1
|
Huq E, Lin C, Quail PH. Light signaling in plants-a selective history. PLANT PHYSIOLOGY 2024; 195:213-231. [PMID: 38431282 PMCID: PMC11060691 DOI: 10.1093/plphys/kiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024]
Abstract
In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.
Collapse
Affiliation(s)
- Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peter H Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
2
|
Elahi Y, Baker MAB. Light Control in Microbial Systems. Int J Mol Sci 2024; 25:4001. [PMID: 38612810 PMCID: PMC11011852 DOI: 10.3390/ijms25074001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Light is a key environmental component influencing many biological processes, particularly in prokaryotes such as archaea and bacteria. Light control techniques have revolutionized precise manipulation at molecular and cellular levels in recent years. Bacteria, with adaptability and genetic tractability, are promising candidates for light control studies. This review investigates the mechanisms underlying light activation in bacteria and discusses recent advancements focusing on light control methods and techniques for controlling bacteria. We delve into the mechanisms by which bacteria sense and transduce light signals, including engineered photoreceptors and light-sensitive actuators, and various strategies employed to modulate gene expression, protein function, and bacterial motility. Furthermore, we highlight recent developments in light-integrated methods of controlling microbial responses, such as upconversion nanoparticles and optical tweezers, which can enhance the spatial and temporal control of bacteria and open new horizons for biomedical applications.
Collapse
|
3
|
Tseng TS, Chen CA, Lo MH. PHOTOTROPIN1 lysine 526 functions to enhance phototropism in Arabidopsis. PLANTA 2024; 259:56. [PMID: 38305934 DOI: 10.1007/s00425-024-04332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
MAIN CONCLUSION After blue-light exposure, ubiquitination of PHOTOTROPIN1 lysine 526 enhances phototropic responses. Arabidopsis blue-light photoreceptor, PHOTOTROPIN1 (PHOT1) mediates a series of blue-light responses that function to optimize photosynthesis efficiency. Blue-light sensing through the N-terminal sensory domain activates the C-terminal kinase activity of PHOT1, resulting in autophosphorylation. In addition to phosphorylation, PHOT1 lysine residue 526 (Lys526), after blue-light exposure, was found to carry a double glycine attachment, indicative of a possible ubiquitination modification. The functionality of PHOT1 Lys526 was investigated by reverse genetic approaches. Arginine replacements of PHOT1 Lys526, together with Lys527, complemented phot1-5 phot2-1 double mutant with attenuated phototropic bending, while blue-light responses: leaf expansion and stomatal opening, were restored to wild type levels. Transgenic seedlings were not different in protein levels of phot1 Lys526 527Arg than the wild type control, suggesting the reduced phototropic responses was not caused by reduction in protein levels. Treating the transformants with proteosome inhibitor, MG132, did not restore phototropic sensitivity. Both transgenic protein and wild type PHOT1 also had similar dark recovery of kinase activity, suggesting that phot1 Lys526 527Arg replacement did not affect the protein stability to cause the phenotype. Together, our results indicate that blocking Lys526 ubiquitination by arginine substitution may have caused the reduced phototropic phenotype. Therefore, the putative ubiquitination on Lys526 functions to enhance PHOT1-mediated phototropism, rather than targeting PHOT1 for proteolysis.
Collapse
Affiliation(s)
- Tong-Seung Tseng
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan.
| | - Chih-An Chen
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| | - Ming-Hung Lo
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| |
Collapse
|
4
|
de Melo HC. Science fosters ongoing reassessments of plant capabilities. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2024; 36:457-475. [DOI: 10.1007/s40626-023-00300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2025]
|
5
|
Del Dottore E, Mondini A, Rowe N, Mazzolai B. A growing soft robot with climbing plant-inspired adaptive behaviors for navigation in unstructured environments. Sci Robot 2024; 9:eadi5908. [PMID: 38232147 DOI: 10.1126/scirobotics.adi5908] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Self-growing robots are an emerging solution in soft robotics for navigating, exploring, and colonizing unstructured environments. However, their ability to grow and move in heterogeneous three-dimensional (3D) spaces, comparable with real-world conditions, is still developing. We present an autonomous growing robot that draws inspiration from the behavioral adaptive strategies of climbing plants to navigate unstructured environments. The robot mimics climbing plants' apical shoot to sense and coordinate additive adaptive growth via an embedded additive manufacturing mechanism and a sensorized tip. Growth orientation, comparable with tropisms in real plants, is dictated by external stimuli, including gravity, light, and shade. These are incorporated within a vector field method to implement the preferred adaptive behavior for a given environment and task, such as growth toward light and/or against gravity. We demonstrate the robot's ability to navigate through growth in relation to voids, potential supports, and thoroughfares in otherwise complex habitats. Adaptive twining around vertical supports can provide an escape from mechanical stress due to self-support, reduce energy expenditure for construction costs, and develop an anchorage point to support further growth and crossing gaps. The robot adapts its material printing parameters to develop a light body and fast growth to twine on supports or a tougher body to enable self-support and cross gaps. These features, typical of climbing plants, highlight a potential for adaptive robots and their on-demand manufacturing. They are especially promising for applications in exploring, monitoring, and interacting with unstructured environments or in the autonomous construction of complex infrastructures.
Collapse
Affiliation(s)
- Emanuela Del Dottore
- Bioinspired Soft Robotics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessio Mondini
- Bioinspired Soft Robotics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Nick Rowe
- AMAP Laboratory, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Barbara Mazzolai
- Bioinspired Soft Robotics Laboratory, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
6
|
Wu S, Gao Y, Zhang Q, Liu F, Hu W. Application of Multi-Omics Technologies to the Study of Phytochromes in Plants. Antioxidants (Basel) 2024; 13:99. [PMID: 38247523 PMCID: PMC10812741 DOI: 10.3390/antiox13010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Phytochromes (phy) are distributed in various plant organs, and their physiological effects influence plant germination, flowering, fruiting, and senescence, as well as regulate morphogenesis throughout the plant life cycle. Reactive oxygen species (ROS) are a key regulatory factor in plant systemic responses to environmental stimuli, with an attractive regulatory relationship with phytochromes. With the development of high-throughput sequencing technology, omics techniques have become powerful tools, and researchers have used omics techniques to facilitate the big data revolution. For an in-depth analysis of phytochrome-mediated signaling pathways, integrated multi-omics (transcriptomics, proteomics, and metabolomics) approaches may provide the answer from a global perspective. This article comprehensively elaborates on applying multi-omics techniques in studying phytochromes. We describe the current research status and future directions on transcriptome-, proteome-, and metabolome-related network components mediated by phytochromes when cells are subjected to various stimulation. We emphasize the importance of multi-omics technologies in exploring the effects of phytochromes on cells and their molecular mechanisms. Additionally, we provide methods and ideas for future crop improvement.
Collapse
Affiliation(s)
- Shumei Wu
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Yue Gao
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Qi Zhang
- Basic Medical Experiment Center, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (S.W.); (Y.G.); (Q.Z.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
7
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
8
|
Georgieva K, Mihailova G, Gigova L, Popova AV, Velitchkova M, Simova-Stoilova L, Sági-Kazár M, Zelenyánszki H, Solymosi K, Solti Á. Antioxidative Defense, Suppressed Nitric Oxide Accumulation, and Synthesis of Protective Proteins in Roots and Leaves Contribute to the Desiccation Tolerance of the Resurrection Plant Haberlea rhodopensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2834. [PMID: 37570988 PMCID: PMC10421438 DOI: 10.3390/plants12152834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The desiccation tolerance of plants relies on defense mechanisms that enable the protection of macromolecules, biological structures, and metabolism. Although the defense of leaf tissues exposed to solar irradiation is challenging, mechanisms that protect the viability of the roots, yet largely unexplored, are equally important for survival. Although the photosynthetic apparatus in leaves contributes to the generation of oxidative stress under drought stress, we hypothesized that oxidative stress and thus antioxidative defense is also predominant in the roots. Thus, we aimed for a comparative analysis of the protective mechanisms in leaves and roots during the desiccation of Haberlea rhodopensis. Consequently, a high content of non-enzymatic antioxidants and high activity of antioxidant enzymes together with the activation of specific isoenzymes were found in both leaves and roots during the final stages of desiccation of H. rhodopensis. Among others, catalase and glutathione reductase activity showed a similar tendency of changes in roots and leaves, whereas, unlike that in the leaves, superoxide dismutase activity was enhanced under severe but not under medium desiccation in roots. Nitric oxide accumulation in the root tips was found to be sensitive to water restriction but suppressed under severe desiccation. In addition to the antioxidative defense, desiccation induced an enhanced abundance of dehydrins, ELIPs, and sHSP 17.7 in leaves, but this was significantly better in roots. In contrast to leaf cells, starch remained in the cells of the central cylinder of desiccated roots. Taken together, protective compounds and antioxidative defense mechanisms are equally important in protecting the roots to survive desiccation. Since drought-induced damage to the root system fundamentally affects the survival of plants, a better understanding of root desiccation tolerance mechanisms is essential to compensate for the challenges of prolonged dry periods.
Collapse
Affiliation(s)
- Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Liliana Gigova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Antoaneta V. Popova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (A.V.P.); (M.V.)
| | - Maya Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (A.V.P.); (M.V.)
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Academic Georgi Bonchev Str., Building 21, 1113 Sofia, Bulgaria; (G.M.); (L.G.); (L.S.-S.)
| | - Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (M.S.-K.); (H.Z.); (Á.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Helga Zelenyánszki
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (M.S.-K.); (H.Z.); (Á.S.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary;
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (M.S.-K.); (H.Z.); (Á.S.)
| |
Collapse
|
9
|
Breen S, McLellan H, Birch PRJ, Gilroy EM. Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. Int J Mol Sci 2023; 24:ijms24043803. [PMID: 36835216 PMCID: PMC9958957 DOI: 10.3390/ijms24043803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.
Collapse
Affiliation(s)
- Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: ; Tel.: +44-1382568827
| |
Collapse
|
10
|
Xin GY, Li LP, Wang PT, Li XY, Han YJ, Zhao X. The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. STRESS BIOLOGY 2022; 2:50. [PMID: 37676522 PMCID: PMC10441985 DOI: 10.1007/s44154-022-00066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 09/08/2023]
Abstract
To cope with fluctuating light conditions, terrestrial plants have evolved precise regulation mechanisms to help optimize light capture and increase photosynthetic efficiency. Upon blue light-triggered autophosphorylation, activated phototropin (PHOT1 and PHOT2) photoreceptors function solely or redundantly to regulate diverse responses, including phototropism, chloroplast movement, stomatal opening, and leaf positioning and flattening in plants. These responses enhance light capture under low-light conditions and avoid photodamage under high-light conditions. NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2) are signal transducers that function in the PHOT1- and PHOT2-mediated response. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation as well as NPH3-mediated responses. NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) was recently identified as a PHOT1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation. The PHYTOCHROME KINASE SUBSTRATE (PKS) proteins (PKS1, PKS2, and PKS4) interact with PHOT1 and NPH3 and mediate hypocotyl phototropic bending. This review summarizes advances in phototropic growth and chloroplast movement induced by light. We also focus on how crosstalk in signaling between phototropism and chloroplast movement enhances weak light capture, providing a basis for future studies aiming to delineate the mechanism of light-trapping plants to improve light-use efficiency.
Collapse
Affiliation(s)
- Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu-Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Peng-Tao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yue Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan-Ji Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
11
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
12
|
Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life (Basel) 2022; 12:life12101484. [PMID: 36294919 PMCID: PMC9605285 DOI: 10.3390/life12101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how plants respond and adapt to extraterrestrial conditions is essential for space exploration initiatives. Deleterious effects of the space environment on plant development have been reported, such as the unbalance of cell growth and proliferation in the root meristem, or gene expression reprogramming. However, plants are capable of surviving and completing the seed-to-seed life cycle under microgravity. A key research challenge is to identify environmental cues, such as light, which could compensate the negative effects of microgravity. Understanding the crosstalk between light and gravity sensing in space was the major objective of the NASA-ESA Seedling Growth series of spaceflight experiments (2013–2018). Different g-levels were used, with special attention to micro-g, Mars-g, and Earth-g. In spaceflight seedlings illuminated for 4 days with a white light photoperiod and then photostimulated with red light for 2 days, transcriptomic studies showed, first, that red light partially reverted the gene reprogramming induced by microgravity, and that the combination of microgravity and photoactivation was not recognized by seedlings as stressful. Two mutant lines of the nucleolar protein nucleolin exhibited differential requirements in response to red light photoactivation. This observation opens the way to directed-mutagenesis strategies in crop design to be used in space colonization. Further transcriptomic studies at different g-levels showed elevated plastid and mitochondrial genome expression in microgravity, associated with disturbed nucleus–organelle communication, and the upregulation of genes encoding auxin and cytokinin hormonal pathways. At the Mars g-level, genes of hormone pathways related to stress response were activated, together with some transcription factors specifically related to acclimation, suggesting that seedlings grown in partial-g are able to acclimate by modulating genome expression in routes related to space-environment-associated stress.
Collapse
|
13
|
Naqvi S, He Q, Trusch F, Qiu H, Pham J, Sun Q, Christie JM, Gilroy EM, Birch PRJ. Blue-light receptor phototropin 1 suppresses immunity to promote Phytophthora infestans infection. THE NEW PHYTOLOGIST 2022; 233:2282-2293. [PMID: 34923631 PMCID: PMC9255860 DOI: 10.1111/nph.17929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Blue-light (BL) phototropin receptors (phot1 and phot2) regulate plant growth by activating NPH3/RPT2-like (NRL) family members. Little is known about roles for BL and phots in regulating plant immunity. We showed previously that Phytophthora infestans RXLR effector Pi02860 targets potato (St)NRL1, promoting its ability to enhance susceptibility by facilitating proteasome-mediated degradation of the immune regulator StSWAP70. This raises the question: do BL and phots negatively regulate immunity? We employed coimmunoprecipitation, virus-induced gene silencing, transient overexpression and targeted mutation to investigate contributions of phots to regulating immunity. Whereas transient overexpression of Stphot1 and Stphot2 enhances P. infestans colonization of Nicotiana benthamiana, silencing endogenous Nbphot1 or Nbphot2 reduces infection. Stphot1, but not Stphot2, suppressed the INF1-triggered cell death (ICD) immune response in a BL- and NRL1-dependent manner. Stphot1, when coexpressed with StNRL1, promotes degradation of StSWAP70, whereas Stphot2 does not. Kinase-dead Stphot1 fails to suppress ICD, enhance P. infestans colonization or promote StSWAP70 degradation. Critically, BL enhances P. infestans infection, which probably involves phots but not other BL receptors such as cryptochromes and F-box proteins ZTL1 and FKF1. We demonstrate that Stphot1 and Stphot2 play different roles in promoting susceptibility, and Stphot1 kinase activity is required for BL- and StNRL1-mediated immune suppression.
Collapse
Affiliation(s)
- Shaista Naqvi
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Qin He
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
- Key Laboratory of Horticultural Plant Biology (HZAU)Ministry of EducationKey Laboratory of Potato Biology and Biotechnology (HZAU)Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Franziska Trusch
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Huishan Qiu
- Key Laboratory of Horticultural Plant Biology (HZAU)Ministry of EducationKey Laboratory of Potato Biology and Biotechnology (HZAU)Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jasmine Pham
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Qingguo Sun
- Key Laboratory of Horticultural Plant Biology (HZAU)Ministry of EducationKey Laboratory of Potato Biology and Biotechnology (HZAU)Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanHubei430070China
| | - John M. Christie
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary, and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Eleanor M. Gilroy
- Cell and Molecular ScienceJames Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Paul R. J. Birch
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
- Cell and Molecular ScienceJames Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| |
Collapse
|
14
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Serrano AM, Vanhaelewyn L, Vandenbussche F, Boccalandro HE, Maldonado B, Van Der Straeten D, Ballaré CL, Arana MV. Cryptochromes are the dominant photoreceptors mediating heliotropic responses of Arabidopsis inflorescences. PLANT, CELL & ENVIRONMENT 2021; 44:3246-3256. [PMID: 34181245 DOI: 10.1111/pce.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.
Collapse
Affiliation(s)
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Hernán Esteban Boccalandro
- Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Cuyo, Chacras de Coria, Mendoza, Argentina
| | - Belén Maldonado
- Instituto Argentino de Investigación de las Zonas Áridas, Mendoza, Argentina
| | | | - Carlos Luis Ballaré
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agronomía (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María Verónica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche (Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas), San Carlos de Bariloche, Rio Negro, Argentina
| |
Collapse
|
16
|
Zhu JD, Wang J, Guo XN, Shang BS, Yan HR, Zhang X, Zhao X. A high concentration of abscisic acid inhibits hypocotyl phototropism in Gossypium arboreum by reducing accumulation and asymmetric distribution of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6365-6381. [PMID: 34145440 DOI: 10.1093/jxb/erab298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
Hypocotyl phototropism is mediated by the phototropins and plays a critical role in seedling morphogenesis by optimizing growth orientation. However, the mechanisms by which phototropism influences morphogenesis require additional study, especially for polyploid crops such as cotton. Here, we found that hypocotyl phototropism was weaker in Gossypium arboreum than in G. raimondii (two diploid cotton species), and LC-MS analysis indicated that G. arboreum hypocotyls had a higher content of abscisic acid (ABA) and a lower content of indole-3-acetic acid (IAA) and bioactive gibberellins (GAs). Consistently, the expression of ABA2, AAO3, and GA2OX1 was higher in G. arboreum than in G. raimondii, and that of GA3OX was lower; these changes promoted ABA synthesis and the transformation of active GA to inactive GA. Higher concentrations of ABA inhibited the asymmetric distribution of IAA across the hypocotyl and blocked the phototropic curvature of G. raimondii. Application of IAA or GA3 to the shaded and illuminated sides of the hypocotyl enhanced and inhibited phototropic curvature, respectively, in G. arboreum. The application of IAA, but not GA, to one side of the hypocotyl caused hypocotyl curvature in the dark. These results indicate that the asymmetric distribution of IAA promotes phototropic growth, and the weakened phototropic curvature of G. arboreum may be attributed to its higher ABA concentrations that inhibit the action of auxin, which is regulated by GA signaling.
Collapse
Affiliation(s)
- Jin-Dong Zhu
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jing Wang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xi-Ning Guo
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Bao-Shuan Shang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hong-Ru Yan
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiao Zhang
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- Key laboratory of plant stress biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Zhu J, Wang J, Sheng Y, Tian Y, Zhang Y, Zhou C, Zhao X, Zhang X. Phototropin2-mediated hypocotyl phototropism is negatively regulated by JAC1 and RPT2 in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:289-298. [PMID: 34023643 DOI: 10.1016/j.plaphy.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Hypocotyl phototropism is redundantly mediated by phot1 and phot2, two blue light receptor phototropins, under the intensity of blue light>1 μmol m-2 s-1. As light intensity increases, phot1 inhibits the phot2-mediated response. To date, only Arabidopsis Root Phototropism2 (RPT2) has been shown to participate in phot1-mediated inhibition of phototropism. To dissect the signaling network that underlies phot1-mediated inhibition, we carried out a yeast two-hybrid (Y2H) screening assay for RPT2 interacting proteins and identified J-domain protein required for chloroplast accumulation response 1 (JAC1). The interaction between JAC1 and RPT2 was verified by bimolecular fluorescence complementation and Co-IP assays. JAC1 is expressed mainly in cotyledons and hypocotyls. Like RPT2, JAC1 can be induced by blue light, suggesting that it may function similarly to RPT2 in the inhibition of phototropism. Genetic analysis showed that jac1 mutation significantly enhanced the hypocotyl bending of phot1 mutants towards intermediate-intensity blue light, and this effect was inhibited by the constitutive expression of JAC1 in the phot1 jac1 mutant. The phot1 rpt2 double mutant also exhibited enhanced phototropism compared with the phot1 mutant. Taken together, our data clearly demonstrate that JAC1 cooperates with RPT2 to negatively regulate hypocotyl phototropism in plants and may act either downstream of or in parallel with phot1.
Collapse
Affiliation(s)
- Jindong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuanyuan Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yan Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yueyue Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Chanjuan Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| | - Xiao Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
18
|
Fanelli V, Ngo KJ, Thompson VL, Silva BR, Tsai H, Sabetta W, Montemurro C, Comai L, Harmer SL. A TILLING by sequencing approach to identify induced mutations in sunflower genes. Sci Rep 2021; 11:9885. [PMID: 33972605 PMCID: PMC8110748 DOI: 10.1038/s41598-021-89237-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
The Targeting Induced Local Lesions in Genomes (TILLING) technology is a reverse genetic strategy broadly applicable to every kind of genome and represents an attractive tool for functional genomic and agronomic applications. It consists of chemical random mutagenesis followed by high-throughput screening of point mutations in targeted genomic regions. Although multiple methods for mutation discovery in amplicons have been described, next-generation sequencing (NGS) is the tool of choice for mutation detection because it quickly allows for the analysis of a large number of amplicons. The aim of the present work was to screen a previously generated sunflower TILLING population and identify alterations in genes involved in several important and complex physiological processes. Twenty-one candidate sunflower genes were chosen as targets for the screening. The TILLING by sequencing strategy allowed us to identify multiple mutations in selected genes and we subsequently validated 16 mutations in 11 different genes through Sanger sequencing. In addition to addressing challenges posed by outcrossing, our detection and validation of mutations in multiple regulatory loci highlights the importance of this sunflower population as a genetic resource.
Collapse
Affiliation(s)
- Valentina Fanelli
- grid.7644.10000 0001 0120 3326Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70124 Bari, Italy ,grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Kathie J. Ngo
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Veronica L. Thompson
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Brennan R. Silva
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Helen Tsai
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Wilma Sabetta
- grid.5326.20000 0001 1940 4177National Research Council, Institute of Bioscience and BioResources-IBBR, 70124 Bari, Italy
| | - Cinzia Montemurro
- grid.7644.10000 0001 0120 3326Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Luca Comai
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| | - Stacey L. Harmer
- grid.27860.3b0000 0004 1936 9684Department of Plant Biology, University of California, Davis, CA 95616 USA
| |
Collapse
|
19
|
Wang M, Wei H, Jeong BR. Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce ( Lactuca sativa L.). Int J Mol Sci 2021; 22:3157. [PMID: 33808879 PMCID: PMC8003708 DOI: 10.3390/ijms22063157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Plants are exposed to numerous biotic and abiotic stresses, and light is one of the most important factors that influences the plant morphology. This study was carried out to examine how the lighting direction affected the plant morphology by investigating the growth parameters, epidermal cell elongation, stomatal properties, and physiological changes. Seedlings of two head lettuce (Lactuca sativa L.) cultivars, Caesar Green and Polla, were subjected to a 12 h photoperiod with a 300 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) provided by light emitting diodes (LEDs) from three directions: the top, side, and bottom, relative to the plants. Compared with the top and side lighting, the bottom lighting increased the leaf angle and canopy by stimulating the epidermal cell elongation in leaf midrib, reduced the leaf number and root biomass, and induced large stomata with a low density, which is associated with reduced stomatal conductance and carbohydrate contents. However, the proline content and quantum yield exhibited no significant differences with the different lighting directions in both cultivars, which implies that the plants were under normal physiological conditions. In a conclusion, the lighting direction had a profound effect on the morphological characteristics of lettuce, where the plants adapted to the changing lighting environments.
Collapse
Affiliation(s)
- Mengzhao Wang
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (M.W.); (H.W.)
| | - Hao Wei
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (M.W.); (H.W.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (M.W.); (H.W.)
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
20
|
Du MT, Zhu GL, Chen HZ, Han R. Actin filaments altered distribution in wheat (Triticum aestivum) "Bending Root" to respond to enhanced Ultraviolet-B radiation. BRAZ J BIOL 2020; 81:684-691. [PMID: 32935819 DOI: 10.1590/1519-6984.229774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/28/2020] [Indexed: 11/22/2022] Open
Abstract
Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, "bending roots." The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the "bending root," which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.
Collapse
Affiliation(s)
- M T Du
- Shanxi Normal University, Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Linfen, Shanxi, China
| | - G L Zhu
- Ministry of Education of China, Yangzhou University, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - H Z Chen
- Shanxi Normal University, Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Linfen, Shanxi, China
| | - R Han
- Shanxi Normal University, Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Linfen, Shanxi, China
| |
Collapse
|
21
|
Cortés Llorca L, Li R, Yon F, Schäfer M, Halitschke R, Robert CAM, Kim SG, Baldwin IT. ZEITLUPE facilitates the rhythmic movements of Nicotiana attenuata flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:308-322. [PMID: 32130751 DOI: 10.1111/tpj.14732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Circadian organ movements are ubiquitous in plants. These rhythmic outputs are thought to be regulated by the circadian clock and auxin signalling, but the underlying mechanisms have not been clarified. Flowers of Nicotiana attenuata change their orientation during the daytime through a 140° arc to balance the need for pollinators and the protection of their reproductive organs. This rhythmic trait is under the control of the circadian clock and results from bending and re-straightening movements of the pedicel, stems that connect flowers to the inflorescence. Using an explant system that allowed pedicel growth and curvature responses to be characterized with high spatial and temporal resolution, we demonstrated that this movement is organ autonomous and mediated by auxin. Changes in the growth curvature of the pedicel are accompanied by an auxin gradient and dorsiventral asymmetry in auxin-dependent transcriptional responses; application of auxin transport inhibitors influenced the normal movements of this organ. Silencing the expression of the circadian clock component ZEITLUPE (ZTL) arrested changes in the growth curvature of the pedicel and altered auxin signalling and responses. IAA19-like, an Aux/IAA transcriptional repressor that is circadian regulated and differentially expressed between opposite tissues of the pedicel, and therefore possibly involved in the regulation of changes in organ curvature, physically interacted with ZTL. Together, these results are consistent with a direct link between the circadian clock and the auxin signalling pathway in the regulation of this rhythmic floral movement.
Collapse
Affiliation(s)
- Lucas Cortés Llorca
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Felipe Yon
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Christelle A M Robert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 007745, Germany
| |
Collapse
|
22
|
Falciatore A, Jaubert M, Bouly JP, Bailleul B, Mock T. Diatom Molecular Research Comes of Age: Model Species for Studying Phytoplankton Biology and Diversity. THE PLANT CELL 2020; 32:547-572. [PMID: 31852772 PMCID: PMC7054031 DOI: 10.1105/tpc.19.00158] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/18/2019] [Accepted: 12/13/2019] [Indexed: 05/08/2023]
Abstract
Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.
Collapse
Affiliation(s)
- Angela Falciatore
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Marianne Jaubert
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Jean-Pierre Bouly
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
- Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, UMR7238 Sorbonne Université, 75005 Paris, France
| | - Benjamin Bailleul
- Institut de Biologie Physico-Chimique, Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141 Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, 75005 Paris, France
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
23
|
Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Chow BY. Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation. Photochem Photobiol Sci 2020; 19:353-361. [PMID: 32048687 PMCID: PMC7141788 DOI: 10.1039/c9pp00434c] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/03/2020] [Indexed: 01/01/2023]
Abstract
We report the construction of a single-component optogenetic Rac1 (opto-Rac1) to control actin polymerization by dynamic membrane recruitment. Opto-Rac1 is a fusion of wildtype human Rac1 small GTPase to the C-terminal region of BcLOV4, a LOV (light-oxygen-voltage) photoreceptor that rapidly binds the plasma membrane upon blue-light activation via a direct electrostatic interaction with anionic membrane phospholipids. Translocation of the fused wildtype Rac1 effector permits its activation by GEFs (guanine nucleotide exchange factors) and consequent actin polymerization and lamellipodia formation, unlike in existing single-chain systems that operate by allosteric photo-switching of constitutively active Rac1 or the heterodimerization-based (i.e. two-component) membrane recruitment of a Rac1-activating GEF. Opto-Rac1 induction of lamellipodia formation was spatially restricted to the patterned illumination field and was efficient, requiring sparse stimulation duty ratios of ∼1-2% (at the sensitivity threshold for flavin photocycling) to cause significant changes in cell morphology. This work exemplifies how the discovery of LOV proteins of distinct signal transmission modes can beget new classes of optogenetic tools for controlling cellular function.
Collapse
Affiliation(s)
- Erin E Berlew
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Ivan A Kuznetsov
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Keisuke Yamada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 19104, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Vandenbrink JP, Herranz R, Poehlman WL, Alex Feltus F, Villacampa A, Ciska M, Javier Medina F, Kiss JZ. RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. AMERICAN JOURNAL OF BOTANY 2019; 106:1466-1476. [PMID: 31709515 DOI: 10.1002/ajb2.1384] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/17/2019] [Indexed: 05/04/2023]
Abstract
PREMISE Plants synthesize information from multiple environmental stimuli when determining their direction of growth. Gravity, being ubiquitous on Earth, plays a major role in determining the direction of growth and overall architecture of the plant. Here, we utilized the microgravity environment on board the International Space Station (ISS) to identify genes involved influencing growth and development of phototropically stimulated seedlings of Arabidopsis thaliana. METHODS Seedlings were grown on the ISS, and RNA was extracted from 7 samples (pools of 10-15 plants) grown in microgravity (μg) or Earth gravity conditions (1-g). Transcriptomic analyses via RNA sequencing (RNA-seq) of differential gene expression was performed using the HISAT2-Stringtie-DESeq2 RNASeq pipeline. Differentially expressed genes were further characterized by using Pathway Analysis and enrichment for Gene Ontology classifications. RESULTS For 296 genes that were found significantly differentially expressed between plants in microgravity compared to 1-g controls, Pathway Analysis identified eight molecular pathways that were significantly affected by reduced gravity conditions. Specifically, light-associated pathways (e.g., photosynthesis-antenna proteins, photosynthesis, porphyrin, and chlorophyll metabolism) were significantly downregulated in microgravity. CONCLUSIONS Gene expression in A. thaliana seedlings grown in microgravity was significantly altered compared to that of the 1-g control. Understanding how plants grow in conditions of microgravity not only aids in our understanding of how plants grow and respond to the environment but will also help to efficiently grow plants during long-range space missions.
Collapse
Affiliation(s)
- Joshua P Vandenbrink
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, 71272, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - William L Poehlman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - F Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | | | - Malgorzata Ciska
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Madrid, E28040, Spain
| | - John Z Kiss
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| |
Collapse
|
25
|
Suzuki H, Koshiba T, Fujita C, Yamauchi Y, Kimura T, Isobe T, Sakai T, Taoka M, Okamoto T. Low-fluence blue light-induced phosphorylation of Zmphot1 mediates the first positive phototropism. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5929-5941. [PMID: 31376280 PMCID: PMC6812725 DOI: 10.1093/jxb/erz344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/25/2019] [Indexed: 05/05/2023]
Abstract
Phototropin1 (phot1) perceives low- to high-fluence blue light stimuli and mediates both the first and second positive phototropisms. High-fluence blue light is known to induce autophosphorylation of phot1, leading to the second positive phototropism. However, the phosphorylation status of phot1 by low-fluence blue light that induces the first positive phototropism had not been observed. Here, we conducted a phosphoproteomic analysis of maize coleoptiles to investigate the fluence-dependent phosphorylation status of Zmphot1. High-fluence blue light induced phosphorylation of Zmphot1 at several sites. Notably, low-fluence blue light significantly increased the phosphorylation level of Ser291 in Zmphot1. Furthermore, Ser291-phosphorylated and Ser369Ser376-diphosphorylated peptides were found to be more abundant in the low-fluence blue light-irradiated sides than in the shaded sides of coleoptiles. The roles of these phosphorylation events in phototropism were explored by heterologous expression of ZmPHOT1 in the Arabidopsis thaliana phot1phot2 mutant. The first positive phototropism was restored in wild-type ZmPHOT1-expressing plants; however, plants expressing S291A-ZmPHOT1 or S369AS376A-ZmPHOT1 showed significantly reduced complementation rates. All transgenic plants tested in this study exhibited a normal second positive phototropism. These findings provide the first indication that low-fluence blue light induces phosphorylation of Zmphot1 and that this induced phosphorylation is crucial for the first positive phototropism.
Collapse
Affiliation(s)
- Hiromi Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, Chiyoda-ku, Tokyo, Japan
- Correspondence: or
| | - Tomokazu Koshiba
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Chiharu Fujita
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Taro Kimura
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, Chiyoda-ku, Tokyo, Japan
- Graduate School of Science and Technology, Niigata University, Niigata-shi, Niigata, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Niigata-shi, Niigata, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
- Correspondence: or
| |
Collapse
|
26
|
Vanhaelewyn L, Viczián A, Prinsen E, Bernula P, Serrano AM, Arana MV, Ballaré CL, Nagy F, Van Der Straeten D, Vandenbussche F. Differential UVR8 Signal across the Stem Controls UV-B-Induced Inflorescence Phototropism. THE PLANT CELL 2019; 31:2070-2088. [PMID: 31289115 PMCID: PMC6751110 DOI: 10.1105/tpc.18.00929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/10/2023]
Abstract
In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Alejandro Miguel Serrano
- IADIZA, Av. Ruiz Leal s/n Parque Gral. San Martín, Casilla de Correo 507, Mendoza, 5500, Argentina (CONICET)
| | - Maria Veronica Arana
- Instituto de Investigaciones Forestales y Agropecuarias Bariloche, (CONICET-INTA), Modesta Victoria 4450, San Carlos de Bariloche Rio Negro R8403DVZ, Argentina
| | - Carlos L Ballaré
- IFEVA Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
- IIBIO-INTECH, Universidad Nacional de San Martín, B1650HMP, Buenos Aires, Argentina
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári körút 62, H-6726 Szeged, Hungary
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
27
|
Heinrich MK, von Mammen S, Hofstadler DN, Wahby M, Zahadat P, Skrzypczak T, Soorati MD, Krela R, Kwiatkowski W, Schmickl T, Ayres P, Stoy K, Hamann H. Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics. J R Soc Interface 2019; 16:20190238. [PMID: 31362616 PMCID: PMC6685033 DOI: 10.1098/rsif.2019.0238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.
Collapse
Affiliation(s)
- Mary Katherine Heinrich
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | - Sebastian von Mammen
- Human–Computer Interaction, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | | - Mostafa Wahby
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| | - Payam Zahadat
- Institute of Biology, Artificial Life Lab, University of Graz, Graz, Austria
- Department of Computer Science, IT University of Copenhagen, Kobenhavn, Denmark
| | - Tomasz Skrzypczak
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | | | - Rafał Krela
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wojciech Kwiatkowski
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznan, Poland
| | - Thomas Schmickl
- Institute of Biology, Artificial Life Lab, University of Graz, Graz, Austria
| | - Phil Ayres
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | - Kasper Stoy
- Department of Computer Science, IT University of Copenhagen, Kobenhavn, Denmark
| | - Heiko Hamann
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Dias LP, Pedrini N, Braga GUL, Ferreira PC, Pupin B, Araújo CAS, Corrochano LM, Rangel DEN. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Fungal Biol 2019; 124:263-272. [PMID: 32389288 DOI: 10.1016/j.funbio.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 01/25/2023]
Abstract
Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.
Collapse
Affiliation(s)
- Luciana P Dias
- Escola de Engenharia de Lorena, Universidade de São Paulo (EEL/USP), Lorena, SP, 12602-810, Brazil
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de La Plata), Facultad de Ciencias Médicas, La Plata, 1900, Argentina
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paulo C Ferreira
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | - Breno Pupin
- Universidade do Vale do Paraíba, São José dos Campos, SP, 12244-000, Brazil
| | | | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, 41080, Seville, Spain
| | | |
Collapse
|
29
|
An Experimental System for Examining Phototropic Response of Gametophytic Shoots in the Moss Physcomitrella patens. Methods Mol Biol 2019. [PMID: 30694466 DOI: 10.1007/978-1-4939-9015-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Shoot phototropism benefits growth and metabolism in land plants by enabling them to position their photosynthetic organs in favorable light conditions. Nonvascular land plants, like the ancestors of modern mosses, are believed to have been among the first plants to occupy the land. To understand the evolutional history of shoot phototropism in land plants, we have established a system for experimentally studying phototropism in gametophores of the moss Physcomitrella patens. Here we will describe the key points in our system, including obtaining etiolated gametophores, the light sources used for inducing bending, and the methods for evaluation of phototropic responses.
Collapse
|
30
|
Herranz R, Vandenbrink JP, Villacampa A, Manzano A, Poehlman WL, Feltus FA, Kiss JZ, Medina FJ. RNAseq Analysis of the Response of Arabidopsis thaliana to Fractional Gravity Under Blue-Light Stimulation During Spaceflight. FRONTIERS IN PLANT SCIENCE 2019; 10:1529. [PMID: 31850027 PMCID: PMC6889863 DOI: 10.3389/fpls.2019.01529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
Introduction: Traveling to nearby extraterrestrial objects having a reduced gravity level (partial gravity) compared to Earth's gravity is becoming a realistic objective for space agencies. The use of plants as part of life support systems will require a better understanding of the interactions among plant growth responses including tropisms, under partial gravity conditions. Materials and Methods: Here, we present results from our latest space experiments on the ISS, in which seeds of Arabidopsis thaliana were germinated, and seedlings grew for six days under different gravity levels, namely micro-g, several intermediate partial-g levels, and 1g, and were subjected to irradiation with blue light for the last 48 h. RNA was extracted from 20 samples for subsequent RNAseq analysis. Transcriptomic analysis was performed using the HISAT2-Stringtie-DESeq pipeline. Differentially expressed genes were further characterized for global responses using the GEDI tool, gene networks and for Gene Ontology (GO) enrichment. Results: Differential gene expression analysis revealed only one differentially expressed gene (AT4G21560, VPS28-1 a vacuolar protein) across all gravity conditions using FDR correction (q < 0.05). However, the same 14 genes appeared differentially expressed when comparing either micro-g, low-g level (< 0.1g) or the Moon g-level with 1g control conditions. Apart from these 14-shared genes, the number of differentially expressed genes was similar in microgravity and the Moon g-level and increased in the intermediate g-level (< 0.1g), but it was then progressively reduced as the difference with the Earth gravity became smaller. The GO groups were differentially affected at each g-level: light and photosynthesis GO under microgravity, genes belonged to general stress, chemical and hormone responses under low-g, and a response related to cell wall and membrane structure and function under the Moon g-level. Discussion: Transcriptional analyses of plants under blue light stimulation suggests that root blue-light phototropism may be enough to reduce the gravitational stress response caused by the lack of gravitropism in microgravity. Competition among tropisms induces an intense perturbation at the micro-g level, which shows an extensive stress response that is progressively attenuated. Our results show a major effect on cell wall/membrane remodeling (detected at the interval from the Moon to Mars gravity), which can be potentially related to graviresistance mechanisms.
Collapse
Affiliation(s)
- Raúl Herranz
- Plant Microgravity Lab, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- *Correspondence: Raúl Herranz,
| | - Joshua P. Vandenbrink
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, United States
| | - Alicia Villacampa
- Plant Microgravity Lab, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Aránzazu Manzano
- Plant Microgravity Lab, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - William L. Poehlman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Frank Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - John Z. Kiss
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | | |
Collapse
|
31
|
Muthert LWF, Izzo LG, van Zanten M, Aronne G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. FRONTIERS IN PLANT SCIENCE 2019; 10:1807. [PMID: 32153599 PMCID: PMC7047216 DOI: 10.3389/fpls.2019.01807] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.
Collapse
Affiliation(s)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Kutschera U, Wang ZY. Light and plant development: the discovery of phototropins by Winslow R. Briggs (1928-2019). PLANT SIGNALING & BEHAVIOR 2019; 14:e1652521. [PMID: 31434535 PMCID: PMC6768212 DOI: 10.1080/15592324.2019.1652521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The American biologist Winslow Russel Briggs (1928-2019) was a global leader in plant physiology, genetics and photobiology. In this contribution, we try to share our knowledge of the remarkable career of this outstanding scientist. After earning his PhD at Harvard (Cambridge, Massachusetts), he started his independent research program at Stanford University (California). Among many major contributions was his elegant experiment that conclusively demonstrated the role of auxin transport in the phototropic bending response of grass coleoptiles. During subsequent years as Professor of biology at Harvard University, Briggs focused on phytochrome and photomorphogenesis. In 1973, he re-located to Stanford to become Director of the Department of Plant Biology, Carnegie Institution for Science, and faculty member in the Biology Department at Stanford University. After his retirement (1993), he continued his research on "light and plant development" as an emeritus at Carnegie until the day of his death on February 11, 2019. Through his long research career, Briggs stayed at the cutting edge by re-inventing himself from a plant physiologist, to biochemist, geneticist, and molecular biologist. He made numerous discoveries, including the LOV-domain photoreceptor phototropin. Winslow Briggs, who was also a naturalist and gifted pianist, inspired and promoted the work of generations of young scientists - as mentor, colleague and friend.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- CONTACT Ulrich Kutschera
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Zhi-Yong Wang
| |
Collapse
|
33
|
Li J, Chen Q, Bao B, Liu M, Bao M, Liu J, Mu J. RNA-seq analysis reveals the significant effects of different light conditions on oil degradation by marine Chlorella vulgaris. MARINE POLLUTION BULLETIN 2018; 137:267-276. [PMID: 30503435 DOI: 10.1016/j.marpolbul.2018.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/30/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Marine Chlorella vulgaris, an efficient hydrocarbon-degrading organism, is easily affected by light. In this study, we investigated the direct effects of different light conditions on crude oil degradation by C. vulgaris and its crude enzyme. Under 12 h illumination, the crude enzyme improved hydrocarbon removal by 39.36%, whereas the addition of the enzyme and C. vulgaris increased the degradation rate by 121.73%. Conversely, the addition of enzyme under heterotrophic condition was negatively related to oil degradation by C. vulgaris, and the degradation rate decreased from 74.32% to 48.65% and further reduced by 34.54%. The results of RNA sequencing analysis suggested that hydrocarbons removal was attributed to C. vulgaris metabolism in heterotrophic physiological state. While enhanced removal efficiency of hydrocarbons was achieved in mixotrophic physiological state due to the coupling of C. vulgaris metabolism with photocatalytic oxidation. Functional enzymes played key roles in photocatalysis and biodegradation processes.
Collapse
Affiliation(s)
- Jingjing Li
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qingguo Chen
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Bo Bao
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mei Liu
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Junzhi Liu
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jun Mu
- College of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
34
|
Wahby M, Heinrich MK, Hofstadler DN, Neufeld E, Kuksin I, Zahadat P, Schmickl T, Ayres P, Hamann H. Autonomously shaping natural climbing plants: a bio-hybrid approach. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180296. [PMID: 30473806 PMCID: PMC6227980 DOI: 10.1098/rsos.180296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
Plant growth is a self-organized process incorporating distributed sensing, internal communication and morphology dynamics. We develop a distributed mechatronic system that autonomously interacts with natural climbing plants, steering their behaviours to grow user-defined shapes and patterns. Investigating this bio-hybrid system paves the way towards the development of living adaptive structures and grown building components. In this new application domain, challenges include sensing, actuation and the combination of engineering methods and natural plants in the experimental set-up. By triggering behavioural responses in the plants through light spectra stimuli, we use static mechatronic nodes to grow climbing plants in a user-defined pattern at a two-dimensional plane. The experiments show successful growth over periods up to eight weeks. Results of the stimuli-guided experiments are substantially different from the control experiments. Key limitations are the number of repetitions performed and the scale of the systems tested. Recommended future research would investigate the use of similar bio-hybrids to connect construction elements and grow shapes of larger size.
Collapse
Affiliation(s)
- Mostafa Wahby
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| | - Mary Katherine Heinrich
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | | | - Ewald Neufeld
- Department of Computer Science, Paderborn University, Paderborn, Germany
| | | | - Payam Zahadat
- Department of Zoology, Artificial Life Lab, Karl-Franzens University, Graz, Austria
| | - Thomas Schmickl
- Department of Zoology, Artificial Life Lab, Karl-Franzens University, Graz, Austria
| | - Phil Ayres
- School of Architecture, Centre for IT and Architecture, Royal Danish Academy, Copenhagen, Denmark
| | - Heiko Hamann
- Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
| |
Collapse
|
35
|
Kutschera U, Niklas KJ. Julius von Sachs' forgotten 1897-article: sexuality and gender in plants vs. humans. PLANT SIGNALING & BEHAVIOR 2018; 13:e1489671. [PMID: 29993309 PMCID: PMC6128683 DOI: 10.1080/15592324.2018.1489671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 05/21/2023]
Abstract
One hundred and fifty years ago, Julius von Sachs' (1832-1897) monumental Lehrbuch der Botanik (Textbook of Botany) was published, which signified the origin of physiological botany and its integration with evolutionary biology. Sachs regarded the physiology of photoautotrophic organisms as a sub-discipline of botany, and introduced a Darwinian perspective into the emerging plant sciences. Here, we summarize Sachs' achievements and his description of sexuality with respect to the cellular basis of plant and animal biparental reproduction. We reproduce and analyze a forgotten paper (Gutachten) of Sachs dealing with Die Akademische Frau (The Academic Woman), published during the year of his death on the question concerning gender equality in humans. Finally, we summarize his endorsement of woman's rights to pursue academic studies in the natural sciences at the University level, and conclude that Sachs was a humanist as well as a great scientist.
Collapse
Affiliation(s)
| | - Karl J. Niklas
- Plant Science Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
36
|
Schumacher P, Demarsy E, Waridel P, Petrolati LA, Trevisan M, Fankhauser C. A phosphorylation switch turns a positive regulator of phototropism into an inhibitor of the process. Nat Commun 2018; 9:2403. [PMID: 29921904 PMCID: PMC6008296 DOI: 10.1038/s41467-018-04752-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Phototropins are light-activated protein kinases, which contribute to photosynthesis optimization both through enhancement of photon absorption when light is limiting and avoidance responses in high light. This duality is in part endowed by the presence of phototropins with different photosensitivity (phot1 and phot2). Here we show that phot1, which senses low light to promote positive phototropism (growth towards the light), also limits the response in high light. This response depends in part on phot1-mediated phosphorylation of Phytochrome Kinase Substrate 4 (PKS4). This light-regulated phosphorylation switch changes PKS4 from a phototropism enhancer in low light to a factor limiting the process in high light. In such conditions phot1 and PKS4 phosphorylation prevent phototropic responses to shallow light gradients and limit phototropism in a natural high light environment. Hence, by modifying PKS4 activity in high light the phot1-PKS4 regulon enables appropriate physiological adaptations over a range of light intensities. Light conditions modify plant growth and development via photoreceptors such as phototropins. Here the authors show that while phot1 promotes phototropism under low light, it can act to suppress phototropism in high-light environments through phosphorylation of PKS4.
Collapse
Affiliation(s)
- Paolo Schumacher
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Emilie Demarsy
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland.,Department of Botany and Plant Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Laure Allenbach Petrolati
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Martine Trevisan
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
37
|
Haga K, Frank L, Kimura T, Schwechheimer C, Sakai T. Roles of AGCVIII Kinases in the Hypocotyl Phototropism of Arabidopsis Seedlings. PLANT & CELL PHYSIOLOGY 2018; 59:1060-1071. [PMID: 29490064 DOI: 10.1093/pcp/pcy048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Regulation of protein function by phosphorylation and dephosphorylation is an important mechanism in many cellular events. The phototropin blue-light photoreceptors, plant-specific AGCVIII kinases, are essential for phototropic responses. Members of the D6 PROTEIN KINASE (D6PK) family, representing a subfamily of the AGCVIII kinases, also contribute to phototropic responses, suggesting that possibly further AGCVIII kinases may potentially control phototropism. The present study investigates the functional roles of Arabidopsis (Arabidopsis thaliana) AGCVIII kinases in hypocotyl phototropism. We demonstrate that D6PK family kinases are not only required for the second but also for the first positive phototropism. In addition, we find that a previously uncharacterized AGCVIII protein, AGC1-12, is involved in the first positive phototropism and gravitropism. AGC1-12 phosphorylates serine residues in the cytoplasmic loop of PIN-FORMED 1 (PIN1) and shares phosphosite preferences with D6PK. Our work strongly suggests that the D6PK family and AGC1-12 are critical components for both hypocotyl phototropism and gravitropism, and that these kinases control tropic responses mainly through regulation of PIN-mediated auxin transport by protein phosphorylation.
Collapse
Affiliation(s)
- Ken Haga
- Department of Human Science and Common Education, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-cho, Minamisaitama-gun, Saitama, 345-8501 Japan
| | - Lena Frank
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, D-85354 Freising-Weihenstephan, Germany
| | - Taro Kimura
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
- Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083 Japan
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, Emil-Ramann-Strasse 8, D-85354 Freising-Weihenstephan, Germany
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| |
Collapse
|
38
|
Kutschera U, Niklas KJ. Julius Sachs (1868): The father of plant physiology. AMERICAN JOURNAL OF BOTANY 2018; 105:656-666. [PMID: 29772073 DOI: 10.1002/ajb2.1078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 05/10/2023]
Abstract
The year 2018 marks the 150th anniversary of the first publication of Julius von Sachs' (1832-1897) Lehrbuch der Botanik (Textbook of Botany), which provided a comprehensive summary of what was then known about the plant sciences. Three years earlier, in 1865, Sachs produced the equally impressive Handbuch der Experimental-Physiologie der Pflanzen (Handbook of Experimental Plant Physiology), which summarized the state of knowledge in all aspects of the discipline known today as plant physiology. Both of these books provided numerous insights based on Sachs' seminal experiments. By virtue of a reliance on detailed empirical observation and the rigorous application of chemical and physical principles, it is fair to say that the publication of these two monumental works marked the beginning of what can be called "modern-day" plant science. Moreover, Sachs' Lehrbuch der Botanik prefigured the ascendance of plant molecular biology and the systems biology of photoautotrophic organisms. Regrettably, many of the insights of this great scientist have been forgotten by the generations who followed. It is only fitting, therefore, that the anniversary of the publication of the Lehrbuch der Botanik and the career of "the father of plant physiology" should be honored and reviewed, particularly because Sachs established the physiology of green organisms as an integral branch of botany and incorporated a Darwinian perspective into plant biology. Here we highlight key insights, with particular emphasis on Sachs' detailed discussion of sexual reproduction at the cellular level and his endorsement of Darwinian evolution.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
| | - Karl J Niklas
- Plant Science Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
39
|
Yokawa K, Baluška F. Sense of space: Tactile sense for exploratory behavior of roots. Commun Integr Biol 2018; 11:1-5. [PMID: 30083280 PMCID: PMC6067838 DOI: 10.1080/19420889.2018.1440881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 11/28/2022] Open
Abstract
In soil, plant roots grow in heterogeneous environments. Plant roots are always facing the difficulty of searching effectively the patchy natural resources, such as water, oxygen, ions and mineral nutrition. Numerous studies reported that root apex navigation enables roots to explore complex environments. In this short communication, we characterize how growing maize roots explore narrow space available with two experimental settings: tactile exploration of narrow glass tube and circumnutation in free space. We also discuss root growth in the soil in terms of foraging behavior guided by the sensory root apex.
Collapse
Affiliation(s)
- Ken Yokawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.,IZMB, University of Bonn, Bonn, Germany
| | | |
Collapse
|
40
|
Matthes MS, Robil JM, Tran T, Kimble A, McSteen P. Increased transpiration is correlated with reduced boron deficiency symptoms in the maize tassel-less1 mutant. PHYSIOLOGIA PLANTARUM 2018; 163:344-355. [PMID: 29577325 DOI: 10.1111/ppl.12717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/09/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Loss-of-function mutations of the tassel-less1 (tls1) gene in maize, which is the co-ortholog of the Arabidopsis boron (B) importer NIP5;1, leads to the loss of reproductive structures (tassels and ears). The tls1 phenotypes can be rescued by B supplementation in the field and in the greenhouse. As the rescue with B supplementation is variable in the field, we investigated additional abiotic factors, potentially causing this variation in controlled greenhouse conditions. We found that the B-dependent rescue of the tls1 mutant tassel phenotype was enhanced when plants were grown with a mix of high pressure sodium (HPS) and metal halide (MH) lamps. Normal and tls1 plants had a significant increase in transpiration and increased B content in the leaves in the greenhouse with the addition of MH lamps. Our findings imply that B transport to the shoot is enhanced through increased transpiration, which suggests that the xylem transpiration stream provides a significant supply of B in maize.
Collapse
Affiliation(s)
- Michaela S Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Thu Tran
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 116 Tucker Hall, Columbia, MO 65211, USA
| | - Ashten Kimble
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, and Missouri Maize Center, University of Missouri, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| |
Collapse
|
41
|
Lin C, Sauter M. Control of Adventitious Root Architecture in Rice by Darkness, Light, and Gravity. PLANT PHYSIOLOGY 2018; 176:1352-1364. [PMID: 29242375 PMCID: PMC5813538 DOI: 10.1104/pp.17.01540] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/10/2017] [Indexed: 05/17/2023]
Abstract
Rice (Oryza sativa) is a semiaquatic plant that is well adapted to partial flooding. Rice stems develop adventitious root (AR) primordia at each node that slowly mature but emerge only when the plant gets flooded, leading to the formation of a whole new secondary root system upon flooding. AR growth is induced by ethylene that accumulates in submerged plant tissues due to its lowered diffusion rate in water. Here, we report that the architecture of the secondary root system in flooded rice plants is controlled not only by altered gas diffusion but also by gravity and light. While ethylene promotes the emergence and growth of ARs, gravity and light determine their gravitropic setpoint angle (i.e. the deviation of growth direction relative to vertical). ARs grow upward at about 120° in the dark and downward at 54° in the light. The upward growth direction is conserved in indica and japonica rice varieties, suggestive of a conserved trait in rice. Experiments with a klinostat and with inverted stem orientation revealed that gravity promotes upward growth by about 10°. Red, far-red, and blue light lead to negative phototropism in a dose-dependent manner, with blue light being most effective, indicating that phytochrome and blue light signaling control AR system architecture. The cpt1 (coleoptile phototropism1) mutant, which lacks one of the phototropin-interacting CPT proteins, shows reduced sensitivity to blue light. Hence, the gravitropic setpoint angle of rice ARs is controlled by genetic and environmental factors that likely balance the need for oxygen supply (upward growth) with avoidance of root desiccation (downward growth).
Collapse
Affiliation(s)
- Chen Lin
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
42
|
Khan AHA, Ayaz M, Arshad M, Yousaf S, Khan MA, Anees M, Sultan A, Nawaz I, Iqbal M. Biogeochemical Cycle, Occurrence and Biological Treatments of Polycyclic Aromatic Hydrocarbons (PAHs). IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2018. [DOI: 10.1007/s40995-017-0393-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
|
44
|
|
45
|
Eysholdt-Derzsó E, Sauter M. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. PLANT PHYSIOLOGY 2017; 175:412-423. [PMID: 28698356 PMCID: PMC5580755 DOI: 10.1104/pp.17.00555] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/07/2017] [Indexed: 05/02/2023]
Abstract
When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip.
Collapse
Affiliation(s)
- Emese Eysholdt-Derzsó
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
46
|
Huang WY, Wu YC, Pu HY, Wang Y, Jang GJ, Wu SH. Plant dual-specificity tyrosine phosphorylation-regulated kinase optimizes light-regulated growth and development in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1735-1747. [PMID: 28437590 DOI: 10.1111/pce.12977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Light controls vegetative and reproductive development of plants. For a plant, sensing the light input properly ensures coordination with the ever-changing environment. Previously, we found that LIGHT-REGULATED WD1 (LWD1) and LWD2 regulate the circadian clock and photoperiodic flowering. Here, we identified Arabidopsis YET ANOTHER KINASE1 (AtYAK1), an evolutionarily conserved protein and a member of dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs), as an interacting protein of LWDs. Our study revealed that AtYAK1 is an important regulator for various light responses, including the circadian clock, photomorphogenesis and reproductive development. AtYAK1 could antagonize the function of LWDs in regulating the circadian clock and photoperiodic flowering. By examining phenotypes of atyak1, we found that AtYAK1 regulated light-induced period-length shortening and photomorphogenic development. Moreover, AtYAK1 mediated plant fertility especially under inferior light conditions including low light and short-day length. This study discloses a new regulator connecting environmental light to plant growth.
Collapse
Affiliation(s)
- Wen-Yu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Yi-Chen Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Yi Pu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Geng-Jen Jang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology and Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
47
|
Skrzypczak T, Krela R, Kwiatkowski W, Wadurkar S, Smoczyńska A, Wojtaszek P. Plant Science View on Biohybrid Development. Front Bioeng Biotechnol 2017; 5:46. [PMID: 28856135 PMCID: PMC5558049 DOI: 10.3389/fbioe.2017.00046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 01/07/2023] Open
Abstract
Biohybrid consists of a living organism or cell and at least one engineered component. Designing robot-plant biohybrids is a great challenge: it requires interdisciplinary reconsideration of capabilities intimate specific to the biology of plants. Envisioned advances should improve agricultural/horticultural/social practice and could open new directions in utilization of plants by humans. Proper biohybrid cooperation depends upon effective communication. During evolution, plants developed many ways to communicate with each other, with animals, and with microorganisms. The most notable examples are: the use of phytohormones, rapid long-distance signaling, gravity, and light perception. These processes can now be intentionally re-shaped to establish plant-robot communication. In this article, we focus on plants physiological and molecular processes that could be used in bio-hybrids. We show phototropism and biomechanics as promising ways of effective communication, resulting in an alteration in plant architecture, and discuss the specifics of plants anatomy, physiology and development with regards to the bio-hybrids. Moreover, we discuss ways how robots could influence plants growth and development and present aims, ideas, and realized projects of plant-robot biohybrids.
Collapse
Affiliation(s)
- Tomasz Skrzypczak
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Rafał Krela
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Wojciech Kwiatkowski
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Shraddha Wadurkar
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Aleksandra Smoczyńska
- Faculty of Biology, Department of Gene Expression, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Przemysław Wojtaszek
- Faculty of Biology, Department of Molecular and Cellular Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
48
|
Deng Z, Wang ZY, Kutschera U. Seedling development in maize cv. B73 and blue light-mediated proteomic changes in the tip vs. stem of the coleoptile. PROTOPLASMA 2017; 254:1317-1322. [PMID: 27631339 PMCID: PMC5885752 DOI: 10.1007/s00709-016-1023-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/05/2016] [Indexed: 05/07/2023]
Abstract
In 2009, the draft genome of the reference inbred line of maize (Zea mays L. spp. mays cv. B73) was published so that, using this specific corn variety, molecular analyses of physiological processes became possible. However, the morphology and developmental patterns of B73 maize, compared with that of the more frequently used hybrid varieties, have not yet been analyzed. Here, we describe organ development in seedlings of B73 maize and in those of six other hybrid cultivars, and document significant morphological as well as quantitative differences between these varieties of Z. mays. In a second set of experiments, we used etiolated seedlings of B73 maize to analyze the effect of blue light (BL) on the patterns of proteins in the tip vs. growing region of this sheath-like organ. By using two-dimensional difference gel electrophoresis (2D DIGE), coupled with tandem mass spectrometry, we detected, in the microsomal fraction of maize coleoptile tips, rapid changes in the abundance of protein spots of maize phototropin 1 and several metabolic enzymes. In the sub-apical (growing) region of the coleoptile, proteomic changes were less pronounced. These results suggest that the tip of the coleoptile of B73 maize may serve as a unique model system for dissecting BL responses in a light-sensitive plant organ of known function.
Collapse
Affiliation(s)
- Zhiping Deng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Ulrich Kutschera
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA.
| |
Collapse
|
49
|
Bai SN. Reconsideration of Plant Morphological Traits: From a Structure-Based Perspective to a Function-Based Evolutionary Perspective. FRONTIERS IN PLANT SCIENCE 2017; 8:345. [PMID: 28360919 PMCID: PMC5350141 DOI: 10.3389/fpls.2017.00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/27/2017] [Indexed: 05/03/2023]
Abstract
This opinion article proposes a novel alignment of traits in plant morphogenesis from a function-based evolutionary perspective. As a member species of the ecosystem on Earth, we human beings view our neighbor organisms from our own sensing system. We tend to distinguish forms and structures (i.e., "morphological traits") mainly through vision. Traditionally, a plant was considered to be consisted of three parts, i.e., the shoot, the leaves, and the root. Based on such a "structure-based perspective," evolutionary analyses or comparisons across species were made on particular parts or their derived structures. So far no conceptual framework has been established to incorporate the morphological traits of all three land plant phyta, i.e., bryophyta, pteridophyta and spermatophyta, for evolutionary developmental analysis. Using the tenets of the recently proposed concept of sexual reproduction cycle, the major morphological traits of land plants can be aligned into five categories from a function-based evolutionary perspective. From this perspective, and the resulting alignment, a new conceptual framework emerges, called "Plant Morphogenesis 123." This framework views a plant as a colony of integrated plant developmental units that are each produced via one life cycle. This view provided an alternative perspective for evolutionary developmental investigation in plants.
Collapse
|
50
|
Vandenbrink JP, Herranz R, Medina FJ, Edelmann RE, Kiss JZ. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. PLANTA 2016; 244:1201-1215. [PMID: 27507239 PMCID: PMC5748516 DOI: 10.1007/s00425-016-2581-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/02/2016] [Indexed: 05/21/2023]
Abstract
Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.
Collapse
Affiliation(s)
- Joshua P Vandenbrink
- Department of Biology, University of Mississippi, University, Oxford, MS, 38677, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | - John Z Kiss
- Department of Biology, University of Mississippi, University, Oxford, MS, 38677, USA.
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|