leaves following infection with C. coccodes using quantitative reverse-transcription polymerase chain reaction. Gene expression ratios were significantly upregulated 1 day after infection (DAI), a time at which velvetleaf leaves appeared symptomless. At 2 DAI, bZIP and type 3 MT expression ratios dropped to levels significantly lower than those estimated for noninfected plants. Necrotic symptoms appeared 5 DAI and increased with time, during which gene expression levels were maintained either below or at levels observed in the control. These findings indicate that C. coccodes altered the expression of type 2 and 3 MT and bZIP genes. In addition, this is the first report on induction of a type 3 MT in plants in response to a pathogen attack.
Collapse
|
44
|
Kim YC, Kim SY, Paek KH, Choi D, Park JM. Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochem Biophys Res Commun 2006; 345:638-45. [PMID: 16696948 DOI: 10.1016/j.bbrc.2006.04.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/19/2006] [Indexed: 11/25/2022]
Abstract
A putative cytochrome P450 gene from chili pepper, Capsicum annuum L. Bukang cytochrome P450 (CaCYP1), was identified using cDNA microarray analysis of gene expression following induction of the leaf hypersensitive response by inoculation of pepper plants with the non-host pathogen Xanthomonas axonopodis pv. glycines 8ra. The full-length cDNA of CaCYP1 encoded a protein of 514 amino acid residues, which contained a putative hydrophobic membrane anchoring domain in the N-terminal region, and a heme-binding motif in the C-terminal region. Analysis of the deduced amino acid sequence of CaCYP1 revealed that it has high homology to Arabidopsis CYP89A5, the function of which is unknown. Expression of CaCYP1 was preferentially increased in pepper plants in response to non-host pathogen inoculation and also during the host resistance response. CaCYP1 expression also increased following treatment with salicylic acid and abscisic acid, while treatment with ethylene had a mild effect. Using a virus-induced gene silencing-based reverse genetics approach, we demonstrated that suppression of CaCYP1 results in enhanced susceptibility to bacterial pathogens. Interestingly, gene silencing of CaCYP1 in pepper plants resulted in the reduced expression of the defense-related genes CaLTP1, CaSIG4, and Cadhn. Our results indicated that CaCYP1, a novel cytochrome P450 in pepper plants, may play a role in plant defense response pathways that involve salicylic acid and abscisic acid signaling pathways.
Collapse
Affiliation(s)
- Young-Cheol Kim
- Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Oh SK, Lee S, Chung E, Park JM, Yu SH, Ryu CM, Choi D. Insight into Types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. PLANTA 2006; 223:1101-7. [PMID: 16482435 DOI: 10.1007/s00425-006-0232-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/21/2006] [Indexed: 05/06/2023]
Abstract
Plants protect themselves against pathogens using a range of response mechanisms. There are two categories of nonhost resistance: Type I, which does not result in visible cell death; and Type II, which entails localized programmed cell death (or hypersensitive response) in response to nonhost pathogens. The genes responsible for these two systems have not yet been intensively investigated at the molecular level. Using tobacco plants (Nicotiana tabacum), we compared expression of 12 defense-related genes between a Type I (Xanthomonas axonopodis pv. glycines 8ra) nonhost interaction, and two Type II (Pseudomonas syringae pv. syringae 61 and P. syringae pv. phaseolicola NPS3121) nonhost interactions, as well as those expressed during R gene-mediated resistance to Tobacco mosaic virus. In general, expression of most defense-related genes during R gene-mediated resistance was activated 48 h after challenge by TMV; the same genes were upregulated as early as 9 h after infiltration by nonhost pathogens. Surprisingly, X. axonopodis pv. glycines (Type I) elicited the same set of defense-related genes as did two pathovars of P. syringae, despite the absence of visible cell death. In two examples of Type II nonhost interactions, P. syringae pv. phaseolicola NPS3121 produced an expression profile more closely resembling that of X. axonopodis pv. glycines 8ra, than that of P. syringae pv. syringae 61. These results suggest that Type I nonhost resistance may act as a mechanism providing a more specific and active defense response against a broad range of potential pathogens.
Collapse
Affiliation(s)
- Sang-Keun Oh
- Plant Genomics Laboratory, Korea Research Institute of Bioscience and Biotechnology, 305-600 Daejeon, South Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Oh SK, Lee S, Yu SH, Choi D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. PLANTA 2005; 222:876-87. [PMID: 16078072 DOI: 10.1007/s00425-005-0030-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 04/14/2005] [Indexed: 05/03/2023]
Abstract
We aim to isolate genes in chili pepper that are regulated during the hypersensitive response to infection by nonhost pathogens, with a view to elucidating the defense responses against pathogen attack. Among the 90 transcription factors initially characterized by reverse RNA gel blot analysis, a cDNA clone, CaNAC1 (Capsicum annuum NAC1) containing the plant-specific NAC domain motif was further characterized. Expression of the CaNAC1 gene was rapidly and specifically induced during incompatible interactions between pepper and bacterial or viral pathogens. Additionally, this gene was strongly induced by exogenously applied salicylic acid and ethephon, whereas methyl jasmonate only had a transient effect. A CaNAC1-smGFP (soluble modified green fluorescent protein) fusion protein localized to the nucleus following transfection into the epidermis of onion. Using the yeast system, we further disclose that the transcription activation domain of CaNAC1 is located in the C-terminal half of the protein. Our results collectively suggest that the plant-specific NAC domain protein, CaNAC1, may play a role in the regulation of defense responses in plants.
Collapse
Affiliation(s)
- Sang-Keun Oh
- Principal Research Scientist Plant Genomics Lab, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, 52, Eoeun-dong, Yuseong-gu, Daejon, 305-333, Republic of Korea
| | | | | | | |
Collapse
|
47
|
Shan XC, Goodwin PH. Identification of a SAR8.2 gene in the susceptible host response of Nicotiana benthamiana to Colletotrichum orbiculare. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:259-266. [PMID: 32689129 DOI: 10.1071/fp04190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 01/24/2005] [Indexed: 06/11/2023]
Abstract
A SAR8.2 gene, NbSAR8.2m, was obtained from a PCR-selected cDNA subtraction library constructed from mRNA of Nicotiana benthamiana Domin. infected with Colletotrichum orbiculare (Berk & Mont.) von Arx. It is the first SAR8.2 gene described from N. benthamiana and shows relatively high similarity in both the coding and 3'-UTR to NtSAR8.2m of Nicotiana tabacum L. Expression of NbSAR8.2m occurred in healthy plants but was induced 8-fold following infection by C. orbiculare. Virus-induced gene silencing of NbSAR8.2m reduced its expression and resulted in the development of disease symptoms 24 h earlier than in control plants, indicating that NbSAR8.2m affects the length of the biotrophic phase of infection. Both NtSAR8.2m and NbSAR8.2m are unique among the SAR8.2 genes in that they encode for four cysteines near the C-terminus. The conserved cysteines of SAR8.2 genes may indicate roles in stress responses, defence reactions, metal ion homeostasis or other processes.
Collapse
Affiliation(s)
- Xue Chan Shan
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Paul H Goodwin
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
48
|
Oh SK, Park JM, Joung YH, Lee S, Chung E, Kim SY, Yu SH, Choi D. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens. MOLECULAR PLANT PATHOLOGY 2005; 6:269-85. [PMID: 20565656 DOI: 10.1111/j.1364-3703.2005.00284.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.
Collapse
Affiliation(s)
- Sang-Keun Oh
- Plant Genomics Laboratory, Genome Research Center, KRIBB, PO Box 115, Yusung, Taejon, 305-600, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Degenhardt J, Al-Masri AN, Kürkcüoglu S, Szankowski I, Gau AE. Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant and susceptible cultivars of Malus domestica. Mol Genet Genomics 2005; 273:326-35. [PMID: 15812649 DOI: 10.1007/s00438-005-1136-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/15/2004] [Accepted: 02/23/2005] [Indexed: 11/28/2022]
Abstract
In order to compare transcription profiles in cultivars of Malus domestica that are differentially sensitive to apple scab (Venturia inaequalis), two cDNA libraries were constructed using the suppression subtractive hybridization (SSH) method. Subtraction hybridization was performed between cDNAs from uninfected young leaves of the resistant cultivar Remo and the susceptible Elstar. In total, 480 EST clones were obtained: 218 (ELSTAR) clones represent transcripts that are preferentially expressed in Elstar, while the other 262 (REMO) are derived from RNAs that are more highly expressed in Remo. The putative functions of about 50% of the cloned sequences could be identified by sequencing and subsequent homology searches in databases or by dot-blot hybridization to known targets. In the resistant cv. Remo the levels of transcripts encoding a number of proteins related to plant defense (such as beta-1,3-glucanase, ribonuclease-like PR10, cysteine protease inhibitor, endochitinase, ferrochelatase, and ADP-ribosylation factor) or detoxification of reactive oxygen species (such as superoxide dismutase) were highly up-regulated relative to the amounts present in cv. Elstar. Most surprising was the large number of clones derived from mRNAs for metallothioneins of type 3 (91 out of 262) found in the REMO population. The corresponding transcripts were only present in small amounts in young uninfected leaves of the cv. Elstar, but were up-regulated in the susceptible cultivar after inoculation with V. inaequalis. These results indicate that constitutively high-level expression of PR proteins may protect cv. Remo from infection by different plant pathogens.
Collapse
Affiliation(s)
- Juliana Degenhardt
- Institute of Botany, University of Hannover, Herrenhäuserstr. 2, 30419, Hannover, Germany
| | | | | | | | | |
Collapse
|
50
|
Bilecen K, Ozturk UH, Duru AD, Sutlu T, Petoukhov MV, Svergun DI, Koch MHJ, Sezerman UO, Cakmak I, Sayers Z. Triticum durum Metallothionein. J Biol Chem 2005; 280:13701-11. [PMID: 15632113 DOI: 10.1074/jbc.m412984200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel gene sequence, with two exons and one intron, encoding a metallothionein (MT) has been identified in durum wheat Triticum durum cv. Balcali85 genomic DNA. Multiple alignment analyses on the cDNA and the translated protein sequences showed that T. durum MT (dMT) can be classified as a type 1 MT. dMT has three Cys-X-Cys motifs in each of the N- and C-terminal domains and a 42-residue-long hinge region devoid of cysteines. dMT was overexpressed in Escherichia coli as a fusion protein (GSTdMT), and bacteria expressing the fusion protein showed increased tolerance to cadmium in the growth medium compared with controls. Purified GSTdMT was characterized by SDS- and native-PAGE, size exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. It was shown that the recombinant protein binds 4 +/- 1 mol of cadmium/mol of protein and has a high tendency to form stable oligomeric structures. The structure of GSTdMT and dMT was investigated by synchrotron x-ray solution scattering and computational methods. X-ray scattering measurements indicated a strong tendency for GSTdMT to form dimers and trimers in solution and yielded structural models that were compatible with a stable dimeric form in which dMT had an extended conformation. Results of homology modeling and ab initio solution scattering approaches produced an elongated dMT structure with a long central hinge region. The predicted model and those obtained from x-ray scattering are in agreement and suggest that dMT may be involved in functions other than metal detoxification.
Collapse
Affiliation(s)
- Kivanc Bilecen
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956, Orhanli, Tuzla, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|