1
|
Bose T, Mahomed TG, Mbatha KC, Joubert JC, Hammerbacher A. Tissue ontogeny and chemical composition influence bacterial biodiversity in the wood and shoot tip of Populus nigra. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39356199 DOI: 10.1111/plb.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Plant-microbe interactions significantly influence plant growth dynamics and adaptability. This study explores the impact of metabolites on microbial biodiversity in shoot tips and wood of Populus nigra under greenhouse conditions, using high-throughput sequencing and metabolite profiling. Branches from P. nigra were harvested, rooted, and transplanted into pots for growth. After 3 months, tissue samples from shoot tips and wood were collected, and metabolites extracted and analysed using GC-MS and LC-MS. Genomic DNA was extracted and subjected to high-throughput sequencing for bacterial biodiversity profiling. Both datasets were analysed using bioinformatic and statistical pipelines. Metabolite profiling indicated that shoot tips had a higher relative abundance of primary and secondary metabolites, including sugars, fatty acids, organic acids, phenolic acid derivatives and salicinoids, while wood was enriched in flavonoids. Bacterial biodiversity also differed significantly between these tissues, with Clostridiales, Bacteroidales and Bacillales dominating in shoot tips, associated with rapid growth and anaerobic fermentation, while wood tissues were characterized by diazotrophs from Rhizobiales, Sphingomonadales and Frankiales. PCoA clustering confirmed tissue-specific microbial differences. Functional analysis revealed an enrichment of fundamental cellular processes in shoot tips, while wood exhibited pathways related to degradation and mortality. Metabolite profiling revealed significant variations in primary and secondary metabolites, highlighting their influence on microbial biodiversity across plant tissues. The dominance of specific bacterial orders and distinct functional pathways in each tissue suggests a tailored microbial response to the unique environments of shoot tips and wood.
Collapse
Affiliation(s)
- T Bose
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - T G Mahomed
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - K C Mbatha
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J C Joubert
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
LeBoldus JM, Lynch SC, Newhouse AE, Søndreli KL, Newcombe G, Bennett PI, Muchero W, Chen JG, Busby PE, Gordon M, Liang H. Biotechnology and Genomic Approaches to Mitigating Disease Impacts on Forest Health. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:309-335. [PMID: 39251210 DOI: 10.1146/annurev-phyto-021622-114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Outbreaks of insects and diseases are part of the natural disturbance regime of all forests. However, introduced pathogens have had outsized impacts on many dominant forest tree species over the past century. Mitigating these impacts and restoring these species are dilemmas of the modern era. Here, we review the ecological and economic impact of introduced pathogens, focusing on examples in North America. We then synthesize the successes and challenges of past biotechnological approaches and discuss the integration of genomics and biotechnology to help mitigate the effects of past and future pathogen invasions. These questions are considered in the context of the transgenic American chestnut, which is the most comprehensive example to date of how biotechnological tools have been used to address the impacts of introduced pathogens on naïve forest ecosystems.
Collapse
Affiliation(s)
- Jared M LeBoldus
- Department of Botany and Plant Pathology and Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, USA;
| | - Shannon C Lynch
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Andrew E Newhouse
- Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Patrick I Bennett
- Rocky Mountain Research Station, United States Forest Service, Moscow, Idaho, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Michael Gordon
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Haiying Liang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
3
|
Liu Y, Zhou Q, Wu D, Liu C, Wu X, Wang Z, Wang H, Lu Q. Pathogenicity and induced resistance in Larix kaempferi and Larix olgensis inoculated with Endoconidiophora fujiensis. TREE PHYSIOLOGY 2024; 44:tpae069. [PMID: 38905265 DOI: 10.1093/treephys/tpae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/23/2024]
Abstract
With climate warming and economic globalization, insect-microbe assemblages are becoming increasingly responsible for various devastating forest diseases worldwide. Japanese larch (Larix kaempferi) is extensively cultivated in China because of its high survival rate, rapid maturation and robust mechanical properties. Endoconidiophora fujiensis, an ophiostomatoid fungus associated with Ips subelongatus, has been identified as a lethal pathogen of L. kaempferi in Japan. However, there is a dearth of research on the pathogenicity of E. fujiensis in larches in China. Therefore, we investigated the pathogenicity of E. fujiensis in introduced L. kaempferi and indigenous larch (Larix olgensis) trees and compared the induced resistance responses to the pathogen in both tree species in terms of physiology and gene expression. Five-year-old saplings and 25-year-old adult trees of L. olgensis and L. kaempferi were inoculated in parallel during the same growing season. Endoconidiophora fujiensis exhibited high pathogenicity in both larch species, but particularly in L. kaempferi compared with L. olgensis adult trees; adult L. olgensis was more resistant to E. fujiensis than adult L. kaempferi, which was reflected in higher accumulation of defensive monoterpenes, such as myrcene, 3-carene and limonene and the earlier induction of defense genes catalase (CAT) and pathogenesis-related protein 1 (PR1). This study contributes to our understanding of the interactions between bark beetle-associated ophiostomatoid fungi and host larches, from phenotypic responses to alterations in secondary metabolites via defense- and metabolism-related gene activation, providing a valuable foundation for the management of larch diseases and pests in the future.
Collapse
Affiliation(s)
- Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Qinzheng Zhou
- College of Plant Protection, China Agricultural University, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Di Wu
- Mudanjiang Branch of Heilongjiang Academy of Forestry, Mudanjiang, East Diming Road, Aimin District, Heilongjiang 157010, China
| | - Caixia Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Xiaolin Wu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Zheng Wang
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Cultural Road, Taishan District, Tai'an 271018, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| |
Collapse
|
4
|
Wang H, Liu Y, Wang T, Liu D, Lu Q. Pathophysiology and transcriptomic responses of Pinus armandii defenses to ophiostomatoid fungi. TREE PHYSIOLOGY 2024; 44:tpae056. [PMID: 38775221 DOI: 10.1093/treephys/tpae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/21/2024] [Indexed: 06/25/2024]
Abstract
Pinus armandii Franch. is an ecologically and economically important evergreen tree species native to western China. Dendroctonus armandi Tsai and Li and pathogenic ophiostomatoid fungi pose substantial threats to P. armandii. With the interplay between species, the defense mechanisms of P. armandii have evolved to withstand external biotic stressors. However, the interactions between P. armandii and pathogenic ophiostomatoid fungal species/strains remain poorly understood. We aimed to analyze the pathophysiological and molecular changes in P. armandii following artificial inoculation with four ophiostomatoid species (Graphilbum parakesiyea, Leptographium qinlingense, Ophiostoma shennongense and Ophiostoma sp. 1). The study revealed that L. qinlingense produced the longest necrotic lesions, and G. parakesiyea produced the shortest. All strains induced monoterpenoid release, and monoterpene levels of P. armandii were positively correlated with fungal virulence (R2 = 0.93, P < 0.01). Co-inoculation of two dominant highly (L. qinlingense) and weakly virulent (O. shennongense) pathogens reduced the pathogenicity of the highly virulent fungi. Transcriptomic analysis of P. armandii (LQ: L. qinlingense treatments, QS: co-inoculation treatments and OS: O. shennongense treatments) showed that the expression pattern of differentially expressed genes (DEGs) between QS and OS was similar, but different from that of LQ. The DEGs (LQ vs QS) involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were downregulated. Notably, compared with LQ, QS significantly decreased the expression of host defense-related genes. This study provides a valuable theoretical basis for managing infestations of D. armandi and associated ophiostomatoid fungi.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Tiantian Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Duanchong Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| |
Collapse
|
5
|
Netherer S, Lehmanski L, Bachlehner A, Rosner S, Savi T, Schmidt A, Huang J, Paiva MR, Mateus E, Hartmann H, Gershenzon J. Drought increases Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi. THE NEW PHYTOLOGIST 2024; 242:1000-1017. [PMID: 38433329 DOI: 10.1111/nph.19635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.
Collapse
Affiliation(s)
- Sigrid Netherer
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/I, Vienna, 1190, Austria
| | - Linda Lehmanski
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
| | - Albert Bachlehner
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82/I, Vienna, 1190, Austria
| | - Sabine Rosner
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Tadeja Savi
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| | - Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
| | - Maria Rosa Paiva
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, Center for Environmental and Sustainability Research (CENSE), NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Eduardo Mateus
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, Center for Environmental and Sustainability Research (CENSE), NOVA University of Lisbon, Caparica, 2829-516, Portugal
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, Jena, 07743, Germany
- Institute for Forest Protection, Julius Kühn-Institute for Cultivated Plants, Erwin-Baur-Str. 27, Quedlinburg, 06484, Germany
- Faculty of Forest Sciences and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, Göttingen, 37077, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena, 07745, Germany
| |
Collapse
|
6
|
Liu Y, Li Y, Liu Z, Wang L, Lin-Wang K, Zhu J, Bi Z, Sun C, Zhang J, Bai J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience 2023; 26:105903. [PMID: 36818280 PMCID: PMC9932491 DOI: 10.1016/j.isci.2022.105903] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Wang
- Potato Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
7
|
Liu N, Wang Y, Li K, Li C, Liu B, Zhao L, Zhang X, Qu F, Gao L, Xia T, Wang P. Transcriptional Analysis of Tea Plants ( Camellia sinensis) in Response to Salicylic Acid Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2377-2389. [PMID: 36695193 DOI: 10.1021/acs.jafc.2c07046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Salicylic acid (SA) is an important plant hormone and signal required for establishing resistance to diverse pathogens and plant diseases. The abundant polyphenols in tea plants also defend plants from biotic and abiotic stresses. However, whether exogenous SA would increase the resistance of tea plants to adversity and the relationship between SA and polyphenols are still poorly understood. Here, we carried out SA treatment on tea seedlings and performed transcriptome sequencing. SA treatment inhibited the phenylpropanoid and flavonoid metabolic pathways but promoted the lignin metabolic pathways. The increased accumulation of lignin in tea leaves after treating with SA indicated that lignin might coordinate SA, enhance, and improve plant defense and disease resistance. Simultaneously, an SA-inducible flavonoid glucosyltransferase (CsUGT0554) specifically involved in 7-OH site glycosylation was characterized in vitro. These results provided valuable information about the effects of SA on tea seedlings and the molecular basis for SA-mediated immune responses.
Collapse
Affiliation(s)
- Nana Liu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yueyue Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Kaiyuan Li
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Caiyun Li
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Bin Liu
- Qingdao Laoshan Tea Association, Qingdao, Shandong 266109, China
| | - Lei Zhao
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinfu Zhang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fengfeng Qu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Peiqiang Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
8
|
Peeters K, Esakkimuthu ES, Tavzes Č, Kramberger K, Miklavčič Višnjevec A. The Potential Value of Debarking Water as a Source of Polyphenolic Compounds for the Specialty Chemicals Sector. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020542. [PMID: 36677601 PMCID: PMC9865099 DOI: 10.3390/molecules28020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Forest-based industries produce huge quantities of bark during their primary processing activities. In Nordic pulp and paper industries, where a wet debarking process is used for bark removal, toxic debarking water and bark press water are produced as a by-product. However, polyphenols represent an important fraction of the debarking water and bark press water. These polyphenolic compounds are of commercial interest in chemical specialty sectors since polyphenols have been proven to have diverse health benefits, and after collecting them from waste sources, they can act as alternatives to oil-based chemicals. Determining the economic potential of polyphenolic compounds, identifying their molecular structure, and determining the antioxidant capacity of these compounds present in debarking water and bark can support the identification of their potential applications. The results show that water extractions from bark have a lower efficiency than (partial) alcoholic extractions. Nevertheless, a considerable amount of low-molecular polyphenolic compounds, which are of interest for high-end applications, was found in all extracts. Bark press water has a highly versatile range of polyphenolic compounds and showed some antioxidant activity, making it a great source for the collection of polyphenolic compounds, in contrast to debarking water, which had a much lower polyphenolic content and low antioxidant activity.
Collapse
Affiliation(s)
- Kelly Peeters
- InnoRenew CoE, 6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, 6000 Koper, Slovenia
| | | | - Črtomir Tavzes
- InnoRenew CoE, 6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, 6000 Koper, Slovenia
- Correspondence:
| | - Katja Kramberger
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| |
Collapse
|
9
|
Zhong R, Wei J, Liu B, Luo H, Zhang Z, Pang X, Fang F. Metabolite and Transcriptome Profiles of Proanthocyanidin Biosynthesis in the Development of Litchi Fruit. Int J Mol Sci 2022; 24:ijms24010532. [PMID: 36613975 PMCID: PMC9820520 DOI: 10.3390/ijms24010532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
The fruit of Litchi chinensis contains high levels of proanthocyanidins (PAs) in the pericarp. These substances can serve as substrates of laccase-mediated rapid pericarp browning after the fruit is harvested. In this study, we found that the major PAs in litchi pericarp were (-)-epicatechin (EC) and several procyanidins (PCs), primarily PC A2, B2, and B1, and the EC and the PC content decreased with the development of the fruit. RNA-seq analysis showed that 43 early and late structure genes related to flavonoid/PA biosynthesis were expressed in the pericarp, including five ANTHOCYANIDIN REDUCTASE (ANR), two LEUCOANTHOCYANIDIN REDUCTASE (LAR), and two ANTHOCYANIDIN SYNTHASE (ANS) genes functioning in the PA biosynthesis branch of the flavonoid pathway. Among these nine PA biosynthesis-related genes, ANR1a, LAR1/2, and ANS1 were highly positively correlated with changes in the EC/PC content, suggesting that they are the key PA biosynthesis-related genes. Several transcription factor (TF) genes, including MYB, bHLH, WRKY, and AP2 family members, were found to be highly correlated with ANR1a, LAR1/2, and ANS1, and their relevant binding elements were detected in the promoters of these target genes, strongly suggesting that these TF genes may play regulatory roles in PA biosynthesis. In summary, this study identified the candidate key structure and regulatory genes in PA biosynthesis in litchi pericarp, which will assist in understanding the accumulation of high levels of browning-related PA substances in the pericarp.
Collapse
Affiliation(s)
- Ruihao Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Honghui Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xuequn Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.P.); (F.F.)
| | - Fang Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou 510642, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.P.); (F.F.)
| |
Collapse
|
10
|
Zhang R, Wang J, Xia R, Li D, Wang F. Antioxidant processes involving epicatechin decreased symptoms of pine wilt disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1015970. [PMID: 36570913 PMCID: PMC9780601 DOI: 10.3389/fpls.2022.1015970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Since the pine wood nematode (PWN, Bursaphelenchus xylophilus) invasion of Northeast China, both symptomatic and asymptomatic PWN carriers have been found. Asymptomatic PWN carriers, which are more dangerous than symptomatic carriers, constitute a source of infection in the following spring. The simultaneous presence of symptomatic and asymptomatic PWN carriers indicates that Pinus koraiensis has different tolerance levels to PWN. In this study, validity of susceptibility testing discovered differential types of P. koraiensis including Latent Reservoirs, Low Susceptibles, High Susceptibles and Bell Ringers. Among those types, the Low Susceptibles and Latent Reservoirs were asymptomatic PWN carriers, and Latent Reservoirs were the most dangerous. Transcriptome and metabolomic data showed that 5 genes (3 ans and 2 anr gene) involved in the epicatechin (EC) synthesis pathway were significantly upregulated, which increased the content of EC antioxidants in Latent Reservoirs. Hydrogen peroxide (H2O2) staining and content determination showed that the hypersensitive response (HR) and H2O2, which functions as a signaling molecule in systemic acquired resistance, decreased in Latent Reservoirs. However, low contents of EC and high contents of H2O2 were found in the High Susceptibles of P. koraiensis. RT-PCR results showed that the expression of ans and anr was upregulated together only in Latent Reservoirs. These results show that the susceptibility of P. koraiensis to PWN differed among different individuals, although no resistant individuals were found. Latent Reservoirs, in which more PWNs resided without visible symptoms via prolonged incubation period, inhibited the symptoms caused by H2O2 because of increased contents of the EC antioxidants.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Jianan Wang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Xia
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Danlei Li
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
| | - Feng Wang
- Key Laboratory of Alien Forest Pest Detection and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, Harbin, China
- Liaoning Provincial Key Laboratory of Dangerous Forest Pest Management and Control, Liaoning forestry and grassland Bureau, Fushun, China
| |
Collapse
|
11
|
Korolyova N, Buechling A, Lieutier F, Yart A, Cudlín P, Turčáni M, Jakuš R. Primary and secondary host selection by Ips typographus depends on Norway spruce crown characteristics and phenolic-based defenses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111319. [PMID: 35696919 DOI: 10.1016/j.plantsci.2022.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Climate change is expected to intensify bark beetle population outbreaks in forests globally, affecting biodiversity and trajectories of change. Aspects of individual tree resistance remain poorly quantified, particularly with regard to the role of phenolic compounds, hindering robust predictions of forest response to future conditions. In 2003, we conducted a mechanical wounding experiment in a Norway spruce forest that coincided with an outbreak of the bark beetle, Ips typographus. We collected phloem samples from 97 trees and monitored tree survival for 5 months. Using high-performance liquid chromatography, we quantified induced changes in the concentrations of phenolics. Classification and regression tools were used to evaluate relationships between phenolic production and bark beetle resistance, in the context of other survival factors. The proximity of beetle source populations was a principal determinant of survival. Proxy measures of tree vigor, such as crown defoliation, mediated tree resistance. Controlling for these factors, synthesis of catechin was found to exponentially increase tree survival probability. However, even resistant trees were susceptible in late season due to high insect population growth. Our results show that incorporating trait-mediated effects improves predictions of survival. Using an integrated analytical approach, we demonstrate that phenolics play a direct role in tree defense to herbivory.
Collapse
Affiliation(s)
- Nataliya Korolyova
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic.
| | - Arne Buechling
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic.
| | - François Lieutier
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, B.P. 6749, F-45067 Orléans, France.
| | - Annie Yart
- Institut National de la Recherche Agronomique, Zoologie Forestiere, Ardon, 45160 Olivet, France.
| | - Pavel Cudlín
- Global Change Research Institute of the Czech Academy of Sciences, Department of Carbon Storage in the Landscape, Bělidla 986/4a, 603 00 Brno, Czech Republic.
| | - Marek Turčáni
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic.
| | - Rastislav Jakuš
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; Inst. of Forest Ecology, Slovak Acad. of Sciences, Ľ. Štúra 2, 960 53 Zvolen, Slovak Republic.
| |
Collapse
|
12
|
Liu Y, Zhou Q, Wang Z, Wang H, Zheng G, Zhao J, Lu Q. Pathophysiology and transcriptomic analysis of Picea koraiensis inoculated by bark beetle-vectored fungus Ophiostoma bicolor. FRONTIERS IN PLANT SCIENCE 2022; 13:944336. [PMID: 35928703 PMCID: PMC9345248 DOI: 10.3389/fpls.2022.944336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Ophiostomatoid fungi exhibit a complex relationship with bark beetles; exhausting of host tree defenses is traditionally regarded as one of the key benefits provided to beetle vectors. Ophiostoma bicolor is one of the dominant species of the mycobiota associated with Ips genus bark beetles which infect the spruce trees across the Eurasian continent. Host spruce trees resist fungal invasion through structural and inducible defenses, but the underlying mechanisms at the molecular level, particularly with respect to the interaction between bark beetle-associated fungi and host trees, remain unclear. The aim of this study was to observe the pathological physiology and molecular changes in Picea koraiensis seedlings after artificial inoculation with O. bicolor strains (TS, BH, QH, MX, and LWQ). This study showed that O. bicolor was a weakly virulent pathogen of spruce, and that the virulent of the five O. bicolor strains showed differentiation. All O. bicolor strains could induce monoterpenoid release. A positive correlation between fungal virulence and release of monoterpenoids was observed. Furthermore, the release rate of monoterpenoids peaked at 4 days post-inoculation (dpi) and then decreased from 4 to 90 dpi. Transcriptomic analysis at 4 dpi showed that many plant-pathogen interaction processes and mitogen-activated protein kinase (MAPK) metabolic processes were activated. The expression of monoterpenoid precursor synthesis genes and diterpenoid synthesis genes was upregulated, indicating that gene expression regulated the release rate of monoterpenoids at 4 dpi. The enriched pathways may reveal the immune response mechanism of spruce to ophiostomatoid fungi. The dominant O. bicolor possibly induces the host defense rather than defense depletion, which is likely the pattern conducted by the pioneers of beetle-associated mycobiota, such as Endoconidiophora spp.. Overall, these results facilitate a better understanding of the interaction mechanism between the dominant association of beetles and the host at the molecular level.
Collapse
Affiliation(s)
- Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Qinzheng Zhou
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Huiming Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Guiheng Zheng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jiaping Zhao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
13
|
Comparative Analysis of Various Plant-Growth-Regulator Treatments on Biomass Accumulation, Bioactive Phytochemical Production, and Biological Activity of Solanum virginianum L. Callus Culture Extracts. COSMETICS 2022. [DOI: 10.3390/cosmetics9040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solanum virginianum L. (Solanum xanthocarpum) is an important therapeutic plant due to the presence of medicinally useful plant-derived compounds. S. virginianum has been shown to have anticancer, antioxidant, antibacterial, antiaging, and anti-inflammatory properties. This plant is becoming endangered due to overexploitation and the loss of its native habitat. The purpose of this research is to develop an ideal technique for the maximum biomass and phytochemical accumulation in S. virginianum leaf-induced in vitro cultures, as well as to evaluate their potential antiaging, anti-inflammatory, and antioxidant abilities. Leaf explants were grown on media (Murashige and Skoog (MS)) that were supplemented with various concentrations and combinations of plant hormones (TDZ, BAP, NAA, and TDZ + NAA) for this purpose. When compared with the other hormones, TDZ demonstrated the best response for callus induction, biomass accumulation, phytochemical synthesis, and biological activities. However, with 5 mg/L of TDZ, the optimal biomass production (FW: 251.48 g/L and DW: 13.59 g/L) was estimated. The highest total phenolic level (10.22 ± 0.44 mg/g DW) was found in 5 mg/L of TDZ, whereas the highest flavonoid contents (1.65 ± 0.11 mg/g DW) were found in 10 mg/L of TDZ. The results of the HPLC revealed that the highest production of coumarins (scopoletin: 4.34 ± 0.20 mg/g DW and esculetin: 0.87 ± 0.040 mg/g DW) was determined for 10 mg/L of TDZ, whereas the highest accumulations of caffeic acid (0.56 ± 0.021 mg/g DW) and methyl caffeate (18.62 ± 0.60 mg/g DW) were shown by 5 mg/L of TDZ. The determination of these phytochemicals (phenolics and coumarins) estimates that the results of our study on biological assays, such as antioxidant, anti-inflammatory, and antiaging assays, are useful for future cosmetic applications.
Collapse
|
14
|
Nagel R, Hammerbacher A, Kunert G, Phillips MA, Gershenzon J, Schmidt A. Bark Beetle Attack History Does Not Influence the Induction of Terpene and Phenolic Defenses in Mature Norway Spruce ( Picea abies) Trees by the Bark Beetle-Associated Fungus Endoconidiophora polonica. FRONTIERS IN PLANT SCIENCE 2022; 13:892907. [PMID: 35599904 PMCID: PMC9120863 DOI: 10.3389/fpls.2022.892907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 06/02/2023]
Abstract
Terpenes and phenolics are important constitutive and inducible conifer defenses against bark beetles and their associated fungi. In this study, the inducible defenses of mature Norway spruce (Picea abies) trees with different histories of attack by the spruce bark beetle, Ips typographus were tested by inoculation with the I. typographus-associated fungus Endoconidiophora polonica. We compared trees that had been under previous attack with those under current attack and those that had no record of attack. After fungal inoculation, the concentrations of mono-, sesqui-, and diterpenes in bark increased 3- to 9-fold. For the phenolics, the flavan-3-ols, catechin, and gallocatechin, increased significantly by 2- and 5-fold, respectively, while other flavonoids and stilbenes did not. The magnitudes of these inductions were not influenced by prior bark beetle attack history for all the major compounds and compound classes measured. Before fungal inoculation, the total amounts of monoterpenes, diterpenes, and phenolics (constitutive defenses) were greater in trees that had been previously attacked compared to those under current attack, possibly a result of previous induction. The transcript levels of many genes involved in terpene formation (isoprenyl diphosphate synthases and terpene synthases) and phenolic formation (chalcone synthases) were significantly enhanced by fungal inoculation suggesting de novo biosynthesis. Similar inductions were found for the enzymatic activity of isoprenyl diphosphate synthases and the concentration of their prenyl diphosphate products after fungal inoculation. Quantification of defense hormones revealed a significant induction of the jasmonate pathway, but not the salicylic acid pathway after fungal inoculation. Our data highlight the coordinated induction of terpenes and phenolics in spruce upon infection by E. polonica, a fungal associate of the bark beetle I. typographus, but provide no evidence for the priming of these defense responses by prior beetle attack.
Collapse
|
15
|
Wen Z, Terhonen E, Asiegbu FO. The dark septate endophyte Phialocephala sphaeroides confers growth fitness benefits and mitigates pathogenic effects of Heterobasidion on Norway spruce. TREE PHYSIOLOGY 2022; 42:891-906. [PMID: 34791486 PMCID: PMC9000907 DOI: 10.1093/treephys/tpab147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/09/2021] [Indexed: 05/27/2023]
Abstract
Forest trees frequently interact with a diverse range of microorganisms including dark septate endophytes (DSEs) and fungal pathogens. Plant defense responses to either individual pathogens or endophytes have been widely studied, but very little is known on the effect of coinfection on host defenses. To study the impact of coinfection or tripartite interaction on plant growth and host defenses, Norway spruce (Picea abies (L.) Karst) seedlings were inoculated with a DSE Phialocephala sphaeroides or with a root pathogen Heterobasidion parviporum Niemela & Korhonen or coinfected with both fungi. The results showed that the DSE promoted the root growth of spruce seedlings. Control seedlings without any inoculum were subjected to sequencing and used as a baseline for identification of differentially expressed genes (DEGs). RNA-seq analysis of seedlings inoculated with P. sphaeroides, infected with H. parviporum or coinfected with both fungi resulted in a total of 5269 DEGs. The majority of DEGs were found in P. sphaeroides-inoculated seedlings. Lignin biosynthesis pathways were generally activated during fungal infections. The pattern was distinct with endophyte inoculation. The majority of the genes in the flavonoid biosynthesis pathway were generally suppressed during fungal infections. A specific transcriptional response to P. sphaeroides inoculation was the increased transcripts of genes involved in jasmonic acid biosynthesis, mitogen-activated protein kinases signaling pathway, plant hormone signal transduction and calcium-mediated signaling. This may have potentially contributed to promoting the root growth of seedlings. Although the coinfection suppressed the induction of numerous genes, no negative effect on the growth of the spruce seedlings occurred. We conclude that the subsequent H. parviporum infection triggered reprogramming of host metabolism. Conversely, the endophyte (P. sphaeroides), on the other hand, counteracted the negative effects of H. parviporum on the growth of the spruce seedlings.
Collapse
Affiliation(s)
- Zilan Wen
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Eeva Terhonen
- Natural Resources Institute Finland (Luke), Helsinki 00790, Finland
| | | |
Collapse
|
16
|
Halmemies ES, Alén R, Hellström J, Läspä O, Nurmi J, Hujala M, Brännström HE. Behaviour of Extractives in Norway Spruce ( Picea abies) Bark during Pile Storage. Molecules 2022; 27:1186. [PMID: 35208976 PMCID: PMC8878638 DOI: 10.3390/molecules27041186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
The current practices regarding the procurement chain of forest industry sidestreams, such as conifer bark, do not always lead to optimal conditions for preserving individual chemical compounds. This study investigates the standard way of storing bark in large piles in an open area. We mainly focus on the degradation of the most essential hydrophilic and hydrophobic extractives and carbohydrates. First, two large 450 m3 piles of bark from Norway spruce (Picea abies) were formed, one of which was covered with snow. The degradation of the bark extractives was monitored for 24 weeks. Samples were taken from the middle, side and top of the pile. Each sample was extracted at 120 °C with both n-hexane and water, and the extracts produced were then analysed chromatographically using gas chromatography with flame ionisation or mass selective detection and high-performance liquid chromatography. The carbohydrates were next analysed using acidic hydrolysis and acidic methanolysis, followed by chromatographic separation of the monosaccharides formed and their derivatives. The results showed that the most intensive degradation occurred during the first 4 weeks of storage. The levels of hydrophilic extractives were also found to decrease drastically (69% in normal pile and 73% in snow-covered pile) during storage, whereas the decrease in hydrophobic extractives was relatively stable (15% in normal pile and 8% in snow-covered pile). The top of the piles exhibited the most significant decrease in the total level of extractives (73% in normal and snow-covered pile), whereas the bark in the middle of the pile retained the highest amount of extractives (decreased by 51% in normal pile and 47% in snow-covered pile) after 24-week storage.
Collapse
Affiliation(s)
- Eelis S. Halmemies
- Department of Chemistry, University of Jyväskylä, Survontie 9, 40500 Jyväskylä, Finland;
- Natural Resources Institute Finland, Teknologiakatu 7, 67100 Kokkola, Finland; (J.N.); (H.E.B.)
| | - Raimo Alén
- Department of Chemistry, University of Jyväskylä, Survontie 9, 40500 Jyväskylä, Finland;
| | - Jarkko Hellström
- Natural Resources Institute Finland, Tietotie 4, 31600 Jokioinen, Finland;
| | - Otto Läspä
- School of Engineering and Natural Resources, Oulu University of Applied Sciences, Yliopistonkatu 9, 90570 Oulu, Finland;
| | - Juha Nurmi
- Natural Resources Institute Finland, Teknologiakatu 7, 67100 Kokkola, Finland; (J.N.); (H.E.B.)
| | - Maija Hujala
- School of Business and Management, LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland;
| | - Hanna E. Brännström
- Natural Resources Institute Finland, Teknologiakatu 7, 67100 Kokkola, Finland; (J.N.); (H.E.B.)
| |
Collapse
|
17
|
Yin Y, Wang C, Xiao D, Liang Y, Wang Y. Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees. FRONTIERS IN PLANT SCIENCE 2021; 12:786328. [PMID: 34917116 PMCID: PMC8669725 DOI: 10.3389/fpls.2021.786328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Transgenic technology is increasingly used in forest-tree breeding to overcome the disadvantages of traditional breeding methods, such as a long breeding cycle, complex cultivation environment, and complicated procedures. By introducing exogenous DNA, genes tightly related or contributed to ideal traits-including insect, disease, and herbicide resistance-were transferred into diverse forest trees, and genetically modified (GM) trees including poplars were cultivated. It is beneficial to develop new varieties of GM trees of high quality and promote the genetic improvement of forests. However, the low transformation efficiency has hampered the cultivation of GM trees and the identification of the molecular genetic mechanism in forest trees compared to annual herbaceous plants such as Oryza sativa. In this study, we reviewed advances in transgenic technology of forest trees, including the principles, advantages and disadvantages of diverse genetic transformation methods, and their application for trait improvement. The review provides insight into the establishment and improvement of genetic transformation systems for forest tree species. Challenges and perspectives pertaining to the genetic transformation of forest trees are also discussed.
Collapse
Affiliation(s)
- Yiyi Yin
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Chun Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Dandan Xiao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanting Liang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Barreca D, Trombetta D, Smeriglio A, Mandalari G, Romeo O, Felice MR, Gattuso G, Nabavi SM. Food flavonols: Nutraceuticals with complex health benefits and functionalities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Capador-Barreto HD, Bernhardsson C, Milesi P, Vos I, Lundén K, Wu HX, Karlsson B, Ingvarsson PK, Stenlid J, Elfstrand M. Killing two enemies with one stone? Genomics of resistance to two sympatric pathogens in Norway spruce. Mol Ecol 2021; 30:4433-4447. [PMID: 34218489 DOI: 10.1111/mec.16058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/31/2022]
Abstract
Trees must cope with the attack of multiple pathogens, often simultaneously during their long lifespan. Ironically, the genetic and molecular mechanisms controlling this process are poorly understood. The objective of this study was to compare the genetic component of resistance in Norway spruce to Heterobasidion annosum s.s. and its sympatric congener Heterobasidion parviporum. Heterobasidion root- and stem-rot is a major disease of Norway spruce caused by members of the Heterobasidion annosum species complex. Resistance to both pathogens was measured using artificial inoculations in half-sib families of Norway spruce trees originating from central to northern Europe. The genetic component of resistance was analysed using 63,760 genome-wide exome-capture sequenced SNPs and multitrait genome-wide associations. No correlation was found for resistance to the two pathogens; however, associations were found between genomic variants and resistance traits with synergic or antagonist pleiotropic effects to both pathogens. Additionally, a latitudinal cline in resistance in the bark to H. annosum s.s. was found; trees from southern latitudes, with a later bud-set and thicker stem diameter, allowed longer lesions, but this was not the case for H. parviporum. In summary, this study detects genomic variants with pleiotropic effects which explain multiple disease resistance from a genic level and could be useful for selection of resistant trees to both pathogens. Furthermore, it highlights the need for additional research to understand the evolution of resistance traits to multiple pathogens in trees.
Collapse
Affiliation(s)
- Hernán D Capador-Barreto
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Carolina Bernhardsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ingrid Vos
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Karl Lundén
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Harry X Wu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Karlsson
- Forestry Research Institute of Sweden (Skogforsk), Ekebo, Sweden
| | - Pär K Ingvarsson
- Uppsala Biocentre, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Stenlid
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin Elfstrand
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Netherer S, Kandasamy D, Jirosová A, Kalinová B, Schebeck M, Schlyter F. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. JOURNAL OF PEST SCIENCE 2021; 94:591-614. [PMID: 34720785 PMCID: PMC8550215 DOI: 10.1007/s10340-021-01341-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 05/04/2023]
Abstract
Resilience and functionality of European Norway spruce forests are increasingly threatened by mass outbreaks of the bark beetle Ips typographus promoted by heat, wind throw and drought. Here, we review current knowledge on Norway spruce and I. typographus interactions from the perspective of drought-stressed trees, host selection, colonisation behaviour of beetles, with multi-level effects of symbiotic ophiostomatoid fungi. By including chemo-ecological, molecular and behavioural perspectives, we provide a comprehensive picture on this complex, multitrophic system in the light of climate change. Trees invest carbon into specialised metabolism to produce defence compounds against biotic invaders; processes that are strongly affected by physiological stress such as drought. Spruce bark contains numerous terpenoid and phenolic substances, which are important for bark beetle aggregation and attack success. Abiotic stressors such as increased temperatures and drought affect composition, amounts and emission rates of volatile compounds. Thus, drought events may influence olfactory responses of I. typographus, and further the pheromone communication enabling mass attack. In addition, I. typographus is associated with numerous ophiostomatoid fungal symbionts with multiple effects on beetle life history. Symbiotic fungi degrade spruce toxins, help to exhaust tree defences, produce beetle semiochemicals, and possibly provide nutrition. As the various fungal associates have different temperature optima, they can influence the performance of I. typographus differently under changing environmental conditions. Finally, we discuss why effects of drought on tree-killing by bark beetles are still poorly understood and provide an outlook on future research on this eruptive species using both, field and laboratory experiments.
Collapse
Affiliation(s)
- Sigrid Netherer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Anna Jirosová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Blanka Kalinová
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
| | - Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
| | - Fredrik Schlyter
- ETM Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, CULS, Praha-Suchdol, Czech Republic
- Chemical Ecology Plant Protection Department, Swedish University of Agricultural Sciences, SLU, Alnarp, Sweden
| |
Collapse
|
21
|
Root Rot Resistance Locus PaLAR3 Is Delivered by Somatic Embryogenesis (SE) Pipeline in Norway Spruce (Picea abies (L.) Karst.). FORESTS 2021. [DOI: 10.3390/f12020193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Research Highlights: The Norway spruce somatic embryogenesis (SE) pipeline is suitable for multiplication of material with root rot resistance traits. Background and Objectives: Heterobasidion root rot is the economically most severe forest pathogen in Europe, reducing the benefit of planting elite forest material. In this study, the SE-propagation ability of elite Norway spruce material carrying root rot resistance traits was studied. Materials and Methods: We analyzed the presence of the root rot resistance locus PaLAR3B among 80 Finnish progeny-tested Norway spruce plus-trees used for SE-plant production as well as in 241 SE lines (genotypes) derived from them. Seven full-sib families with lines having either AA, AB, or BB genotype for PaLAR3 locus were further studied for their SE-plant propagation ability. Results: The results indicate that 47.5% of the studied elite trees carry the PaLAR3B allele (45% are heterozygous and 2.5% homozygous). The resistance allele was present among the SE lines as expected based on Mendelian segregation and did not interfere with somatic embryo production capacity. All embryos from PaLAR3 genotypes germinated well and emblings were viable in the end of first growing season. However, in three families, PaLAR3B homo- or heterozygotes had 23.2% to 32.1% lower viability compared to their respective hetero- or PaLAR3A homozygotes. Conclusions: There is no trade-off between root rot resistance locus PaLAR3B and somatic embryo production ability, but the allele may interfere with Norway spruce embling establishment.
Collapse
|
22
|
Laoué J, Depardieu C, Gérardi S, Lamothe M, Bomal C, Azaiez A, Gros-Louis MC, Laroche J, Boyle B, Hammerbacher A, Isabel N, Bousquet J. Combining QTL Mapping and Transcriptomics to Decipher the Genetic Architecture of Phenolic Compounds Metabolism in the Conifer White Spruce. FRONTIERS IN PLANT SCIENCE 2021; 12:675108. [PMID: 34079574 PMCID: PMC8166253 DOI: 10.3389/fpls.2021.675108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 05/05/2023]
Abstract
Conifer forests worldwide are becoming increasingly vulnerable to the effects of climate change. Although the production of phenolic compounds (PCs) has been shown to be modulated by biotic and abiotic stresses, the genetic basis underlying the variation in their constitutive production level remains poorly documented in conifers. We used QTL mapping and RNA-Seq to explore the complex polygenic network underlying the constitutive production of PCs in a white spruce (Picea glauca) full-sib family for 2 years. QTL detection was performed for nine PCs and differentially expressed genes (DEGs) were identified between individuals with high and low PC contents for five PCs exhibiting stable QTLs across time. A total of 17 QTLs were detected for eight metabolites, including one major QTL explaining up to 91.3% of the neolignan-2 variance. The RNA-Seq analysis highlighted 50 DEGs associated with phenylpropanoid biosynthesis, several key transcription factors, and a subset of 137 genes showing opposite expression patterns in individuals with high levels of the flavonoids gallocatechin and taxifolin glucoside. A total of 19 DEGs co-localized with QTLs. Our findings represent a significant step toward resolving the genomic architecture of PC production in spruce and facilitate the functional characterization of genes and transcriptional networks responsible for differences in constitutive production of PCs in conifers.
Collapse
Affiliation(s)
- Justine Laoué
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- *Correspondence: Justine Laoué
| | - Claire Depardieu
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Claude Bomal
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Aïda Azaiez
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Marie-Claude Gros-Louis
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Jérôme Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Almuth Hammerbacher
- Department of Zoology, Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
- Jean Bousquet
| |
Collapse
|
23
|
Jyske T, Brännström H, Sarjala T, Hellström J, Halmemies E, Raitanen JE, Kaseva J, Lagerquist L, Eklund P, Nurmi J. Fate of Antioxidative Compounds within Bark during Storage: A Case of Norway Spruce Logs. Molecules 2020; 25:E4228. [PMID: 32942658 PMCID: PMC7571052 DOI: 10.3390/molecules25184228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Softwood bark is an important by-product of forest industry. Currently, bark is under-utilized and mainly directed for energy production, although it can be extracted with hot water to obtain compounds for value-added use. In Norway spruce (Picea abies [L.] Karst.) bark, condensed tannins and stilbene glycosides are among the compounds that comprise majority of the antioxidative extractives. For developing feasible production chain for softwood bark extractives, knowledge on raw material quality is critical. This study examined the fate of spruce bark tannins and stilbenes during storage treatment with two seasonal replications (i.e., during winter and summer). In the experiment, mature logs were harvested and stored outside. During six-month-storage periods, samples were periodically collected for chemical analysis from both inner and outer bark layers. Additionally, bark extractives were analyzed for antioxidative activities by FRAP, ORAC, and H2O2 scavenging assays. According to the results, stilbenes rapidly degraded during storage, whereas tannins were more stable: only 5-7% of the original stilbene amount and ca. 30-50% of the original amount of condensed tannins were found after 24-week-storage. Summer conditions led to the faster modification of bark chemistry than winter conditions. Changes in antioxidative activity were less pronounced than those of analyzed chemical compounds, indicating that the derivatives of the compounds contribute to the antioxidative activity. The results of the assays showed that, on average, ca. 27% of the original antioxidative capacity remained 24 weeks after the onset of the storage treatment, while a large variation (2-95% of the original capacity remaining) was found between assays, seasons, and bark layers. Inner bark preserved its activities longer than outer bark, and intact bark attached to timber is expected to maintain its activities longer than a debarked one. Thus, to ensure prolonged quality, no debarking before storage is suggested: outer bark protects the inner bark, and debarking enhances the degradation.
Collapse
Affiliation(s)
- Tuula Jyske
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
| | - Hanna Brännström
- Natural Resources Institute Finland (Luke), Teknologiakatu 7, FI-67100 Kokkola, Finland; (H.B.); (E.H.); (J.N.)
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), Kaironiementie 15, FI-39700 Parkano, Finland;
| | - Jarkko Hellström
- Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland; (J.H.); (J.K.)
| | - Eelis Halmemies
- Natural Resources Institute Finland (Luke), Teknologiakatu 7, FI-67100 Kokkola, Finland; (H.B.); (E.H.); (J.N.)
| | - Jan-Erik Raitanen
- Natural Resources Institute Finland (Luke), Tietotie 2, FI-02150 Espoo, Finland;
- Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland
| | - Janne Kaseva
- Natural Resources Institute Finland (Luke), Myllytie 1, FI-31600 Jokioinen, Finland; (J.H.); (J.K.)
| | - Lucas Lagerquist
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku, Finland; (L.L.); (P.E.)
| | - Patrik Eklund
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Turku, Finland; (L.L.); (P.E.)
| | - Juha Nurmi
- Natural Resources Institute Finland (Luke), Teknologiakatu 7, FI-67100 Kokkola, Finland; (H.B.); (E.H.); (J.N.)
| |
Collapse
|
24
|
Combining transcriptomics and genetic linkage based information to identify candidate genes associated with Heterobasidion-resistance in Norway spruce. Sci Rep 2020; 10:12711. [PMID: 32728135 PMCID: PMC7391732 DOI: 10.1038/s41598-020-69386-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
The Heterobasidion annosum s.l species complex comprises the most damaging forest pathogens to Norway spruce. We revisited previously identified Quantitative Trait Loci (QTLs) related to Heterobasidion-resistance in Norway spruce to identify candidate genes associated with these QTLs. We identified 329 candidate genes associated with the resistance QTLs using a gene-based composite map for Pinaceae. To evaluate the transcriptional responses of these candidate genes to H. parviporum, we inoculated Norway spruce plants and sequenced the transcriptome of the interaction at 3 and 7 days post inoculation. Out of 298 expressed candidate genes 124 were differentially expressed between inoculation and wounding control treatment. Interestingly, PaNAC04 and two of its paralogs in the subgroup III-3 of the NAC family transcription factors were found to be associated with one of the QTLs and was also highly induced in response to H. parviporum. These genes are possibly involved in the regulation of biosynthesis of flavonoid compounds. Furthermore, several of the differentially expressed candidate genes were associated with the phenylpropanoid pathway including a phenylalanine ammonia-lyase, a cinnamoyl-CoA reductase, a caffeoyl-CoA O-methyltransferase and a PgMYB11-like transcription factor gene. Combining transcriptome and genetic linkage analyses can help identifying candidate genes for functional studies and molecular breeding in non-model species.
Collapse
|
25
|
Kunej U, Mikulič-Petkovšek M, Radišek S, Štajner N. Changes in the Phenolic Compounds of Hop ( Humulus lupulus L.) Induced by Infection with Verticillium nonalfalfae, the Causal Agent of Hop Verticillium Wilt. PLANTS (BASEL, SWITZERLAND) 2020; 9:E841. [PMID: 32635416 PMCID: PMC7411879 DOI: 10.3390/plants9070841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/05/2022]
Abstract
Phenolic compounds are involved in plant responses to various biotic and abiotic stress factors, with many studies suggesting their role in defense mechanisms against fungal pathogens. Soilborne vascular pathogen Verticillium nonalfalfae causes severe wilting and consequent dieback in a wide range of economically important crops, including hops (Humulus lupulus L.). In this study, we investigated the differential accumulation of phenolics in the susceptible "Celeia" and resistant "Wye Target" hop cultivars during the pathogenesis of Verticillium wilt. Quantitative polymerase chain reaction showed that colonization in the roots of both cultivars was intensive, but decreased continuously throughout the experiment in the resistant cultivar, while the relative fungal amount continuously increased in the stems of the susceptible cultivar. In response to colonization in the roots of the resistant cultivar, a significant increase in total flavanols was detected at three days postinoculation (dpi), suggesting a possible role in preventing fungus spread into the stems. The accumulation of phenolic compounds was less pronounced in the stems of the resistant cultivar since, compared to the latter, significant increases in flavonols at 3 and 15 dpi and hydroxycinnamic acids at 6 dpi were observed in the stems of the susceptible cultivar.
Collapse
Affiliation(s)
- Urban Kunej
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (M.M.-P.)
| | - Maja Mikulič-Petkovšek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (M.M.-P.)
| | - Sebastjan Radišek
- Plant Protection Department, Slovenian Institute of Hop Research and Brewing, 3310 Žalec, Slovenia;
| | - Nataša Štajner
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (M.M.-P.)
| |
Collapse
|
26
|
Localization of (+)-Catechin in Picea abies Phloem: Responses to Wounding and Fungal Inoculation. Molecules 2020; 25:molecules25122952. [PMID: 32604938 PMCID: PMC7356009 DOI: 10.3390/molecules25122952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
To understand the positional and temporal defense mechanisms of coniferous tree bark at the tissue and cellular levels, the phloem topochemistry and structural properties were examined after artificially induced bark defense reactions. Wounding and fungal inoculation with Endoconidiophora polonica of spruce bark were carried out, and phloem tissues were frequently collected to follow the temporal and spatial progress of chemical and structural responses. The changes in (+)-catechin, (-)-epicatechin, stilbene glucoside, and resin acid distribution, and accumulation patterns within the phloem, were mapped using time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS), alongside detailed structural (LM, TEM, SEM) and quantitative chemical microanalyses of the tissues. Our results show that axial phloem parenchyma cells of Norway spruce contain (+)-catechins, the amount of which locally increases in response to fungal inoculation. The preformed, constitutive distribution and accumulation patterns of (+)-catechins closely follow those of stilbene glucosides. Phloem phenolics are not translocated but form a layered defense barrier with oleoresin compounds in response to pathogen attack. Our results suggest that axial phloem parenchyma cells are the primary location for (+)-catechin storage and synthesis in Norway spruce phloem. Chemical mapping of bark defensive metabolites by cryo-ToF-SIMS, in addition to structural and chemical microanalyses of the defense reactions, can provide novel information on the local amplitudes and localizations of chemical and structural defense mechanisms and pathogen-host interactions of trees.
Collapse
|
27
|
Zhang L, Wang P, Ma X, Zhao W, Li M, Yao S, Liu Y, Gao L, Xia T. Exploration of the Substrate Diversity of Leucoanthocyanidin Reductases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3903-3911. [PMID: 32141742 DOI: 10.1021/acs.jafc.9b06353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proanthocyanidins (PAs) are mainly composed of epicatechin (EC) or catechin (C) subunits. C-type catechins (C and GC) are generally considered to be catalyzed by leucocyanidin reductase (LAR). In this study, we re-evaluated the function of LAR. LcLAR1 was isolated from Lotus corniculatus, which is rich in C-type catechins. Overexpression of LcLAR1 in tobacco resulted in a significantly increased content of EC and EC-glucoside. Overexpression of LcLAR1 in Arabidopsis thaliana promoted the accumulation of soluble PAs, including EC, PA dimers, and PA trimers. However, in the transgenic ans mutant overexpressing LcLAR1, the contents of C and C-glucoside were increased. In addition, overexpression of LcLAR1 in L. corniculatus resulted in a significant increase of C levels. Taken together, the products of LcLAR1 depended on the substrates, which revealed the substrate diversity of LcLAR1. Our study provides new insights into the flavonoid pathway, especially the role of LAR.
Collapse
Affiliation(s)
- Lingjie Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xue Ma
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wenyan Zhao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming Li
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
28
|
Gao J, Shen L, Yuan J, Zheng H, Su Q, Yang W, Zhang L, Nnaemeka VE, Sun J, Ke L, Sun Y. Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC PLANT BIOLOGY 2019; 19:455. [PMID: 31664897 PMCID: PMC6819470 DOI: 10.1186/s12870-019-2065-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cells after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. RESULTS The three key genes of GhCHS, GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi, GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS, GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi, GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. CONCLUSION The three genes of GhCHS, GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.
Collapse
Affiliation(s)
- Jianfang Gao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Li Shen
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jingli Yuan
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Quansheng Su
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Weiguang Yang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Liqing Zhang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Vitalis Ekene Nnaemeka
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| |
Collapse
|
29
|
Whitehill JG, Bohlmann J. A molecular and genomic reference system for conifer defence against insects. PLANT, CELL & ENVIRONMENT 2019; 42:2844-2859. [PMID: 31042808 PMCID: PMC6852437 DOI: 10.1111/pce.13571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 05/29/2023]
Abstract
Insect pests are part of natural forest ecosystems contributing to forest rejuvenation but can also cause ecological disturbance and economic losses that are expected to increase with climate change. The white pine or spruce weevil (Pissodes strobi) is a pest of conifer forests in North America. Weevil-host interactions with various spruce (Picea) species have been explored as a genomic and molecular reference system for conifer defence against insects. Interactions occur in two major phases of the insect life cycle. In the exophase, adult weevils are free-moving and display behaviour of host selection for oviposition that is affected by host traits. In the endophase, insects live within the host where mobility and development from eggs to young adults are affected by a complex system of host defences. Genetic resistance exists in several spruce species and involves synergism of constitutive and induced chemical and physical defences that comprise the conifer defence syndrome. Here, we review conifer defences that disrupt the weevil life cycle and mechanisms by which trees resist weevil attack. We highlight molecular and genomic aspects and a possible role for the weevil microbiome. Knowledge of this conifer defence system is supporting forest health strategies and tree breeding for insect resistance.
Collapse
Affiliation(s)
| | - Jörg Bohlmann
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of BotanyUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
30
|
Chen J, Ullah C, Reichelt M, Gershenzon J, Hammerbacher A. Sclerotinia sclerotiorum Circumvents Flavonoid Defenses by Catabolizing Flavonol Glycosides and Aglycones. PLANT PHYSIOLOGY 2019; 180:1975-1987. [PMID: 31221733 PMCID: PMC6670079 DOI: 10.1104/pp.19.00461] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 05/18/2023]
Abstract
Flavonols are widely distributed plant metabolites that inhibit microbial growth. Yet many pathogens cause disease in flavonol-containing plant tissues. We investigated how Sclerotinia sclerotiorum, a necrotrophic fungal pathogen that causes disease in a range of economically important crop species, is able to successfully infect flavonol-rich tissues of Arabidopsis (Arabidopsis thaliana). Infection of rosette stage Arabidopsis with a virulent S. sclerotiorum strain led to the selective hydrolysis of flavonol glycosidic linkages and the inducible degradation of flavonol aglycones to phloroglucinol carboxylic and phenolic acids. By chemical analysis of fungal biotransformation products and a search of the S. sclerotiorum genome sequence, we identified a quercetin dioxygenase gene (QDO) and characterized the encoded protein, which catalyzed cleavage of the flavonol carbon skeleton. QDO deletion lines degraded flavonols with much lower efficiency and were less pathogenic on Arabidopsis leaves than wild-type S. sclerotiorum, indicating the importance of flavonol degradation in fungal virulence. In the absence of QDO, flavonols exhibited toxicity toward S. sclerotiorum, demonstrating the potential roles of these phenolic compounds in protecting plants against pathogens.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
31
|
Burton-Freeman B, Brzeziński M, Park E, Sandhu A, Xiao D, Edirisinghe I. A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence. Nutrients 2019; 11:E841. [PMID: 31013914 PMCID: PMC6520947 DOI: 10.3390/nu11040841] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/29/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic dietary approaches routinely recommend diets high in plant foods (i.e., vegetables, fruits, whole-grains). In addition to essential micronutrients and fiber, plant-based diets contain a wide-variety of polyphenols, specifically flavonoid compounds. Evidence suggests that flavonoids may confer specific benefits for T2DM risk reduction through pathways influencing glucose absorption and insulin sensitivity and/or secretion. The present review assesses the relationship between dietary flavonoids and diabetes risk reduction reviewing current epidemiology and clinical research. Collectively, the research indicates that certain flavonoids, explicitly anthocyanins and flavan-3-ols and foods rich in these compounds, may have an important role in dietary algorithms aimed to address diabetes risk factors and the development of T2DM.
Collapse
Affiliation(s)
- Britt Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Michał Brzeziński
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
- Department of Public Health and Social Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland.
| | - Eunyoung Park
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Amandeep Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Di Xiao
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
32
|
Huang J, Hammerbacher A, Weinhold A, Reichelt M, Gleixner G, Behrendt T, van Dam NM, Sala A, Gershenzon J, Trumbore S, Hartmann H. Eyes on the future - evidence for trade-offs between growth, storage and defense in Norway spruce. THE NEW PHYTOLOGIST 2019; 222:144-158. [PMID: 30289558 DOI: 10.1111/nph.15522] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 05/20/2023]
Abstract
Carbon (C) allocation plays a central role in tree responses to environmental changes. Yet, fundamental questions remain about how trees allocate C to different sinks, for example, growth vs storage and defense. In order to elucidate allocation priorities, we manipulated the whole-tree C balance by modifying atmospheric CO2 concentrations [CO2 ] to create two distinct gradients of declining C availability, and compared how C was allocated among fluxes (respiration and volatile monoterpenes) and biomass C pools (total biomass, nonstructural carbohydrates (NSC) and secondary metabolites (SM)) in well-watered Norway spruce (Picea abies) saplings. Continuous isotope labelling was used to trace the fate of newly-assimilated C. Reducing [CO2 ] to 120 ppm caused an aboveground C compensation point (i.e. net C balance was zero) and resulted in decreases in growth and respiration. By contrast, soluble sugars and SM remained relatively constant in aboveground young organs and were partially maintained with a constant allocation of newly-assimilated C, even at expense of root death from C exhaustion. We conclude that spruce trees have a conservative allocation strategy under source limitation: growth and respiration can be downregulated to maintain 'operational' concentrations of NSC while investing newly-assimilated C into future survival by producing SM.
Collapse
Affiliation(s)
- Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, 0028, Pretoria, South Africa
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Gerd Gleixner
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Thomas Behrendt
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| | - Anna Sala
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812, USA
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Susan Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| |
Collapse
|
33
|
Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Davis TS, Stewart JE, Mann A, Bradley C, Hofstetter RW. Evidence for multiple ecological roles of Leptographium abietinum, a symbiotic fungus associated with the North American spruce beetle. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Wang P, Ma G, Zhang L, Li Y, Fu Z, Kan X, Han Y, Wang H, Jiang X, Liu Y, Gao L, Xia T. A Sucrose-Induced MYB (SIMYB) Transcription Factor Promoting Proanthocyanidin Accumulation in the Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1418-1428. [PMID: 30688075 DOI: 10.1021/acs.jafc.8b06207] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proanthocyanidins (PAs, also called condensed tannins), are an important class of secondary metabolites and exist widely in plants. Tea ( Camellia sinensis) is rich in PAs and their precursors, (-)-epicatechin (EC) and (+)-catechin (C). The biosynthesis of PAs is constantly regulated by many different MBW complexes, consisting of MYB transcription factors (TFs), basic-helix-loop-helix (bHLH) TFs, and WD-repeat (WDR) proteins. These regulatory factors can be environmentally affected, such as by biotic and abiotic stresses. In this study, we revalidated the effect of sucrose treatment on tea branches, and a sucrose-induced MYB (SIMYB) TF was screened and studied. Phylogenetic analysis indicted that this SIMYB TF belonged to MYB subgroup 5, named CsMYB5b. Heterologous expression of CsMYB5b in tobacco strongly induced PA accumulation, through up-regulating the key target genes LAR or ANRs. In addition, CsMYB5b restored PA production in the seed coat of A. thaliana tt2 mutant and rescued its phenotype. Yeast two-hybrid assay demonstrated CsMYB5b can interact directly with CsTT8 (an AtTT8 ortholog) and CsWD40 protein. Linking to the expression profiling of CsMYB5b and the PA accumulation pattern in tea plants suggest that the CsMYB5b acts as an important switch for the synthesis of monomeric catechins and PAs. Therefore, these data provide insight into the regulatory mechanisms controlling the biosynthesis of PAs.
Collapse
Affiliation(s)
- Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
- College of Horticulture , Qingdao Agricultural University , Qingdao 266109 , China
| | - Guoliang Ma
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Lingjie Zhang
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Yan Li
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Xinyi Kan
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Yahui Han
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
- College of Horticulture , Qingdao Agricultural University , Qingdao 266109 , China
| | - Haiyan Wang
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Yajun Liu
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Liping Gao
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| |
Collapse
|
36
|
Whitehill JGA, Yuen MMS, Henderson H, Madilao L, Kshatriya K, Bryan J, Jaquish B, Bohlmann J. Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. THE NEW PHYTOLOGIST 2019; 221:1503-1517. [PMID: 30216451 DOI: 10.1111/nph.15477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Conifers depend on complex defense systems against herbivores. Stone cells (SC) and oleoresin are physical and chemical defenses of Sitka spruce that have been separately studied in previous work. Weevil oviposit at the tip of the previous year's apical shoot (PYAS). We investigated interactions between weevil larvae and trees in controlled oviposition experiments with resistant (R) and susceptible (S) Sitka spruce. R trees have an abundance of SC in the PYAS cortex. SC are mostly absent in S trees. R trees and S trees also differ in the composition of oleoresin terpenes. Transcriptomes of R and S trees revealed differences in long-term weevil-induced responses. Performance of larvae was significantly reduced on R trees compared with S trees under experimental conditions that mimicked natural oviposition behavior at apical shoot tips and may be attributed to the effects of SC. In oviposition experiments designed for larvae to feed below the area of highest SC abundance, larvae showed an unusual feeding behavior and oleoresin appeared to function as the major defense. The results support a role for both SC and oleoresin terpenes and possible synergies between these traits in the defense syndrome of weevil-resistant Sitka spruce.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Lina Madilao
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Kristina Kshatriya
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jennifer Bryan
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands and Natural Resource Operations, Tree Improvement Branch, Kalamalka Forestry Centre, 3401 Reservoir Road, Vernon, BC, V1B 2C7, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
37
|
Kovalchuk A, Zeng Z, Ghimire RP, Kivimäenpää M, Raffaello T, Liu M, Mukrimin M, Kasanen R, Sun H, Julkunen-Tiitto R, Holopainen JK, Asiegbu FO. Dual RNA-seq analysis provides new insights into interactions between Norway spruce and necrotrophic pathogen Heterobasidion annosum s.l. BMC PLANT BIOLOGY 2019; 19:2. [PMID: 30606115 PMCID: PMC6318961 DOI: 10.1186/s12870-018-1602-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/12/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Root and butt rot of conifer trees caused by fungi belonging to the Heterobasidion annosum species complex is one of the most economically important fungal diseases in commercial conifer plantations throughout the Northern hemisphere. We investigated the interactions between Heterobasidion fungi and their host by conducting dual RNA-seq and chemical analysis on Norway spruce trees naturally infected by Heterobasidion spp. We analyzed host and pathogen transcriptome and phenolic and terpenoid contents of the spruce trees. RESULTS Presented results emphasize the role of the phenylpropanoid and flavonoid pathways in the chemical defense of Norway spruce trees. Accumulation of lignans was observed in trees displaying symptoms of wood decay. A number of candidate genes with a predicted role in the higher level regulation of spruce defense responses were identified. Our data indicate a possible role of abscisic acid (ABA) signaling in the spruce defense against Heterobasidion infection. Fungal transcripts corresponding to genes encoding carbohydrate- and lignin-degrading enzymes, secondary metabolism genes and effector-like genes were expressed during the host colonization. CONCLUSIONS Our results provide additional insight into defense strategies employed by Norway spruce trees against Heterobasidion infection. The potential applications of the identified candidate genes as markers for higher resistance against root and butt rot deserve further evaluation.
Collapse
Affiliation(s)
- Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| | - Zhen Zeng
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| | - Rajendra P. Ghimire
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland (UEF), P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland (UEF), P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Tommaso Raffaello
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| | - Mengxia Liu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| | - Mukrimin Mukrimin
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
- Department of Forestry, Universitas Hasanuddin, Jln. Perintis Kemerdekaan Km. 10, Makassar, 90245 Indonesia
| | - Risto Kasanen
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Riitta Julkunen-Tiitto
- Department of Environmental and Biological Sciences, Joensuu Campus, University of Eastern Finland (UEF), P.O. Box 111, FIN-80101 Joensuu, Finland
| | - Jarmo K. Holopainen
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland (UEF), P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
| |
Collapse
|
38
|
Hammerbacher A, Kandasamy D, Ullah C, Schmidt A, Wright LP, Gershenzon J. Flavanone-3-Hydroxylase Plays an Important Role in the Biosynthesis of Spruce Phenolic Defenses Against Bark Beetles and Their Fungal Associates. FRONTIERS IN PLANT SCIENCE 2019; 10:208. [PMID: 30858861 PMCID: PMC6397876 DOI: 10.3389/fpls.2019.00208] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/07/2019] [Indexed: 05/07/2023]
Abstract
Conifer forests worldwide are becoming increasingly vulnerable to attacks by bark beetles and their fungal associates due to the effects of global warming. Attack by the bark beetle Ips typographus and the blue-stain fungus it vectors (Endoconidiophora polonica) on Norway spruce (Picea abies) is well known to induce increased production of terpene oleoresin and polyphenolic compounds. However, it is not clear whether specific compounds are important in resisting attack. In this study, we observed a significant increase in dihydroflavonol and flavan-3-ol content after inoculating Norway spruce with the bark beetle vectored fungus. A bioassay revealed that the dihydroflavonol taxifolin and the flavan-3-ol catechin negatively affected both I. typographus and E. polonica. The biosynthesis of flavan-3-ols is well studied in Norway spruce, but little is known about dihydroflavonol formation in this species. A flavanone-3-hydroxylase (F3H) was identified that catalyzed the conversion of eriodictyol to taxifolin and was highly expressed after E. polonica infection. Down-regulating F3H gene expression by RNA interference in transgenic Norway spruce resulted in significantly lower levels of both dihydroflavonols and flavan-3-ols. Therefore F3H plays a key role in the biosynthesis of defense compounds in Norway spruce that act against the bark beetle-fungus complex. This enzyme forms a defensive product, taxifolin, which is also a metabolic precursor of another defensive product, catechin, which in turn synergizes the toxicity of taxifolin to the bark beetle associated fungus.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- *Correspondence: Almuth Hammerbacher,
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
39
|
Ullah C, Tsai C, Unsicker SB, Xue L, Reichelt M, Gershenzon J, Hammerbacher A. Salicylic acid activates poplar defense against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. THE NEW PHYTOLOGIST 2019; 221:960-975. [PMID: 30168132 PMCID: PMC6585937 DOI: 10.1111/nph.15396] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/10/2018] [Indexed: 05/14/2023]
Abstract
Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Chung‐Jui Tsai
- School of Forestry and Natural ResourcesDepartment of GeneticsDepartment of Plant BiologyUniversity of GeorgiaAthensGA30602USA
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Liangjiao Xue
- Key Laboratory of Forest Genetics and BiotechnologyCo‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingJiangsu210037China
| | - Michael Reichelt
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knöll‐Straße 807745JenaGermany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
40
|
Ullah C, Unsicker SB, Reichelt M, Gershenzon J, Hammerbacher A. Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:1441. [PMID: 31803202 PMCID: PMC6873352 DOI: 10.3389/fpls.2019.01441] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 05/08/2023]
Abstract
Flavan-3-ols including the monomeric catechin and the polymeric proanthocyanidins (PAs) are abundant phenolic metabolites in poplar (Populus spp.) previously described to protect leaves against pathogen infection. However, it is not known whether stems are also defended in this way. Here we investigated flavan-3-ol accumulation, activity, and the regulation of formation in black poplar (P. nigra) stems after infection by a newly described fungal stem pathogen, Plectosphaerella populi, which forms canker-like lesions in stems. We showed that flavan-3-ol contents increased in P. populi-infected black poplar stems over the course of infection compared to non-infected controls. Transcripts of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes involved in the last steps of flavan-3-ol biosynthesis were also upregulated upon fungal infection indicating de novo biosynthesis. Amending culture medium with catechin and PAs reduced the mycelial growth of P. populi, suggesting that these metabolites act as anti-pathogen defenses in poplar in vivo. Among the hormones, salicylic acid (SA) was higher in P. populi-infected tissues compared to the non-infected controls over the course of infection studied, while jasmonic acid (JA) and JA-isoleucine (JA-Ile) levels were higher than controls only at the early stages of infection. Interestingly, cytokinins (CKs) were also upregulated in P. populi-infected stems. Poplar saplings treated with CK showed decreased levels of flavan-3-ols and SA in stems suggesting a negative association between CK and flavan-3-ol accumulation. Taken together, the sustained upregulation of SA in correlation with catechin and PA accumulation suggests that this is the dominant hormone inducing the formation of antifungal flavan-3-ols during P. populi infection of poplar stems.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Chhana Ullah,
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
41
|
Porth I, White R, Jaquish B, Ritland K. Partial correlation analysis of transcriptomes helps detangle the growth and defense network in spruce. THE NEW PHYTOLOGIST 2018; 218:1349-1359. [PMID: 29504642 DOI: 10.1111/nph.15075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 05/21/2023]
Abstract
In plants, there can be a trade-off between resource allocations to growth vs defense. Here, we use partial correlation analysis of gene expression to make inferences about the nature of this interaction. We studied segregating progenies of Interior spruce subject to weevil attack. In a controlled experiment, we measured pre-attack plant growth and post-attack damage with several morphological measures, and profiled transcriptomes of 188 progeny. We used partial correlations of individual transcripts (expressed sequence tags, ESTs) with pairs of growth/defense traits to identify important nodes and edges in the inferred underlying gene network, for example, those pairs of growth/defense traits with high mutual correlation with a single EST transcript. We give a method to identify such ESTs. A terpenoid ABC transporter gene showed strongest correlations (P = 0.019); its transcript represented a hub within the compact 166-member gene-gene interaction network (P = 0.004) of the negative genetic correlations between growth and subsequent pest attack. A small 21-member interaction network (P = 0.004) represented the uncovered positive correlations. Our study demonstrates partial correlation analysis identifies important gene networks underlying growth and susceptibility to the weevil in spruce. In particular, we found transcripts that strongly modify the trade-off between growth and defense, and allow identification of networks more central to the trade-off.
Collapse
Affiliation(s)
- Ilga Porth
- Département des Sciences du Bois et de la Forêt, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Richard White
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Barry Jaquish
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, V8W 9C2, Canada
| | - Kermit Ritland
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
42
|
Hammerbacher A, Raguschke B, Wright LP, Gershenzon J. Gallocatechin biosynthesis via a flavonoid 3',5'-hydroxylase is a defense response in Norway spruce against infection by the bark beetle-associated sap-staining fungus Endoconidiophora polonica. PHYTOCHEMISTRY 2018; 148:78-86. [PMID: 29421514 DOI: 10.1016/j.phytochem.2018.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 05/09/2023]
Abstract
One of the best-studied defense responses to fungal infection in Norway spruce (Picea abies) is the biosynthesis of flavan-3-ols, which accumulate as monomers or polymers known as proanthocyanidins. The individual flavan-3-ol units consist of compounds with a 3',4'-dihydroxylated B ring [2,3-(trans)-(+)-catechin or 2,3-(cis)-(-)-epicatechin] and compounds with a 3',4',5'-trihydroxylated B ring [2,3 (trans)-(+)-gallocatechin or 2,3-(cis)-(-)-epigallocatechin]. While much is known about the biosynthesis and biological activity of catechin in Norway spruce, there is little comparable information about gallocatechin or epigallocatechin. We found that there was a significant increase in the gallocatechin content of Norway spruce bark and wood after inoculation with the bark beetle-associated sap-staining fungus Endoconidiophora polonica. Gallocatechins increased proportionally more than catechins as both monomers and units of polymers. A flavonoid 3',5'-hydroxylase gene identified in Norway spruce was shown by heterologous expression in Nicotiana benthamiana to be involved in the conversion of 2,3 (trans)-(+)-catechin to 2,3 (trans)-(+)-gallocatechin. The formation of the trihydroxylated B ring in Norway spruce occurs at the level of flavan-3-ols, rather than at the level of dihydroflavonols as in many angiosperms. The transcript abundance of the flavonoid 3',5'-hydroxylase gene also increased significantly during fungal infection underlining its importance in gallocatechin biosynthesis. Comparisons of the effect of 2,3 (trans)-(+)-catechin and 2,3 (trans)-(+)-gallocatechin on fungal growth revealed that 2,3 (trans)-(+)-catechin is a stronger inhibitor of fungal growth, while 2,3 (trans)-(+)-gallocatechin is a stronger inhibitor of melanin biosynthesis.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa; Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745, Jena, Germany.
| | - Bettina Raguschke
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745, Jena, Germany.
| | - Louwrance P Wright
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745, Jena, Germany; Zeiselhof Research Farm, P.O. Box 35984, Menlo Park, 0102, Pretoria, South Africa.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell Str. 8, 07745, Jena, Germany.
| |
Collapse
|
43
|
Wiesneth S, Aas G, Heilmann J, Jürgenliemk G. Investigation of the flavan-3-ol patterns in willow species during one growing-season. PHYTOCHEMISTRY 2018; 145:26-39. [PMID: 29059537 DOI: 10.1016/j.phytochem.2017.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/18/2017] [Accepted: 10/08/2017] [Indexed: 05/25/2023]
Abstract
Flavonoids, proanthocyanidins (PAs) and salicylic alcohol derivatives are the main groups of ingredients in Salix needed as defensive tools and signal molecules, but have also pharmaceutical importance. The present study investigated total PA content, complete PA pattern, the oligomeric/total PAs quotient and the contents of catechin and epicatechin during one growing-season for the leaves and this year's sprouts in ten willows (Salix pentandra L. ♂, S. alba L. ♂, S. fragilis L. ♀, S. caprea L. ♂ & ♀, S. cinerea L. ♂, S. caprea x cinerea ♂, S. daphnoidesVill. ♂ & ♀ and S. purpurea L. ♀; all Salicaceae). Comparison of the different species revealed distinct seasonal fluctuations of the oligomeric and polymeric PA fractions, but the contents of both groups always developed in the same direction. All willows prefer the synthesis of PAs with DP-2 - DP-4 within the oligomeric fraction (DP-2 - DP-10) and species with rather low PA contents like S. purpurea (0.1-2.6 mg/g) as well as species with rather high PA contents like S. alba (3.8-14.7 mg/g) were found. Only slight gender specific differences could be observed for both sexes of S. daphnoides and S. caprea. The PA pattern of the hybrid S. caprea x cinerea seems to be influenced by both parents. Thus, the accumulation of the oligomeric PAs accorded to S. caprea and the polymeric PAs matched S. cinerea resulting in an overall depression of PAs in the sprouts and a varying seasonal trend in the leaves. In contrast, the content of catechin remained high and seemed to be not influenced in the hybrid. Although only one individual of each Salix species could be considered in this screening study, the present results demonstrate the variability of the flavan-3-ol pattern within the genus Salix but also some preliminary correlations could be observed. Future studies with more Salix species will provide more insights into chemotaxonomic correlations.
Collapse
Affiliation(s)
- Stefan Wiesneth
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Gregor Aas
- Ecological-Botanical Gardens, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Jörg Heilmann
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Guido Jürgenliemk
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
44
|
Wang P, Zhang L, Jiang X, Dai X, Xu L, Li T, Xing D, Li Y, Li M, Gao L, Xia T. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. PLANTA 2018; 247:139-154. [PMID: 28887677 PMCID: PMC5756577 DOI: 10.1007/s00425-017-2771-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/02/2017] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of NtLAR and NtANR s in CsMYB5b transgenic tobacco. Tea is rich in polyphenolic compounds, and catechins are the major polyphenols in tea. The biosynthesis of polyphenols is closely related to the expression of the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes. In this paper, an evolutionary analysis and functional characterization of three CsLARs were performed. The phylogenetic tree showed that plant LARs could be grouped into three, including gymnosperms, monocotyledons and dicotyledons (clusters I and II). The eighth amino acid residue in a conserved LAR-specific motif is changeable due to a transversion (G → T) and transition (G → C) that occur in the corresponding codon. Therefore, plant LARs can be classified as G-type, A-type and S-type LARs due to this variable amino acid residue. Although (2R, 3S)-trans-flavan-3-ols were the products of recombinant CsLARs proteins expressed in Escherichia coli, both (2R, 3S)-trans and (2R, 3R)-cis-flavan-3-ols were detected in tobacco overexpressing CsLARs. However, a butanol/HCl hydrolysis assay indicated that overexpression of the CsLARs caused a decrease in polymerized catechins. A hybridization experiment with CsLARc + AtPAP1 also showed that no polymers other than epicatechin, catechin and glycoside were detected, although the accumulation of anthocyanins was markedly decreased. CsMYB5b promoted the biosynthesis of both flavan-3-ols and proanthocyanidins (PAs). Therefore, LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of the NtLAR and NtANRs in CsMYB5b transgenic tobacco.
Collapse
Affiliation(s)
- Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lijuan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Dawei Xing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yanzhi Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Mingzhuo Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036, Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
45
|
Ullah C, Unsicker SB, Fellenberg C, Constabel CP, Schmidt A, Gershenzon J, Hammerbacher A. Flavan-3-ols Are an Effective Chemical Defense against Rust Infection. PLANT PHYSIOLOGY 2017; 175:1560-1578. [PMID: 29070515 PMCID: PMC5717727 DOI: 10.1104/pp.17.00842] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/23/2017] [Indexed: 05/02/2023]
Abstract
Phenolic secondary metabolites are often thought to protect plants against attack by microbes, but their role in defense against pathogen infection in woody plants has not been investigated comprehensively. We studied the biosynthesis, occurrence, and antifungal activity of flavan-3-ols in black poplar (Populus nigra), which include both monomers, such as catechin, and oligomers, known as proanthocyanidins (PAs). We identified and biochemically characterized three leucoanthocyanidin reductases and two anthocyanidin reductases from P. nigra involved in catalyzing the last steps of flavan-3-ol biosynthesis, leading to the formation of catechin [2,3-trans-(+)-flavan-3-ol] and epicatechin [2,3-cis-(-)-flavan-3-ol], respectively. Poplar trees that were inoculated with the biotrophic rust fungus (Melampsora larici-populina) accumulated higher amounts of catechin and PAs than uninfected trees. The de novo-synthesized catechin and PAs in the rust-infected poplar leaves accumulated significantly at the site of fungal infection in the lower epidermis. In planta concentrations of these compounds strongly inhibited rust spore germination and reduced hyphal growth. Poplar genotypes with constitutively higher levels of catechin and PAs as well as hybrid aspen (Populus tremula × Populus alba) overexpressing the MYB134 transcription factor were more resistant to rust infection. Silencing PnMYB134, on the other hand, decreased flavan-3-ol biosynthesis and increased susceptibility to rust infection. Taken together, our data indicate that catechin and PAs are effective antifungal defenses in poplar against foliar rust infection.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Christin Fellenberg
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - C Peter Constabel
- Department of Biology and Centre for Forest Biology, University of Victoria, Victoria, British Columbia V8W 3N5, Canada
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
46
|
Kumar V, Yadav SK. Pyramiding of tea Dihydroflavonol reductase and Anthocyanidin reductase increases flavan-3-ols and improves protective ability under stress conditions in tobacco. 3 Biotech 2017; 7:177. [PMID: 28664364 PMCID: PMC5491439 DOI: 10.1007/s13205-017-0819-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/17/2017] [Indexed: 11/28/2022] Open
Abstract
Tea (Camellia sinensis) is one of the richest sources of flavan-3-ols, an important class of flavonoids. The expression level of gene-encoded key regulatory enzymes of flavan-3-ol/anthocyanin biosynthetic pathway, dihydroflavonol 4-reductase (DFR) and anthocyanidin reductase (ANR), has been highly correlated with the flavan-3-ol contents and antioxidant activity in tea plant. In the present study, pyramiding of CsDFR and CsANR in tobacco was achieved. However, single transgenic tobacco overexpressing either CsDFR or CsANR was documented earlier. In continuation, pyramided transgenic lines were evaluated for the possible, either same or beyond, effect on flavan-3-ol accumulation and protective ability against biotic and abiotic stresses. The pyramided transgenic lines showed early flowering and improved seed yield. The transcript levels of flavan-3-ol/anthocyanin biosynthetic pathway and related genes in pyramided transgenic lines were upregulated as compared to control tobacco plants. The accumulations of flavan-3-ols were also found to be higher in pyramided transgenic lines than control tobacco plants. In contrast, anthocyanin content was observed to be decreased in pyramided transgenic lines, while DPPH activity was higher in pyramided transgenic lines. In pyramided transgenic lines, strong protective ability against feeding by Spodoptera litura was documented. The seeds of pyramided transgenic lines were also found to have better germination rate under aluminum toxicity as compared to control tobacco plants. Interestingly, the synergistic effect of these two selected genes are not beyond from transgenic lines expressing either CsDFR and CsANR alone as published earlier in terms of flavan-3-ols accumulation. However, the unique flower color and better seed germination rate are some interestingly comparable differences that were reported in pyramided lines in relation to individual transgenic plants. In conclusion, the present results reveal an interesting dynamic between CsDFR and CsANR in modulating flavan-3-ol/anthocyanin levels and functional analysis of stacked CsDFR and CsANR transgenic tobacco lines.
Collapse
Affiliation(s)
- Vinay Kumar
- Centre for Plant Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151001, India.
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, 176061, India.
| | - Sudesh Kumar Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, HP, 176061, India
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, Punjab, India
| |
Collapse
|
47
|
Laitinen T, Morreel K, Delhomme N, Gauthier A, Schiffthaler B, Nickolov K, Brader G, Lim KJ, Teeri TH, Street NR, Boerjan W, Kärkönen A. A Key Role for Apoplastic H 2O 2 in Norway Spruce Phenolic Metabolism. PLANT PHYSIOLOGY 2017; 174:1449-1475. [PMID: 28522458 PMCID: PMC5490890 DOI: 10.1104/pp.17.00085] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Apoplastic events such as monolignol oxidation and lignin polymerization are difficult to study in intact trees. To investigate the role of apoplastic hydrogen peroxide (H2O2) in gymnosperm phenolic metabolism, an extracellular lignin-forming cell culture of Norway spruce (Picea abies) was used as a research model. Scavenging of apoplastic H2O2 by potassium iodide repressed lignin formation, in line with peroxidases activating monolignols for lignin polymerization. Time-course analyses coupled to candidate substrate-product pair network propagation revealed differential accumulation of low-molecular-weight phenolics, including (glycosylated) oligolignols, (glycosylated) flavonoids, and proanthocyanidins, in lignin-forming and H2O2-scavenging cultures and supported that monolignols are oxidatively coupled not only in the cell wall but also in the cytoplasm, where they are coupled to other monolignols and proanthocyanidins. Dilignol glycoconjugates with reduced structures were found in the culture medium, suggesting that cells are able to transport glycosylated dilignols to the apoplast. Transcriptomic analyses revealed that scavenging of apoplastic H2O2 resulted in remodulation of the transcriptome, with reduced carbon flux into the shikimate pathway propagating down to monolignol biosynthesis. Aggregated coexpression network analysis identified candidate enzymes and transcription factors for monolignol oxidation and apoplastic H2O2 production in addition to potential H2O2 receptors. The results presented indicate that the redox state of the apoplast has a profound influence on cellular metabolism.
Collapse
Affiliation(s)
- Teresa Laitinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Adrien Gauthier
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Bastian Schiffthaler
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Kaloian Nickolov
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Department of Biology, University of Oulu, 90014 Oulu, Finland
| | - Günter Brader
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Kean-Jin Lim
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Green Technology, 00790 Helsinki, Finland
| |
Collapse
|
48
|
Chandra S, Chakraborty N, Panda K, Acharya K. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:298-307. [PMID: 28412634 DOI: 10.1016/j.plaphy.2017.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 05/24/2023]
Abstract
Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease.
Collapse
Affiliation(s)
- Swarnendu Chandra
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Nilanjan Chakraborty
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Koustubh Panda
- Department of Biotechnology, Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
49
|
Klutsch JG, Najar A, Sherwood P, Bonello P, Erbilgin N. A Native Parasitic Plant Systemically Induces Resistance in Jack Pine to a Fungal Symbiont of Invasive Mountain Pine Beetle. J Chem Ecol 2017; 43:506-518. [PMID: 28466378 DOI: 10.1007/s10886-017-0845-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 03/26/2017] [Accepted: 04/24/2017] [Indexed: 01/28/2023]
Abstract
Conifer trees resist pest and pathogen attacks by complex defense responses involving different classes of defense compounds. However, it is unknown whether prior infection by biotrophic pathogens can lead to subsequent resistance to necrotrophic pathogens in conifers. We used the infection of jack pine, Pinus banksiana, by a common biotrophic pathogen dwarf mistletoe, Arceuthobium americanum, to investigate induced resistance to a necrotrophic fungus, Grosmannia clavigera, associated with the mountain pine beetle, Dendroctonus ponderosae. Dwarf mistletoe infection had a non-linear, systemic effect on monoterpene production, with increasing concentrations at moderate infection levels and decreasing concentrations at high infection levels. Inoculation with G. clavigera resulted in 33 times higher monoterpene concentrations and half the level of phenolics in the necrotic lesions compared to uninoculated control trees. Monoterpene production following dwarf mistletoe infection seemed to result in systemic induced resistance, as trees with moderate disease severity were most resistant to G. clavigera, as evident from shorter lesion lengths. Furthermore, trees with moderate disease severity had the highest systemic but lowest local induction of α-pinene after G. clavigera inoculation, suggesting a possible tradeoff between systemically- and locally-induced defenses. The opposing effects to inoculation by G. clavigera on monoterpene and phenolic levels may indicate the potential for biosynthetic tradeoffs by the tree between these two major defense classes. Our results demonstrate that interactions between a biotrophic parasitic plant and a necrotrophic fungus may impact mountain pine beetle establishment in novel jack pine forests through systemic effects mediated by the coordination of jack pine defense chemicals.
Collapse
Affiliation(s)
- Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| | - Ahmed Najar
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Patrick Sherwood
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA.,The James Hutton Institute, Craigiebuckler Aberdeen, Scotland, AB15 8QH, UK
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| |
Collapse
|
50
|
Dalman K, Wind JJ, Nemesio-Gorriz M, Hammerbacher A, Lundén K, Ezcurra I, Elfstrand M. Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC PLANT BIOLOGY 2017; 17:6. [PMID: 28061815 PMCID: PMC5219727 DOI: 10.1186/s12870-016-0952-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/15/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The NAC family of transcription factors is one of the largest gene families of transcription factors in plants and the conifer NAC gene family is at least as large, or possibly larger, as in Arabidopsis. These transcription factors control both developmental and stress induced processes in plants. Yet, conifer NACs controlling stress induced processes has received relatively little attention. This study investigates NAC family transcription factors involved in the responses to the pathogen Heterobasidion annosum (Fr.) Bref. sensu lato. RESULTS The phylogeny and domain structure in the NAC proteins can be used to organize functional specificities, several well characterized stress-related NAC proteins are found in III-3 in Arabidopsis (Jensen et al. Biochem J 426:183-196, 2010). The Norway spruce genome contain seven genes with similarity to subgroup III-3 NACs. Based on the expression pattern PaNAC03 was selected for detailed analyses. Norway spruce lines overexpressing PaNAC03 exhibited aberrant embryo development in response to maturation initiation and 482 misregulated genes were identified in proliferating cultures. Three key genes in the flavonoid biosynthesis pathway: a CHS, a F3'H and PaLAR3 were consistently down regulated in the overexpression lines. In accordance, the overexpression lines showed reduced levels of specific flavonoids, suggesting that PaNAC03 act as a repressor of this pathway, possibly by directly interacting with the promoter of the repressed genes. However, transactivation studies of PaNAC03 and PaLAR3 in Nicotiana benthamiana showed that PaNAC03 activated PaLAR3A, suggesting that PaNAC03 does not act as an independent negative regulator of flavan-3-ol production through direct interaction with the target flavonoid biosynthetic genes. CONCLUSIONS PaNAC03 and its orthologs form a sister group to well characterized stress-related angiosperm NAC genes and at least PaNAC03 is responsive to biotic stress and appear to act in the control of defence associated secondary metabolite production.
Collapse
Affiliation(s)
- Kerstin Dalman
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Chemistry and Biotechnology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Julia Johanna Wind
- KTH Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Miguel Nemesio-Gorriz
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Karl Lundén
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ines Ezcurra
- KTH Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Forest Mycology and Plant Pathology, SLU, PO. Box 7026, Uppsala, 75007 Sweden
| |
Collapse
|