1
|
Lu S, Sun Y, Liu X, Wang F, Luan S, Wang H. The SlbHLH92 transcription factor enhances salt stress resilience by fine-tuning hydrogen sulfide biosynthesis in tomato. Int J Biol Macromol 2024; 282:137294. [PMID: 39510459 DOI: 10.1016/j.ijbiomac.2024.137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Ongoing soil salinization severely hampers plant growth and the sustainability of global crops production. Hydrogen sulfide (H2S), acting as a critical gaseous signaling molecule, plays a vital role in plant response to various environmental cues such as salt stress. Nonetheless, it is not well understood how the transcriptional network regulates H2S production in response to salt stress in tomato. Herein, we determine that the bHLH transcription factor SlbHLH92 functions as a transcriptional activator in tomato (Solanum lycopersicum L.), upregulating the expression of the L-CYSTEINE DESULFHYDRASE 1 (SlLCD1) gene involved in H2S biosynthesis, thereby enhancing the plants' tolerance to salt stress. When exposed to salt stress, overexpression of SlbHLH92 in tomato leads to enhanced salt tolerance compared to wild-type plants. In contrast, suppression of SlbHLH92 expression with RNAi silencing results in increased sensitivity to salt stress. Subsequent molecular and biochemical investigations confirm that the salt-induced SlbHLH92 upregulates the expression of SlLCD1, leading to an increase in H₂S levels, as well as other salt-responsive genes (SlCBL10 and SlVQ16), by directly binding to specific cis-elements in their promoter regions. Furthermore, the VQ-motif containing protein SlVQ16 physically interacts with SlbHLH92, thereby promoting an increase in its transcriptional activity. Taken together, our study reveals an emerging mechanism in which the SlbHLH92-SlVQ16-H2S signaling cascade contributes to enhancing salt tolerance in tomato, presenting potential genetic targets for breeding salt-tolerant tomato cultivars.
Collapse
Affiliation(s)
- Songchong Lu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Sheng Luan
- Department of Plant and Microbial biology, University of California, Berkeley, CA 94720, USA.
| | - Hui Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Gayubas B, Castillo MC, León J. Arabidopsis VQ motif-containing proteins VQ1 and VQ10 interact with plastidial 1-deoxy-D-xylulose-5-phosphate synthase. Sci Rep 2024; 14:18930. [PMID: 39147804 DOI: 10.1038/s41598-024-70061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
VQ1 and VQ10 are largely unstructured homologous proteins with a significant potential for protein-protein interactions. Yeast two-hybrid (Y2H) analysis confirmed that both proteins interact not only with themselves and each other but also with other VQ and WRKY proteins. Screening an Arabidopsis Y2H library with VQ1 as bait identified 287 interacting proteins. Validation of the screening confirmed that interactions with VQ1 also occurred with VQ10, supporting their functional homology. Although VQ1 or VQ10 proteins do not localize in plastids, 47 VQ1-targets were found to be plastidial proteins. In planta interaction with the isoprenoid biosynthetic enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) was confirmed by co-immunoprecipitation. DXS oligomerizes through redox-regulated intermolecular disulfide bond formation, and the interaction with VQ1 or VQ10 do not involve their unique C residues. The VQ-DXS protein interaction did not alter plastid DXS localization or its oligomerization state. Although plants with enhanced or reduced VQ1 and VQ10 expression did not exhibit significantly altered levels of isoprenoids compared to wild-type plants, they did display significantly improved or diminished photosynthesis efficiency, respectively.
Collapse
Affiliation(s)
- Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia), 46022, Valencia, Spain.
| |
Collapse
|
3
|
Dong Q, Duan D, Wang F, Yang K, Song Y, Wang Y, Wang D, Ji Z, Xu C, Jia P, Luan H, Guo S, Qi G, Mao K, Zhang X, Tian Y, Ma Y, Ma F. The MdVQ37-MdWRKY100 complex regulates salicylic acid content and MdRPM1 expression to modulate resistance to Glomerella leaf spot in apples. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2364-2376. [PMID: 38683692 PMCID: PMC11258982 DOI: 10.1111/pbi.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Glomerella leaf spot (GLS), caused by the fungus Colletotrichum fructicola, is considered one of the most destructive diseases affecting apples. The VQ-WRKY complex plays a crucial role in the response of plants to biotic stresses. However, our understanding of the defensive role of the VQ-WRKY complex on woody plants, particularly apples, under biotic stress, remains limited. In this study, we elucidated the molecular mechanisms underlying the defensive role of the apple MdVQ37-MdWRKY100 module in response to GLS infection. The overexpression of MdWRKY100 enhanced resistance to C. fructicola, whereas MdWRKY100 RNA interference in apple plants reduced resistance to C. fructicola by affecting salicylic acid (SA) content and the expression level of the CC-NBS-LRR resistance gene MdRPM1. DAP-seq, Y1H, EMSA, and RT-qPCR assays indicated that MdWRKY100 inhibited the expression of MdWRKY17, a positive regulatory factor gene of SA degradation, upregulated the expression of MdPAL1, a key enzyme gene of SA biosynthesis, and promoted MdRPM1 expression by directly binding to their promotors. Transient overexpression and silencing experiments showed that MdPAL1 and MdRPM1 positively regulated GLS resistance in apples. Furthermore, the overexpression of MdVQ37 increased the susceptibility to C. fructicola by reducing the SA content and expression level of MdRPM1. Additionally, MdVQ37 interacted with MdWRKY100, which repressed the transcriptional activity of MdWRKY100. In summary, these results revealed the molecular mechanism through which the apple MdVQ37-MdWRKY100 module responds to GLS infection by regulating SA content and MdRPM1 expression, providing novel insights into the involvement of the VQ-WRKY complex in plant pathogen defence responses.
Collapse
Affiliation(s)
- Qinglong Dong
- College of ForestryHebei Agricultural UniversityBaodingChina
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Feng Wang
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Kaiyu Yang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yang Song
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yongxu Wang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Dajiang Wang
- Research Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Zhirui Ji
- Research Institute of PomologyChinese Academy of Agricultural SciencesXingchengChina
| | - Chengnan Xu
- College of Life SciencesYan'an UniversityYan'anShaanxiChina
| | - Peng Jia
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Haoan Luan
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Suping Guo
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Guohui Qi
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| | - Xuemei Zhang
- College of ForestryHebei Agricultural UniversityBaodingChina
| | - Yi Tian
- College of HorticultureHebei Agricultural UniversityBaodingChina
| | - Yue Ma
- College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of AppleCollege of Horticulture, Northwest A & F UniversityYanglingChina
| |
Collapse
|
4
|
Tan Q, Zhao M, Gao J, Li K, Zhang M, Li Y, Liu Z, Song Y, Lu X, Zhu Z, Lin R, Yin P, Zhou C, Wang G. AtVQ25 promotes salicylic acid-related leaf senescence by fine-tuning the self-repression of AtWRKY53. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1126-1147. [PMID: 38629459 DOI: 10.1111/jipb.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.
Collapse
Affiliation(s)
- Qi Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mingming Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, China
| | - Jingwei Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mengwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yunjia Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zeting Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yujia Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyue Lu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Rongcheng Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
5
|
Yang M, Wang Y, Chen C, Xin X, Dai S, Meng C, Ma N. Transcription factor WRKY75 maintains auxin homeostasis to promote tomato defense against Pseudomonas syringae. PLANT PHYSIOLOGY 2024; 195:1053-1068. [PMID: 38245840 DOI: 10.1093/plphys/kiae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
The hemibiotrophic bacterial pathogen Pseudomonas syringae infects a range of plant species and causes enormous economic losses. Auxin and WRKY transcription factors play crucial roles in plant responses to P. syringae, but their functional relationship in plant immunity remains unclear. Here, we characterized tomato (Solanum lycopersicum) SlWRKY75, which promotes defenses against P. syringae pv. tomato (Pst) DC3000 by regulating plant auxin homeostasis. Overexpressing SlWRKY75 resulted in low free indole-3-acetic acid (IAA) levels, leading to attenuated auxin signaling, decreased expansin transcript levels, upregulated expression of PATHOGENESIS-RELATED GENES (PRs) and NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), and enhanced tomato defenses against Pst DC3000. RNA interference-mediated repression of SlWRKY75 increased tomato susceptibility to Pst DC3000. Yeast one-hybrid, electrophoretic mobility shift assays, and luciferase activity assays suggested that SlWRKY75 directly activates the expression of GRETCHEN HAGEN 3.3 (SlGH3.3), which encodes an IAA-amido synthetase. SlGH3.3 enhanced tomato defense against Pst DC3000 by converting free IAA to the aspartic acid (Asp)-conjugated form IAA-Asp. In addition, SlWRKY75 interacted with a tomato valine-glutamine (VQ) motif-containing protein 16 (SlVQ16) in vivo and in vitro. SlVQ16 enhanced SlWRKY75-mediated transcriptional activation of SlGH3.3 and promoted tomato defense responses to Pst DC3000. Our findings illuminate a mechanism in which the SlVQ16-SlWRKY75 complex participates in tomato pathogen defense by positively regulating SlGH3.3-mediated auxin homeostasis.
Collapse
Affiliation(s)
- Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Yixuan Wang
- School of Landscape Architecture, Beijing Forestry University, No. 35, Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Xin Xin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Shanshan Dai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| | - Chen Meng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai' an, Shandong 271018, China
| |
Collapse
|
6
|
Dong X, Yu L, Zhang Q, Yang J, Gong Z, Niu X, Li H, Zhang X, Liu M, Jin C, Hu Y. Structural basis for the regulation of plant transcription factor WRKY33 by the VQ protein SIB1. Commun Biol 2024; 7:561. [PMID: 38734744 PMCID: PMC11088704 DOI: 10.1038/s42003-024-06258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the βN-strand and the extended βN-β1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu Yu
- College of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Qiang Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ju Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changwen Jin
- College of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Han P, Wang C, Li F, Li M, Nie J, Xu M, Feng H, Xu L, Jiang C, Guan Q, Huang L. Valsa mali PR1-like protein modulates an apple valine-glutamine protein to suppress JA signaling-mediated immunity. PLANT PHYSIOLOGY 2024; 194:2755-2770. [PMID: 38235781 DOI: 10.1093/plphys/kiae020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024]
Abstract
Apple Valsa canker (AVC) is a devastating disease of apple (Malus × domestica), caused by Valsa mali (Vm). The Cysteine-rich secretory protein, Antigen 5, and Pathogenesis-related protein 1 (CAP) superfamily protein PATHOGENESIS-RELATED PROTEIN 1-LIKE PROTEIN c (VmPR1c) plays an important role in the pathogenicity of Vm. However, the mechanisms through which it exerts its virulence function in Vm-apple interactions remain unclear. In this study, we identified an apple valine-glutamine (VQ)-motif-containing protein, MdVQ29, as a VmPR1c target protein. MdVQ29-overexpressing transgenic apple plants showed substantially enhanced AVC resistance as compared with the wild type. MdVQ29 interacted with the transcription factor MdWRKY23, which was further shown to bind to the promoter of the jasmonic acid (JA) signaling-related gene CORONATINE INSENSITIVE 1 (MdCOI1) and activate its expression to activate the JA signaling pathway. Disease evaluation in lesion areas on infected leaves showed that MdVQ29 positively modulated apple resistance in a MdWRKY23-dependent manner. Furthermore, MdVQ29 promoted the transcriptional activity of MdWRKY23 toward MdCOI1. In addition, VmPR1c suppressed the MdVQ29-enhanced transcriptional activation activity of MdWRKY23 by promoting the degradation of MdVQ29 and inhibiting MdVQ29 expression and the MdVQ29-MdWRKY23 interaction, thereby interfering with the JA signaling pathway and facilitating Vm infection. Overall, our results demonstrate that VmPR1c targets MdVQ29 to manipulate the JA signaling pathway to regulate immunity. Thus, this study provides an important theoretical basis and guidance for mining and utilizing disease-resistance genetic resources for genetically improving apples.
Collapse
Affiliation(s)
- Pengliang Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengli Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fudong Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meilian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajun Nie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liangsheng Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Han P, Zhang R, Li R, Li F, Nie J, Xu M, Wang C, Huang L. MdVQ12 confers resistance to Valsa mali by regulating MdHDA19 expression in apple. MOLECULAR PLANT PATHOLOGY 2024; 25:e13411. [PMID: 38071459 PMCID: PMC10788466 DOI: 10.1111/mpp.13411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Valine-glutamine (VQ) motif-containing proteins play a crucial role in plant biotic stress responses. Apple Valsa canker, caused by the ascomycete Valsa mali, stands as one of the most severe diseases affecting apple trees. Nonetheless, the underlying resistance mechanism of VQ proteins against this disease has remained largely unexplored. This study reports MdVQ12, a VQ motif-containing protein, as a positive regulator of apple Valsa canker resistance. Genetic transformation experiments demonstrated that MdVQ12 overexpression increased resistance to V. mali, while gene silencing lines exhibited significantly reduced resistance. MdVQ12 interacted with the transcription factor MdWRKY23, which bound to the promoter of the histone deacetylase gene MdHDA19, activating its expression. MdHDA19 enhanced apple resistance to V. mali by participating in the jasmonic acid (JA) and ethylene (ET) signalling pathways. Additionally, MdVQ12 promoted the transcriptional activity of MdWRKY23 towards MdHDA19. Our findings reveal that MdVQ12 enhances apple resistance to V. mali by regulating MdHDA19 expression and thereby regulating the JA and ET signalling pathways, offering potential candidate gene resources for breeding apple Valsa canker-resistant germplasm.
Collapse
Affiliation(s)
- Pengliang Han
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Ruotong Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Rui Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Fudong Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiajun Nie
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Ming Xu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Chengli Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
9
|
Tian J, Zhang J, Francis F. The role and pathway of VQ family in plant growth, immunity, and stress response. PLANTA 2023; 259:16. [PMID: 38078967 DOI: 10.1007/s00425-023-04292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION This review provides a detailed description of the function and mechanism of VQ family gene, which is helpful for further research and application of VQ gene resources to improve crops. Valine-glutamine (VQ) motif-containing proteins are a large class of transcriptional regulatory cofactors. VQ proteins have their own unique molecular characteristics. Amino acids are highly conserved only in the VQ domain, while other positions vary greatly. Most VQ genes do not contain introns and the length of their proteins is less than 300 amino acids. A majority of VQ proteins are predicted to be localized in the nucleus. The promoter of many VQ genes contains stress or growth related elements. Segment duplication and tandem duplication are the main amplification mechanisms of the VQ gene family in angiosperms and gymnosperms, respectively. Purification selection plays a crucial role in the evolution of many VQ genes. By interacting with WRKY, MAPK, and other proteins, VQ proteins participate in the multiple signaling pathways to regulate plant growth and development, as well as defense responses to biotic and abiotic stresses. Although there have been some reports on the VQ gene family in plants, most of them only identify family members, with little functional verification, and there is also a lack of complete, detailed, and up-to-date review of research progress. Here, we comprehensively summarized the research progress of VQ genes that have been published so far, mainly including their molecular characteristics, biological functions, importance of VQ motif, and working mechanisms. Finally, the regulatory network and model of VQ genes were drawn, a precise molecular breeding strategy based on VQ genes was proposed, and the current problems and future prospects were pointed out, providing a powerful reference for further research and utilization of VQ genes in plant improvement.
Collapse
Affiliation(s)
- Jinfu Tian
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jiahui Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| |
Collapse
|
10
|
Gayubas B, Castillo MC, Ramos S, León J. Enhanced meristem development, tolerance to oxidative stress and hyposensitivity to nitric oxide in the hypermorphic vq10-H mutant in AtVQ10 gene. PLANT, CELL & ENVIRONMENT 2023; 46:3445-3463. [PMID: 37565511 DOI: 10.1111/pce.14685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Nitric oxide (NO) and reactive oxygen are common factors in multiple plant responses to stress, and their involvement in hypoxia-triggered responses is key to ensure growth under adverse environmental conditions. Here, we analyse the regulatory functions exerted by hypoxia-, NO- and oxidative stress-inducible Arabidopsis gene coding for the VQ motif-containing protein 10 (VQ10). A hypermorphic vq10-H mutant allowed identifying VQ10-exerted regulation on root and shoot development as well as its role in regulating responses to NO and oxidative stress. Enhanced VQ10 expression in vq10-H plants led to enhanced elongation of the primary root, and increased root cell division and meristem size during early postgermination development. In shoots, VQ10 activation of cell division was counteracted by WRKY33-exerted repression, thus leading to a dwarf bushy phenotype in plants with enhanced VQ10 expression in a wrky33 knock-out background. Low number of differentially expressed genes were identified when vq10-H versus Col-0 plants were compared either under normoxia or hypoxia. vq10-H and VQ10ox plants displayed less tolerance to submergence but, in turn, were more tolerant to oxidative stress and less sensitive to NO than wild-type plants. VQ10 could be a node integrating redox-related regulation on development and stress responses.
Collapse
Affiliation(s)
- Beatriz Gayubas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - Sara Ramos
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
11
|
Tian J, Zhang J, Francis F. Large-Scale Identification and Characterization Analysis of VQ Family Genes in Plants, Especially Gymnosperms. Int J Mol Sci 2023; 24:14968. [PMID: 37834416 PMCID: PMC10573558 DOI: 10.3390/ijms241914968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
VQ motif-containing (VQ) proteins are a class of transcription regulatory cofactors widely present in plants, playing crucial roles in growth and development, stress response, and defense. Although there have been some reports on the member identification and functional research of VQ genes in some plants, there is still a lack of large-scale identification and clear graphical presentation of their basic characterization information to help us to better understand this family. Especially in gymnosperms, the VQ family genes and their evolutionary relationships have not yet been reported. In this study, we systematically identified 2469 VQ genes from 56 plant species, including bryophytes, gymnosperms, and angiosperms, and analyzed their molecular and evolutionary features. We found that amino acids are only highly conserved in the VQ domain, while other positions are relatively variable; most VQ genes encode relatively small proteins and do not have introns. The GC content in Poaceae plants is the highest (up to 70%); these VQ proteins can be divided into nine subgroups. In particular, we analyzed the molecular characteristics, chromosome distribution, duplication events, and expression levels of VQ genes in three gymnosperms: Ginkgo biloba, Taxus chinensis, and Pinus tabuliformis. In gymnosperms, VQ genes are classified into 11 groups, with highly similar motifs in each group; most VQ proteins have less than 300 amino acids and are predicted to be located in nucleus. Tandem duplication is an important driving force for the expansion of the VQ gene family, and the evolutionary processes of most VQ genes and duplication events are relatively independent; some candidate VQ genes are preliminarily screened, and they are likely to be involved in plant growth and stress and defense responses. These results provide detailed information and powerful references for further understanding and utilizing the VQ family genes in various plants.
Collapse
Affiliation(s)
- Jinfu Tian
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jiahui Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; (J.T.)
| |
Collapse
|
12
|
Katiyar A, Geeta R, Das S, Mudgil Y. Comparative genomics, microsynteny, ancestral state reconstruction and selection pressure analysis across distinctive genomes and sub-genomes of Brassicaceae for analysis of evolutionary history of VQ gene family. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1505-1523. [PMID: 38076762 PMCID: PMC10709281 DOI: 10.1007/s12298-023-01347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2024]
Abstract
Any unfavorable condition that affects the metabolism, growth, or development of plants is considered plant stress. The molecular response of plants towards abiotic stresses involves signaling to cellular components, repressing transcription factors, and subsequently induced metabolic changes. Most valine-glutamine (VQ) motif-containing genes in plants encode regulatory proteins that interact with transcription factors and modulate their activity as transcription regulators. Several VQ proteins regulate plant development and stress responses. In spite of the functional importance of VQs, there is relatively little information about their evolutionary history in Brassicaceae or beyond. Brassicaceae is characterized by paleoploidy, mesopolyploidy, and neopolyploidy, offering a resource for studying evolution and diversification. In current study we performed phylogeny of the VQ gene family along with comparative genomics, microsynteny and evolutionary rates analysis across seven species of Brassicaceae. Our findings revealed the following; (1) a large segmental duplication in the shared common ancestor of the family Brassicaceae, resulted in paralogies of VQ1-VQ10, VQ15-VQ24, VQ16-VQ23, VQ17-VQ25, VQ18-VQ26, VQ22-VQ27; (2) chromosomal mapping revealed diverse distributions of the gene family; (3) duplicated segments undergo varying degrees of retention and loss; and (4) Out of the 12 paralogous members, most of the genes are under purifying selection. However, VQ23 in Brassicaceae stands out as it is under positive selection, indicating the need for further investigation. Overall, our results clearly establish that the ancestral VQ1/VQ10, VQ15/VQ24, VQ16/VQ23, VQ17/VQ25, VQ18/VQ26, VQ22/VQ27 genes duplicated in shared common ancestor of Brassicaceae. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01347-z.
Collapse
Affiliation(s)
- Arpana Katiyar
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - R. Geeta
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Sandip Das
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Yashwanti Mudgil
- Department of Botany, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
13
|
Zhang XW, Xu RR, Liu Y, You CX, An JP. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1599-1618. [PMID: 37277961 DOI: 10.1111/tpj.16341] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Wounding stress leads to leaf senescence. However, the underlying molecular mechanism has not been elucidated. In this study, we investigated the role of the MdVQ10-MdWRKY75 module in wound-induced leaf senescence. MdWRKY75 was identified as a key positive modulator of wound-induced leaf senescence by activating the expression of the senescence-associated genes MdSAG12 and MdSAG18. MdVQ10 interacted with MdWRKY75 to enhance MdWRKY75-activated transcription of MdSAG12 and MdSAG18, thereby promoting leaf senescence triggered by wounding. In addition, the calmodulin-like protein MdCML15 promoted MdVQ10-mediated leaf senescence by stimulating the interaction between MdVQ10 and MdWRKY75. Moreover, the jasmonic acid signaling repressors MdJAZ12 and MdJAZ14 antagonized MdVQ10-mediated leaf senescence by weakening the MdVQ10-MdWRKY75 interaction. Our results demonstrate that the MdVQ10-MdWRKY75 module is a key modulator of wound-induced leaf senescence and provides insights into the mechanism of leaf senescence caused by wounding.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui-Rui Xu
- College of Biology and Oceanography, Weifang University, Weifang, 261061, Shandong, China
| | - Yankai Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
14
|
Yan X, Luo R, Liu X, Hou Z, Pei W, Zhu W, Cui H. Characterization and the comprehensive expression analysis of tobacco valine-glutamine genes in response to trichomes development and stress tolerance. BOTANICAL STUDIES 2023; 64:18. [PMID: 37423918 DOI: 10.1186/s40529-023-00376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/19/2023] [Indexed: 07/11/2023]
Abstract
Valine-glutamine genes (VQ) acted as transcription regulators and played the important roles in plant growth and development, and stress tolerance through interacting with transcription factors and other co-regulators. In this study, sixty-one VQ genes containing the FxxxVQxxTG motif were identified and updated in the Nicotiana tobacum genome. Phylogenetic analysis indicated that NtVQ genes were divided into seven groups and genes of each group had highly conserved exon-intron structure. Expression patterns analysis firstly showed that NtVQ genes expressed individually in different tobacco tissues including mixed-trichome (mT), glandular-trichome (gT), and nonglandular-trichome (nT), and the expression levels were also distinguishing in response to methyl jasmonate (MeJA), salicylic acid (SA), gibberellic acid (GA), ethylene (ETH), high salinity and PEG stresses. Besides, only NtVQ17 of its gene family was verified to have acquired autoactivating activity. This work will not only lead a foundation on revealing the functions of NtVQ genes in tobacco trichomes but also provided references to VQ genes related stress tolerance research in more crops.
Collapse
Affiliation(s)
- Xiaoxiao Yan
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Rui Luo
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Xiangyang Liu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Zihang Hou
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Wenyi Pei
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Wenqi Zhu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China
| | - Hong Cui
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, 450002, China.
- College of Tobacco Science, Henan Agricultural University, 63 Nongye Road, Jinshui District, Zhengzhou, China.
| |
Collapse
|
15
|
Yang M, Liu Z, Yu Y, Yang M, Guo L, Han X, Ma X, Huang Z, Gao Q. Genome-wide identification of the valine-glutamine motif containing gene family and the role of VQ25-1 in pollen germination in Brassica oleracea. Genes Genomics 2023; 45:921-934. [PMID: 37004590 DOI: 10.1007/s13258-023-01375-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND The plant-specific valine-glutamine (VQ) motif containing proteins tightly regulate plant growth, development, and stress responses. However, the genome-wide identification and functional analysis of Brassica oleracea (B. oleracea) VQ genes have not been reported. OBJECTIVE To identify the VQ gene family in B. oleracea and analyze the function of Bo25-1 in pollen germination. METHODS The Hidden Markov Model (HMM) of VQ family was used to query the BoVQ genes in the B. oleracea genome. The BoVQ genes preferentially expressed in anthers were screened by qRT-PCR. Subcellular localization of VQ25-1 was observed in Nicotiana benthamiana (N. benthamiana) leaves. To analysis the role of BoVQ25-1 in pollen germination, the expression of BoVQ25-1 was suppressed using antisense-oligonucleotides (AS-ODN). RESULTS A total of 64 BoVQ genes were identified in the B. oleracea genome. BoVQ25-1 was found to be preferentially expressed in the B. oleracea anthers. BoVQ25-1 was cloned from the anthers of the B. oleracea cultivar 'Fast Cycle'. BoVQ25-1 is localized to the nucleus. The pollen germination rate significantly decreased after AS-ODN treatment. CONCLUSION Sixty-four BoVQ genes were identified in the B. oleracea genome, of which BoVQ25-1 plays an important role in pollen germination.
Collapse
Affiliation(s)
- Miaomiao Yang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ziwei Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yuanhui Yu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Min Yang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Li Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xuejie Han
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xiangjie Ma
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ziya Huang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Qiguo Gao
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.
| |
Collapse
|
16
|
Wang Y, Lu X, Fu Y, Wang H, Yu C, Chu J, Jiang B, Zhu J. Genome-wide identification and expression analysis of VQ gene family under abiotic stress in Coix lacryma-jobi L. BMC PLANT BIOLOGY 2023; 23:327. [PMID: 37340442 DOI: 10.1186/s12870-023-04294-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Valine-glutamine (VQ) proteins are non-specific plant proteins that have a highly conserved motif: FxxhVQxhTG. These proteins are involved in the development of various plant organs such as seeds, hypocotyls, flowers, leaves and also play a role in response to salt, drought and cold stresses. Despite their importance, there is limited information available on the evolutionary and structural characteristics of VQ family genes in Coix lacryma-jobi. RESULTS In this study, a total of 31 VQ genes were identified from the coix genome and classified into seven subgroups (I-VII) based on phylogenetic analysis. These genes were found to be unevenly distributed on 10 chromosomes. Gene structure analysis revealed that these genes had a similar type of structure within each subfamily. Moreover, 27 of ClVQ genes were found to have no introns. Conserved domain and multiple sequence alignment analysis revealed the presence of a highly conserved sequences in the ClVQ protein. This research utilized quantitative real-time PCR (qRT-PCR) and promoter analysis to investigate the expression of ClVQ genes under different stress conditions. Results showed that most ClVQ genes responded to polyethylene glycol, heat treatment, salt, abscisic acid and methyl jasmonate treatment with varying degrees of expression. Furthermore, some ClVQ genes exhibited significant correlation in expression changes under abiotic stress, indicating that these genes may act synergistically in response to adversarial stress. Additionally, yeast dihybrid verification revealed an interaction between ClVQ4, ClVQ12, and ClVQ26. CONCLUSIONS This study conducted a genome-wide analysis of the VQ gene family in coix, including an examination of phylogenetic relationships, conserved domains, cis-elements and expression patterns. The goal of the study was to identify potential drought resistance candidate genes, providing a theoretical foundation for molecular resistance breeding.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Xianyong Lu
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Yuhua Fu
- Guizhou Institute of Subtropical Crops, Guizhou Academy of Agricultural Sciences, Xingyi, China
| | - Hongjuan Wang
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Chun Yu
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Jiasong Chu
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, China
| | - Benli Jiang
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, China.
| | - Jiabao Zhu
- Department of Cotton Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, China.
| |
Collapse
|
17
|
Liu M, Li C, Li Y, An Y, Ruan X, Guo Y, Dong X, Ruan Y. Genome-Wide Identification and Characterization of the VQ Motif-Containing Gene Family Based on Their Evolution and Expression Analysis under Abiotic Stress and Hormone Treatments in Foxtail Millet ( Setaria italica L.). Genes (Basel) 2023; 14:genes14051032. [PMID: 37239391 DOI: 10.3390/genes14051032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Valine-glutamine (VQ) motif-containing proteins are transcriptional regulatory cofactors that play critical roles in plant growth and response to biotic and abiotic stresses. However, information on the VQ gene family in foxtail millet (Setaria italica L.) is currently limited. In this study, a total of 32 SiVQ genes were identified in foxtail millet and classified into seven groups (I-VII), based on the constructed phylogenetic relationships; the protein-conserved motif showed high similarity within each group. Gene structure analysis showed that most SiVQs had no introns. Whole-genome duplication analysis revealed that segmental duplications contributed to the expansion of the SiVQ gene family. The cis-element analysis demonstrated that growth and development, stress response, and hormone-response-related cis-elements were all widely distributed in the promoters of the SiVQs. Gene expression analysis demonstrated that the expression of most SiVQ genes was induced by abiotic stress and phytohormone treatments, and seven SiVQ genes showed significant upregulation under both abiotic stress and phytohormone treatments. A potential interaction network between SiVQs and SiWRKYs was predicted. This research provides a basis to further investigate the molecular function of VQs in plant growth and abiotic stress responses.
Collapse
Affiliation(s)
- Meiling Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Cong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuntong Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yingtai An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoxi Ruan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yicheng Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanye Ruan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
18
|
Si Z, Wang L, Ji Z, Qiao Y, Zhang K, Han J. Genome-wide comparative analysis of the valine glutamine motif containing genes in four Ipomoea species. BMC PLANT BIOLOGY 2023; 23:209. [PMID: 37085761 PMCID: PMC10122360 DOI: 10.1186/s12870-023-04235-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Genes with valine glutamine (VQ) motifs play an essential role in plant growth, development, and resistance to biotic and abiotic stresses. However, little information on the VQ genes in sweetpotato and other Ipomoea species is available. RESULTS This study identified 55, 58, 50 and 47 VQ genes from sweetpotato (I. batatas), I.triflida, I. triloba and I. nil, respectively. The phylogenetic analysis revealed that the VQ genes formed eight clades (I-VII), and the members in the same group exhibited similar exon-intron structure and conserved motifs distribution. The distribution of the VQ genes among the chromosomes of Ipomoea species was disproportional, with no VQ genes mapped on a few of each species' chromosomes. Duplication analysis suggested that segmental duplication significantly contributes to their expansion in sweetpotato, I.trifida, and I.triloba, while the segmental and tandem duplication contributions were comparable in I.nil. Cis-regulatory elements involved in stress responses, such as W-box, TGACG-motif, CGTCA-motif, ABRE, ARE, MBS, TCA-elements, LTR, and WUN-motif, were detected in the promoter regions of the VQ genes. A total of 30 orthologous groups were detected by syntenic analysis of the VQ genes. Based on the analysis of RNA-seq datasets, it was found that the VQ genes are expressed distinctly among different tissues and hormone or stress treatments. A total of 40 sweetpotato differentially expressed genes (DEGs) refer to biotic (sweetpotato stem nematodes and Ceratocystis fimbriata pathogen infection) or abiotic (cold, salt and drought) stress treatments were detected. Moreover, IbVQ8, IbVQ25 and IbVQ44 responded to the five stress treatments and were selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. CONCLUSIONS Our study may provide new insights into the evolution of VQ genes in the four Ipomoea genomes and contribute to the future molecular breeding of sweetpotatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000 China
| | - Lianjun Wang
- Institute of Food Corps, Hubei Academy of Agricultural Sciences, Wuhan, 430072 China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000 China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000 China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000 China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000 China
| |
Collapse
|
19
|
Comprehensive Identification and Expression Profiling of the VQ Motif-Containing Gene Family in Brassica juncea. BIOLOGY 2022; 11:biology11121814. [PMID: 36552323 PMCID: PMC9776337 DOI: 10.3390/biology11121814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Valine-glutamine (VQ) motif-containing proteins are a class of highly conserved transcriptional regulators in plants and play key roles in plant growth, development, and response to various stresses. However, the VQ family genes in mustard have not yet been comprehensively identified and analyzed. In this study, a total of 120 VQ family genes (BjuVQ1 to BjuVQ120), which were unevenly distributed on 18 chromosomes (AA_Chr01 to BB_Chr08), were characterized in mustard. A phylogenetic tree analysis revealed that the BjuVQ proteins were clustered into nine distinct groups (groups I to IX), and members in the same group shared a highly conserved motif composition. A gene structure analysis suggested that most BjuVQ genes were intronless. A gene duplication analysis revealed that 254 pairs of BjuVQ genes were segmentally duplicated and one pair was tandemly duplicated. Expression profiles obtained from RNA-seq data demonstrated that most BjuVQ genes have different gene expression profiles in different organs, including leaf, stem, root, flower bud, pod, and seed. In addition, over half of the BjuVQ genes were differentially expressed at some time points under low temperature treatment. The qRT-PCR data revealed that BjuVQ23, BjuVQ55, BjuVQ57, BjuVQ67, BjuVQ100, and BjuVQ117 were upregulated in response to cold stress. Taken together, our study provides new insights into the roles of different BjuVQ genes in mustard and their possible roles in growth and development, as well as in response to cold stress.
Collapse
|
20
|
Zhang K, Liu F, Wang Z, Zhuo C, Hu K, Li X, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotiorum in Brassica napus. PLANT PHYSIOLOGY 2022; 190:2757-2774. [PMID: 36130294 PMCID: PMC9706479 DOI: 10.1093/plphys/kiac439] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/24/2022] [Indexed: 06/01/2023]
Abstract
Sclerotinia sclerotiorum causes substantial damage and loss of yield in oilseed rape (Brassica napus). The molecular mechanisms of oilseed rape defense against Sclerotinia remain elusive. In this study, we found that in the early stages of B. napus infection a conserved mitogen-activated protein kinase (MAPK) cascade mediated by BnaA03.MKK5-BnaA06.MPK3/BnaC03.MPK3 module phosphorylates the substrate BnWRKY33, enhancing its transcriptional activity. The activated BnWRKY33 binds to its own promoter and triggers a transcriptional burst of BnWRKY33, thus helping plants effectively resist the pathogenic fungi by enhancing the expression of phytoalexin synthesis-related genes. The expression of BnWRKY33 is fine-tuned during defense. Ongoing Sclerotinia infection induces BnaA03.WRKY28 and BnaA09.VQ12 expression. BnaA09.VQ12 interacts physically with BnaA03.WRKY28 to form a protein complex, causing BnaA03.WRKY28 to outcompete BnWRKY33 and bind to the BnWRKY33 promoter. BnaA03.WRKY28 induction suppresses BnWRKY33 expression in the later stages of infection but promotes branch formation in the leaf axils by regulating the expression of branching-related genes such as BnBRC1. BnaA03.WRKY28 participates in the trade-off between defense and growth. These findings suggest that oilseed rape plants may modulate defense-response strength and develop alternative reproduction and survival strategies in the face of lethal pathogens.
Collapse
Affiliation(s)
- Ka Zhang
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fei Liu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixin Wang
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenjian Zhuo
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxia Li
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Li Y, Du Y, Huai J, Jing Y, Lin R. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis. THE PLANT CELL 2022; 34:4191-4212. [PMID: 35920787 PMCID: PMC9614450 DOI: 10.1093/plcell/koac235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Light is a key environmental signal that regulates plant growth and development. While posttranscriptional regulatory mechanisms of gene expression include alternative splicing (AS) of pre-messenger RNA (mRNA) in both plants and animals, how light signaling affects AS in plants is largely unknown. Here, we identify DExD/H RNA helicase U2AF65-associated protein (UAP56) as a negative regulator of photomorphogenesis in Arabidopsis thaliana. UAP56 is encoded by the homologs UAP56a and UAP56b. Knockdown of UAP56 led to enhanced photomorphogenic responses and diverse developmental defects during vegetative and reproductive growth. UAP56 physically interacts with the central light signaling repressor constitutive photomorphogenic 1 (COP1) and U2AF65. Global transcriptome analysis revealed that UAP56 and COP1 co-regulate the transcription of a subset of genes. Furthermore, deep RNA-sequencing analysis showed that UAP56 and COP1 control pre-mRNA AS in both overlapping and distinct manners. Ribonucleic acid immunoprecipitation assays showed that UAP56 and COP1 bind to common small nuclear RNAs and mRNAs of downstream targets. Our study reveals that both UAP56 and COP1 function as splicing factors that coordinately regulate AS during light-regulated plant growth and development.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Du
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | |
Collapse
|
22
|
Huang H, Zhao W, Li C, Qiao H, Song S, Yang R, Sun L, Ma J, Ma X, Wang S. SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. PLANT PHYSIOLOGY 2022; 190:828-842. [PMID: 35689622 PMCID: PMC9434178 DOI: 10.1093/plphys/kiac275] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 06/01/2023]
Abstract
Botrytis cinerea is one of the most widely distributed and harmful pathogens worldwide. Both the phytohormone jasmonate (JA) and the VQ motif-containing proteins play crucial roles in plant resistance to B. cinerea. However, their crosstalk in resistance to B. cinerea is unclear, especially in tomato (Solanum lycopersicum). In this study, we found that the tomato VQ15 was highly induced upon B. cinerea infection and localized in the nucleus. Silencing SlVQ15 using virus-induced gene silencing reduced resistance to B. cinerea. Overexpression of SlVQ15 enhanced resistance to B. cinerea, while disruption of SlVQ15 using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9) technology increased susceptibility to B. cinerea. Furthermore, SlVQ15 formed homodimers. Additionally, SlVQ15 interacted with JA-ZIM domain proteins, repressors of the JA signaling pathway, and SlWRKY31. SlJAZ11 interfered with the interaction between SlVQ15 and SlWRKY31 and repressed the SlVQ15-increased transcriptional activation activity of SlWRKY31. SlVQ15 and SlWRKY31 synergistically regulated tomato resistance to B. cinerea, as silencing SlVQ15 enhanced the sensitivity of slwrky31 to B. cinerea. Taken together, our findings showed that the SlJAZ-interacting protein SlVQ15 physically interacts with SlWRKY31 to cooperatively control JA-mediated plant defense against B. cinerea.
Collapse
Affiliation(s)
| | | | | | - Hui Qiao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Susheng Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | | |
Collapse
|
23
|
Zhang L, Wang K, Han Y, Yan L, Zheng Y, Bi Z, Zhang X, Zhang X, Min D. Genome-wide analysis of the VQ motif-containing gene family and expression profiles during phytohormones and abiotic stresses in wheat (Triticum aestivum L.). BMC Genomics 2022; 23:292. [PMID: 35410124 PMCID: PMC8996428 DOI: 10.1186/s12864-022-08519-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND VQ motif-containing (VQ) proteins are cofactors of transcriptional regulation that are widely involved in plant growth and development and respond to various stresses. The VQ gene family has been identified and characterized for many plants, but there is little research on VQ gene family proteins in wheat (Triticum aestivum L.). RESULTS In this study, 113 TaVQ genes (40 homoeologous groups) were identified in the wheat genome. TaVQ proteins all contain the conserved motif FxxhVQxhTG, and most of the TaVQ genes do not contain introns. Phylogenetic analysis demonstrated that TaVQ proteins can be divided into 8 subgroups (I-VIII). The chromosomal location mapping analysis indicated that TaVQ genes are disproportionally distributed on 21 wheat chromosomes. Gene duplication analysis revealed that segmental duplication significantly contributes to the expansion of the TaVQ gene family. Gene expression analysis demonstrated that the expression pattern of TaVQ genes varies in different tissues. The results of quantitative real-time PCR (qRT-PCR) found that TaVQ genes displayed different expression levels under different phytohormones and abiotic stresses. The cis-elements analysis of the promoter region demonstrated that stress responses, hormone responses, growth and development, and WRKY binding elements are all widely distributed. Additionally, a potential regulatory network between TaVQ proteins and WRKY transcription factors was visualized. CONCLUSION This study systematically analyzed the wheat TaVQ gene family, providing a reference for further functional characterization of TaVQ genes in wheat.
Collapse
Affiliation(s)
- Lili Zhang
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, Yangling, China
| | - Keke Wang
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, Yangling, China
| | - Yuxuan Han
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, Yangling, China
| | - Luyu Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Zheng
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, Yangling, China
| | - Zhenzhen Bi
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, Yangling, China
| | - Xin Zhang
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, Yangling, China
| | - Xiaohong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Donghong Min
- College of Agronomy, State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Shaanxi, Yangling, China.
| |
Collapse
|
24
|
Dong Q, Duan D, Zheng W, Huang D, Wang Q, Yang J, Liu C, Li C, Gong X, Li C, Ma F, Mao K. Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. TREE PHYSIOLOGY 2022; 42:160-174. [PMID: 34328189 DOI: 10.1093/treephys/tpab098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Drought stress is an environmental factor that seriously threatens plant growth, development and yield. VQ proteins are transcriptional regulators that have been reported to be involved in plant growth, development and the responses to biotic and abiotic stressors. However, the relationship between VQ proteins and drought stress has not been well documented in plants. In this study, overexpressing the apple VQ motif-containing protein (MdVQ37) gene in apple plants markedly reduced the tolerance to drought. Physiological and biochemical studies further demonstrated lower enzymatic activities and decreased photosynthetic capacity in transgenic lines compared with wild-type (WT) plants under drought stress. Ultrastructural analysis of leaves showed that the leaves and palisade tissues from the transgenic lines were significantly thinner than those from WT plants. Salicylic acid (SA) analysis indicated that overexpression of MdVQ37 increased the accumulation of 2,5-DHBA by up-regulating the expression of the SA catabolic gene, which ultimately resulted to a significant reduction in endogenous SA content and the disruption of the SA-dependent signaling pathway under drought stress. Applying SA partially increased the survival rate of the transgenic lines under drought stress. These results demonstrate that the regulatory function of apple MdVQ37 is implicated in drought stress, through a change in leaf development and SA homeostasis. This study provides novel insight into understanding the multiple functions of VQ proteins.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Wenqian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
25
|
Zhang H, Zhang L, Ji Y, Jing Y, Li L, Chen Y, Wang R, Zhang H, Yu D, Chen L. Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 inhibit WRKY75 function in abscisic acid-mediated leaf senescence and seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:182-196. [PMID: 34435636 PMCID: PMC8730687 DOI: 10.1093/jxb/erab391] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 05/14/2023]
Abstract
The plant-specific VQ gene family participates in diverse physiological processes but little information is available on their role in leaf senescence. Here, we show that the VQ motif-containing proteins, Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 are negative regulators of abscisic acid (ABA)-mediated leaf senescence. Loss of SIB1 and SIB2 function resulted in increased sensitivity of ABA-induced leaf senescence. In contrast, overexpression of SIB1 significantly delayed this process. Moreover, biochemical studies revealed that SIBs interact with WRKY75 transcription factor. Loss of WRKY75 function decreased sensitivity to ABA-induced leaf senescence, while overexpression of WRKY75 significantly accelerated this process. Chromatin immunoprecipitation assays revealed that WRKY75 directly binds to the promoters of GOLDEN 2-LIKE1(GLK1) and GLK2, to repress their expression. SIBs repress the transcriptional function of WRKY75 and negatively regulate ABA-induced leaf senescence in a WRKY75-dependent manner. In contrast, WRKY75 positively modulates ABA-mediated leaf senescence in a GLK-dependent manner. In addition, SIBs inhibit WRKY75 function in ABA-mediated seed germination. These results demonstrate that SIBs can form a complex with WRKY75 to regulate ABA-mediated leaf senescence and seed germination.
Collapse
Affiliation(s)
- Haiyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunrui Ji
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifen Jing
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanxin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Huimin Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Diqiu Yu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
- Correspondence: or
| | - Ligang Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Correspondence: or
| |
Collapse
|
26
|
Cheng X, Yao H, Cheng Z, Tian B, Gao C, Gao W, Yan S, Cao J, Pan X, Lu J, Ma C, Chang C, Zhang H. The Wheat Gene TaVQ14 Confers Salt and Drought Tolerance in Transgenic Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:870586. [PMID: 35620700 PMCID: PMC9127792 DOI: 10.3389/fpls.2022.870586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/04/2022] [Indexed: 05/13/2023]
Abstract
Wheat is one of the most widely cultivated food crops worldwide, and the safe production of wheat is essential to ensure food security. Soil salinization and drought have severely affected the yield and quality of wheat. Valine-glutamine genes play important roles in abiotic stress response. This study assessed the effect of the gene TaVQ14 on drought and salt stresses resistance. Sequence analysis showed that TaVQ14 encoded a basic unstable hydrophobic protein with 262 amino acids. Subcellular localization showed that TaVQ14 was localized in the nucleus. TaVQ14 was upregulated in wheat seeds under drought and salt stress. Under NaCl and mannitol treatments, the percentage of seed germination was higher in Arabidopsis lines overexpressing TaVQ14 than in wild-type lines, whereas the germination rate was significantly lower in plants with a mutation in the atvq15 gene (a TaVQ14 homolog) than in WT controls, suggesting that TaVQ14 increases resistance to salt and drought stress in Arabidopsis seeds. Moreover, under salt and drought stress, Arabidopsis lines overexpressing TaVQ14 had higher catalase, superoxide dismutase, and proline levels and lower malondialdehyde concentrations than WT controls, suggesting that TaVQ14 improves salt and drought resistance in Arabidopsis by scavenging reactive oxygen species. Expression analysis showed that several genes responsive to salt and drought stress were upregulated in Arabidopsis plants overexpressing TaVQ14. Particularly, salt treatment increased the expression of AtCDPK2 in these plants. Moreover, salt treatment increased Ca2+ concentrations in plants overexpressing TaVQ14, suggesting that TaVQ14 enhances salt resistance in Arabidopsis seeds through calcium signaling. In summary, this study demonstrated that the heterologous expression of TaVQ14 increases the resistance of Arabidopsis seeds to salt and drought stress.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Zuming Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Bingbing Tian
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- *Correspondence: Cheng Chang,
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- Haiping Zhang,
| |
Collapse
|
27
|
Shan N, Xiang Z, Sun J, Zhu Q, Xiao Y, Wang P, Chen X, Zhou Q, Gan Z. Genome-wide analysis of valine-glutamine motif-containing proteins related to abiotic stress response in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2021; 21:492. [PMID: 34696718 PMCID: PMC8546950 DOI: 10.1186/s12870-021-03242-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cucumber (Cucumis sativus L.) is one of the most important economic crops and is susceptible to various abiotic stresses. The valine-glutamine (VQ) motif-containing proteins are plant-specific proteins with a conserved "FxxhVQxhTG" amino acid sequence that regulates plant growth and development. However, little is known about the function of VQ proteins in cucumber. RESULTS In this study, a total of 32 CsVQ proteins from cucumber were confirmed and characterized using comprehensive genome-wide analysis, and they all contain a conserved motif with 10 variations. Phylogenetic tree analysis revealed that these CsVQ proteins were classified into nine groups by comparing the CsVQ proteins with those of Arabidopsis thaliana, melon and rice. CsVQ genes were distributed on seven chromosomes. Most of these genes were predicted to be localized in the nucleus. In addition, cis-elements in response to different stresses and hormones were observed in the promoters of the CsVQ genes. A network of CsVQ proteins interacting with WRKY transcription factors (CsWRKYs) was proposed. Moreover, the transcripts of CsVQ gene were spatio-temporal specific and were induced by abiotic adversities. CsVQ4, CsVQ6, CsVQ16-2, CsVQ19, CsVQ24, CsVQ30, CsVQ32, CsVQ33, and CsVQ34 were expressed in the range of organs and tissues at higher levels and could respond to multiple hormones and different stresses, indicating that these genes were involved in the response to stimuli. CONCLUSIONS Together, our results reveal novel VQ resistance gene resources, and provide critical information on CsVQ genes and their encoded proteins, which supplies important genetic basis for VQ resistance breeding of cucumber plants.
Collapse
Affiliation(s)
- Nan Shan
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zijin Xiang
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingyu Sun
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qianglong Zhu
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yao Xiao
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Putao Wang
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Chen
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghong Zhou
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zengyu Gan
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
28
|
Dong Q, Duan D, Zheng W, Huang D, Wang Q, Li X, Mao K, Ma F. MdVQ37 overexpression reduces basal thermotolerance in transgenic apple by affecting transcription factor activity and salicylic acid homeostasis. HORTICULTURE RESEARCH 2021; 8:220. [PMID: 34593787 PMCID: PMC8484266 DOI: 10.1038/s41438-021-00655-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 06/01/2023]
Abstract
High temperature (HT) is one of the most important environmental stress factors and seriously threatens plant growth, development, and production. VQ motif-containing proteins are transcriptional regulators that have been reported to regulate plant growth and developmental processes, including responses to biotic and abiotic stresses. However, the relationships between VQ motif-containing proteins and HT stress have not been studied in depth in plants. In this study, transgenic apple (Malus domestica) plants overexpressing the apple VQ motif-containing protein-coding gene (MdVQ37) were exposed to HT stress, and the transgenic lines exhibited a heat-sensitive phenotype. In addition, physiological and biochemical studies revealed that, compared with WT plants, transgenic lines had lower enzymatic activity and photosynthetic capacity and lower amounts of nonenzymatic antioxidant system metabolites under HT stress. Transcriptome analysis revealed 1379 genes whose expression differed between the transgenic lines and WT plants. GO and KEGG pathway analyses showed that transcription factor activity and plant hormone signaling pathways were differentially influenced and enriched in the transgenic lines. Salicylic acid (SA) content analysis indicated that overexpression of MdVQ37 reduced the content of endogenous SA by regulating the expression of SA catabolism-related genes, which ultimately resulted in disruption of the SA-dependent signaling pathway under HT stress. The application of SA slightly increased the survival rate of the transgenic lines under HT stress. Taken together, our results indicate that apple MdVQ37 has a regulatory function in basal thermotolerance by modulating the activity of transcription factors and SA homeostasis. Overall, this study provides novel insights that improve our understanding of the various functions of VQ motif-containing proteins.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Wenqian Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Xiaoran Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
29
|
Kan J, Gao G, He Q, Gao Q, Jiang C, Ahmar S, Liu J, Zhang J, Yang P. Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. Int J Mol Sci 2021; 22:5354. [PMID: 34069581 PMCID: PMC8160967 DOI: 10.3390/ijms22105354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ping Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; (J.K.); (G.G.); (Q.H.); (Q.G.); (C.J.); (S.A.); (J.L.); (J.Z.)
| |
Collapse
|
30
|
Li N, Yang Z, Li J, Xie W, Qin X, Kang Y, Zhang Q, Li X, Xiao J, Ma H, Wang S. Two VQ Proteins are Substrates of the OsMPKK6-OsMPK4 Cascade in Rice Defense Against Bacterial Blight. RICE (NEW YORK, N.Y.) 2021; 14:39. [PMID: 33913048 PMCID: PMC8081811 DOI: 10.1186/s12284-021-00483-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The plant-specific valine-glutamine (VQ) protein family with the conserved motif FxxxVQxLTG reportedly functions with the mitogen-activated protein kinase (MAPK) in plant immunity. However, the roles of VQ proteins in MAPK-mediated resistance to disease in rice remain largely unknown. RESULTS In this study, two rice VQ proteins OsVQ14 and OsVQ32 were newly identified to function as the signaling components of a MAPK cascade, OsMPKK6-OsMPK4, to regulate rice resistance to Xanthomonas oryzae pv. oryzae (Xoo). Both OsVQ14 and OsVQ32 positively regulated rice resistance to Xoo. In vitro and in vivo studies revealed that OsVQ14 and OsVQ32 physically interacted with and were phosphorylated by OsMPK4. OsMPK4 was highly phosphorylated in transgenic plants overexpressing OsMPKK6, which showed enhanced resistance to Xoo. Meanwhile, phosphorylated OsVQ14 and OsVQ32 were also markedly accumulated in OsMPKK6-overexpressing transgenic plants. CONCLUSIONS We discovered that OsVQ14 and OsVQ32 functioned as substrates of the OsMPKK6-OsMPK4 cascade to enhance rice resistance to Xoo, thereby defining a more complete signal transduction pathway for induced defenses.
Collapse
Affiliation(s)
- Na Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofeng Qin
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanrong Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
31
|
Zou Z, Liu F, Huang S, Fernando WGD. Genome-Wide Identification and Analysis of the Valine-Glutamine Motif-Containing Gene Family in Brassica napus and Functional Characterization of BnMKS1 in Response to Leptosphaeria maculans. PHYTOPATHOLOGY 2021; 111:281-292. [PMID: 32804045 DOI: 10.1094/phyto-04-20-0134-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Proteins containing valine-glutamine (VQ) motifs play important roles in plant growth and development as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus) worldwide; however, the identification of Brassica napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome-wide identification and characterization of the VQ gene family in Brassica napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand Brassica napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase 4 substrate 1 [MKS1] gene) in a blackleg-susceptible canola variety, Westar. Overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the salicylic acid- and jasmonic acid-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in defense against L. maculans.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - W G Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
32
|
Yuan G, Qian Y, Ren Y, Guan Y, Wu X, Ge C, Ding H. The role of plant-specific VQ motif-containing proteins: An ever-thickening plot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:12-16. [PMID: 33310402 DOI: 10.1016/j.plaphy.2020.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/04/2020] [Indexed: 05/11/2023]
Abstract
VQ proteins are a class of plant-specific proteins containing the conserved motif FxxhVQxhTG(h denotes hydrophobic residues and x represents any amino acid)and are named VQ for the V and Q residues. By analyzing the structure of VQ members it was found that most VQ genes do not contain introns and the number of encoded amino acids is less than 300 aa. A majority of VQ proteins are located in the nucleus. Accumulated evidence has highlighted the importance of VQ proteins mainly participating in signal pathways through interacting with partners (eg. WRKYs and MAPKs) to regulate plant growth and development and respond to biotic and abiotic stresses. This review primarily focuses on the structure of VQ members in plant kingdom and the biological function and the mechanism of VQ protein action, and discusses recent advances in understanding the pivotal role of VQ-motif, which provides a solid foundation for further exploration on VQ proteins.
Collapse
Affiliation(s)
- Guibo Yuan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ying Qian
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yan Ren
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yali Guan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxia Wu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Cailin Ge
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Haidong Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
33
|
León J, Gayubas B, Castillo MC. Valine-Glutamine Proteins in Plant Responses to Oxygen and Nitric Oxide. FRONTIERS IN PLANT SCIENCE 2021; 11:632678. [PMID: 33603762 PMCID: PMC7884903 DOI: 10.3389/fpls.2020.632678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/31/2020] [Indexed: 06/01/2023]
Abstract
Multigene families coding for valine-glutamine (VQ) proteins have been identified in all kind of plants but chlorophytes. VQ proteins are transcriptional regulators, which often interact with WRKY transcription factors to regulate gene expression sometimes modulated by reversible phosphorylation. Different VQ-WRKY complexes regulate defense against varied pathogens as well as responses to osmotic stress and extreme temperatures. However, despite these well-known functions, new regulatory activities for VQ proteins are still to be explored. Searching public Arabidopsis thaliana transcriptome data for new potential targets of VQ-WRKY regulation allowed us identifying several VQ protein and WRKY factor encoding genes that were differentially expressed in oxygen-related processes such as responses to hypoxia or ozone-triggered oxidative stress. Moreover, some of those were also differentially regulated upon nitric oxide (NO) treatment. These subsets of VQ and WRKY proteins might combine into different VQ-WRKY complexes, thus representing a potential regulatory core of NO-modulated and O2-modulated responses. Given the increasing relevance that gasotransmitters are gaining as plant physiology regulators, and particularly considering the key roles exerted by O2 and NO in regulating the N-degron pathway-controlled stability of transcription factors, VQ and WRKY proteins could be instrumental in regulating manifold processes in plants.
Collapse
|
34
|
Chen P, Wei F, Cheng S, Ma L, Wang H, Zhang M, Mao G, Lu J, Hao P, Ahmad A, Gu L, Ma Q, Wu A, Wei H, Yu S. A comprehensive analysis of cotton VQ gene superfamily reveals their potential and extensive roles in regulating cotton abiotic stress. BMC Genomics 2020; 21:795. [PMID: 33198654 PMCID: PMC7667805 DOI: 10.1186/s12864-020-07171-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 01/03/2023] Open
Abstract
Background Valine-glutamine (VQ) motif-containing proteins play important roles in plant growth, development and abiotic stress response. For many plant species, the VQ genes have been identified and their functions have been described. However, little is known about the origin, evolution, and functions (and underlying mechanisms) of the VQ family genes in cotton. Results In this study, we comprehensively analyzed the characteristics of 268 VQ genes from four Gossypium genomes and found that the VQ proteins evolved into 10 clades, and each clade had a similar structural and conservative motif. The expansion of the VQ gene was mainly through segmental duplication, followed by dispersal. Expression analysis revealed that many GhVQs might play important roles in response to salt and drought stress, and GhVQ18 and GhVQ84 were highly expressed under PEG and salt stress. Further analysis showed that GhVQs were co-expressed with GhWRKY transcription factors (TFs), and microRNAs (miRNAs) could hybridize to their cis-regulatory elements. Conclusions The results in this study broaden our understanding of the VQ gene family in plants, and the analysis of the structure, conserved elements, and expression patterns of the VQs provide a solid foundation for exploring their specific functions in cotton responding to abiotic stresses. Our study provides significant insight into the potential functions of VQ genes in cotton. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07171-z.
Collapse
Affiliation(s)
- Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Fei Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,School of Life Science, Zhengzhou University, Zhengzhou, 450000, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Adeel Ahmad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
35
|
Zhao L, Zhang W, Song Q, Xuan Y, Li K, Cheng L, Qiao H, Wang G, Zhou C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1072-1085. [PMID: 32609938 DOI: 10.1111/plb.13155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Leaf senescence is a complex and precise regulatory process that is correlated with numerous internal and environmental factors. Leaf senescence is tightly related to the redistribution of nutrients, which significantly affects productivity and quality, especially in crops. Evidence shows that the mediation of transcriptional regulation by WRKY transcription factors is vital for the fine-tuning of leaf senescence. However, the underlying mechanisms of the involvement of WRKY in leaf senescence are still unclear in wheat. Using RNA sequencing data, we isolated a novel WRKY transcription factor, TaWRKY40-D, which localizes in the nucleus and is basically induced by the progression of leaf senescence. TaWRKY40-D is a promoter of natural and dark-induced leaf senescence in transgenic Arabidopsis thaliana and wheat. We also demonstrated a positive response of TaWRKY40-D in wheat upon jasmonic acid (JA) and abscisic acid (ABA) treatment. Consistent with this, the detached leaves of TaWRKY40-D VIGS (virus-induced gene silencing) wheat plants showed a stay-green phenotype, while TaWRKY40-D overexpressing Arabidopsis plants showed premature leaf senescence after JA and ABA treatment. Moreover, our results revealed that TaWRKY40-D positively regulates leaf senescence, possibly by altering the biosynthesis and signalling of JA and ABA pathway genes. Together, our results suggest a new regulator of JA- and ABA-related leaf senescence, as well as a new candidate gene that can be used for molecular breeding in wheat.
Collapse
Affiliation(s)
- L Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - W Zhang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Q Song
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Y Xuan
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - K Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - L Cheng
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - H Qiao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - G Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - C Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
36
|
Sun Y, Liu Z, Guo J, Zhu Z, Zhou Y, Guo C, Hu Y, Li J, Shangguan Y, Li T, Hu Y, Wu R, Li W, Rochaix JD, Miao Y, Sun X. WRKY33-PIF4 loop is required for the regulation of H 2O 2 homeostasis. Biochem Biophys Res Commun 2020; 527:922-928. [PMID: 32423827 DOI: 10.1016/j.bbrc.2020.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/04/2023]
Abstract
The reactive oxygen species (ROS) are continuously produced and are essential for mediating the growth and development of plants. However too much accumulation of ROS can result in the oxidative damage to cells, especially under the adverse environmental conditions. Plants have evolved sophisticated strategies to regulate the homeostasis of H2O2. In this study, we generated transgenic Arabidopsis plants in the Ws ecotype (Ws) background in which WRKY33 is co-suppressed (csWRKY33/Ws). Compared with Ws, csWRKY33/Ws plants accumulate more H2O2. RNA-seq analysis indicated that in csWRKY33/Ws plants, expression of oxidative stress related genes such as ascorbate peroxidase 2 (APX2) is affected. Over-expression of APX2 can rescue the phenotype of csWRKY33/Ws, suggesting that the changes in the growth of csWRKY33/Ws is duo to the higher accumulation of H2O2. Analysis of the CHIP-seq data suggested that WRKY33 can directly regulate the expression of PIF4, vice versa. qPCR analysis also confirmed that the mutual regulation between WRKY33 and PIF4. Similar to that of csWRKY33/Ws, and the accumulation of H2O2 in pif4 also increased. Taken together, our results reveal a WRKY33-PIF4 regulatory loop that appears to play an important role in regulating the growth and development of seedlings by mediating H2O2 homeostasis.
Collapse
Affiliation(s)
- Yijing Sun
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yunhe Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Jiaoai Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yan Shangguan
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Tao Li
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yongjian Hu
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China; State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China.
| |
Collapse
|
37
|
Liu C, Liu H, Zhou C, Timko MP. Genome-Wide Identification of the VQ Protein Gene Family of Tobacco ( Nicotiana tabacum L.) and Analysis of Its Expression in Response to Phytohormones and Abiotic and Biotic Stresses. Genes (Basel) 2020; 11:E284. [PMID: 32156048 PMCID: PMC7140788 DOI: 10.3390/genes11030284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
VQ motif-containing proteins (VQ proteins) are transcriptional regulators that work independently or in combination with other transcription factors (TFs) to control plant growth and development and responses to biotic and abiotic stresses. VQ proteins contain a conserved FxxhVQxhTG amino acid motif that is the main element of its interaction with WRKY TFs. We identified 59 members of the tobacco (Nicotiana tabacum L.) NtVQ gene family by in silico analysis and examined their differential expression in response to phytohormonal treatments and following exposure to biotic and abiotic stressors. NtVQ proteins clustered into eight groups based upon their amino acid sequence and presence of various conserved domains. Groups II, IV, V, VI, and VIII contained the largest proportion of NtVQ gene family members differentially expressed in response to one or more phytohormone, and NtVQ proteins with similar domain structures had similar patterns of response to different phytohormones. NtVQ genes differentially expressed in response to temperature alterations and mechanical wounding were also identified. Over half of the NtVQ genes were significantly induced in response to Ralstonia solanacearum infection. This first comprehensive characterization of the NtVQ genes in tobacco lays the foundation for further studies of the NtVQ-mediated regulatory network in plant growth, developmental, and stress-related processes.
Collapse
Affiliation(s)
- Cuihua Liu
- Citrus Research Institute, Southwest University, Chongqing 400712, China;
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Hai Liu
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Chongqing 400712, China;
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA;
| |
Collapse
|
38
|
Regulation of Photomorphogenic Development by Plant Phytochromes. Int J Mol Sci 2019; 20:ijms20246165. [PMID: 31817722 PMCID: PMC6941077 DOI: 10.3390/ijms20246165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/03/2022] Open
Abstract
Photomorphogenesis and skotomorphogenesis are two key events that control plant development, from seed germination to flowering and senescence. A group of wavelength-specific photoreceptors, E3 ubiquitin ligases, and various transcription factors work together to regulate these two critical processes. Phytochromes are the main photoreceptors in plants for perceiving red/far-red light and transducing the light signals to downstream factors that regulate the gene expression network for photomorphogenic development. In this review, we highlight key developmental stages in the life cycle of plants and how phytochromes and other components in the phytochrome signaling pathway play roles in plant growth and development.
Collapse
|
39
|
Ding H, Yuan G, Mo S, Qian Y, Wu Y, Chen Q, Xu X, Wu X, Ge C. Genome-wide analysis of the plant-specific VQ motif-containing proteins in tomato (Solanum lycopersicum) and characterization of SlVQ6 in thermotolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:29-39. [PMID: 31479880 DOI: 10.1016/j.plaphy.2019.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/25/2019] [Indexed: 05/12/2023]
Abstract
The VQ motif-containing (VQ) proteins are plant-specific proteins with a conserved "FxxhVQxhTG" amino acid sequence, which regulate plant growth and development. Little is known, however, about the function of VQ proteins in tomato (Solanum lycopersicum). Here, a total of 26 SlVQ proteins were confirmed and characterized using a comprehensive genome-wide analysis. The SlVQ proteins all contain the conserved motif with seven variations, which are classified into eight groups (I, II, IV-VI, VIII-X). Most of them were predicted to be localized in the nucleus. Besides, a network including SlVQ proteins interaction with WRKY transcription factors (SlWRKYs) and mitogen-activated protein kinases (SlMPKs) is proposed. In addition, among the SlVQ genes, SlVQ6 was expressed in the range of organs and tissues with the highest levels and could response to different stresses. Ectopically overexpression of SlVQ6 in Arabidopsis plants decreased high temperature tolerance. RNA sequencing analysis revealed that several stress-related genes, such as HSP70-4, RD20, GolS1 and AT4g36010 were down-regulated in SlVQ6 overexpressing plants compared to these in wild-type under normal growth conditions. This study provides critical information about SlVQ genes and their encoded proteins, as well as further research on SlVQ functions in tomato growth and development.
Collapse
Affiliation(s)
- Haidong Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Guibo Yuan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangrong Mo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yin Qian
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoxia Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Cailin Ge
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
40
|
Yu T, Lu X, Bai Y, Mei X, Guo Z, Liu C, Cai Y. Overexpression of the maize transcription factor ZmVQ52 accelerates leaf senescence in Arabidopsis. PLoS One 2019; 14:e0221949. [PMID: 31469881 PMCID: PMC6716648 DOI: 10.1371/journal.pone.0221949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022] Open
Abstract
Leaf senescence plays an important role in the improvement of maize kernel yields. However, the underlying regulatory mechanisms of leaf senescence in maize are largely unknown. We isolated ZmVQ52 and studied the function of ZmVQ52 which encoded, a VQ family transcription factor. ZmVQ52 is constitutively expressed in maize tissues, and mainly expressed in the leaf; it is located in the nucleus of maize protoplasts. Four WRKY family proteins-ZmWRKY20, ZmWRKY36, ZmWRKY50, and ZmWRKY71-were identified as interacting with ZmVQ52. The overexpression of ZmVQ52 in Arabidopsis accelerated premature leaf senescence. The leaf of the ZmVQ52-overexpression line showed a lower chlorophyll content and higher senescence rate than the WT. A number of leaf senescence regulating genes were up-regulated in the ZmVQ52-overexpression line. Additionally, hormone treatments revealed that the leaf of the ZmVQ52-overexpressed line was more sensitive to salicylic acid (SA) and jasmonic acid (JA), and had an enhanced tolerance to abscisic acid (ABA). Moreover, a transcriptome analysis of the ZmVQ52-overexpression line revealed that ZmVQ52 is mainly involved in the circadian pathway and photosynthetic pathways.
Collapse
Affiliation(s)
- Tingting Yu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xuefeng Lu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yang Bai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xiupeng Mei
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhifeng Guo
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Chaoxian Liu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yilin Cai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
41
|
Yan H, Wang Y, Hu B, Qiu Z, Zeng B, Fan C. Genome-Wide Characterization, Evolution, and Expression Profiling of VQ Gene Family in Response to Phytohormone Treatments and Abiotic Stress in Eucalyptus grandis. Int J Mol Sci 2019; 20:ijms20071765. [PMID: 30974801 PMCID: PMC6480042 DOI: 10.3390/ijms20071765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023] Open
Abstract
VQ genes play important roles in plant development, growth, and stress responses. However, little information regarding the functions of VQ genes is available for Eucalyptus grandis. In our study, genome-wide characterization and identification of VQ genes were performed in E. grandis. Results showed that 27 VQ genes, which divided into seven sub-families (I-VII), were found, and all but two VQ genes showed no intron by gene structure and conserved motif analysis. To further identify the function of EgrVQ proteins, gene expression analyses were also developed under hormone treatments (brassinosteroids, methyl jasmonate, salicylic acid, and abscisic acid) and abiotic conditions (salt stress, cold 4 °C, and heat 42 °C). The results of a quantitative real-time PCR analysis indicated that the EgrVQs were variously expressed under different hormone treatments and abiotic stressors. Our study provides a comprehensive overview of VQ genes in E. grandis, which will be beneficial in the molecular breeding of E. grandis to promote its resistance to abiotic stressors; the results also provide a basis from which to conduct further investigation into the functions of VQ genes in E. grandis.
Collapse
Affiliation(s)
- Huifang Yan
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Yujiao Wang
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Bing Hu
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Zhenfei Qiu
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Bingshan Zeng
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Chunjie Fan
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
42
|
The VQ motif-containing proteins in the diploid and octoploid strawberry. Sci Rep 2019; 9:4942. [PMID: 30894615 PMCID: PMC6427031 DOI: 10.1038/s41598-019-41210-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/28/2019] [Indexed: 12/04/2022] Open
Abstract
The plant VQ motif-containing proteins are a recently discovered class of plant regulatory proteins interacting with WRKY transcription factors capable of modulate their activity as transcriptional regulators. The short VQ motif (FxxhVQxhTG) is the main element in the WRKY-VQ interaction, whereas a newly identified variable upstream amino acid motif appears to be determinant for the WRKY specificity. The VQ family has been studied in several species and seems to play important roles in a variety of biological processes, including response to biotic and abiotic stresses. Here, we present a systematic study of the VQ family in both diploid (Fragaria vesca) and octoploid (Fragaria x ananassa) strawberry species. Thus, twenty-five VQ-encoding genes were identified and twenty-three were further confirmed by gene expression analysis in different tissues and fruit ripening stages. Their expression profiles were also studied in F. ananassa fruits affected by anthracnose, caused by the ascomycete fungus Colletotrichum, a major pathogen of strawberry, and in response to the phytohormones salicylic acid and methyl-jasmonate, which are well established as central stress signals to regulate defence responses to pathogens. This comprehensive analysis sheds light for a better understanding of putative implications of members of the VQ family in the defence mechanisms against this major pathogen in strawberry.
Collapse
|
43
|
Chen J, Wang H, Li Y, Pan J, Hu Y, Yu D. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:956-969. [PMID: 29727045 DOI: 10.1111/jipb.12664] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/03/2018] [Indexed: 05/11/2023]
Abstract
Recent studies in Arabidopsis have revealed that some VQ motif-containing proteins physically interact with WRKY transcription factors; however, their specific biological functions are still poorly understood. In this study, we confirmed the interaction between VQ10 and WRKY8, and show that VQ10 and WRKY8 formed a complex in the plant cell nucleus. Yeast two-hybrid analysis showed that the middle region of WRKY8 and the VQ motif of VQ10 are critical for their interaction, and that this interaction promotes the DNA-binding activity of WRKY8. Further investigation revealed that the VQ10 protein was exclusively localized in the nucleus, and VQ10 was predominantly expressed in siliques. VQ10 expression was strongly responsive to the necrotrophic fungal pathogen, Botrytis cinerea and defense-related hormones. Phenotypic analysis showed that disruption of VQ10 increased mutant plants susceptibility to the fungal pathogen B. cinerea, whereas constitutive-expression of VQ10 enhanced resistance to B. cinerea. Consistent with these findings, expression of the defense-related PLANT DEFENSIN1.2 (PDF1.2) gene was decreased in vq10 mutant plants, after B. cinerea infection, but increased in VQ10-overexpressing transgenic plants. Taken together, our findings provide evidence that VQ10 physically interacts with WRKY8 and positively regulates plant basal resistance against the necrotrophic fungal pathogen B. cinerea.
Collapse
Affiliation(s)
- Junqiu Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houping Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjing Pan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
44
|
Guo J, Chen J, Yang J, Yu Y, Yang Y, Wang W. Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). BMC Genomics 2018; 19:710. [PMID: 30257643 PMCID: PMC6158892 DOI: 10.1186/s12864-018-5107-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND VQ motif-containing (VQ) proteins are plant-specific proteins that interact with WRKY transcription factors and play important roles in plant growth, development and stress response. To date, VQ gene families have been identified and characterized in many plant species, including Arabidopsis, rice and grapevine. However, the VQ gene family in tea plant has not been reported, and the biological functions of this family remain unknown. RESULTS In total, 25 CsVQ genes were identified based on the genome and transcriptome of tea plant, and a comprehensive bioinformatics analysis was performed. The CsVQ proteins all contained the typical conserved motif FxxhVQxhTG, and most proteins were localized in the nucleus. The phylogenetic analysis showed that the VQ proteins were classified into 5 groups (I, III-VI); the evolution of the CsVQ proteins is consistent with the evolutionary process of plants, and close proteins shared similar structures and functions. In addition, the expression analysis revealed that the CsVQ genes play important roles in the process of tea plant growth, development and response to salt and drought stress. Furthermore, a potential regulatory network including the interactions of CsVQ proteins with CsWRKY transcription factors and the regulation of upstream microRNA that is closely related to the above-mentioned processes is proposed. CONCLUSIONS The results of this study increase our understanding and characterization of CsVQ genes and their encoded proteins in tea plant. This systematic analysis provided comprehensive information for further studies investigating the biological functions of CsVQ proteins in various developmental processes of tea plants.
Collapse
Affiliation(s)
- Junhong Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiangfei Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiankun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
45
|
Pan J, Wang H, Hu Y, Yu D. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:529-544. [PMID: 29771466 DOI: 10.1111/tpj.13969] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/04/2018] [Indexed: 05/23/2023]
Abstract
Seed germination and early seedling establishment, critical developmental stages in the life cycle of seed plants, are modulated by diverse endogenous hormones and the surrounding environment. Arabidopsis ABSCISIC ACID-INSENSITIVE5 (ABI5) is a central transcription factor of abscisic acid (ABA) signaling that represses those processes. ABI5 is precisely modulated at post-translational level; however, whether it interacts with other crucial transcriptional regulators remains to be investigated. In this study, VQ18 and VQ26, two members of the recently-identified VQ family, were found to interact with ABI5 in vitro and in vivo. Phenotypic analysis showed that VQ18 and VQ26 are responsive to ABA and negatively mediate ABA signaling redundantly during seed germination. Simultaneously decreasing VQ18 and VQ26 expression levels enhanced ABA signaling to suppress seed germination, whereas overexpressing these two VQ genes resulted in the germinated seeds being less ABA-sensitive. Consistently, the expression levels of several ABI5 targets were modulated by VQ18 and VQ26. The increased ABA signaling of plants in which VQ18 and VQ26 were simultaneously suppressed required ABI5. Additionally, VQ18 and VQ26 acted as negative interactors of the ABI5 transcription factor. Our study reveals a previously unidentified regulatory role of VQ proteins, which act antagonistically with ABI5 to maintain the appropriate ABA signaling level to fine-tune seed germination and early seedling establishment.
Collapse
Affiliation(s)
- Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
46
|
Cervera H, Ambrós S, Bernet GP, Rodrigo G, Elena SF. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study. Mol Biol Evol 2018; 35:1599-1615. [PMID: 29562354 PMCID: PMC5995217 DOI: 10.1093/molbev/msy038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.
Collapse
Affiliation(s)
- Héctor Cervera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo P Bernet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
| | - Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnia de València, Campus UPV CPI 8E, València, Spain
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
47
|
Genome Wide Identification, Evolutionary, and Expression Analysis of VQ Genes from Two Pyrus Species. Genes (Basel) 2018; 9:genes9040224. [PMID: 29690608 PMCID: PMC5924566 DOI: 10.3390/genes9040224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/27/2023] Open
Abstract
The VQ motif-containing gene, a member of the plant-specific genes, is involved in the plant developmental process and various stress responses. The VQ motif-containing gene family has been studied in several plants, such as rice (Oryza sativa), maize (Zea mays), and Arabidopsis (Arabidopsis thaliana). However, no systematic study has been performed in Pyrus species, which have important economic value. In our study, we identified 41 and 28 VQ motif-containing genes in Pyrus bretschneideri and Pyrus communis, respectively. Phylogenetic trees were calculated using A. thaliana and O. sativa VQ motif-containing genes as a template, allowing us to categorize these genes into nine subfamilies. Thirty-two and eight paralogous of VQ motif-containing genes were found in P. bretschneideri and P. communis, respectively, showing that the VQ motif-containing genes had a more remarkable expansion in P. bretschneideri than in P. communis. A total of 31 orthologous pairs were identified from the P. bretschneideri and P. communis VQ motif-containing genes. Additionally, among the paralogs, we found that these duplication gene pairs probably derived from segmental duplication/whole-genome duplication (WGD) events in the genomes of P. bretschneideri and P. communis, respectively. The gene expression profiles in both P. bretschneideri and P. communis fruits suggested functional redundancy for some orthologous gene pairs derived from a common ancestry, and sub-functionalization or neo-functionalization for some of them. Our study provided the first systematic evolutionary analysis of the VQ motif-containing genes in Pyrus, and highlighted the diversification and duplication of VQ motif-containing genes in both P. bretschneideri and P. communis.
Collapse
|
48
|
Le Berre JY, Gourgues M, Samans B, Keller H, Panabières F, Attard A. Transcriptome dynamic of Arabidopsis roots infected with Phytophthora parasitica identifies VQ29, a gene induced during the penetration and involved in the restriction of infection. PLoS One 2017; 12:e0190341. [PMID: 29281727 PMCID: PMC5744986 DOI: 10.1371/journal.pone.0190341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
Abstract
Little is known about the responses of plant roots to filamentous pathogens, particularly to oomycetes. To assess the molecular dialog established between the host and the pathogen during early stages of infection, we investigated the overall changes in gene expression in A. thaliana roots challenged with P. parasitica. We analyzed various infection stages, from penetration and establishment of the interaction to the switch from biotrophy to necrotrophy. We identified 3390 genes for which expression was modulated during the infection. The A. thaliana transcriptome displays a dynamic response to P. parasitica infection, from penetration onwards. Some genes were specifically coregulated during penetration and biotrophic growth of the pathogen. Many of these genes have functions relating to primary metabolism, plant growth, and defense responses. In addition, many genes encoding VQ motif-containing proteins were found to be upregulated in plant roots, early in infection. Inactivation of VQ29 gene significantly increased susceptibility to P. parasitica during the late stages of infection. This finding suggests that the gene contributes to restricting oomycete development within plant tissues. Furthermore, the vq29 mutant phenotype was not associated with an impairment of plant defenses involving SA-, JA-, and ET-dependent signaling pathways, camalexin biosynthesis, or PTI signaling. Collectively, the data presented here thus show that infection triggers a specific genetic program in roots, beginning as soon as the pathogen penetrates the first cells.
Collapse
Affiliation(s)
| | | | - Birgit Samans
- Department of Plant Breeding, Institute of Agronomy and Plant Breeding, Giessen, Germany
| | | | | | - Agnes Attard
- INRA, Université Côte d'Azur, CNRS, ISA, France
- * E-mail:
| |
Collapse
|
49
|
Zhong Y, Guo C, Chu J, Liu H, Cheng ZM. Microevolution of the VQ gene family in six species of Fragaria. Genome 2017; 61:49-57. [PMID: 29084389 DOI: 10.1139/gen-2017-0038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
VQ motif-containing proteins play crucial roles in plant growth, development, and stress responses. However, no information of VQ motif-containing proteins has been studied at the microevolutionary level in species of Fragaria. In this study, a total of 19, 21, 23, 23, 23, and 25 genes containing the VQ motif were identified from the genomes of F. nipponica, F. iinumae, F. orientalis, F. vesca, F. nubicola, and F. x ananassa, respectively. We classified the VQ genes into 15 clades with grapevine VQ genes, which indicated that at least 15 ancient VQ genes existed before the divergence of the six studied species of Fragaria. Phylogenetic analysis indicated that 28 gene duplication events have occurred in the evolutionary process of the six species of Fragaria. Structural analysis showed that most of the VQ genes have no introns and that VQ proteins in each clade have a similar motif composition. The majority of gene pairs had Ka/Ks ratios less than 1, which illustrated that most of the VQ genes underwent purifying selection in the six species of Fragaria. Four types of cis-elements in promoters of VQ genes were detected, which is an important basis for further studies about plant stress responses. Furthermore, the expression analysis of FvVQ genes indicated that these genes are expressed differentially in the examined organs and tissues. The identification of VQ genes and the analysis of VQ gene duplication and polyploidization events in the six species of Fragaria provide important information on the evolutionary fate of VQ genes during the divergence of the six species of Fragaria.
Collapse
Affiliation(s)
- Yan Zhong
- a College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Cong Guo
- a College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjin Chu
- a College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- a College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-Ming Cheng
- a College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,b Department of Plant Science, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
50
|
The rice TRIANGULAR HULL1 protein acts as a transcriptional repressor in regulating lateral development of spikelet. Sci Rep 2017; 7:13712. [PMID: 29057928 PMCID: PMC5651839 DOI: 10.1038/s41598-017-14146-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
As a basic unit of rice inflorescence, spikelet has profound influence on grain size, weight and yield. The molecular mechanism underlying spikelet development has not been fully elucidated. Here, we identified four allelic rice mutants, s2-89, xd151, xd281 and xd425, which exhibited reduced width of spikelet, especially in the apical region. Map-based cloning revealed that all these mutants had missense mutation in the TRIANGULAR HULL1 (TH1) gene, encoding an ALOG family protein. TH1 has been shown to regulate the lateral development of spikelet, but its mode of action remains unclear. Microscopic analysis revealed that the reduction in spikelet width was caused by decreased cell size rather than cell division. The TH1 protein was shown to localize in the nucleus and possess transcriptional repression activity. TH1 could form a homodimer and point mutation in the s2-89, xd281 and xd425 mutant inhibited homodimerization. The transcriptional repression activity of TH1 was partially relieved by the His129Tyr substitution in the s2-89 mutant. Fusion of an exogenous EAR transcription suppression domain to the mutant protein TH1s2-89 could largely complemented the narrow spikelet phenotype. These results indicate that TH1 functions as a transcription repressor and regulates cell expansion during the lateral development of spikelet.
Collapse
|