1
|
Arico DS, Burachik NB, Wengier DL, Mazzella MA. Arabidopsis hypocotyl growth in darkness requires the phosphorylation of a microtubule-associated protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1815-1831. [PMID: 38494883 DOI: 10.1111/tpj.16711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Rapid hypocotyl elongation allows buried seedlings to emerge, where light triggers de-etiolation and inhibits hypocotyl growth mainly by photoreceptors. Phosphorylation/dephosphorylation events regulate many aspects of plant development. Only recently we have begun to uncover the earliest phospho-signaling responders to light. Here, we reported a large-scale phosphoproteomic analysis and identified 20 proteins that changed their phosphorylation pattern following a 20 min light pulse compared to darkness. Microtubule-associated proteins were highly overrepresented in this group. Among them, we studied CIP7 (COP1-INTERACTING-PROTEIN 7), which presented microtubule (MT) localization in contrast to the previous description. An isoform of CIP7 phosphorylated at Serine915 was detected in etiolated seedlings but was undetectable after a light pulse in the presence of photoreceptors, while CIP7 transcript expression decays with long light exposure. The short hypocotyl phenotype and rearrangement of MTs in etiolated cip7 mutants are complemented by CIP7-YFP and the phospho-mimetic CIP7S915D-YFP, but not the phospho-null CIP7S915A-YFP suggesting that the phosphorylated S915CIP7 isoform promotes hypocotyl elongation through MT reorganization in darkness. Our evidence on Serine915 of CIP7 unveils phospho-regulation of MT-based processes during skotomorphogenic hypocotyl growth.
Collapse
Affiliation(s)
- Denise Soledad Arico
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| | - Natalia B Burachik
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| | - Diego Leonardo Wengier
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| | - María Agustina Mazzella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular-Héctor Torres, Vuelta de obligado, 2490, Caba, Argentina
| |
Collapse
|
2
|
Takei T, Tsukada M, Tamura K, Hara-Nishimura I, Fukao Y, Kurihara Y, Matsui M, Saze H, Tsuzuki M, Watanabe Y, Hamada T. ARGONAUTE1-binding Tudor domain proteins function in small interfering RNA production for RNA-directed DNA methylation. PLANT PHYSIOLOGY 2024; 195:1333-1346. [PMID: 38446745 DOI: 10.1093/plphys/kiae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.
Collapse
Affiliation(s)
- Takahito Takei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Michio Tsukada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | - Yoichiro Fukao
- Graduate School of Life Science, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yukio Kurihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Nanobioscience, Department of Life and Environmental System Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Kochi 783-8502, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takahiro Hamada
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
3
|
Yow AG, Laosuntisuk K, Young RA, Doherty CJ, Gillitt N, Perkins-Veazie P, Jenny Xiang QY, Iorizzo M. Comparative transcriptome analysis reveals candidate genes for cold stress response and early flowering in pineapple. Sci Rep 2023; 13:18890. [PMID: 37919298 PMCID: PMC10622448 DOI: 10.1038/s41598-023-45722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Pineapple originates from tropical regions in South America and is therefore significantly impacted by cold stress. Periodic cold events in the equatorial regions where pineapple is grown may induce early flowering, also known as precocious flowering, resulting in monetary losses due to small fruit size and the need to make multiple passes for harvesting a single field. Currently, pineapple is one of the most important tropical fruits in the world in terms of consumption, and production losses caused by weather can have major impacts on worldwide exportation potential and economics. To further our understanding of and identify mechanisms for low-temperature tolerance in pineapple, and to identify the relationship between low-temperature stress and flowering time, we report here a transcriptomic analysis of two pineapple genotypes in response to low-temperature stress. Using meristem tissue collected from precocious flowering-susceptible MD2 and precocious flowering-tolerant Dole-17, we performed pairwise comparisons and weighted gene co-expression network analysis (WGCNA) to identify cold stress, genotype, and floral organ development-specific modules. Dole-17 had a greater increase in expression of genes that confer cold tolerance. The results suggested that low temperature stress in Dole-17 plants induces transcriptional changes to adapt and maintain homeostasis. Comparative transcriptomic analysis revealed differences in cuticular wax biosynthesis, carbohydrate accumulation, and vernalization-related gene expression between genotypes. Cold stress induced changes in ethylene and abscisic acid-mediated pathways differentially between genotypes, suggesting that MD2 may be more susceptible to hormone-mediated early flowering. The differentially expressed genes and module hub genes identified in this study are potential candidates for engineering cold tolerance in pineapple to develop new varieties capable of maintaining normal reproduction cycles under cold stress. In addition, a total of 461 core genes involved in the development of reproductive tissues in pineapple were also identified in this study. This research provides an important genomic resource for understanding molecular networks underlying cold stress response and how cold stress affects flowering time in pineapple.
Collapse
Affiliation(s)
- Ashley G Yow
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA
| | - Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Roberto A Young
- Research Department of Dole, Standard Fruit de Honduras, Zona Mazapan, 31101, La Ceiba, Honduras
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Penelope Perkins-Veazie
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Massimo Iorizzo
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, 27695, USA.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, 28081, USA.
| |
Collapse
|
4
|
Du P, Liu Y, Deng L, Qian D, Xue X, Yang T, Li T, Xiang Y, Ren H. AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1950-1965. [PMID: 37093857 DOI: 10.1111/jipb.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
The phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a new Arabidopsis thaliana MT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFs in vitro, and the truncated AtMAC protein, N-CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N-CC1(51-154) is the key domain for binding MTs, and N-CC1(51-125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.
Collapse
Affiliation(s)
- Pingzhou Du
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yu Liu
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Lu Deng
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiuhua Xue
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Ting Yang
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Tonghui Li
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Haiyun Ren
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
5
|
Xin P, Schier J, Šefrnová Y, Kulich I, Dubrovsky JG, Vielle-Calzada JP, Soukup A. The Arabidopsis TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE (TTL) family members are involved in root system formation via their interaction with cytoskeleton and cell wall remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:946-965. [PMID: 36270031 DOI: 10.1111/tpj.15980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 05/21/2023]
Abstract
Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.
Collapse
Affiliation(s)
- Pengfei Xin
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Jakub Schier
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Yvetta Šefrnová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca, 62250, Morelos, Mexico
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, Mexico
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
6
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
7
|
Hooper CM, Castleden IR, Tanz SK, Grasso SV, Millar AH. Subcellular Proteomics as a Unified Approach of Experimental Localizations and Computed Prediction Data for Arabidopsis and Crop Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1346:67-89. [PMID: 35113396 DOI: 10.1007/978-3-030-80352-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In eukaryotic organisms, subcellular protein location is critical in defining protein function and understanding sub-functionalization of gene families. Some proteins have defined locations, whereas others have low specificity targeting and complex accumulation patterns. There is no single approach that can be considered entirely adequate for defining the in vivo location of all proteins. By combining evidence from different approaches, the strengths and weaknesses of different technologies can be estimated, and a location consensus can be built. The Subcellular Location of Proteins in Arabidopsis database ( http://suba.live/ ) combines experimental data sets that have been reported in the literature and is analyzing these data to provide useful tools for biologists to interpret their own data. Foremost among these tools is a consensus classifier (SUBAcon) that computes a proposed location for all proteins based on balancing the experimental evidence and predictions. Further tools analyze sets of proteins to define the abundance of cellular structures. Extending these types of resources to plant crop species has been complex due to polyploidy, gene family expansion and contraction, and the movement of pathways and processes within cells across the plant kingdom. The Crop Proteins of Annotated Location database ( http://crop-pal.org/ ) has developed a range of subcellular location resources including a species-specific voting consensus for 12 plant crop species that offers collated evidence and filters for current crop proteomes akin to SUBA. Comprehensive cross-species comparison of these data shows that the sub-cellular proteomes (subcellulomes) depend only to some degree on phylogenetic relationship and are more conserved in major biosynthesis than in metabolic pathways. Together SUBA and cropPAL created reference subcellulomes for plants as well as species-specific subcellulomes for cross-species data mining. These data collections are increasingly used by the research community to provide a subcellular protein location layer, inform models of compartmented cell function and protein-protein interaction network, guide future molecular crop breeding strategies, or simply answer a specific question-where is my protein of interest inside the cell?
Collapse
Affiliation(s)
- Cornelia M Hooper
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ian R Castleden
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sandra K Tanz
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - Sally V Grasso
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia
| | - A Harvey Millar
- The Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
8
|
Nakamura M, Yagi N, Hashimoto T. Finding a right place to cut: How katanin is targeted to cellular severing sites. QUANTITATIVE PLANT BIOLOGY 2022; 3:e8. [PMID: 37077970 PMCID: PMC10095862 DOI: 10.1017/qpb.2022.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
Microtubule severing by katanin plays key roles in generating various array patterns of dynamic microtubules, while also responding to developmental and environmental stimuli. Quantitative imaging and molecular genetic analyses have uncovered that dysfunction of microtubule severing in plant cells leads to defects in anisotropic growth, division and other cell processes. Katanin is targeted to several subcellular severing sites. Intersections of two crossing cortical microtubules attract katanin, possibly by using local lattice deformation as a landmark. Cortical microtubule nucleation sites on preexisting microtubules are targeted for katanin-mediated severing. An evolutionary conserved microtubule anchoring complex not only stabilises the nucleated site, but also subsequently recruits katanin for timely release of a daughter microtubule. During cytokinesis, phragmoplast microtubules are severed at distal zones by katanin, which is tethered there by plant-specific microtubule-associated proteins. Recruitment and activation of katanin are essential for maintenance and reorganisation of plant microtubule arrays.
Collapse
Affiliation(s)
- Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Authors for correspondence: M. Nakamura and T. Hashimoto, E-mail: ,
| | - Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takashi Hashimoto
- Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Authors for correspondence: M. Nakamura and T. Hashimoto, E-mail: ,
| |
Collapse
|
9
|
Kumar S, Lande NV, Barua P, Pareek A, Chakraborty S, Chakraborty N. Proteomic dissection of rice cytoskeleton reveals the dominance of microtubule and microfilament proteins, and novel components in the cytoskeleton-bound polysome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:75-86. [PMID: 34861586 DOI: 10.1016/j.plaphy.2021.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The plant cytoskeleton persistently undergoes remodeling to achieve its roles in supporting cell division, differentiation, cell expansion and organelle transport. However, the links between cell metabolism and cytoskeletal networks, particularly how the proteinaceous components execute such processes remain poorly understood. We investigated the cytoskeletal proteome landscape of rice to gain better understanding of such events. Proteins were extracted from highly enriched cytoskeletal fraction of four-week-old rice seedlings, and the purity of the fraction was stringently monitored. A total of 2577 non-redundant proteins were identified using both gel-based and gel-free approaches, which constitutes the most comprehensive dataset, thus far, for plant cytoskeleton. The data set includes both microtubule and microfilament-associated proteins and their binding proteins comprising hypothetical as well as novel cytoskeletal proteins. Further, various in-silico analyses were performed, and the proteins were functionally classified on the basis of their gene ontology. The catalogued proteins were validated through their sequence analysis. Extensive comparative analysis of our dataset with the non-redundant set of cytoskeletal proteins across plant species affirms unique as well as overlapping candidates. Together, these findings unveil new insights of how cytoskeletons undergo dynamic remodeling in rice to drive seedling development processes in rapidly changing in planta environment.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nilesh Vikram Lande
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pragya Barua
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
An anchoring complex recruits katanin for microtubule severing at the plant cortical nucleation sites. Nat Commun 2021; 12:3687. [PMID: 34140499 PMCID: PMC8211667 DOI: 10.1038/s41467-021-24067-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Microtubules are severed by katanin at distinct cellular locations to facilitate reorientation or amplification of dynamic microtubule arrays, but katanin targeting mechanisms are poorly understood. Here we show that a centrosomal microtubule-anchoring complex is used to recruit katanin in acentrosomal plant cells. The conserved protein complex of Msd1 (also known as SSX2IP) and Wdr8 is localized at microtubule nucleation sites along the microtubule lattice in interphase Arabidopsis cells. Katanin is recruited to these sites for efficient release of newly formed daughter microtubules. Our cell biological and genetic studies demonstrate that Msd1-Wdr8 acts as a specific katanin recruitment factor to cortical nucleation sites (but not to microtubule crossover sites) and stabilizes the association of daughter microtubule minus ends to their nucleation sites until they become severed by katanin. Molecular coupling of sequential anchoring and severing events by the evolutionarily conserved complex renders microtubule release under tight control of katanin activity.
Collapse
|
11
|
Pacheco JM, Canal MV, Pereyra CM, Welchen E, Martínez-Noël GMA, Estevez JM. The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4085-4101. [PMID: 33462577 DOI: 10.1093/jxb/eraa603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Target of Rapamycin (TOR) is an evolutionarily conserved protein kinase that plays a central role in coordinating cell growth with light availability, the diurnal cycle, energy availability, and hormonal pathways. TOR Complex 1 (TORC1) controls cell proliferation, growth, metabolism, and defense in plants. Sugar availability is the main signal for activation of TOR in plants, as it also is in mammals and yeast. Specific regulators of the TOR kinase pathway in plants are inorganic compounds in the form of major nutrients in the soils, and light inputs via their impact on autotrophic metabolism. The lack of TOR is embryo-lethal in plants, whilst dysregulation of TOR signaling causes major alterations in growth and development. TOR exerts control as a regulator of protein translation via the action of proteins such as S6K, RPS6, and TAP46. Phytohormones are central players in the downstream systemic physiological TOR effects. TOR has recently been attributed to have roles in the control of DNA methylation, in the abundance of mRNA splicing variants, and in the variety of regulatory lncRNAs and miRNAs. In this review, we summarize recent discoveries in the plant TOR signaling pathway in the context of our current knowledge of mammalian and yeast cells, and highlight the most important gaps in our understanding of plants that need to be addressed in the future.
Collapse
Affiliation(s)
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Cintia M Pereyra
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas,, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET) and Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes, Mar Del Plata, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires CP, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida (FCsV), Universidad Andres Bello, Santiago, Chile and Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
12
|
Mahdi LK, Huang M, Zhang X, Nakano RT, Kopp LB, Saur IM, Jacob F, Kovacova V, Lapin D, Parker JE, Murphy JM, Hofmann K, Schulze-Lefert P, Chai J, Maekawa T. Discovery of a Family of Mixed Lineage Kinase Domain-like Proteins in Plants and Their Role in Innate Immune Signaling. Cell Host Microbe 2020; 28:813-824.e6. [DOI: 10.1016/j.chom.2020.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 01/03/2023]
|
13
|
Hotta T, Hashimoto T. Affinity purification of tubulin from plant materials. Methods Cell Biol 2020; 160:263-280. [PMID: 32896321 DOI: 10.1016/bs.mcb.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
In the plant cytoskeleton research, mammalian brain tubulin has been widely used to study plant microtubule-interacting proteins in vitro since purification of tubulins from plant sources is generally considered to be challenging and time-consuming. A convenient method for affinity purification of tubulins was devised, which utilized the TOG domains of yeast Stu2 tubulin-binding protein as an affinity ligand (Widlund et al., 2012). We showed that this so-called TOG tubulin affinity chromatography worked efficiently with plant materials, especially actively-dividing cultured cells (Hotta et al., 2016). Plant tubulins purified with the TOG method is highly assembly-competent and thus can be used in various in vitro experiments. Here, we summarize purification strategies of native or tagged plant tubulins as well as an in vitro pull-down assay to monitor their polymerization activity.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Takashi Hashimoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
14
|
Shafique S, Jabeen N, Ahmad KS, Irum S, Anwaar S, Ahmad N, Alam S, Ilyas M, Khan TF, Hussain SZ. Green fabricated zinc oxide nanoformulated media enhanced callus induction and regeneration dynamics of Panicum virgatum L. PLoS One 2020; 15:e0230464. [PMID: 32645102 PMCID: PMC7347099 DOI: 10.1371/journal.pone.0230464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023] Open
Abstract
The current study focuses on the usage of bio synthesized zinc oxide nanoparticles to increase the tissue culture efficiency of important forage grass Panicum virgatum. Zinc being a micronutrient enhanced the callogenesis and regeneration efficiency of Panicum virgatum at different concentrations. Here, we synthesized zinc oxide nanoparticles through Cymbopogon citratus leaves extract to evaluate the effect of zinc oxide nanoparticles on plant regeneration ability in switchgrass. X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) validate phase purity of green synthesize Zinc oxide nanoparticles whereas, electron microscopy (SEM) has illustrated the average size of particle 50±4 nm with hexagonal rod like shape. Energy dispersive spectroscopy X-ray (EDS) depicted major peaks of Zn (92.68%) while minor peaks refer to Oxygen (7.32%). ZnO-NPs demonstrated the incredibly promising results against callogenesis. Biosynthesized ZnO-NPs at optimum concentration showed very promising effect on plant regeneration ability. Both the explants, seeds and nodes showed dose dependent response and upon high doses exceeding 40 mg/L the results were recorded negative, whereas at 30 mg/L both explants demonstrated 70% and 76% regeneration frequency. The results conclude that ZnO-NPs enhance the plant growth and development and tailored the nutritive properties at nano-scale. Furthermore, eco-friendly approach of ZnO-NPs synthesis is strongly believed to improve in vitro regeneration frequencies in several other monocot plants.
Collapse
Affiliation(s)
- Saima Shafique
- Department of Biological Sciences, Applied Biotechnology and Genetic Engineering Lab, International Islamic University, Islamabad, Pakistan
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Nyla Jabeen
- Department of Biological Sciences, Applied Biotechnology and Genetic Engineering Lab, International Islamic University, Islamabad, Pakistan
- * E-mail: (NJ); (KSA)
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch, Rawalakot (UPR), Azad Jammu and Kashmir, Pakistan
- * E-mail: (NJ); (KSA)
| | - Samra Irum
- Department of Biological Sciences, Applied Biotechnology and Genetic Engineering Lab, International Islamic University, Islamabad, Pakistan
| | - Sadaf Anwaar
- Department of Biological Sciences, Applied Biotechnology and Genetic Engineering Lab, International Islamic University, Islamabad, Pakistan
| | - Naeem Ahmad
- Department of Physics, Spintronics Laboratory, International Islamic University, Islamabad, Pakistan
| | - Sadia Alam
- Department of Microbiology, University of Haripur, Haripur, Pakistan
| | - Muhammad Ilyas
- Department of Plant Breeding and Molecular Genetics, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Talha Farooq Khan
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, Islamabad, Pakistan
| | - Syed Zaheer Hussain
- Department of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
Buschmann H, Borchers A. Handedness in plant cell expansion: a mutant perspective on helical growth. THE NEW PHYTOLOGIST 2020; 225:53-69. [PMID: 31254400 DOI: 10.1111/nph.16034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Many plant mutants are known that exhibit some degree of helical growth. This 'twisted' phenotype has arisen frequently in mutant screens of model organisms, but it is also found in cultivars of ornamental plants, including trees. The phenomenon, in many cases, is based on defects in cell expansion symmetry. Any complete model which explains the anisotropy of plant cell growth must ultimately explain how helical cell expansion comes into existence - and how it is normally avoided. While the mutations observed in model plants mainly point to the microtubule system, additional affected components involve cell wall functions, auxin transport and more. Evaluation of published data suggests a two-way mechanism underlying the helical growth phenomenon: there is, apparently, a microtubular component that determines handedness, but there is also an influence arising in the cell wall that feeds back into the cytoplasm and affects cellular handedness. This idea is supported by recent reports demonstrating the involvement of the cell wall integrity pathway. In addition, there is mounting evidence that calcium is an important relayer of signals relating to the symmetry of cell expansion. These concepts suggest experimental approaches to untangle the phenomenon of helical cell expansion in plant mutants.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49076, Osnabrück, Germany
| | - Agnes Borchers
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49076, Osnabrück, Germany
| |
Collapse
|
16
|
Navazio L, Formentin E, Cendron L, Szabò I. Chloroplast Calcium Signaling in the Spotlight. FRONTIERS IN PLANT SCIENCE 2020; 11:186. [PMID: 32226434 PMCID: PMC7081724 DOI: 10.3389/fpls.2020.00186] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 05/22/2023]
Abstract
Calcium has long been known to regulate the metabolism of chloroplasts, concerning both light and carbon reactions of photosynthesis, as well as additional non photosynthesis-related processes. In addition to undergo Ca2+ regulation, chloroplasts can also influence the overall Ca2+ signaling pathways of the plant cell. Compelling evidence indicate that chloroplasts can generate specific stromal Ca2+ signals and contribute to the fine tuning of cytoplasmic Ca2+ signaling in response to different environmental stimuli. The recent set up of a toolkit of genetically encoded Ca2+ indicators, targeted to different chloroplast subcompartments (envelope, stroma, thylakoids) has helped to unravel the participation of chloroplasts in intracellular Ca2+ handling in resting conditions and during signal transduction. Intra-chloroplast Ca2+ signals have been demonstrated to occur in response to specific environmental stimuli, suggesting a role for these plant-unique organelles in transducing Ca2+-mediated stress signals. In this mini-review we present current knowledge of stimulus-specific intra-chloroplast Ca2+ transients, as well as recent advances in the identification and characterization of Ca2+-permeable channels/transporters localized at chloroplast membranes. In particular, the potential role played by cMCU, a chloroplast-localized member of the mitochondrial calcium uniporter (MCU) family, as component of plant environmental sensing is discussed in detail, taking into account some specific structural features of cMCU. In summary, the recent molecular identification of some players of chloroplast Ca2+ signaling has opened new avenues in this rapidly developing field and will hopefully allow a deeper understanding of the role of chloroplasts in shaping physiological responses in plants.
Collapse
Affiliation(s)
- Lorella Navazio
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
| | - Laura Cendron
- Department of Biology, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy
- Botanical Garden, University of Padova, Padova, Italy
- *Correspondence: Ildikò Szabò,
| |
Collapse
|
17
|
Wong JH, Kato T, Belteton SA, Shimizu R, Kinoshita N, Higaki T, Sakumura Y, Szymanski DB, Hashimoto T. Basic Proline-Rich Protein-Mediated Microtubules Are Essential for Lobe Growth and Flattened Cell Geometry. PLANT PHYSIOLOGY 2019; 181:1535-1551. [PMID: 31601644 PMCID: PMC6878025 DOI: 10.1104/pp.19.00811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/30/2019] [Indexed: 05/09/2023]
Abstract
Complex cell shapes are generated first by breaking symmetry, and subsequent polar growth. Localized bending of anticlinal walls initiates lobe formation in the epidermal pavement cells of cotyledons and leaves, but how the microtubule cytoskeleton mediates local cell growth, and how plant pavement cells benefit from adopting jigsaw puzzle-like shapes, are poorly understood. In Arabidopsis (Arabidopsis thaliana), the basic Pro-rich protein (BPP) microtubule-associated protein family comprises seven members. We analyzed lobe morphogenesis in cotyledon pavement cells of a BPP1;BPP2;BPP5 triple knockout mutant. New image analysis methods (MtCurv and BQuant) showed that anticlinal microtubule bundles were significantly reduced and cortical microtubules that fan out radially across the periclinal wall did not enrich at the convex side of developing lobes. Despite these microtubule defects, new lobes were initiated at the same frequency as in wild-type cells, but they did not expand into well-defined protrusions. Eventually, mutant cells formed nearly polygonal shapes and adopted concentric microtubule patterns. The mutant periclinal cell wall bulged outward. The radius of the calculated inscribed circle of the pavement cells, a proposed proxy for maximal stress in the cell wall, was consistently larger in the mutant cells during cotyledon development, and correlated with an increase in cell height. These bpp mutant phenotypes provide genetic and cell biological evidence that initiation and growth of lobes are distinct morphogenetic processes, and that interdigitated cell geometry effectively suppresses large outward bulging of pavement cells.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takehide Kato
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Samuel A Belteton
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Rie Shimizu
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Nene Kinoshita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Yuichi Sakumura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Daniel B Szymanski
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Takashi Hashimoto
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
18
|
Yang Y, Chen B, Dang X, Zhu L, Rao J, Ren H, Lin C, Qin Y, Lin D. Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5231-5243. [PMID: 31198941 PMCID: PMC6793458 DOI: 10.1093/jxb/erz284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 05/23/2023]
Abstract
Unlike animal cells, plant cells do not possess centrosomes that serve as microtubule organizing centers; how microtubule arrays are organized throughout plant morphogenesis remains poorly understood. We report here that Arabidopsis INCREASED PETAL GROWTH ANISOTROPY 1 (IPGA1), a previously uncharacterized microtubule-associated protein, regulates petal growth and shape by affecting cortical microtubule organization. Through a genetic screen, we showed that IPGA1 loss-of-function mutants displayed a phenotype of longer and narrower petals, as well as increased anisotropic cell expansion of the petal epidermis in the late phases of flower development. Map-based cloning studies revealed that IPGA1 encodes a previously uncharacterized protein that colocalizes with and directly binds to microtubules. IPGA1 plays a negative role in the organization of cortical microtubules into parallel arrays oriented perpendicular to the axis of cell elongation, with the ipga1-1 mutant displaying increased microtubule ordering in petal abaxial epidermal cells. The IPGA1 family is conserved among land plants and its homologs may have evolved to regulate microtubule organization. Taken together, our findings identify IPGA1 as a novel microtubule-associated protein and provide significant insights into IPGA1-mediated microtubule organization and petal growth anisotropy.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binqinq Chen
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xie Dang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Lilan Zhu
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinqiu Rao
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huibo Ren
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deshu Lin
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Correspondence:
| |
Collapse
|
19
|
Möller B, Zergiebel L, Bürstenbinder K. Quantitative and Comparative Analysis of Global Patterns of (Microtubule) Cytoskeleton Organization with CytoskeletonAnalyzer2D. Methods Mol Biol 2019; 1992:151-171. [PMID: 31148037 DOI: 10.1007/978-1-4939-9469-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The microtubule cytoskeleton plays important roles in cell morphogenesis. To investigate the mechanisms of cytoskeletal organization, for example, during growth or development, in genetic studies, or in response to environmental stimuli, image analysis tools for quantitative assessment are needed. Here, we present a method for texture measure-based quantification and comparative analysis of global microtubule cytoskeleton patterns and subsequent visualization of output data. In contrast to other approaches that focus on the extraction of individual cytoskeletal fibers and analysis of their orientation relative to the growth axis, CytoskeletonAnalyzer2D quantifies cytoskeletal organization based on the analysis of local binary patterns. CytoskeletonAnalyzer2D thus is particularly well suited to study cytoskeletal organization in cells where individual fibers are difficult to extract or which lack a clearly defined growth axis, such as leaf epidermal pavement cells. The tool is available as ImageJ plugin and can be combined with publicly available software and tools, such as R and Cytoscape, to visualize similarity networks of cytoskeletal patterns.
Collapse
Affiliation(s)
- Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Luise Zergiebel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.
| |
Collapse
|
20
|
Abstract
Despite of their economical and nutritional interest, the biology of fruits is still little studied in comparison with reports of other plant organs such as leaves and roots. Accordingly, research at subcellular and molecular levels is necessary not only to understand the physiology of fruits, but also to improve crop qualities. Efforts addressed to gain knowledge of the peroxisome proteome and how it interacts with the overall metabolism of fruits will provide tools to be used in breeding strategies of agricultural species with added value. In this work, special attention will be paid to peroxisomal proteins involved in the metabolism of reactive oxygen species (ROS) due to the relevant role of these compounds at fruit ripening. The proteome of peroxisomes purified from sweet pepper (Capsicum annuum L.) fruit is reported, where an iron-superoxide dismutase (Fe-SOD) was localized in these organelles, besides other antioxidant enzymes such as catalase and a Mn-SOD, as well as enzymes involved in the metabolism of carbohydrates, malate, lipids and fatty acids, amino acids, the glyoxylate cycle and in the potential organelles' movements.
Collapse
|
21
|
Soga K, Yamazaki C, Kamada M, Tanigawa N, Kasahara H, Yano S, Kojo KH, Kutsuna N, Kato T, Hashimoto T, Kotake T, Wakabayashi K, Hoson T. Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. PHYSIOLOGIA PLANTARUM 2018; 162:135-144. [PMID: 28862767 DOI: 10.1111/ppl.12640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 05/11/2023]
Abstract
We carried out a space experiment, denoted as Aniso Tubule, to examine the effects of microgravity on the growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls, using lines in which microtubules are visualized by labeling tubulin or microtubule-associated proteins (MAPs) with green fluorescent protein (GFP). In all lines, GFP-tubulin6 (TUB6)-, basic proline-rich protein1 (BPP1)-GFP- and spira1-like3 (SP1L3)-GFP-expressing using a constitutive promoter, and spiral2 (SPR2)-GFP- and GFP-65 kDa MAP-1 (MAP65-1)-expressing using a native promoter, the length of hypocotyls grown under microgravity conditions in space was longer than that grown at 1 g conditions on the ground. In contrast, the diameter of hypocotyls grown under microgravity conditions was smaller than that of the hypocotyls grown at 1 g. The percentage of cells with transverse microtubules was increased under microgravity conditions, irrespective of the lines. Also, the average angle of the microtubules with respect to the transverse cell axis was decreased in hypocotyls grown under microgravity conditions. When GFP fluorescence was quantified in hypocotyls of GFP-MAP65-1 and SPR2-GFP lines, microgravity increased the levels of MAP65-1, which appears to be involved in the maintenance of transverse microtubule orientation. However, the levels of SPR2 under microgravity conditions were comparable to those at 1 g. These results suggest that the microgravity-induced increase in the levels of MAP65-1 is involved in increase in the transverse microtubules, which may lead to modification of growth anisotropy, thereby developing longer and thinner hypocotyls under microgravity conditions in space.
Collapse
Affiliation(s)
- Kouichi Soga
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | | | - Motoshi Kamada
- Advanced Engineering Services Co., Ltd, Tsukuba, 305-0032, Japan
| | | | - Haruo Kasahara
- Japan Manned Space Systems Corporation, Tokyo, 100-0004, Japan
| | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, 305-8505, Japan
| | - Kei H Kojo
- Graduate School of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Natsumaro Kutsuna
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- LPixel Inc, Tokyo, 113-0033, Japan
| | - Takehide Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | | | - Takayuki Hoson
- Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| |
Collapse
|
22
|
Oda Y. Emerging roles of cortical microtubule-membrane interactions. JOURNAL OF PLANT RESEARCH 2018; 131:5-14. [PMID: 29170834 DOI: 10.1007/s10265-017-0995-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
23
|
Rayapuram N, Bigeard J, Alhoraibi H, Bonhomme L, Hesse AM, Vinh J, Hirt H, Pflieger D. Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6. Mol Cell Proteomics 2017; 17:61-80. [PMID: 29167316 DOI: 10.1074/mcp.ra117.000135] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4, and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. Although some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4, and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. One hundred fifty-two peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar nonfermenting (SnRK) protein kinases.
Collapse
Affiliation(s)
- Naganand Rayapuram
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jean Bigeard
- §Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.,¶Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Hanna Alhoraibi
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ludovic Bonhomme
- ‖UMR INRA/UBP Génétique, Diversité et Écophysiologie des Céréales, Université de Clermont-Ferrand, 63039 Clermont-Ferrand, France
| | - Anne-Marie Hesse
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France
| | - Joëlle Vinh
- ‡‡ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex05, France
| | - Heribert Hirt
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Delphine Pflieger
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France.,§§CNRS, LAMBE UMR 8587, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
24
|
Wang C, Liu W, Wang G, Li J, Dong L, Han L, Wang Q, Tian J, Yu Y, Gao C, Kong Z. KTN80 confers precision to microtubule severing by specific targeting of katanin complexes in plant cells. EMBO J 2017; 36:3435-3447. [PMID: 28978669 DOI: 10.15252/embj.201796823] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
The microtubule (MT)-severing enzyme katanin triggers dynamic reorientation of cortical MT arrays that play crucial functions during plant cell morphogenesis, such as cell elongation, cell wall biosynthesis, and hormonal signaling. MT severing specifically occurs at crossover or branching nucleation sites in living Arabidopsis cells. This differs from the random severing observed along the entire length of single MTs in vitro and strongly suggests that a precise control mechanism must exist in vivo However, how katanin senses and cleaves at MT crossover and branching nucleation sites in vivo has remained unknown. Here, we show that the katanin p80 subunit KTN80 confers precision to MT severing by specific targeting of the katanin p60 subunit KTN1 to MT cleavage sites and that KTN1 is required for oligomerization of functional KTN80-KTN1 complexes that catalyze severing. Moreover, our findings suggest that the katanin complex in Arabidopsis is composed of a hexamer of KTN1-KTN80 heterodimers that sense MT geometry to confer precise MT severing. Our findings shed light on the precise control mechanism of MT severing in plant cells, which may be relevant for other eukaryotes.
Collapse
Affiliation(s)
- Chaofeng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Dong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Integrating cell biology and proteomic approaches in plants. J Proteomics 2017; 169:165-175. [DOI: 10.1016/j.jprot.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 11/22/2022]
|
26
|
Sugiyama Y, Wakazaki M, Toyooka K, Fukuda H, Oda Y. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains. Curr Biol 2017; 27:2522-2528.e4. [PMID: 28803875 DOI: 10.1016/j.cub.2017.06.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
Abstract
Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Mayumi Wakazaki
- Mass Spectrometry and Microscopy Unit, Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
27
|
Takáč T, Šamajová O, Pechan T, Luptovčiak I, Šamaj J. Feedback Microtubule Control and Microtubule-Actin Cross-talk in Arabidopsis Revealed by Integrative Proteomic and Cell Biology Analysis of KATANIN 1 Mutants. Mol Cell Proteomics 2017; 16:1591-1609. [PMID: 28706004 DOI: 10.1074/mcp.m117.068015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/06/2017] [Indexed: 12/20/2022] Open
Abstract
Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.
Collapse
Affiliation(s)
- Tomáš Takáč
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- §Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, Mississippi 39759
| | - Ivan Luptovčiak
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- From the ‡Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic;
| |
Collapse
|
28
|
Li H, Sun B, Sasabe M, Deng X, Machida Y, Lin H, Julie Lee YR, Liu B. Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. THE NEW PHYTOLOGIST 2017; 215:187-201. [PMID: 28370001 DOI: 10.1111/nph.14532] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/19/2017] [Indexed: 05/07/2023]
Abstract
The evolutionarily conserved MAP65 family proteins bundle anti-parallel microtubules (MTs). In Arabidopsis thaliana, mutations in the MAP65-3 gene lead to serious defects in MT organization in the phragmoplast and cause failures in cytokinesis. However, the functions of other ArabidopsisMAP65 isoforms are largely unknown. MAP65 functions were analyzed based on genetic interactions among different map65 mutations. Live-cell imaging and immunolocalization experiments revealed dynamic activities of two closely related MAP65 proteins in dividing cells. The map65-4 mutation caused synthetic lethality with map65-3 although map65-4 alone did not cause a noticeable phenotype. Furthermore, the introduction of an extra copy of the MAP65-4 gene significantly suppressed defects in cytokinesis and seedling growth caused by map65-3 because of restoring MT engagement in the spindle midzone. During mitosis, MAP65-4 first appeared at the preprophase band and persisted at the cortical division site afterwards. It was also concentrated on MTs in the spindle midzone and the phragmoplast. In the absence of MAP65-3, MAP65-4 exhibited greatly enhanced localization in the midzone of developing phragmoplast. Therefore, we have uncovered redundant but differential contributions of MAP65-3 and MAP65-4 to engaging and bundling anti-parallel MTs in the phragmoplast and disclosed a novel action of MAP65-4 at the cortical cell division site.
Collapse
Affiliation(s)
- Haoge Li
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Baojuan Sun
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Xingguang Deng
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Key Laboratory of Bio-resources & Eco-environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Honghui Lin
- Key Laboratory of Bio-resources & Eco-environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Y-R Julie Lee
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
29
|
Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. PLANT PHYSIOLOGY 2017; 173:1692-1708. [PMID: 28115582 PMCID: PMC5338658 DOI: 10.1104/pp.16.01743] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth.
Collapse
Affiliation(s)
- Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.);
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Birgit Möller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Romina Plötner
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Gerd Hause
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| |
Collapse
|
30
|
Wong JH, Hashimoto T. Novel Arabidopsis microtubule-associated proteins track growing microtubule plus ends. BMC PLANT BIOLOGY 2017; 17:33. [PMID: 28148225 PMCID: PMC5288973 DOI: 10.1186/s12870-017-0987-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/25/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Microtubules (MTs) are polarized polymers with highly dynamic plus ends that stochastically switch between growth and shrinkage phases. In eukaryotic cells, a plethora of MT-associated proteins (MAPs) regulate the dynamics and higher-order organization of MTs to mediate distinct cellular functions. Plus-end tracking proteins (+TIPs) are a group of MAPs that specifically accumulate at the growing MT plus ends, where they modulate the behavior of the MT plus ends and mediate interactions with cellular targets. Although several functionally important + TIP proteins have been characterized in yeast and animals, little is known about this group of proteins in plants. RESULTS We report here that two homologous MAPs from Arabidopsis thaliana, Growing Plus-end Tracking 1 (GPT1) and GPT2 (henceforth GPT1/2), contain basic MT-binding regions at their central and C-terminal regions, and bind directly to MTs in vitro. Interestingly, GPT1/2 preferentially accumulated at the growing plus ends of cortical MTs in interphase Arabidopsis cells. When the GPT1/12-decorated growing plus ends switched to rapid depolymerization, GPT1/2 dissociated from the MT plus ends. Conversely, when the depolymerizing ends were rescued and started to polymerize again, GPT1/2 were immediately recruited to the growing MT tips. This tip tracking behavior of GPT proteins does not depend on the two established plant + TIPs, End-Binding protein 1 (EB1) and SPIRAL1 (SPR1). CONCLUSIONS The Arabidopsis MAPs GPT1 and GPT2 bind MTs directly through their basic regions. These MAPs track the plus ends of growing MTs independently of EB1 and SPR1 and represent a novel plant-specific + TIP family.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
31
|
Yamada M, Goshima G. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. BIOLOGY 2017; 6:biology6010006. [PMID: 28125061 PMCID: PMC5371999 DOI: 10.3390/biology6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
Abstract
In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles.
Collapse
Affiliation(s)
- Moé Yamada
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
32
|
Hamada T, Sonobe S. Isolation of Microtubules and Microtubule-Associated Proteins. Methods Mol Biol 2017; 1511:281-289. [PMID: 27730619 DOI: 10.1007/978-1-4939-6533-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Microtubules are essential cellular structures in plant cells. They are polymerized from tubulin dimers and are regulated by microtubule-associated proteins (MAPs). Here, we describe a protocol for purifying tubulin dimers and MAPs from plant cells. The protocol involves preparing vacuole-free mini-protoplasts, a high quality cytoplasmic extract, cycles of microtubule polymerization and depolymerization to increase tubulin and MAP concentration, separation of tubulin and MAPs by column chromatography. We also present tubulin purification methods for biochemical assays.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902, Japan.
| | - Seiji Sonobe
- Department of Life Sciences, Graduate School of Life Sciences, University of Hyogo, Hyogo, Japan
| |
Collapse
|
33
|
Bhaskara GB, Wen TN, Nguyen TT, Verslues PE. Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 Control Microtubule Stability, Plant Growth, and Drought Response. THE PLANT CELL 2017; 29:169-191. [PMID: 28011693 PMCID: PMC5304354 DOI: 10.1105/tpc.16.00847] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/03/2023]
Abstract
Plant growth is coordinated with environmental factors, including water availability during times of drought. Microtubules influence cell expansion; however, the mechanisms by which environmental signals impinge upon microtubule organization and whether microtubule-related factors limit growth during drought remains unclear. We found that three Clade E Growth-Regulating (EGR) Type 2C protein phosphatases act as negative growth regulators to restrain growth during drought. Quantitative phosphoproteomics indicated that EGRs target cytoskeleton and plasma membrane-associated proteins. Of these, Microtubule-Associated Stress Protein 1 (MASP1), an uncharacterized protein, increased in abundance during stress treatment and could bind, bundle, and stabilize microtubules in vitro. MASP1 overexpression enhanced growth, in vivo microtubule stability, and recovery of microtubule organization during drought acclimation. These MASP1 functions in vivo were dependent on phosphorylation of a single serine. For all EGR and MASP1 mutants and transgenic lines examined, enhanced microtubule recovery and stability were associated with increased growth during drought stress. The EGR-MASP1 system selectively regulates microtubule recovery and stability to adjust plant growth and cell expansion in response to changing environmental conditions. Modification of EGR-MASP1 signaling may be useful to circumvent negative growth regulation limiting plant productivity. EGRs are likely to regulate additional proteins involved in microtubule stability and stress signaling.
Collapse
Affiliation(s)
| | - Tuan-Nan Wen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Thao Thi Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
34
|
Environmental and Endogenous Control of Cortical Microtubule Orientation. Trends Cell Biol 2016; 26:409-419. [DOI: 10.1016/j.tcb.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
35
|
Krtková J, Benáková M, Schwarzerová K. Multifunctional Microtubule-Associated Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:474. [PMID: 27148302 PMCID: PMC4838777 DOI: 10.3389/fpls.2016.00474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Microtubules (MTs) are involved in key processes in plant cells, including cell division, growth and development. MT-interacting proteins modulate MT dynamics and organization, mediating functional and structural interaction of MTs with other cell structures. In addition to conventional microtubule-associated proteins (MAPs) in plants, there are many other MT-binding proteins whose primary function is not related to the regulation of MTs. This review focuses on enzymes, chaperones, or proteins primarily involved in other processes that also bind to MTs. The MT-binding activity of these multifunctional MAPs is often performed only under specific environmental or physiological conditions, or they bind to MTs only as components of a larger MT-binding protein complex. The involvement of multifunctional MAPs in these interactions may underlie physiological and morphogenetic events, e.g., under specific environmental or developmental conditions. Uncovering MT-binding activity of these proteins, although challenging, may contribute to understanding of the novel functions of the MT cytoskeleton in plant biological processes.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of WashingtonSeattle, WA, USA
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Martina Benáková
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
- Department of Biology, Faculty of Science, University of Hradec KrálovéRokitanského, Czech Republic
| | - Kateřina Schwarzerová
- Katerina Schwarzerová Lab, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
36
|
Hotta T, Fujita S, Uchimura S, Noguchi M, Demura T, Muto E, Hashimoto T. Affinity Purification and Characterization of Functional Tubulin from Cell Suspension Cultures of Arabidopsis and Tobacco. PLANT PHYSIOLOGY 2016; 170:1189-205. [PMID: 26747285 PMCID: PMC4775104 DOI: 10.1104/pp.15.01173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/29/2015] [Indexed: 05/02/2023]
Abstract
Microtubules assemble into several distinct arrays that play important roles in cell division and cell morphogenesis. To decipher the mechanisms that regulate the dynamics and organization of this versatile cytoskeletal component, it is essential to establish in vitro assays that use functional tubulin. Although plant tubulin has been purified previously from protoplasts by reversible taxol-induced polymerization, a simple and efficient purification method has yet to be developed. Here, we used a Tumor Overexpressed Gene (TOG) column, in which the tubulin-binding domains of a yeast (Saccharomyces cerevisiae) TOG homolog are immobilized on resin, to isolate functional plant tubulin. We found that several hundred micrograms of pure tubulin can readily be purified from cell suspension cultures of tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). The tubulin purified by the TOG column showed high assembly competence, partly because of low levels of polymerization-inhibitory phosphorylation of α-tubulin. Compared with porcine brain tubulin, Arabidopsis tubulin is highly dynamic in vitro at both the plus and minus ends, exhibiting faster shrinkage rates and more frequent catastrophe events, and exhibits frequent spontaneous nucleation. Furthermore, our study shows that an internal histidine tag in α-tubulin can be used to prepare particular isotypes and specifically engineered versions of α-tubulin. In contrast to previous studies of plant tubulin, our mass spectrometry and immunoblot analyses failed to detect posttranslational modification of the isolated Arabidopsis tubulin or detected only low levels of posttranslational modification. This novel technology can be used to prepare assembly-competent, highly dynamic pure tubulin from plant cell cultures.
Collapse
Affiliation(s)
- Takashi Hotta
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Satoshi Fujita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Seiichi Uchimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Masahiro Noguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Etsuko Muto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
| |
Collapse
|
37
|
Ido A, Iwata S, Iwata Y, Igarashi H, Hamada T, Sonobe S, Sugiura M, Yukawa Y. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription. PLANT PHYSIOLOGY 2016; 170:642-52. [PMID: 26662274 PMCID: PMC4734572 DOI: 10.1104/pp.15.01614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/08/2015] [Indexed: 05/20/2023]
Abstract
In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin).
Collapse
Affiliation(s)
- Ayaka Ido
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| | - Shinya Iwata
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| | - Yuka Iwata
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| | - Hisako Igarashi
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| | - Takahiro Hamada
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| | - Seiji Sonobe
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| | - Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| | - Yasushi Yukawa
- Graduate School of Natural Sciences, Nagoya City University, Mizuho, Nagoya 464-8501, Japan (A.I., S.I., Y.I., M.S., Y.Y.); andGraduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan (H.I., T.H., S.S.)
| |
Collapse
|
38
|
Murakami M, Soga K, Kotake T, Kato T, Hashimoto T, Wakabayashi K, Hoson T. Roles of MAP65-1 and BPP1 in Gravity Resistance of Arabidopsis hypocotyls. ACTA ACUST UNITED AC 2016. [DOI: 10.2187/bss.30.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Kouichi Soga
- Graduate School of Science, Osaka City University
| | | | - Takehide Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | | | | |
Collapse
|
39
|
Zhou Y, Yang S, Mao T, Zhang Z. MAPanalyzer: a novel online tool for analyzing microtubule-associated proteins. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav108. [PMID: 26568329 PMCID: PMC4644220 DOI: 10.1093/database/bav108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022]
Abstract
The wide functional impacts of microtubules are unleashed and controlled by a battery of microtubule-associated proteins (MAPs). Specialists in the field appreciate the diversity of known MAPs and propel the identifications of novel MAPs. By contrast, there is neither specific database to record known MAPs, nor MAP predictor that can facilitate the discovery of potential MAPs. We here report the establishment of a MAP-centered online analysis tool MAPanalyzer, which consists of a MAP database and a MAP predictor. In the database, a core MAP dataset, which is fully manually curated from the literature, is further enriched by MAP information collected via automated pipeline. The core dataset, on the other hand, enables the building of a novel MAP predictor which combines specialized machine learning classifiers and the BLAST homology searching tool. Benchmarks on the curated testing dataset and the Arabidopsis thaliana whole genome dataset have shown that the proposed predictor outperforms not only its own components (i.e. the machine learning classifiers and BLAST), but also another popular homology searching tool, PSI-BLAST. Therefore, MAPanalyzer will serve as a promising computational resource for the investigations of MAPs. Database URL:http://systbio.cau.edu.cn/mappred/.
Collapse
Affiliation(s)
- Yuan Zhou
- State Key Laboratory of Agrobiotechnology and
| | | | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Biotechnological aspects of cytoskeletal regulation in plants. Biotechnol Adv 2015; 33:1043-62. [DOI: 10.1016/j.biotechadv.2015.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 11/23/2022]
|
41
|
Swamy PS, Hu H, Pattathil S, Maloney VJ, Xiao H, Xue LJ, Chung JD, Johnson VE, Zhu Y, Peter GF, Hahn MG, Mansfield SD, Harding SA, Tsai CJ. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6507-18. [PMID: 26246616 PMCID: PMC4588895 DOI: 10.1093/jxb/erv383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.
Collapse
Affiliation(s)
- Prashant S Swamy
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Victoria J Maloney
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hui Xiao
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Liang-Jiao Xue
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei 10066, Taiwan
| | - Virgil E Johnson
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yingying Zhu
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gary F Peter
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
42
|
Derbyshire P, Ménard D, Green P, Saalbach G, Buschmann H, Lloyd CW, Pesquet E. Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis. THE PLANT CELL 2015; 27:2709-26. [PMID: 26432860 PMCID: PMC4682315 DOI: 10.1105/tpc.15.00314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/15/2015] [Indexed: 05/07/2023]
Abstract
Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric (14)N/(15)N labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning.
Collapse
Affiliation(s)
- Paul Derbyshire
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Delphine Ménard
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Porntip Green
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Gerhard Saalbach
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Henrik Buschmann
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clive W Lloyd
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Edouard Pesquet
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
43
|
Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana. Sci Rep 2015; 5:11364. [PMID: 26068445 PMCID: PMC4464343 DOI: 10.1038/srep11364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/22/2015] [Indexed: 11/28/2022] Open
Abstract
Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization.
Collapse
|
44
|
Mittelmeier TM, Thompson MD, Lamb MR, Lin H, Dieckmann CL. MLT1 links cytoskeletal asymmetry to organelle placement in chlamydomonas. Cytoskeleton (Hoboken) 2015; 72:113-23. [PMID: 25809438 DOI: 10.1002/cm.21220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/08/2022]
Abstract
Asymmetric placement of the photosensory eyespot organelle in Chlamydomonas is patterned by mother-daughter differences between the two basal bodies, which template the anterior flagella. Each basal body is associated with two bundled microtubule rootlets, one with two microtubules and one with four, forming a cruciate pattern. In wild-type cells, the single eyespot is positioned at the equator in close proximity to the plus end of the daughter rootlet comprising four microtubules, the D4. Here we identify mutations in two linked loci, MLT1 and MLT2, which cause multiple eyespots. Antiserum raised against MLT1 localized the protein along the D4 rootlet microtubules, from the basal bodies to the eyespot. MLT1 associates immediately with the new D4 as it extends during cell division, before microtubule acetylation. MLT1 is a low-complexity protein of over 300,000 Daltons. The expression or stability of MLT1 is dependent on MLT2, predicted to encode a second large, low-complexity protein. MLT1 was not restricted to the D4 rootlet in cells with the vfl2-220 mutation in the gene encoding the basal body-associated protein centrin. The cumulative data highlight the role of mother-daughter basal body differences in establishing asymmetry in associated rootlets, and suggest that eyespot components are directed to the correct location by MLT1 on the D4 microtubules.
Collapse
Affiliation(s)
- Telsa M Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | | | | | | | | |
Collapse
|
45
|
Nakamura M. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues. THE NEW PHYTOLOGIST 2015; 205:1022-7. [PMID: 25729799 DOI: 10.1111/nph.12932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In higher plants, reorientation of cortical microtubule arrays has been postulated to be of importance for modifying cell growth to adapt to environmental conditions. However, the process of microtubule reorientation is largely unknown. Recent genetic and live cell imaging studies of microtubule dynamics shed light on the regulatory mechanisms of microtubule molecular nucleation and severing apparatuses, which are required for array reorientation in response to blue light signaling. Branching nucleation from γ-tubulin complexes creates a small population of discordant microtubules that are acted on by KATANIN-mediated severing in two ways. KATANIN releases microtubules from nucleation sites and rapidly amplifies discordant microtubules by severing at microtubule crossovers. In this review, I focus on the molecular details of these two enzymes, which enable microtubule array transition.
Collapse
|
46
|
Abstract
Microtubules (MTs) are highly conserved polar polymers that are key elements of the eukaryotic cytoskeleton and are essential for various cell functions. αβ-tubulin, a heterodimer containing one structural GTP and one hydrolysable and exchangeable GTP, is the building block of MTs and is formed by the sequential action of several molecular chaperones. GTP hydrolysis in the MT lattice is mechanistically coupled with MT growth, thus giving MTs a metastable and dynamic nature. MTs adopt several distinct higher-order organizations that function in cell division and cell morphogenesis. Small molecular weight compounds that bind tubulin are used as herbicides and as research tools to investigate MT functions in plant cells. The de novo formation of MTs in cells requires conserved γ-tubulin-containing complexes and targeting/activating regulatory proteins that contribute to the geometry of MT arrays. Various MT regulators and tubulin modifications control the dynamics and organization of MTs throughout the cell cycle and in response to developmental and environmental cues. Signaling pathways that converge on the regulation of versatile MT functions are being characterized.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
- Address correspondence to
| |
Collapse
|
47
|
Boron AK, Vissenberg K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. PLANT CELL REPORTS 2014; 33:697-706. [PMID: 24633990 DOI: 10.1007/s00299-014-1591-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 05/24/2023]
Abstract
Developmental biology studies in general benefit from model organisms that are well characterized. Arabidopsis thaliana fulfills this criterion and represents one of the best experimental systems to study developmental processes in higher plants. Light is a crucial factor that drives photosynthesis, but that also regulates plant morphogenesis. As the hypocotyl is completely embryonic of origin, its growth occurs solely by expansion of the cells and this process is strongly dependent on the light conditions. In this review, we provide evidence that the hypocotyl serves as ideal model object to study cell expansion mechanisms and its regulation. We focus on the regulation of hypocotyl development by light and highlight the key modulating proteins in this signaling cascade. Downstream of light-signaling, cellular expansion is greatly dependent on specific cell wall depositions, which is related to cortical microtubular (re)arrangements and on composition and/or extensibility of the cell wall. We discuss possible further experimental approaches to broaden our knowledge on hypocotyl development, which will give an outlook on the probable evolution of the field.
Collapse
Affiliation(s)
- Agnieszka Karolina Boron
- Plant Growth and Development, Biology Department, University of Antwerp, Groenenborgerlaan 122, 2020, Antwerp, Belgium
| | | |
Collapse
|
48
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
49
|
Hamada T. Lessons from in vitro reconstitution analyses of plant microtubule-associated proteins. FRONTIERS IN PLANT SCIENCE 2014; 5:409. [PMID: 25202315 PMCID: PMC4141329 DOI: 10.3389/fpls.2014.00409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/01/2014] [Indexed: 05/21/2023]
Abstract
Plant microtubules, composed of tubulin GTPase, are irreplaceable cellular components that regulate the directions of cell expansion and cell division, chromosome segregation and cell plate formation. To accomplish these functions, plant cells organize microtubule structures by regulating microtubule dynamics. Each microtubule localizes to the proper position with repeated growth and shortening. Although it is possible to reconstitute microtubule dynamics with pure tubulin solution in vitro, many microtubule-associated proteins (MAPs) govern microtubule dynamics in cells. In plants, major MAPs are identified as microtubule stabilizers (CLASP and MAP65 etc.), microtubule destabilizers (kinesin-13, katanin, MAP18 and MDP25), and microtubule dynamics promoters (EB1, MAP215, MOR1, MAP200, SPR2). Mutant analyses with forward and reverse genetics have shown the importance of microtubules and individual MAPs in plants. However, it is difficult to understand how each MAP regulates microtubule dynamics, such as growth and shortening, through mutant analyses. In vitro reconstitution analyses with individual purified MAPs and tubulin are powerful tools to reveal how each MAP regulates microtubule dynamics at the molecular level. In this review, I summarize the results of in vitro reconstitution analyses and introduce current models of how each MAP regulates microtubule dynamic instability.
Collapse
Affiliation(s)
- Takahiro Hamada
- *Correspondence: Takahiro Hamada, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan e-mail:
| |
Collapse
|
50
|
Oda Y, Fukuda H. The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning. FRONTIERS IN PLANT SCIENCE 2013; 4:511. [PMID: 24381577 PMCID: PMC3865431 DOI: 10.3389/fpls.2013.00511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/28/2013] [Indexed: 05/21/2023]
Abstract
Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEF pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencySaitama, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| |
Collapse
|