1
|
Staacke T, Mueller-Roeber B, Balazadeh S. Stress resilience in plants: the complex interplay between heat stress memory and resetting. THE NEW PHYTOLOGIST 2025; 245:2402-2421. [PMID: 39853503 DOI: 10.1111/nph.20377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/11/2024] [Indexed: 01/26/2025]
Abstract
Heat stress (HS) poses a major challenge to plants and agriculture, especially during climate change-induced heatwaves. Plants have evolved mechanisms to combat HS and remember past stress. This memory involves lasting changes in specific stress responses, enabling plants to better anticipate and react to future heat events. HS memory is a multi-layered cellular phenomenon that, in addition to epigenetic modifications, involves changes in protein quality control, metabolic pathways and broader physiological adjustments. An essential aspect of modulating stress memory is timely resetting, which restores defense responses to baseline levels and optimizes resource allocation for growth. Balancing stress memory with resetting enables plants to withstand stress while maintaining growth and reproductive capacity. In this review, we discuss mechanisms and regulatory layers of HS memory and resetting, highlighting their critical balance for enhancing stress resilience and plant fitness. We primarily focus on the model plant Arabidopsis thaliana due to the limited research on other species and outline key areas for future study.
Collapse
Affiliation(s)
- Tobias Staacke
- Institute of Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, Leiden, 2333 BE, the Netherlands
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, Potsdam, 14476, Germany
| | - Salma Balazadeh
- Institute of Biology Leiden, Sylvius Laboratory, Leiden University, Sylviusweg 72, Leiden, 2333 BE, the Netherlands
| |
Collapse
|
2
|
Dannfald A, Carpentier MC, Merret R, Favory JJ, Deragon JM. Plant response to intermittent heat stress involves modulation of mRNA translation efficiency. PLANT PHYSIOLOGY 2025; 197:kiae648. [PMID: 39688875 DOI: 10.1093/plphys/kiae648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Acquired thermotolerance (also known as priming) is the ability of cells or organisms to survive acute heat stress if preceded by a milder one. In plants, acquired thermotolerance has been studied mainly at the transcriptional level, including recent descriptions of sophisticated regulatory circuits that are essential for this learning capacity. Here, we tested the involvement of polysome-related processes [translation and cotranslational mRNA decay (CTRD)] in Arabidopsis (Arabidopsis thaliana) thermotolerance using two heat stress regimes with and without a priming event. We found that priming is essential to restore the general translational potential of plants shortly after acute heat stress. We observed that mRNAs not involved in heat stress suffered from reduced translation efficiency at high temperatures, whereas heat stress-related mRNAs were translated more efficiently under the same condition. We also showed that the induction of the unfolded protein response (UPR) pathway in acute heat stress is favored by a previous priming event and that, in the absence of priming, ER-translated mRNAs become preferential targets of CTRD. Finally, we present evidence that CTRD can specifically regulate more than a thousand genes during heat stress and should be considered as an independent gene regulatory mechanism.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Rémy Merret
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| |
Collapse
|
3
|
Zhang Y, Yang T, Han J, Su X, Cong Y, Zhou M, Wang Y, Lin T. Genome-Wide Identification of the ClpB Gene Family in Tomato and Expression Analysis Under Heat Stress. Int J Mol Sci 2024; 25:12325. [PMID: 39596389 PMCID: PMC11595012 DOI: 10.3390/ijms252212325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Tomato is a widely grown horticultural crop, and its growth process is often affected by high temperatures. Caseinolytic Protease B (ClpB), a homologous protein to heat shock protein 101 (HSP101), plays a vital role in plant heat adaptation and development. In this study, we identified six SlClpB genes in tomatoes, distributed across four chromosomes. Collinearity analysis revealed that the gene pairs SlClpB-2 and SlClpB-3A, as well as SlClpB-3C and SlClpB-12, resulted from segmental duplication events. Phylogenetic and motif analyses showed that ClpB proteins possess highly conserved domains across different species. We used RNA-seq data to analyze the expression patterns of the ClpB family. Among them, SlClpB-3A and SlClpB-12 exhibited increased expression in multiple tissues under heat stress. Specifically, SlClpB-2, SlClpB-3A, and SlClpB-3C were highly expressed in the fruit orange stage and in flower buds under heat treatment, while in seedlings, SlClpB-2 and SlClpB-3A exhibited heat-induced expression. Real-time quantitative fluorescent PCR (qRT-PCR) results showed that the expression of SlClpB-2 and SlClpB-3A was significantly increased under heat stress in the leaves and buds of Ailsa Craig, Micro-Tom, and M82. Overall, our findings provide valuable insights into the regulatory mechanisms of SlClpB genes in response to heat stress.
Collapse
Affiliation(s)
- Yuemei Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tailai Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Jiaxi Han
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Xiao Su
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Yanqing Cong
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yan Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| | - Tao Lin
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.Z.); (T.Y.); (J.H.); (X.S.); (Y.C.)
| |
Collapse
|
4
|
Kumari D, Jain A, Mukhopadhyay K. Comprehensive identification, characterization and expression analysis of genes underpinning heat acclimatization in Triticum durum and Aegilops tauschii. PLANT, CELL & ENVIRONMENT 2024; 47:3936-3952. [PMID: 38847343 DOI: 10.1111/pce.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 11/20/2024]
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop cultivated and consumed worldwide. Global warming-induced escalation of temperature during the seedling and grain-filling phase adversely affects productivity. To survive under elevated temperatures, most crop plants develop natural mechanisms at molecular level by activating heat shock proteins. However, other heat stress-related proteins like heat acclimatization (HA) proteins are documented in hexaploid wheat but have not been explored in detail in its diploid and tetraploid progenitors, which might help to overcome elevated temperature regimes for short periods. Our study aims to explore the potential HA genes in progenitors Triticum durum and Aegilops tauschii that perform well at higher temperatures. Seven genes were identified and phylogenetically classified into three families: K homology (KH), Chloroplast protein-enhancing stress tolerance (CEST), and heat-stress-associated 32 kDa (HSA32). Protein-protein interaction network revealed partner proteins that aid mRNA translation, protein refolding, and reactive species detoxification. Syntenic analysis displayed highly conserved relationships. RT-qPCR-based expression profiling revealed HA genes to exhibit diverse and dynamic patterns under high-temperature regimes, suggesting their critical role in providing tolerance to heat stress. The present study furnishes genetic landscape of HA genes that might help in developing climate-resilient wheat with higher acclimatization potential.
Collapse
Affiliation(s)
- Dipti Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
5
|
Zheng S, Zhao W, Liu Z, Geng Z, Li Q, Liu B, Li B, Bai J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int J Mol Sci 2024; 25:8976. [PMID: 39201662 PMCID: PMC11354667 DOI: 10.3390/ijms25168976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.
Collapse
Affiliation(s)
- Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weishuang Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zimeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Li
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Binhui Liu
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
6
|
Wang G, Wang X, Li D, Yang X, Hu T, Fu J. Comparative proteomics in tall fescue to reveal underlying mechanisms for improving Photosystem II thermotolerance during heat stress memory. BMC Genomics 2024; 25:683. [PMID: 38982385 PMCID: PMC11232258 DOI: 10.1186/s12864-024-10580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The escalating impacts of global warming intensify the detrimental effects of heat stress on crop growth and yield. Among the earliest and most vulnerable sites of damage is Photosystem II (PSII). Plants exposed to recurring high temperatures develop heat stress memory, a phenomenon that enables them to retain information from previous stress events to better cope with subsequent one. Understanding the components and regulatory networks associated with heat stress memory is crucial for the development of heat-resistant crops. RESULTS Physiological assays revealed that heat priming (HP) enabled tall fescue to possess higher Photosystem II photochemical activity when subjected to trigger stress. To investigate the underlying mechanisms of heat stress memory, we performed comparative proteomic analyses on tall fescue leaves at S0 (control), R4 (primed), and S5 (triggering), using an integrated approach of Tandem Mass Tag (TMT) labeling and Liquid Chromatography-Mass Spectrometry. A total of 3,851 proteins were detected, with quantitative information available for 3,835 proteins. Among these, we identified 1,423 differentially abundant proteins (DAPs), including 526 proteins that were classified as Heat Stress Memory Proteins (HSMPs). GO and KEGG enrichment analyses revealed that the HSMPs were primarily associated with the "autophagy" in R4 and with "PSII repair", "HSP binding", and "peptidase activity" in S5. Notably, we identified 7 chloroplast-localized HSMPs (HSP21, DJC77, EGY3, LHCA4, LQY1, PSBR and DEGP8, R4/S0 > 1.2, S5/S0 > 1.2), which were considered to be effectors linked to PSII heat stress memory, predominantly in cluster 4. Protein-protein interaction (PPI) analysis indicated that the ubiquitin-proteasome system, with key nodes at UPL3, RAD23b, and UCH3, might play a role in the selective retention of memory effectors in the R4 stage. Furthermore, we conducted RT-qPCR validation on 12 genes, and the results showed that in comparison to the S5 stage, the R4 stage exhibited reduced consistency between transcript and protein levels, providing additional evidence for post-transcriptional regulation in R4. CONCLUSIONS These findings provide valuable insights into the establishment of heat stress memory under recurring high-temperature episodes and offer a conceptual framework for breeding thermotolerant crops with improved PSII functionality.
Collapse
Affiliation(s)
- Guangyang Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xiulei Wang
- Urban Management Bureau, Taiqian County, Puyang City, 457600, China
| | - Dongli Li
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Xuehe Yang
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou city, 730020, China.
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai City, 264025, China.
| |
Collapse
|
7
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
8
|
Sedaghatmehr M, Balazadeh S. Autophagy: a key player in the recovery of plants from heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2246-2255. [PMID: 38236036 PMCID: PMC11016841 DOI: 10.1093/jxb/erae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 01/19/2024]
Abstract
Plants can be primed to withstand otherwise lethal heat stress (HS) through exposure to a preceding temporary and mild HS, commonly known as the 'thermopriming stimulus'. Plants have also evolved mechanisms to establish 'memories' of a previous stress encounter, or to reset their physiology to the original cellular state once the stress has ended. The priming stimulus triggers a widespread change of transcripts, proteins, and metabolites, which is crucial for maintaining the memory state but may not be required for growth and development under optimal conditions or may even be harmful. In such a scenario, recycling mechanisms such as autophagy are crucial for re-establishing cellular homeostasis and optimizing resource use for post-stress growth. While pivotal for eliminating heat-induced protein aggregates and protecting plants from the harmful impact of HS, recent evidence implies that autophagy also breaks down heat-induced protective macromolecules, including heat shock proteins, functioning as a resetting mechanism during the recovery from mild HS. This review provides an overview of the latest advances in understanding the multifaceted functions of autophagy in HS responses, with a specific emphasis on its roles in recovery from mild HS, and the modulation of HS memory.
Collapse
Affiliation(s)
- Mastoureh Sedaghatmehr
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Salma Balazadeh
- Leiden University, PO Box 9500, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
9
|
Kashyap S, Agarwala N, Sunkar R. Understanding plant stress memory traits can provide a way for sustainable agriculture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111954. [PMID: 38092267 DOI: 10.1016/j.plantsci.2023.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/01/2024]
Abstract
Being sessile, plants encounter various biotic and abiotic threats in their life cycle. To minimize the damages caused by such threats, plants have acquired sophisticated response mechanisms. One major such response includes memorizing the encountered stimuli in the form of a metabolite, hormone, protein, or epigenetic marks. All of these individually as well as together, facilitate effective transcriptional and post-transcriptional responses upon encountering the stress episode for a second time during the life cycle and in some instances even in the future generations. This review attempts to highlight the recent advances in the area of plant memory. A detailed understanding of plant memory has the potential to offer solutions for developing climate-resilient crops for sustainable agriculture.
Collapse
Affiliation(s)
- Sampurna Kashyap
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India
| | - Niraj Agarwala
- Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam, 781014, India.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
10
|
Crawford T, Siebler L, Sulkowska A, Nowack B, Jiang L, Pan Y, Lämke J, Kappel C, Bäurle I. The Mediator kinase module enhances polymerase activity to regulate transcriptional memory after heat stress in Arabidopsis. EMBO J 2024; 43:437-461. [PMID: 38228917 PMCID: PMC10897291 DOI: 10.1038/s44318-023-00024-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.
Collapse
Affiliation(s)
- Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Lara Siebler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Bryan Nowack
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Yufeng Pan
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
11
|
Torres JR, Botto JF, Sanchez DH. Canonical transcriptional gene silencing may contribute to long-term heat response and recovery through MOM1. PLANT, CELL & ENVIRONMENT 2024; 47:372-382. [PMID: 37712454 DOI: 10.1111/pce.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Plant canonical transcriptional gene silencing (TGS) is involved in epigenetic mechanisms that mediate genomic imprinting and the suppression of transposable elements (TEs). It has been recognised that long-term heat disrupts epigenetic silencing, with the ensuing activation of TEs. However, the physiological involvement of the TGS machinery under prolonged high temperatures has not yet been established. Here, we performed non-lethal extended periodic heat stress and recovery treatments on Arabidopsis thaliana lines mutated on key TGS factors, analysing transcriptomic changes of coding-protein genes and TEs. Plants bearing MET1, DRM2 and CMT3, and MOM1 mutated alleles showed novel transcriptional properties compatible with functionalities concerning the induction/repression of partially shared or private heat-triggered transcriptome networks. Certain observations supported the idea that some responses are based on thermal de-silencing. TEs transcriptional activation uncovered the interaction with specific epigenetic layers, which may play dedicated suppressing roles under determinate physiological conditions such as heat. Furthermore, physiological experimentation suggested that MOM1 is required to resume growth after stress. Our data thus provide initial evidence that at least one canonical TGS factor may contribute to plant acclimation and recovery from non-lethal long-term heat despite the stress-induced epigenetic disturbance.
Collapse
Affiliation(s)
- José Roberto Torres
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier F Botto
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Feijó ADR, Viana VE, Balbinot A, Fipke MV, Souza GM, do Amarante L, Avila LAD. Water Deficit at Vegetative Stage Induces Tolerance to High Temperature during Anthesis in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3133. [PMID: 37687380 PMCID: PMC10490413 DOI: 10.3390/plants12173133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Crop yields have been affected by many different biotic and abiotic factors. Generally, plants experience more than one stress during their life cycle, and plants can tolerate multiple stresses and develop cross-tolerance. The expected rise in atmospheric CO2 concentration ([CO2]) can contribute to cross-tolerance. Priming is a strategy to increase yield or to maintain yield under stress conditions. Thus, our objective was to evaluate if priming the rice plants with water deficit during the vegetative stage can induce tolerance to heat stress at anthesis and to evaluate the contribution of e[CO2]. METHODS The experiment was arranged in a completely randomized design in a factorial arrangement. Factor A consisted of the following treatments: water deficit at four-leaf stage (no-stress, and drought stress), heat at anthesis (normal temperature, high temperature), and priming with water deficit at four-leaf stage and heat stress at anthesis; and Factor B was two [CO2] treatments: a[CO2] = 400 ± 40 μmol mol-1 and e[CO2] = 700 ± 40 μmol mol-1. We assessed the effect of the treatments on plant growth, yield, biochemical, and transcriptome alterations. RESULTS Although e[CO2] affected rice growth parameters, it did not affect the priming effect. Primed plants showed an increase in yield and number of panicles per plant. Primed plants showed upregulation of OsHSP16.9A, OsHSP70.1, and OsHSP70.6. These results showed induced cross-tolerance. CONCLUSIONS Water deficit at the rice vegetative stage reduces the effect of heat stress at the reproductive stage. Water deficit at the vegetative stage can be used, after further testing in field conditions, to reduce the effect of heat stress during flowering in rice.
Collapse
Affiliation(s)
- Anderson da Rosa Feijó
- Plant Physiology Graduate Program, Federal University of Pelotas, Pelotas 96160-000, Brazil
| | - Vívian Ebeling Viana
- Crop Protection Graduate Program, Federal University of Pelotas, Pelotas 96015-560, Brazil
| | - Andrisa Balbinot
- Crop Protection Graduate Program, Federal University of Pelotas, Pelotas 96015-560, Brazil
| | - Marcus Vinicius Fipke
- Crop Protection Graduate Program, Federal University of Pelotas, Pelotas 96015-560, Brazil
| | - Gustavo Maia Souza
- Plant Physiology Graduate Program, Federal University of Pelotas, Pelotas 96160-000, Brazil
| | - Luciano do Amarante
- Plant Physiology Graduate Program, Federal University of Pelotas, Pelotas 96160-000, Brazil
| | - Luis Antonio de Avila
- Department of Soil and Crop Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
13
|
Charng YY, Mitra S, Yu SJ. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. THE PLANT CELL 2023; 35:187-200. [PMID: 36271858 PMCID: PMC9806581 DOI: 10.1093/plcell/koac313] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 05/23/2023]
Abstract
Plants acquire enhanced tolerance to intermittent abiotic stress by employing information obtained during prior exposure to an environmental disturbance, a process known as acclimation or defense priming. The capacity for stress memory is a critical feature in this process. The number of reports related to plant stress memory (PSM) has recently increased, but few studies have focused on the mechanisms that maintain PSM. Identifying the components involved in maintaining PSM is difficult due in part to the lack of clear criteria to recognize these components. In this review, based on what has been learned from genetic studies on heat acclimation memory, we propose criteria for identifying components of the regulatory networks that maintain PSM. We provide examples of the regulatory circuits formed by effectors and regulators of PSM. We also highlight strategies for assessing PSMs, update the progress in understanding the mechanisms of PSM maintenance, and provide perspectives for the further development of this exciting research field.
Collapse
Affiliation(s)
| | - Suma Mitra
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Molecular and Biological Agricultural Sciences Program, TIGP, Academia Sinica, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Shih-Jiun Yu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
14
|
Yao X, Li Y, Chen J, Zhou Z, Wen Y, Fang K, Yang F, Li T, Zhang D, Lin H. Brassinosteroids enhance BES1-required thermomemory in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2022; 45:3492-3504. [PMID: 36130868 DOI: 10.1111/pce.14444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
Heat stress (HS) caused by ambient high temperature poses a threat to plants. In the natural and agricultural environment, plants often encounter repeated and changeable HS. Moderate HS primes plants to establish a molecular 'thermomemory' that enables plants to withstand a later-and possibly more extreme-HS attack. Recent years, brassinosteroids (BRs) have been implicated in HS response, whereas the information is lacking on whether BRs signal transduction modulates thermomemory. Here, we uncover the positive role of BRs signalling in thermomemory of Arabidopsis thaliana. Heat priming induces de novo synthesis and nuclear accumulation of BRI1-Ethyl methyl sulfon-SUPPRESSOR (BES1), which is the key regulator of BRs signalling. BRs promote the accumulation of dephosphorylated BES1 during memory phase, and stoppage of BRs synthesis impairs dephosphorylation. During HS memory, BES1 is required to maintain sustained induction of HS memory genes and directly targets APX2 and HSFA3 for activation. In summary, our results reveal a BES1-required, BRs-enhanced transcriptional control module of thermomemory in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xiuhong Yao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yanling Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan Chen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yu Wen
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Ke Fang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Taotao Li
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Gao Z, Zhou Y, He Y. Molecular epigenetic mechanisms for the memory of temperature stresses in plants. J Genet Genomics 2022; 49:991-1001. [PMID: 35870761 DOI: 10.1016/j.jgg.2022.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/29/2022]
Abstract
The sessile plants encounter various stresses; some are prolonged, whereas some others are recurrent. Temperature is crucial for plant growth and development, and plants often encounter adverse high temperature fluctuations (heat stresses) as well as prolonged cold exposure such as seasonal temperature drops in winter when grown in temperate regions. Many plants can remember past temperature stresses to get adapted to adverse local temperature changes to ensure survival and/or reproductive success. Here, we summarize chromatin-based mechanisms underlying acquired thermotolerance or thermomemory in plants and review recent progresses on molecular epigenetic understanding of 'remembering of prolonged cold in winter' or vernalization, a process critical for various over-wintering plants to acquire competence to flower in the coming spring. In addition, perspectives on future study in temperature stress memories of economically-important crops are discussed.
Collapse
Affiliation(s)
- Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yue Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261325, China.
| |
Collapse
|
16
|
Sun T, Wang W, Hu X, Fang Z, Wang Y, Xiang L, Chan Z. Genome-wide identification of heat shock transcription factor families in perennial ryegrass highlights the role of LpHSFC2b in heat stress response. PHYSIOLOGIA PLANTARUM 2022; 174:e13828. [PMID: 36377141 DOI: 10.1111/ppl.13828] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Perennial ryegrass (Lolium perenne) is a cool-season turf and forage grass. Heat shock transcription factors (HSFs) play an important role in regulating plant abiotic stress. However, HSFs in perennial ryegrass have rarely been characterized. Here, 25 LpHSFs were identified from the perennial ryegrass genome. Phylogenetic analysis showed that the LpHSFs could be classified into 12 subclasses. Gene structure analysis showed that 22 LpHSFs have only one intron. Cis-acting elements analysis revealed that the promoter of 15 LpHSFs contained hormone-responsive and abiotic stress-responsive elements. Expression profile analysis indicated that 24 LpHSFs were differentially expressed under submerge, drought, heat, and cold stresses. In addition, a subclass C2 gene, LpHSFC2b, was significantly induced by abiotic stresses. The LpHSFC2b protein is localized to the nucleus, and heterologous expression of LpHSFC2b in Arabidopsis improves plant thermotolerance. This study provides insights useful for the breeding of stress tolerance in perennial ryegrass.
Collapse
Affiliation(s)
- Tianxiao Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Weiliang Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xianmei Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhengfu Fang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Zhang Y, Xia G, Sheng L, Chen M, Hu C, Ye Y, Yue X, Chen S, OuYang W, Xia Z. Regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses. PLANT CELL REPORTS 2022; 41:2125-2138. [PMID: 35922498 DOI: 10.1007/s00299-022-02910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Selective autophagy functions as a regulatory mechanism by targeting native and functional proteins to ensure their proper levels and activities in plant adaptive responses. Autophagy is a cellular degradation and recycling pathway with a key role in cellular homeostasis and metabolism. Autophagy is initiated with the biogenesis of autophagosomes, which fuse with the lysosomes or vacuoles to release their contents for degradation. Under nutrient starvation or other adverse environmental conditions, autophagy usually targets unwanted or damaged proteins, organelles and other cellular components for degradation and recycling to promote cell survival. Over the past decade, however, a substantial number of studies have reported that autophagy in plants also functions as a regulatory mechanism by targeting enzymes, structural and regulatory proteins that are not necessarily damaged or dysfunctional to ensure their proper abundance and function to facilitate cellular changes required for response to endogenous and environmental conditions. During plant-pathogen interactions in particular, selective autophagy targets specific pathogen components as a defense mechanism and pathogens also utilize autophagy to target functional host factors to suppress defense mechanisms. Autophagy also targets native and functional protein regulators of plant heat stress memory, hormone signaling, and vesicle trafficking associated with plant responses to abiotic and other conditions. In this review, we discuss advances in the regulatory roles of selective autophagy through targeting of native proteins in plant adaptive responses, what questions remain and how further progress in the analysis of these special regulatory roles of autophagy can help understand biological processes important to plants.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China.
| | - Gengshou Xia
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Li Sheng
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Mingjue Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Chenyang Hu
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Yule Ye
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Xiaoyan Yue
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Shaocong Chen
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Wenwu OuYang
- Department of Landscape and Horticulture, Ecology College, Lishui University, Lishui, Zhejiang, China
| | - Zhenkai Xia
- China Medical University -The Queen's University of Belfast Joint College, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Sedaghatmehr M, Stüwe B, Mueller-Roeber B, Balazadeh S. Heat shock factor HSFA2 fine-tunes resetting of thermomemory via plastidic metalloprotease FtsH6. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6394-6404. [PMID: 35705109 PMCID: PMC9578354 DOI: 10.1093/jxb/erac257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/14/2022] [Indexed: 06/01/2023]
Abstract
Plants 'memorize' stressful events and protect themselves from future, often more severe, stresses. To maximize growth after stress, plants 'reset' or 'forget' memories of stressful situations, which requires an intricate balance between stress memory formation and the degree of forgetfulness. HEAT SHOCK PROTEIN 21 (HSP21) encodes a small heat shock protein in plastids of Arabidopsis thaliana. HSP21 functions as a key component of thermomemory, which requires a sustained elevated level of HSP21 during recovery from heat stress. A heat-induced metalloprotease, filamentation temperature-sensitive H6 (FtsH6), degrades HSP21 to its pre-stress abundance, thereby resetting memory during the recovery phase. The transcription factor heat shock factor A2 (HSFA2) activates downstream genes essential for mounting thermomemory, acting as a positive regulator in the process. Here, using a yeast one-hybrid screen, we identify HSFA2 as an upstream transactivator of the resetting element FtsH6. Constitutive and inducible overexpression of HSFA2 increases expression of FtsH6, whereas it is drastically reduced in the hsfa2 knockout mutant. Chromatin immunoprecipitation reveals in planta binding of HSFA2 to the FtsH6 promoter. Importantly, overexpression of HSFA2 improves thermomemory more profoundly in ftsh6 than wild-type plants. Thus, by activating both memory-supporting and memory-resetting genes, HSFA2 acts as a cellular homeostasis factor during thermomemory.
Collapse
Affiliation(s)
| | - Benno Stüwe
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße, Haus, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | | |
Collapse
|
19
|
Vu AT, Utsumi Y, Utsumi C, Tanaka M, Takahashi S, Todaka D, Kanno Y, Seo M, Ando E, Sako K, Bashir K, Kinoshita T, Pham XH, Seki M. Ethanol treatment enhances drought stress avoidance in cassava (Manihot esculenta Crantz). PLANT MOLECULAR BIOLOGY 2022; 110:269-285. [PMID: 35969295 DOI: 10.1007/s11103-022-01300-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
External application of ethanol enhances tolerance to high salinity, drought, and heat stress in various plant species. However, the effects of ethanol application on increased drought tolerance in woody plants, such as the tropical crop "cassava," remain unknown. In the present study, we analyzed the morphological, physiological, and molecular responses of cassava plants subjected to ethanol pretreatment and subsequent drought stress treatment. Ethanol pretreatment induced a slight accumulation of abscisic acid (ABA) and stomatal closure, resulting in a reduced transpiration rate, higher water content in the leaves during drought stress treatment and the starch accumulation in leaves. Transcriptomic analysis revealed that ethanol pretreatment upregulated the expression of ABA signaling-related genes, such as PP2Cs and AITRs, and stress response and protein-folding-related genes, such as heat shock proteins (HSPs). In addition, the upregulation of drought-inducible genes during drought treatment was delayed in ethanol-pretreated plants compared with that in water-pretreated control plants. These results suggest that ethanol pretreatment induces stomatal closure through activation of the ABA signaling pathway, protein folding-related response by activating the HSP/chaperone network and the changes in sugar and starch metabolism, resulting in increased drought avoidance in plants.
Collapse
Affiliation(s)
- Anh Thu Vu
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yoshinori Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chikako Utsumi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daisuke Todaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuri Kanno
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mitsunori Seo
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Eigo Ando
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, Pakistan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Xuan Hoi Pham
- Agricultural Genetics Institute, Pham Van Dong Road, Bac Tu Lie District, Ha Noi, Vietnam
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
| |
Collapse
|
20
|
Boonyaves K, Wu TY, Dong Y, Urano D. Interplay between ARABIDOPSIS Gβ and WRKY transcription factors differentiates environmental stress responses. PLANT PHYSIOLOGY 2022; 190:813-827. [PMID: 35748759 PMCID: PMC9434291 DOI: 10.1093/plphys/kiac305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Different environmental stresses often evoke similar physiological disorders such as growth retardation; however, specific consequences reported among individual stresses indicate potential mechanisms to distinguish different stress types in plants. Here, we examined mechanisms to differentiate between stress types in Arabidopsis (Arabidopsis thaliana). Gene expression patterns recapitulating several abiotic stress responses suggested abscisic acid (ABA) as a mediator of the common stress response, while stress type-specific responses were related to metabolic adaptations. Transcriptome and metabolome analyses identified Arabidopsis Gβ (AGB1) mediating the common stress-responsive genes and primary metabolisms under nitrogen excess. AGB1 regulated the expressions of multiple WRKY transcription factors. Gene Ontology and mutant analyses revealed different roles among WRKYs: WRKY40 is involved in ABA and common stress responses, while WRKY75 regulates metabolic processes. The AGB1-WRKY signaling module controlled developmental plasticity in roots under nitrogen excess. Signal transmission from AGB1 to a selective set of WRKYs would be essential to evoke unique responses to different types of stresses.
Collapse
Affiliation(s)
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Yating Dong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | |
Collapse
|
21
|
The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem Soc Trans 2022; 50:1151-1165. [PMID: 35758233 PMCID: PMC9246330 DOI: 10.1042/bst20190572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.
Collapse
|
22
|
Zhang WM, Cheng XZ, Fang D, Cao J. AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. Int J Biol Macromol 2022; 214:290-300. [PMID: 35716788 DOI: 10.1016/j.ijbiomac.2022.06.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
AHL (AT-HOOK MOTIF NUCLEAR LOCALIZED) protein is an important transcription factor in plants that regulates a wide range of biological process. It is considered to have evolved from an independent PPC domain in prokaryotes to a complete protein in modern plants. AT-hook motif and PPC conserved domains are the main functional domains of AHL. Since the discovery of AHL, their evolution and function have been continuously studied. The AHL gene family has been identified in multiple species and the functions of several members of the gene family have been studied. Here, we summarize the evolution and structural characteristics of AHL genes, and emphasize their biological functions. This review will provide a basis for further functional study and crop breeding.
Collapse
Affiliation(s)
- Wei-Meng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiu-Zhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
23
|
Nair AU, Bhukya DPN, Sunkar R, Chavali S, Allu AD. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3355-3371. [PMID: 35274680 DOI: 10.1093/jxb/erac089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The growth, survival, and productivity of plants are constantly challenged by diverse abiotic stresses. When plants are exposed to stress for the first time, they can capture molecular information and store it as a form of memory, which enables them to competently and rapidly respond to subsequent stress(es). This process is referred to as a priming-induced or acquired stress response. In this review, we discuss how (i) the storage and retrieval of the information from stress memory modulates plant physiological, cellular, and molecular processes in response to subsequent stress(es), (ii) the intensity, recurrence, and duration of priming stimuli influences the outcomes of the stress response, and (iii) the varying responses at different plant developmental stages. We highlight current understanding of the distinct and common molecular processes manifested at the epigenetic, (post-)transcriptional, and post-translational levels mediated by stress-associated molecules and metabolites, including phytohormones. We conclude by emphasizing how unravelling the molecular circuitry underlying diverse priming-stimuli-induced stress responses could propel the use of priming as a management practice for crop plants. This practice, in combination with precision agriculture, could aid in increasing yield quantity and quality to meet the rapidly rising demand for food.
Collapse
Affiliation(s)
- Akshay U Nair
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Durga Prasad Naik Bhukya
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Annapurna Devi Allu
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
24
|
Khan A, Khan V, Pandey K, Sopory SK, Sanan-Mishra N. Thermo-Priming Mediated Cellular Networks for Abiotic Stress Management in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866409. [PMID: 35646001 PMCID: PMC9136941 DOI: 10.3389/fpls.2022.866409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 05/05/2023]
Abstract
Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
25
|
Balazadeh S. A 'hot' cocktail: The multiple layers of thermomemory in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102147. [PMID: 34861588 DOI: 10.1016/j.pbi.2021.102147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Heat stress (HS) caused by above-optimal temperatures adversely affects plants' growth and development and diminishes crop yields. In natural and agricultural environments, these stresses are often transient but recurrent and may progressively increase in severity over time. In addition to the inherent ability to cope with a single HS event, plants have evolved mechanisms that enhance their capacity to survive and reproduce under such conditions. This involves the establishment of a molecular 'thermomemory' after moderate HS that allows them to withstand a later - and possibly more extreme - HS event. Here, I summarize the current understanding of the molecular and biochemical mechanisms underlying thermomemory across multiple cellular levels and discuss aspects that require further attention.
Collapse
Affiliation(s)
- Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Leiden University, PO Box 9500, 2300 RA, Leiden, the Netherlands.
| |
Collapse
|
26
|
Zhang R, Zhi H, Li Y, Guo E, Feng G, Tang S, Guo W, Zhang L, Jia G, Diao X. Response of Multiple Tissues to Drought Revealed by a Weighted Gene Co-Expression Network Analysis in Foxtail Millet [ Setaria italica (L.) P. Beauv.]. FRONTIERS IN PLANT SCIENCE 2022; 12:746166. [PMID: 35095942 PMCID: PMC8790073 DOI: 10.3389/fpls.2021.746166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Characterization of drought-tolerance mechanisms during the jointing stage in foxtail millet under water-limited conditions is essential for improving the grain yield of this C4 crop species. In this trial, two drought-tolerant and two drought-sensitive cultivars were examined using transcriptomic dissections of three tissues (root, stem, and leaf) under naturally occurring water-limited conditions. We detected a total of 32,170 expressed genes and characterized 13,552 differentially expressed genes (DEGs) correlated with drought treatment. The majority of DEGs were identified in the root tissue, followed by leaf and stem tissues, and the number of DEGs identified in the stems of drought-sensitive cultivars was about two times higher than the drought-tolerant ones. A total of 127 differentially expressed transcription factors (DETFs) with different drought-responsive patterns were identified between drought-tolerant and drought-sensitive genotypes (including MYB, b-ZIP, ERF, and WRKY). Furthermore, a total of 34 modules were constructed for all expressed genes using a weighted gene co-expression network analysis (WGCNA), and seven modules were closely related to the drought treatment. A total of 1,343 hub genes (including RAB18, LEA14, and RD22) were detected in the drought-related module, and cell cycle and DNA replication-related transcriptional pathways were identified as vital regulators of drought tolerance in foxtail millet. The results of this study provide a comprehensive overview of how Setaria italica copes with drought-inflicted environments during the jointing stage through transcriptional regulating strategies in different organs and lays a foundation for the improvement of drought-tolerant cereal cultivars through genomic editing approaches in the future.
Collapse
Affiliation(s)
- Renliang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhui Li
- Research Institute of Millet, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Erhu Guo
- Research Institute of Millet, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Guojun Feng
- Research Institute of Grain Crop, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Sha Tang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weixia Guo
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanqing Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianmin Diao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
John S, Olas JJ, Mueller-Roeber B. Regulation of alternative splicing in response to temperature variation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6150-6163. [PMID: 34028544 PMCID: PMC8483784 DOI: 10.1093/jxb/erab232] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/21/2021] [Indexed: 05/08/2023]
Abstract
Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature-cold, heat, and moderate alterations in temperature-affect alternative splicing in plants, including crops. We present examples of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
Collapse
Affiliation(s)
- Sheeba John
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Correspondence: or
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße, Haus, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
- Correspondence: or
| |
Collapse
|
28
|
Yamaguchi N. Heat memory in plants: histone modifications, nucleosome positioning and miRNA accumulation alter heat memory gene expression. Genes Genet Syst 2021; 96:229-235. [PMID: 34526427 DOI: 10.1266/ggs.21-00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plant adaptation to high temperature, often referred to as heat acclimation, is a process in which exposure to moderately high temperatures increases a plant's tolerance to subsequent (normally) lethal high temperatures. Plants store heat experience information (heat memory) obtained from previous exposure to high temperatures for several days and develop future temperature responsiveness. However, our understanding of heat acclimation is very limited. In the model plant Arabidopsis thaliana, changes in the expression patterns of heat memory genes play a central role in regulating plant survival and adaptation to recurring heat stress. Heat stress-related transcription factors and histone-modifying enzymes function in the sensitized expression of heat memory genes via the deposition and removal of histone modifications. Chromatin-remodeling complexes and miRNA accumulation also trigger the sustained expression of heat memory genes. In this review, I describe studies of heat acclimation that have provided important insights into the molecular mechanisms that lead to flexible and reversible gene expression upon heat stress in plants.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology
| |
Collapse
|
29
|
Pollastri S, Sukiran NA, Jacobs BCIC, Knight MR. Chloroplast calcium signalling regulates thermomemory. JOURNAL OF PLANT PHYSIOLOGY 2021; 264:153470. [PMID: 34274841 DOI: 10.1016/j.jplph.2021.153470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
After an episode of heat stress plants retain a cellular "memory" of this event, a phenomenon known as thermomemory. This mechanism allows plants to better cope against a subsequent heat event. Thermomemory occurs through the persistence of heat shock proteins (HSPs) synthesized after the first "priming" event. Maintenance of this thermomemory comes at the cost to growth though, therefore it is vital that the memory is reset when no longer required. Recently, it has been reported that autophagy is important for resetting the thermomemory. It has also been shown recently that in response to heat, Arabidopsis displays an increase in chloroplast free calcium concentration which is partially dependent on calcium sensing receptor (CAS) protein. It is not known what the purpose of this heat-activated calcium signal is. Therefore, we compared downstream responses to heat in wild type (WT) and cas mutants, as the latter produce a reduced chloroplast calcium signal to heat. We found that after thermopriming the cas mutants displayed a greater biomass and a reduced level of the small heat shock protein HSP 17.6 degradation compared to WT. cas mutants did not show an increase in free amino acid levels after thermopriming, suggesting reduced autophagy. These results suggest that heat-induced chloroplast calcium elevation is a positive signal for resetting of the thermomemory.
Collapse
Affiliation(s)
- Susanna Pollastri
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK; Institute for Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - Nur Afiqah Sukiran
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Bryony C I C Jacobs
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
30
|
Gupta R, Leibman-Markus M, Marash I, Kovetz N, Rav-David D, Elad Y, Bar M. Root zone warming represses foliar diseases in tomato by inducing systemic immunity. PLANT, CELL & ENVIRONMENT 2021; 44:2277-2289. [PMID: 33506959 DOI: 10.1111/pce.14006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Plants employ systemic-induced resistance as part of their defence arsenal against pathogens. In recent years, the application of mild heating has been found to induce resistance against several pathogens. In the present study, we investigated the effect of root zone warming (RZW) in promoting tomato's resistance against the necrotrophic fungus Botrytis cinerea (Bc), the hemibiotrophic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) and the biotrophic fungus Oidium neolycopersici (On). We demonstrate that RZW enhances tomato's resistance to Bc, On and Xcv through a process that is dependent on salicylic acid and ethylene. RZW induced tomato immunity, resulting in increased defence gene expression, reactive oxygen species (ROS) and ethylene output when plants were challenged, even in the absence of pathogens. Overall, the results provide novel insights into the underlying mechanisms of warming-induced immune responses against phytopathogens with different lifestyles in tomato.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Neta Kovetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
31
|
Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Schulz K, Mueller-Roeber B, Sampathkumar A, Balazadeh S. Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab304. [PMID: 34185061 DOI: 10.1093/jxb/erab304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 06/13/2023]
Abstract
Moderate and temporary heat stresses (HS) prime plants to tolerate, and survive, a subsequent severe HS. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and create a HS memory. We recently demonstrated that plastid-localized small heat shock protein HSP21 is a key component of HS memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the HS recovery phase extends HS memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during HS recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both, metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with HS memory. ATI1 bodies colocalize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during HS recovery. Together, our results provide new insights into the control module for the regulation of HS memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the HS effect at the cost of reducing the HS memory.
Collapse
Affiliation(s)
- Mastoureh Sedaghatmehr
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Venkatesh P Thirumalaikumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße
| | - Iman Kamranfar
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße
| | - Karina Schulz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Leiden University, PO Box 9500, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
32
|
Gai WX, Ma X, Li Y, Xiao JJ, Khan A, Li QH, Gong ZH. CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes. Int J Mol Sci 2020; 21:E8374. [PMID: 33171626 PMCID: PMC7672572 DOI: 10.3390/ijms21218374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Heat shock transcription factor (Hsf) plays an important role in regulating plant thermotolerance. The function and regulatory mechanism of CaHsfA1d in heat stress tolerance of pepper have not been reported yet. In this study, phylogenetic tree and sequence analyses confirmed that CaHsfA1d is a class A Hsf. CaHsfA1d harbored transcriptional function and predicted the aromatic, hydrophobic, and acidic (AHA) motif mediated function of CaHsfA1d as a transcription activator. Subcellular localization assay showed that CaHsfA1d protein is localized in the nucleus. The CaHsfA1d was transcriptionally up-regulated at high temperatures and its expression in the thermotolerant pepper line R9 was more sensitive than that in thermosensitive pepper line B6. The function of CaHsfA1d under heat stress was characterized in CaHsfA1d-silenced pepper plants and CaHsfA1d-overexpression Arabidopsis plants. Silencing of the CaHsfA1d reduced the thermotolerance of the pepper, while CaHsfA1d-overexpression Arabidopsis plants exhibited an increased insensitivity to high temperatures. Moreover, the CaHsfA1d maintained the H2O2 dynamic balance under heat stress and increased the expression of Hsfs, Hsps (heat shock protein), and antioxidant gene AtGSTU5 (glutathione S-transferase class tau 5) in transgenic lines. Our findings clearly indicate that CaHsfA1d improved the plant thermotolerance via regulating the expression of stress- and antioxidant-related genes.
Collapse
Affiliation(s)
- Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Yang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Jing-Jing Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| |
Collapse
|
33
|
Urrea Castellanos R, Friedrich T, Petrovic N, Altmann S, Brzezinka K, Gorka M, Graf A, Bäurle I. FORGETTER2 protein phosphatase and phospholipase D modulate heat stress memory in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:7-17. [PMID: 32654320 DOI: 10.1111/tpj.14927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Plants can mitigate environmental stress conditions through acclimation. In the case of fluctuating stress conditions such as high temperatures, maintaining a stress memory enables a more efficient response upon recurring stress. In a genetic screen for Arabidopsis thaliana mutants impaired in the memory of heat stress (HS) we have isolated the FORGETTER2 (FGT2) gene, which encodes a type 2C protein phosphatase (PP2C) of the D-clade. Fgt2 mutants acquire thermotolerance normally; however, they are defective in the memory of HS. FGT2 interacts with phospholipase D α2 (PLDα2), which is involved in the metabolism of membrane phospholipids and is also required for HS memory. In summary, we have uncovered a previously unknown component of HS memory and identified the FGT2 protein phosphatase and PLDα2 as crucial players, suggesting that phosphatidic acid-dependent signaling or membrane composition dynamics underlie HS memory.
Collapse
Affiliation(s)
- Reynel Urrea Castellanos
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Thomas Friedrich
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Nevena Petrovic
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Simone Altmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Krzysztof Brzezinka
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Alexander Graf
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Isabel Bäurle
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam, 14476, Germany
| |
Collapse
|
34
|
Wu TY, Krishnamoorthi S, Goh H, Leong R, Sanson AC, Urano D. Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3227-3239. [PMID: 32107545 PMCID: PMC7260721 DOI: 10.1093/jxb/eraa108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 05/10/2023]
Abstract
Nutrient stresses induce foliar chlorosis and growth defects. Here we propose heterotrimeric G proteins as signaling mediators of various nutrient stresses, through meta-analyses of >20 transcriptomic data sets associated with nutrient stresses or G protein mutations. Systematic comparison of transcriptomic data yielded 104 genes regulated by G protein subunits under common nutrient stresses: 69 genes under Gβ subunit (AGB1) control and 35 genes under Gα subunit (GPA1) control. Quantitative real-time PCR experiments validate that several transcription factors and metal transporters changed in expression level under suboptimal iron, zinc, and/or copper concentrations, while being misregulated in the Arabidopsis Gβ-null (agb1) mutant. The agb1 mutant had altered metal ion profiles and exhibited severe growth arrest under zinc stress, and aberrant root waving under iron and zinc stresses, while the Gα-null mutation attenuated leaf chlorosis under iron deficiency in both Arabidopsis and rice. Our transcriptional network analysis inferred computationally that WRKY-family transcription factors mediate the AGB1-dependent nutrient responses. As corroborating evidence of our inference, ectopic expression of WRKY25 or WRKY33 rescued the zinc stress phenotypes and the expression of zinc transporters in the agb1-2 background. These results, together with Gene Ontology analyses, suggest two contrasting roles for G protein-coupled signaling pathways in micronutrient stress responses: one enhancing general stress tolerance and the other modulating ion homeostasis through WRKY transcriptional regulatory networks. In addition, tolerance to iron stress in the rice Gα mutant provides an inroad to improve nutrient stress tolerance of agricultural crops by manipulating G protein signaling.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore
- Correspondence: or
| | | | | | | | - Amy Catherine Sanson
- Temasek Life Sciences Laboratory, Singapore
- Mathematical Sciences Institute, Australian National University, Canberra, Australia
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Correspondence: or
| |
Collapse
|
35
|
Fu L, Wang P, Xiong Y. Target of Rapamycin Signaling in Plant Stress Responses. PLANT PHYSIOLOGY 2020; 182:1613-1623. [PMID: 31949028 PMCID: PMC7140942 DOI: 10.1104/pp.19.01214] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/21/2019] [Indexed: 05/05/2023]
Abstract
Target of Rapamycin (TOR) is an atypical Ser/Thr protein kinase that is evolutionally conserved among yeasts, plants, and mammals. In plants, TOR signaling functions as a central hub to integrate different kinds of nutrient, energy, hormone, and environmental signals. TOR thereby orchestrates every stage of plant life, from embryogenesis, meristem activation, root, and leaf growth to flowering, senescence, and life span determination. Besides its essential role in the control of plant growth and development, recent research has also shed light on its multifaceted roles in plant environmental stress responses. Here, we review recent findings on the involvement of TOR signaling in plant adaptation to nutrient deficiency and various abiotic stresses. We also discuss the mechanisms underlying how plants cope with such unfavorable conditions via TOR-abscisic acid crosstalk and TOR-mediated autophagy, both of which play crucial roles in plant stress responses. Until now, little was known about the upstream regulators and downstream effectors of TOR in plant stress responses. We propose that the Snf1-related protein kinase-TOR axis plays a role in sensing various stress signals, and predict the key downstream effectors based on recent high-throughput proteomic analyses.
Collapse
Affiliation(s)
- Liwen Fu
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province 350002, People's Republic of China
| | - Pengcheng Wang
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, People's Republic of China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province 350002, People's Republic of China
| |
Collapse
|
36
|
Lamelas L, Valledor L, Escandón M, Pinto G, Cañal MJ, Meijón M. Integrative analysis of the nuclear proteome in Pinus radiata reveals thermopriming coupled to epigenetic regulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2040-2057. [PMID: 31781741 PMCID: PMC7094079 DOI: 10.1093/jxb/erz524] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
Despite it being an important issue in the context of climate change, for most plant species it is not currently known how abiotic stresses affect nuclear proteomes and mediate memory effects. This study examines how Pinus radiata nuclei respond, adapt, 'remember', and 'learn' from heat stress. Seedlings were heat-stressed at 45 °C for 10 d and then allowed to recover. Nuclear proteins were isolated and quantified by nLC-MS/MS, the dynamics of tissue DNA methylation were examined, and the potential acquired memory was analysed in recovered plants. In an additional experiment, the expression of key gene genes was also quantified. Specific nuclear heat-responsive proteins were identified, and their biological roles were evaluated using a systems biology approach. In addition to heat-shock proteins, several clusters involved in regulation processes were discovered, such as epigenomic-driven gene regulation, some transcription factors, and a variety of RNA-associated functions. Nuclei exhibited differential proteome profiles across the phases of the experiment, with histone H2A and methyl cycle enzymes in particular being accumulated in the recovery step. A thermopriming effect was possibly linked to H2A abundance and over-accumulation of spliceosome elements in recovered P. radiata plants. The results suggest that epigenetic mechanisms play a key role in heat-stress tolerance and priming mechanisms.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Faculty of Biology and Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
37
|
Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, Bublak D, Bovy A, Scharf KD, Schleiff E, Fragkostefanakis S. Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. THE NEW PHYTOLOGIST 2020; 225:1297-1310. [PMID: 31556121 DOI: 10.1111/nph.16221] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/18/2019] [Indexed: 05/22/2023]
Abstract
Wild relatives of crops thrive in habitats where environmental conditions can be restrictive for productivity and survival of cultivated species. The genetic basis of this variability, particularly for tolerance to high temperatures, is not well understood. We examined the capacity of wild and cultivated accessions to acclimate to rapid temperature elevations that cause heat stress (HS). We investigated genotypic variation in thermotolerance of seedlings of wild and cultivated accessions. The contribution of polymorphisms associated with thermotolerance variation was examined regarding alterations in function of the identified gene. We show that tomato germplasm underwent a progressive loss of acclimation to strong temperature elevations. Sensitivity is associated with intronic polymorphisms in the HS transcription factor HsfA2 which affect the splicing efficiency of its pre-mRNA. Intron splicing in wild species results in increased synthesis of isoform HsfA2-II, implicated in the early stress response, at the expense of HsfA2-I which is involved in establishing short-term acclimation and thermotolerance. We propose that the selection for modern HsfA2 haplotypes reduced the ability of cultivated tomatoes to rapidly acclimate to temperature elevations, but enhanced their short-term acclimation capacity. Hence, we provide evidence that alternative splicing has a central role in the definition of plant fitness plasticity to stressful conditions.
Collapse
Affiliation(s)
- Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Philipp Gebhardt
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Arnaud Bovy
- Plant Breeding, Wageningen University, Wageningen, 6708PB, the Netherlands
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), D-60438, Frankfurt am Main, Germany
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Wang X, Li Z, Liu B, Zhou H, Elmongy MS, Xia Y. Combined Proteome and Transcriptome Analysis of Heat-Primed Azalea Reveals New Insights Into Plant Heat Acclimation Memory. FRONTIERS IN PLANT SCIENCE 2020; 11:1278. [PMID: 32973837 PMCID: PMC7466565 DOI: 10.3389/fpls.2020.01278] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2020] [Indexed: 05/21/2023]
Abstract
Plants can obtain superinduction of defense against unpredictable challenges based on prior acclimation, but the mechanisms involved in the acclimation memory are little known. The objective of this study was to characterize mechanisms of heat acclimation memory in Rhododendron hainanense, a thermotolerant wild species of azalea. Pretreatment of a 2-d recovery (25/18°C, day/night) after heat acclimation (37°C, 1 h) (AR-pt) did not weaken but enhanced acquired thermotolerance in R. hainanense with less damaged phenotype, net photosynthetic rate, and membrane stability than non-acclimation pretreated (NA-pt) plants. Combined transcriptome and proteome analysis revealed that a lot of heat-responsive genes still maintained high protein abundance rather than transcript level after the 2-d recovery. Photosynthesis-related genes were highly enriched and most decreased under heat stress (HS: 42°C, 1 h) with a less degree in AR-pt plants compared to NA-pt. Sustainably accumulated chloroplast-localized heat shock proteins (HSPs), Rubisco activase 1 (RCA1), beta-subunit of chaperonin-60 (CPN60β), and plastid transcriptionally active chromosome 5 (pTAC5) in the recovery period probably provided equipped protection of AR-pt plants against the subsequent HS, with less damaged photochemical efficiency and chloroplast structure. In addition, significant higher levels of RCA1 transcripts in AR-pt compared to NA-pt plants in early stage of HS showed a more important role of RCA1 than other chaperonins in heat acclimation memory. The novel heat-induced RCA1, rather than constitutively expressed RCA2 and RCA3, showed excellent thermostability after long-term HS (LHS: 42/35°C, 7 d) and maintained balanced Rubisco activation state in photosynthetic acclimation. This study provides new insights into plant heat acclimation memory and indicates candidate genes for genetic modification and molecular breeding in thermotolerance improvement.
Collapse
Affiliation(s)
- Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zheng Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed S. Elmongy
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Vegetable and Floriculture, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Yiping Xia,
| |
Collapse
|
39
|
Wu Z, Liang J, Wang C, Ding L, Zhao X, Cao X, Xu S, Teng N, Yi M. Alternative Splicing Provides a Mechanism to Regulate LlHSFA3 Function in Response to Heat Stress in Lily. PLANT PHYSIOLOGY 2019; 181:1651-1667. [PMID: 31611422 PMCID: PMC6878004 DOI: 10.1104/pp.19.00839] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 05/12/2023]
Abstract
Heat stress transcription factors (HSFs) are central regulators of plant responses to heat stress. Their heat-induced transcriptional regulation has been extensively studied; however, their posttranscriptional and posttranslational regulation is poorly understood. In a previous study, we established that there were at least two HSFA3 homologs, LlHSFA3A and LlHSFA3B, in lily (Lilium spp.) and that these genes played distinct roles in thermotolerance. Here, we demonstrate that LlHSFA3B is alternatively spliced under heat stress to produce the heat-inducible splice variant LlHSFA3B-III We further show that LlHSFA3B-III protein localizes in the cytoplasm and nucleus, has no transcriptional activity, and specifically disturbs the protein interactions of intact HSFA3 orthologs LlHSFA3A-I and LlHSFA3B-I. Heterologous expression of LlHSFA3B-III in Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana increased plant tolerance of salt and prolonged heat at 40°C, yet reduced plant tolerance of acute heat shock at 45°C. Conversely, heterologous expression of LlHSFA3A-I caused opposing phenotypes, which were substantially ameliorated by coexpression of LlHSFA3B-III LlHSFA3B-III interacted with LlHSFA3A-I to limit its transactivation function and temper the function of LlHSFA3A-I, thus reducing the adverse effects of excessive LlHSFA3A-I accumulation. Based on these observations, we propose a regulatory mechanism of HSFs involving heat-inducible alternative splicing and protein interaction, which might be used in strategies to promote thermotolerance and attenuate the heat stress response in crop plants.
Collapse
Affiliation(s)
- Ze Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xing Cao
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Tian L, Zhang Y, Kang E, Ma H, Zhao H, Yuan M, Zhu L, Fu Y. Basic-leucine zipper 17 and Hmg-CoA reductase degradation 3A are involved in salt acclimation memory in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1062-1084. [PMID: 30450762 DOI: 10.1111/jipb.12744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 05/18/2023]
Abstract
Salt acclimation, which is induced by previous salt exposure, increases the resistance of plants to future exposure to salt stress. However, little is known about the underlying mechanism, particularly how plants store the "memory" of salt exposure. In this study, we established a system to study salt acclimation in Arabidopsis thaliana. Following treatment with a low concentration of salt, seedlings were allowed to recover to allow transitory salt responses to subside while maintaining the sustainable effects of salt acclimation. We performed transcriptome profiling analysis of these seedlings to identify genes related to salt acclimation memory. Notably, the expression of Basic-leucine zipper 17 (bZIP17) and Hmg-CoA reductase degradation 3A (HRD3A), which are important in the unfolded protein response (UPR) and endoplasmic reticulum-associated degradation (ERAD), respectively, increased following treatment with a low concentration of salt and remained at stably high levels after the stimulus was removed, a treatment which improved plant tolerance to future high-salinity challenge. Our findings suggest that the upregulated expression of important genes involved in the UPR and ERAD represents a "memory" of the history of salt exposure and enables more potent responses to future exposure to salt stress, providing new insights into the mechanisms underlying salt acclimation in plants.
Collapse
Affiliation(s)
- Lin Tian
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Erfang Kang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huifang Ma
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huan Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ming Yuan
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
41
|
Grinevich DO, Desai JS, Stroup KP, Duan J, Slabaugh E, Doherty CJ. Novel transcriptional responses to heat revealed by turning up the heat at night. PLANT MOLECULAR BIOLOGY 2019; 101:1-19. [PMID: 31062216 PMCID: PMC6695350 DOI: 10.1007/s11103-019-00873-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/11/2019] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE The circadian clock controls many molecular activities, impacting experimental interpretation. We quantify the genome-wide effects of time-of-day on the heat-shock response and the effects of "diurnal bias" in stress experiments. Heat stress has significant adverse effects on plant productivity worldwide. Most experiments examining heat stress are performed during daytime hours, generating a 'diurnal bias' in the pathways and regulatory mechanisms identified. Such bias may confound downstream interpretations and limit our understanding of the full response to heat stress. Here we show that the transcriptional and physiological responses to a sudden heat shock in Arabidopsis are profoundly sensitive to the time of day. We observe that plant tolerance and acclimation to heat shock vary throughout the day and are maximal at dusk. Consistently, over 75% of heat-responsive transcripts show a time of day-dependent response, including many previously characterized heat-response genes. This temporal sensitivity implies a complex interaction between time and temperature where daily variations in basal transcription influence thermotolerance. When we examined these transcriptional responses, we uncovered novel night-response genes and cis-regulatory elements, underpinning new aspects of heat stress responses not previously appreciated. Exploiting this temporal variation can be applied to most environmental responses to understand the underlying network wiring. Therefore, we propose that using time as a perturbagen is an approach that will enhance our understanding of plant regulatory networks and responses to environmental stresses.
Collapse
Affiliation(s)
- Dmitry O. Grinevich
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
| | - Jigar S. Desai
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
| | - Kevin P. Stroup
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
| | - Jiaqi Duan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
| | - Erin Slabaugh
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
| | - Colleen J. Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, USA
| |
Collapse
|
42
|
Li GL, Zhang HN, Shao H, Wang GY, Zhang YY, Zhang YJ, Zhao LN, Guo XL, Sheteiwy MS. ZmHsf05, a new heat shock transcription factor from Zea mays L. improves thermotolerance in Arabidopsis thaliana and rescues thermotolerance defects of the athsfa2 mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:375-384. [PMID: 31128708 DOI: 10.1016/j.plantsci.2019.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
High temperature directly affects the yield and quality of crops. Plant Hsfs play vital roles in plant response to heat shock. In the present study, ZmHsf05 was isolated from maize (Zea mays L.) using homologous cloning methods. The sequencing analysis demonstrated that CDS of ZmHsf05 was 1080 bp length and encoded a protein containing 359 amino acids. The putative amino acid sequence of ZmHsf05 contained typical Hsf domains, such as DBD, OD, NLS and AHA motif. Subcellular localization assays displayed that the ZmHsf05 is localized to the nucleus. ZmHsf05 was expressed in many maize tissues and its expression level was increased by heat stress treatment. ZmHsf05 rescued the reduced thermotolerance of the athsfa2 mutant in Arabidopsis seedlings. Arabidopsis seedlings of ZmHsf05-overexpressing increased both the basal and acquired thermotolerances. After heat stress, the ZmHsf05-overexpressing lines showed enhanced survival rate and chlorophyll content compared with WT seedlings. The expression of Hsps was up-regulated in the ZmHsf05-overexpressing Arabidopsis lines after heat stress treatment. These results suggested that ZmHsf05 plays an important role in both basal and acquired thermotolerance in plants.
Collapse
Affiliation(s)
- Guo-Liang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hua-Ning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Hongbo Shao
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science(JAAS), Nanjing, 210014, PR China; College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266000, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, 224002, PR China.
| | - Gui-Yan Wang
- Faculty of Agronomy, Hebei Agricultural University, Baoding, 071001, PR China.
| | - Yuan-Yuan Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yu-Jie Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou, 075000, PR China
| | - Li-Na Zhao
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China; Faculty of Agronomy, Hebei Agricultural University, Baoding, 071001, PR China
| | - Xiu-Lin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China.
| | - Mohamed Salah Sheteiwy
- Salt-soil Agricultural Center, Key Laboratory of Agricultural Environment in the Lower Reaches of Yangtze River Plain, Institute of Agriculture Resources and Environment, Jiangsu Academy of Agriculture Science(JAAS), Nanjing, 210014, PR China
| |
Collapse
|
43
|
Sharma M, Banday ZZ, Shukla BN, Laxmi A. Glucose-Regulated HLP1 Acts as a Key Molecule in Governing Thermomemory. PLANT PHYSIOLOGY 2019; 180:1081-1100. [PMID: 30890662 PMCID: PMC6548265 DOI: 10.1104/pp.18.01371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 05/04/2023]
Abstract
Induction of heat shock proteins (HSPs) in response to heat stress (HS) is indispensable for conferring thermotolerance. Glc, a fundamental signaling and metabolic molecule, provides energy to stressed seedlings to combat stress. The recovery of stressed plants from detrimental HS in response to Glc is largely mediated by HSPs, but the mechanistic basis of this thermotolerance is not well defined. In this study, we show that Glc has a prominent role in providing thermotolerance. Glc-mediated thermotolerance involves HSP induction via the TARGET OF RAPAMYCIN (TOR)-E2Fa signaling module. Apart from HSPs, TOR-E2Fa also regulates the Arabidopsis (Arabidopsis thaliana) ortholog of human Hikeshi, named HIKESHI-LIKE PROTEIN1 (HLP1). Expression of proHLP1::GUS in the shoot apical meristem (SAM) after HS coincides with TOR-E2Fa expression, substantiating a role for TOR-E2Fa-HLP1 in providing thermotolerance. We also demonstrate that Glc along with heat could induce proliferation activity in the SAM after HS recovery, which was arrested by the TOR inhibitor AZD-8055. Molecular and physiological studies suggest that HS-activated heat stress transcription factor A1s also positively regulate HLP1 transcription, suggesting convergence of the Glc and HS signaling pathways. Loss of functional HLP1 causes HS hypersensitivity, whereas HLP1 overexpressors display increased thermotolerance. HLP1 binds to the promoters of Glc-regulated HS-responsive genes and promotes chromatin acetylation. In addition, Glc modifies the chromatin landscape at thermomemory-related loci by promoting H3K4 trimethylation (H3K4me3). Glc-primed accumulation of H3K4me3 at thermomemory-associated loci is mediated through HLP1. These findings reveal the novel function of Glc-regulated HLP1 in mediating thermotolerance/thermomemory response.
Collapse
Affiliation(s)
- Mohan Sharma
- National Institute of Plant Genome Research, New Delhi-110067, India
| | | | | | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi-110067, India
| |
Collapse
|
44
|
Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S. A regulatory role of autophagy for resetting the memory of heat stress in plants. PLANT, CELL & ENVIRONMENT 2019; 42:1054-1064. [PMID: 30136402 DOI: 10.1111/pce.13426] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 05/19/2023]
Abstract
As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.
Collapse
Affiliation(s)
- Mastoureh Sedaghatmehr
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Venkatesh P Thirumalaikumar
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Iman Kamranfar
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Celine Masclaux-Daubresse
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Salma Balazadeh
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| |
Collapse
|
45
|
Szaker HM, Darkó É, Medzihradszky A, Janda T, Liu HC, Charng YY, Csorba T. miR824/AGAMOUS-LIKE16 Module Integrates Recurring Environmental Heat Stress Changes to Fine-Tune Poststress Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1454. [PMID: 31824525 PMCID: PMC6886564 DOI: 10.3389/fpls.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/18/2019] [Indexed: 05/19/2023]
Abstract
Plant development is continually fine-tuned based on environmental factors. How environmental perturbations are integrated into the developmental programs and how poststress adaptation is regulated remains an important topic to dissect. Vegetative to reproductive phase change is a very important developmental transition that is complexly regulated based on endogenous and exogenous cues. Proper timing of flowering is vital for reproductive success. It has been shown previously that AGAMOUS LIKE 16 (AGL16), a MADS-box transcription factor negatively regulates flowering time transition through FLOWERING LOCUS T (FT), a central downstream floral integrator. AGL16 itself is negatively regulated by the microRNA miR824. Here we present a comprehensive molecular analysis of miR824/AGL16 module changes in response to mild and recurring heat stress. We show that miR824 accumulates gradually in response to heat due to the combination of transient transcriptional induction and posttranscriptional stability. miR824 induction requires heat shock cis-elements and activity of the HSFA1 family and HSFA2 transcription factors. Parallel to miR824 induction, its target AGL16 is decreased, implying direct causality. AGL16 posttranscriptional repression during heat stress, however, is more complex, comprising of a miRNA-independent, and a miR824-dependent pathway. We also show that AGL16 expression is leaf vein-specific and overlaps with miR824 (and FT) expression. AGL16 downregulation in response to heat leads to a mild derepression of FT. Finally, we present evidence showing that heat stress regulation of miR824/AGL16 is conserved within Brassicaceae. In conclusion, due to the enhanced post-transcriptional stability of miR824, stable repression of AGL16 is achieved following heat stress. This may serve to fine-tune FT levels and alter flowering time transition. Stress-induced miR824, therefore, can act as a "posttranscriptional memory factor" to extend the acute impact of environmental fluctuations in the poststress period.
Collapse
Affiliation(s)
- Henrik Mihály Szaker
- Agricultural Biotechnology Institute, NARIC, Godollo, Hungary
- Faculty of Natural Sciences, Eötvös Lóránd University, Budapest, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | | | - Tibor Janda
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Hsiang-chin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yee-yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Tibor Csorba
- Agricultural Biotechnology Institute, NARIC, Godollo, Hungary
- *Correspondence: Tibor Csorba,
| |
Collapse
|
46
|
Huang LJ, Cheng GX, Khan A, Wei AM, Yu QH, Yang SB, Luo DX, Gong ZH. CaHSP16.4, a small heat shock protein gene in pepper, is involved in heat and drought tolerance. PROTOPLASMA 2019; 256:39-51. [PMID: 29946904 DOI: 10.1007/s00709-018-1280-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.
Collapse
Affiliation(s)
- Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - Qing-Hui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - Sheng-Bao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
47
|
Bigot S, Buges J, Gilly L, Jacques C, Le Boulch P, Berger M, Delcros P, Domergue JB, Koehl A, Ley-Ngardigal B, Tran Van Canh L, Couée I. Pivotal roles of environmental sensing and signaling mechanisms in plant responses to climate change. GLOBAL CHANGE BIOLOGY 2018; 24:5573-5589. [PMID: 30155993 DOI: 10.1111/gcb.14433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Climate change reshapes the physiology and development of organisms through phenotypic plasticity, epigenetic modifications, and genetic adaptation. Under evolutionary pressures of the sessile lifestyle, plants possess efficient systems of phenotypic plasticity and acclimation to environmental conditions. Molecular analysis, especially through omics approaches, of these primary lines of environmental adjustment in the context of climate change has revealed the underlying biochemical and physiological mechanisms, thus characterizing the links between phenotypic plasticity and climate change responses. The efficiency of adaptive plasticity under climate change indeed depends on the realization of such biochemical and physiological mechanisms, but the importance of sensing and signaling mechanisms that can integrate perception of environmental cues and transduction into physiological responses is often overlooked. Recent progress opens the possibility of considering plant phenotypic plasticity and responses to climate change through the perspective of environmental sensing and signaling. This review aims to analyze present knowledge on plant sensing and signaling mechanisms and discuss how their structural and functional characteristics lead to resilience or hypersensitivity under conditions of climate change. Plant cells are endowed with arrays of environmental and stress sensors and with internal signals that act as molecular integrators of the multiple constraints of climate change, thus giving rise to potential mechanisms of climate change sensing. Moreover, mechanisms of stress-related information propagation lead to stress memory and acquired stress tolerance that could withstand different scenarios of modifications of stress frequency and intensity. However, optimal functioning of existing sensors, optimal integration of additive constraints and signals, or memory processes can be hampered by conflicting interferences between novel combinations and novel changes in intensity and duration of climate change-related factors. Analysis of these contrasted situations emphasizes the need for future research on the diversity and robustness of plant signaling mechanisms under climate change conditions.
Collapse
Affiliation(s)
- Servane Bigot
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Julie Buges
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
- ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR 6553, Univ Rennes, CNRS, Université de Rennes 1, Rennes, France
| | - Lauriane Gilly
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Cécile Jacques
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Pauline Le Boulch
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Marie Berger
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Pauline Delcros
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Jean-Baptiste Domergue
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Astrid Koehl
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Béra Ley-Ngardigal
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
| | - Loup Tran Van Canh
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
- ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR 6553, Univ Rennes, CNRS, Université de Rennes 1, Rennes, France
| | - Ivan Couée
- Department of Life Sciences and Environment, Univ Rennes, Université de Rennes 1, Rennes, France
- ECOBIO (Ecosystems-Biodiversity-Evolution) - UMR 6553, Univ Rennes, CNRS, Université de Rennes 1, Rennes, France
| |
Collapse
|
48
|
Bäurle I. Can’t remember to forget you: Chromatin-based priming of somatic stress responses. Semin Cell Dev Biol 2018; 83:133-139. [DOI: 10.1016/j.semcdb.2017.09.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
|
49
|
Liu HC, Lämke J, Lin SY, Hung MJ, Liu KM, Charng YY, Bäurle I. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:401-413. [PMID: 29752744 DOI: 10.1111/tpj.13958] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/21/2018] [Accepted: 04/25/2018] [Indexed: 05/26/2023]
Abstract
Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants.
Collapse
Affiliation(s)
- Hsiang-Chin Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jörn Lämke
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Siou-Ying Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Meng-Ju Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Ming Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Isabel Bäurle
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| |
Collapse
|
50
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|