1
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024; 215:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
2
|
Piccinini L, Nirina Ramamonjy F, Ursache R. Imaging plant cell walls using fluorescent stains: The beauty is in the details. J Microsc 2024; 295:102-120. [PMID: 38477035 DOI: 10.1111/jmi.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Plants continuously face various environmental stressors throughout their lifetime. To be able to grow and adapt in different environments, they developed specialized tissues that allowed them to maintain a protected yet interconnected body. These tissues undergo specific primary and secondary cell wall modifications that are essential to ensure normal plant growth, adaptation and successful land colonization. The composition of cell walls can vary among different plant species, organs and tissues. The ability to remodel their cell walls is fundamental for plants to be able to cope with multiple biotic and abiotic stressors. A better understanding of the changes taking place in plant cell walls may help identify and develop new strategies as well as tools to enhance plants' survival under environmental stresses or prevent pathogen attack. Since the invention of microscopy, numerous imaging techniques have been developed to determine the composition and dynamics of plant cell walls during normal growth and in response to environmental stimuli. In this review, we discuss the main advances in imaging plant cell walls, with a particular focus on fluorescent stains for different cell wall components and their compatibility with tissue clearing techniques. Lay Description: Plants are continuously subjected to various environmental stresses during their lifespan. They evolved specialized tissues that thrive in different environments, enabling them to maintain a protected yet interconnected body. Such tissues undergo distinct primary and secondary cell wall alterations essential to normal plant growth, their adaptability and successful land colonization. Cell wall composition may differ among various plant species, organs and even tissues. To deal with various biotic and abiotic stresses, plants must have the capacity to remodel their cell walls. Gaining insight into changes that take place in plant cell walls will help identify and create novel tools and strategies to improve plants' ability to withstand environmental challenges. Multiple imaging techniques have been developed since the introduction of microscopy to analyse the composition and dynamics of plant cell walls during growth and in response to environmental changes. Advancements in plant tissue cleaning procedures and their compatibility with cell wall stains have significantly enhanced our ability to perform high-resolution cell wall imaging. At the same time, several factors influence the effectiveness of cleaning and staining plant specimens, as well as the time necessary for the process, including the specimen's size, thickness, tissue complexity and the presence of autofluorescence. In this review, we will discuss the major advances in imaging plant cell walls, with a particular emphasis on fluorescent stains for diverse cell wall components and their compatibility with tissue clearing techniques. We hope that this review will assist readers in selecting the most appropriate stain or combination of stains to highlight specific cell wall components of interest.
Collapse
Affiliation(s)
- Luca Piccinini
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Fabien Nirina Ramamonjy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| | - Robertas Ursache
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Wang Z, Li H, Weng Y. A neutral invertase controls cell division besides hydrolysis of sucrose for nutrition during germination and seed setting in rice. iScience 2024; 27:110217. [PMID: 38993663 PMCID: PMC11237924 DOI: 10.1016/j.isci.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/25/2023] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Sucrose is the transport form of carbohydrate in plants serving as signal molecule besides nutrition, but the signaling is elusive. Here, neutral invertase 8 (OsNIN8) mutated at G461R into OsNIN8m, which increased its charge and hydrophobicity, decreased hydrolysis of sucrose to 13% and firmer binding to sucrose than the wildtype. This caused downstream metabolites and energy accumulation forming overnutrition. Paradoxically, division of subinitials in longitudinal cell lineages was only about 15 times but more than 100 times in wildtype, resulting in short radicle. Further, mutation of OsNIN8 into deficiency of hydrolysis but maintenance of sucrose binding allowed cell division until ran out of energy showing the association but not hydrolysis gave the signal. Chemically, sucrose binding to OsNIN8 was exothermic but to OsNIN8m was endothermic. Therefore, OsNIN8m lost the signal function owing to change of thermodynamic state. So, OsNIN8 sensed sucrose for cell division besides hydrolyzed sucrose.
Collapse
Affiliation(s)
- Zizhang Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Kim KW. Clearing techniques for deeper imaging of plants and plant-microbe interactions. Appl Microsc 2024; 54:5. [PMID: 38816666 PMCID: PMC11139840 DOI: 10.1186/s42649-024-00098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Plant cells are uniquely characterized by exhibiting cell walls, pigments, and phenolic compounds, which can impede microscopic observations by absorbing and scattering light. The concept of clearing was first proposed in the late nineteenth century to address this issue, aiming to render plant specimens transparent using chloral hydrate. Clearing techniques involve chemical procedures that render biological specimens transparent, enabling deep imaging without physical sectioning. Drawing inspiration from clearing techniques for animal specimens, various protocols have been adapted for plant research. These procedures include (i) hydrophobic methods (e.g., Visikol™), (ii) hydrophilic methods (ScaleP and ClearSee), and (iii) hydrogel-based methods (PEA-CLARITY). Initially, clearing techniques for plants were mainly utilized for deep imaging of seeds and leaves of herbaceous plants such as Arabidopsis thaliana and rice. Utilizing cell wall-specific fluorescent dyes for plants and fungi, researchers have documented the post-penetration behavior of plant pathogenic fungi within hosts. State-of-the-art plant clearing techniques, coupled with microbe-specific labeling and high-throughput imaging methods, offer the potential to advance the in planta characterization of plant microbiomes.
Collapse
Affiliation(s)
- Ki Woo Kim
- Department of Forest Ecology and Protection, Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
5
|
Serrano-Mislata A, Brumós J. Clearing of Vascular Tissue in Arabidopsis thaliana for Reporter Analysis of Gene Expression. Methods Mol Biol 2024; 2722:227-239. [PMID: 37897610 DOI: 10.1007/978-1-0716-3477-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
To study the gene regulatory mechanisms modulating development is essential to visualize gene expression patterns at cellular resolution. However, this kind of analysis has been limited as a consequence of the plant tissues' opacity. In the last years, ClearSee has been increasingly used to obtain high-quality imaging of plant tissue anatomy combined with the visualization of gene expression patterns. ClearSee is established as a major tissue clearing technique due to its simplicity and versatility.In this chapter, we outline an easy-to-follow ClearSee protocol to analyze gene expression of reporters using either β-glucuronidase (GUS) or fluorescent protein (FP) tags, compatible with different dyes to stain cell walls. We detail materials, equipment, solutions, and procedures to easily implement ClearSee for the study of vascular development in Arabidopsis thaliana, but the protocol can be easily adapted to a variety of plant tissues in a wide range of plant species.
Collapse
Affiliation(s)
- Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas, (CSIC-Universitat Politècnica de València), Valencia, Spain.
| | - Javier Brumós
- Instituto de Biología Molecular y Celular de Plantas, (CSIC-Universitat Politècnica de València), Valencia, Spain.
| |
Collapse
|
6
|
Czymmek KJ, Duncan KE, Berg H. Realizing the Full Potential of Advanced Microscopy Approaches for Interrogating Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:245-255. [PMID: 36947723 DOI: 10.1094/mpmi-10-22-0208-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Kirk J Czymmek
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Keith E Duncan
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| | - Howard Berg
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, U.S.A
| |
Collapse
|
7
|
Attuluri VPS, Sánchez López JF, Maier L, Paruch K, Robert HS. Comparing the efficiency of six clearing methods in developing seeds of Arabidopsis thaliana. PLANT REPRODUCTION 2022; 35:279-293. [PMID: 36378346 PMCID: PMC9705463 DOI: 10.1007/s00497-022-00453-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
ClearSee alpha and FAST9 were optimized for imaging Arabidopsis seeds up to the torpedo stages. The methods preserve the fluorescence of reporter proteins and seed shape, allowing phenotyping embryos in intact seeds. Tissue clearing methods eliminate the need for sectioning, thereby helping better understand the 3D organization of tissues and organs. In the past fifteen years, clearing methods have been developed to preserve endogenous fluorescent protein tags. Some of these methods (ClearSee, TDE, PEA-Clarity, etc.) were adapted to clear various plant species, with the focus on roots, leaves, shoot apical meristems, and floral parts. However, these methods have not been used in developing seeds beyond the early globular stage. Tissue clearing is problematic in post-globular seeds due to various apoplastic barriers and secondary metabolites. In this study, we compared six methods for their efficiency in clearing Arabidopsis thaliana seeds at post-globular embryonic stages. Three methods (TDE, ClearSee, and ClearSee alpha) have already been reported in plants, whereas the others (fsDISCO, FAST9, and CHAPS clear) are used in this context for the first time. These methods were assessed for seed morphological changes, clearing capacity, removal of tannins, and spectral properties. We tested each method in seeds from globular to mature stages. The pros and cons of each method are listed herein. ClearSee alpha appears to be the method of choice as it preserves seed morphology and prevents tannin oxidation. However, FAST9 with 60% iohexol as a mounting medium is faster, clears better, and appears suitable for embryonic shape imaging. Our results may guide plant researchers to choose a suitable method for imaging fluorescent protein-labeled embryos in intact Arabidopsis seeds.
Collapse
Affiliation(s)
- Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Juan Francisco Sánchez López
- Mendel Centre for Genomics and Proteomics of Plants, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lukáš Maier
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, 602 00, Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, 602 00, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| |
Collapse
|
8
|
Cerritos‐Castro IT, Patrón‐Soberano A, Bojórquez‐Velázquez E, González‐Escobar JL, Vargas‐Ortiz E, Muñoz‐Sandoval E, Barba de la Rosa AP. Amaranth calcium oxalate crystals are associated with chloroplast structures and proteins. Microsc Res Tech 2022; 85:3694-3706. [DOI: 10.1002/jemt.24221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ivan Takeshi Cerritos‐Castro
- Molecular Biology Division IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. San Luis Potosí Mexico
| | - Araceli Patrón‐Soberano
- Molecular Biology Division IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. San Luis Potosí Mexico
| | - Esaú Bojórquez‐Velázquez
- Molecular Biology Division IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. San Luis Potosí Mexico
| | - Jorge Luis González‐Escobar
- Molecular Biology Division IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. San Luis Potosí Mexico
| | - Erandi Vargas‐Ortiz
- Facultad de Agrobiología Universidad Michoacana de San Nicolás de Hidalgo Uruapan Mexico
| | - Emilio Muñoz‐Sandoval
- Advanced Materials IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. San Luis Potosí Mexico
| | - Ana Paulina Barba de la Rosa
- Molecular Biology Division IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. San Luis Potosí Mexico
| |
Collapse
|
9
|
Hériché M, Arnould C, Wipf D, Courty PE. Imaging plant tissues: advances and promising clearing practices. TRENDS IN PLANT SCIENCE 2022; 27:601-615. [PMID: 35339361 DOI: 10.1016/j.tplants.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The study of the organ structure of plants and understanding their physiological complexity requires 3D imaging with subcellular resolution. Most plant organs are highly opaque to light, and their study under optical sectioning microscopes is therefore difficult. In animals, many protocols have been developed to make organs transparent to light using clearing protocols (CPs). By contrast, clearing plant tissues is challenging because of the presence of fibers and pigments. We describe progress in the development of plant CPs over the past 20 years through a modified taxonomy of CPs based on their physical and optical parameters that affect tissue properties. We also discuss successful approaches that combine CPs with new microscopy methods and their future applications in plant science research.
Collapse
Affiliation(s)
- Mathilde Hériché
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Arnould
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
10
|
Hériché M, Arnould C, Wipf D, Courty PE. New clearing protocol for tannic roots optical imaging. TRENDS IN PLANT SCIENCE 2022; 27:616-617. [PMID: 34548215 DOI: 10.1016/j.tplants.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Mathilde Hériché
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Christine Arnould
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
11
|
Vernet H, Fullana AM, Sorribas FJ, Gualda EJ. Development of Microscopic Techniques for the Visualization of Plant–Root-Knot Nematode Interaction. PLANTS 2022; 11:plants11091165. [PMID: 35567165 PMCID: PMC9104198 DOI: 10.3390/plants11091165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Plant-parasitic nematodes are a significant cause of yield losses and food security issues. Specifically, nematodes of the genus Meloidogyne can cause significant production losses in horticultural crops around the world. Understanding the mechanisms of the ever-changing physiology of plant roots by imaging the galls induced by nematodes could provide a great insight into their control. However, infected roots are unsuitable for light microscopy investigation due to the opacity of plant tissues. Thus, samples must be cleared to visualize the interior of whole plants in order to make them transparent using clearing agents. This work aims to identify which clearing protocol and microscopy system is the most appropriate to obtain 3D images of tomato cv. Durinta and eggplant cv. Cristal samples infected with Meloidogyne incognita to visualize and study the root–nematode interaction. To that extent, two clearing solutions (BABB and ECi), combined with three different dehydration solvents (ethanol, methanol and 1-propanol), are tested. In addition, the advantages and disadvantages of alternative imaging techniques to confocal microscopy are analyzed by employing an experimental custom-made setup that combines two microscopic techniques, light sheet fluorescence microscopy and optical projection tomography, on a single instrument.
Collapse
|
12
|
Sakamoto Y, Ishimoto A, Sakai Y, Sato M, Nishihama R, Abe K, Sano Y, Furuichi T, Tsuji H, Kohchi T, Matsunaga S. Improved clearing method contributes to deep imaging of plant organs. Commun Biol 2022; 5:12. [PMID: 35013509 PMCID: PMC8748589 DOI: 10.1038/s42003-021-02955-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Tissue clearing methods are increasingly essential for the microscopic observation of internal tissues of thick biological organs. We previously developed TOMEI, a clearing method for plant tissues; however, it could not entirely remove chlorophylls nor reduce the fluorescent signal of fluorescent proteins. Here, we developed an improved TOMEI method (iTOMEI) to overcome these limitations. First, a caprylyl sulfobetaine was determined to efficiently remove chlorophylls from Arabidopsis thaliana seedlings without GFP quenching. Next, a weak alkaline solution restored GFP fluorescence, which was mainly lost during fixation, and an iohexol solution with a high refractive index increased sample transparency. These procedures were integrated to form iTOMEI. iTOMEI enables the detection of much brighter fluorescence than previous methods in tissues of A. thaliana, Oryza sativa, and Marchantia polymorpha. Moreover, a mouse brain was also efficiently cleared by the iTOMEI-Brain method within 48 h, and strong fluorescent signals were detected in the cleared brain. Sakamoto et al. demonstrate an improved optical clearing method, iTOMEI, for plant imaging. The new method can achieve fast clearing and effective removal of autofluorescence signals, and at the same time preserve signals from desired fluorescence proteins.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Anna Ishimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Moeko Sato
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama, 244-0813, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Konami Abe
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yoshitake Sano
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Teiichi Furuichi
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroyuki Tsuji
- Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama, 244-0813, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Sachihiro Matsunaga
- Imaging Frontier Center, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan. .,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
13
|
Fluorochrome-Based Methods for Fungal Sample Examination. Fungal Biol 2022. [DOI: 10.1007/978-3-030-83749-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Richardson DS, Guan W, Matsumoto K, Pan C, Chung K, Ertürk A, Ueda HR, Lichtman JW. TISSUE CLEARING. NATURE REVIEWS. METHODS PRIMERS 2021; 1:84. [PMID: 35128463 PMCID: PMC8815095 DOI: 10.1038/s43586-021-00080-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Tissue clearing of gross anatomical samples was first described over a century ago and has only recently found widespread use in the field of microscopy. This renaissance has been driven by the application of modern knowledge of optical physics and chemical engineering to the development of robust and reproducible clearing techniques, the arrival of new microscopes that can image large samples at cellular resolution and computing infrastructure able to store and analyze large data volumes. Many biological relationships between structure and function require investigation in three dimensions and tissue clearing therefore has the potential to enable broad discoveries in the biological sciences. Unfortunately, the current literature is complex and could confuse researchers looking to begin a clearing project. The goal of this Primer is to outline a modular approach to tissue clearing that allows a novice researcher to develop a customized clearing pipeline tailored to their tissue of interest. Further, the Primer outlines the required imaging and computational infrastructure needed to perform tissue clearing at scale, gives an overview of current applications, discusses limitations and provides an outlook on future advances in the field.
Collapse
Affiliation(s)
- Douglas S. Richardson
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Katsuhiko Matsumoto
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Chenchen Pan
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Nano Biomedical Engineering (Nano BME) Graduate Program, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Jeff W. Lichtman
- Harvard Center for Biological Imaging, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Kurihara D, Mizuta Y, Nagahara S, Higashiyama T. ClearSeeAlpha: Advanced Optical Clearing for Whole-Plant Imaging. PLANT & CELL PHYSIOLOGY 2021; 62:1302-1310. [PMID: 33638989 PMCID: PMC8579160 DOI: 10.1093/pcp/pcab033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 05/10/2023]
Abstract
To understand how the body of plants is made, it is essential to observe the morphology, structure and arrangement of constituent cells. However, the opaque nature of the plant body makes it difficult to observe the internal structures directly under a microscope. To overcome this problem, we developed a reagent, ClearSee, that makes plants transparent, allowing direct observation of the inside of a plant body without inflicting damage on it, e.g. through physical cutting. However, because ClearSee is not effective in making some plant species and tissues transparent, in this study, we further improved its composition to prevent oxidation, and have developed ClearSeeAlpha, which can be applied to a broader range of plant species and tissues. Sodium sulfite, one of the reductants, prevented brown pigmentation due to oxidation during clearing treatment. Using ClearSeeAlpha, we show that it is possible to obtain clear chrysanthemum leaves, tobacco and Torenia pistils and fertilized Arabidopsis thaliana fruits-tissues that have hitherto been challenging to clear. Moreover, we show that the fluorescence intensity of purified fluorescent proteins emitting light of various colors was unaffected in the ClearSeeAlpha solution; only the fluorescence intensity of TagRFP was reduced by about half. ClearSeeAlpha should be useful in the discovery and analysis of biological phenomena occurring deep inside the plant tissues.
Collapse
Affiliation(s)
| | - Yoko Mizuta
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602 Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
16
|
Means to Quantify Vascular Cell File Numbers in Different Tissues. Methods Mol Biol 2021; 2382:155-179. [PMID: 34705239 DOI: 10.1007/978-1-0716-1744-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Oriented cell divisions are crucial throughout plant development to define the final size and shape of organs and tissues. As most of the tissues in mature roots and stems are derived from vascular tissues, studying cell proliferation in the vascular cell lineage is of great importance. Although perturbations of vascular development are often visible already at the whole plant macroscopic phenotype level, a more detailed characterization of the vascular anatomy, cellular organization, and differentiation status of specific vascular cell types can provide insights into which pathway or developmental program is affected. In particular, defects in the frequency or orientation of cell divisions can be reliably identified from the number of vascular cell files. Here, we provide a detailed description of the different clearing, staining, and imaging techniques that allow precise phenotypic analysis of vascular tissues in different organs of the model plant Arabidopsis thaliana throughout development, including the quantification of cell file numbers, differentiation status of vascular cell types, and expression of reporter genes.
Collapse
|
17
|
Vittozzi Y, Nadzieja M, Rogato A, Radutoiu S, Valkov VT, Chiurazzi M. The Lotus japonicus NPF3.1 Is a Nodule-Induced Gene That Plays a Positive Role in Nodule Functioning. FRONTIERS IN PLANT SCIENCE 2021; 12:688187. [PMID: 34220910 PMCID: PMC8253256 DOI: 10.3389/fpls.2021.688187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Nitrogen-fixing nodules are new organs formed on legume roots as a result of the beneficial interaction with the soil bacteria, rhizobia. Proteins of the nitrate transporter 1/peptide transporter family (NPF) are largely represented in the subcategory of nodule-induced transporters identified in mature nodules. The role of nitrate as a signal/nutrient regulating nodule functioning has been recently highlighted in the literature, and NPFs may play a central role in both the permissive and inhibitory pathways controlling N2-fixation efficiency. In this study, we present the characterization of the Lotus japonicus LjNPF3.1 gene. LjNPF3.1 is upregulated in mature nodules. Promoter studies show transcriptional activation confined to the cortical region of both roots and nodules. Under symbiotic conditions, Ljnpf3.1-knockout mutant's display reduced shoot development and anthocyanin accumulation as a result of nutrient deprivation. Altogether, LjNPF3.1 plays a role in maximizing the beneficial outcome of the root nodule symbiosis.
Collapse
Affiliation(s)
- Ylenia Vittozzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources (IBBR), Italian National Research Council (CNR), Napoli, Italy
| |
Collapse
|
18
|
Bobrovskikh A, Doroshkov A, Mazzoleni S, Cartenì F, Giannino F, Zubairova U. A Sight on Single-Cell Transcriptomics in Plants Through the Prism of Cell-Based Computational Modeling Approaches: Benefits and Challenges for Data Analysis. Front Genet 2021; 12:652974. [PMID: 34093652 PMCID: PMC8176226 DOI: 10.3389/fgene.2021.652974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Single-cell technology is a relatively new and promising way to obtain high-resolution transcriptomic data mostly used for animals during the last decade. However, several scientific groups developed and applied the protocols for some plant tissues. Together with deeply-developed cell-resolution imaging techniques, this achievement opens up new horizons for studying the complex mechanisms of plant tissue architecture formation. While the opportunities for integrating data from transcriptomic to morphogenetic levels in a unified system still present several difficulties, plant tissues have some additional peculiarities. One of the plants' features is that cell-to-cell communication topology through plasmodesmata forms during tissue growth and morphogenesis and results in mutual regulation of expression between neighboring cells affecting internal processes and cell domain development. Undoubtedly, we must take this fact into account when analyzing single-cell transcriptomic data. Cell-based computational modeling approaches successfully used in plant morphogenesis studies promise to be an efficient way to summarize such novel multiscale data. The inverse problem's solutions for these models computed on the real tissue templates can shed light on the restoration of individual cells' spatial localization in the initial plant organ-one of the most ambiguous and challenging stages in single-cell transcriptomic data analysis. This review summarizes new opportunities for advanced plant morphogenesis models, which become possible thanks to single-cell transcriptome data. Besides, we show the prospects of microscopy and cell-resolution imaging techniques to solve several spatial problems in single-cell transcriptomic data analysis and enhance the hybrid modeling framework opportunities.
Collapse
Affiliation(s)
- Aleksandr Bobrovskikh
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alexey Doroshkov
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ulyana Zubairova
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
19
|
Jarzyniak K, Banasiak J, Jamruszka T, Pawela A, Di Donato M, Novák O, Geisler M, Jasiński M. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. NATURE PLANTS 2021; 7:428-436. [PMID: 33753904 DOI: 10.1038/s41477-021-00873-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.
Collapse
Affiliation(s)
- Karolina Jarzyniak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
20
|
Abstract
Advanced optical methods combined with various probes pave the way toward molecular imaging within living cells. However, major challenges are associated with the need to enhance the imaging resolution even further to the subcellular level for the imaging of larger tissues, as well as for in vivo studies. High scattering and absorption of opaque tissues limit the penetration of light into deep tissues and thus the optical imaging depth. Tissue optical clearing technique provides an innovative way to perform deep-tissue imaging. Recently, various optical clearing methods have been developed, which provide tissue clearing based on similar physical principles via different chemical approaches. Here, we introduce the mechanisms of the current clearing methods from fundamental physical and chemical perspectives, including the main physical principle, refractive index matching via various chemical approaches, such as dissociation of collagen, delipidation, decalcification, dehydration, and hyperhydration, to reduce scattering, as well as decolorization to reduce absorption.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
21
|
Rae AE, Rolland V, White RG, Mathesius U. New methods for confocal imaging of infection threads in crop and model legumes. PLANT METHODS 2021; 17:24. [PMID: 33678177 PMCID: PMC7938587 DOI: 10.1186/s13007-021-00725-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND The formation of infection threads in the symbiotic infection of rhizobacteria in legumes is a unique, fascinating, and poorly understood process. Infection threads are tubes of cell wall material that transport rhizobacteria from root hair cells to developing nodules in host roots. They form in a type of reverse tip-growth from an inversion of the root hair cell wall, but the mechanism driving this growth is unknown, and the composition of the thread wall remains unclear. High resolution, 3-dimensional imaging of infection threads, and cell wall component specific labelling, would greatly aid in our understanding of the nature and development of these structures. To date, such imaging has not been done, with infection threads typically imaged by GFP-tagged rhizobia within them, or histochemically in thin sections. RESULTS We have developed new methods of imaging infection threads using novel and traditional cell wall fluorescent labels, and laser confocal scanning microscopy. We applied a new Periodic Acid Schiff (PAS) stain using rhodamine-123 to the labelling of whole cleared infected roots of Medicago truncatula; which allowed for imaging of infection threads in greater 3D detail than had previously been achieved. By the combination of the above method and a calcofluor-white counter-stain, we also succeeded in labelling infection threads and plant cell walls separately, and have potentially discovered a way in which the infection thread matrix can be visualized. CONCLUSIONS Our methods have made the imaging and study of infection threads more effective and informative, and present exciting new opportunities for future research in the area.
Collapse
Affiliation(s)
- Angus E Rae
- Department of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia.
| | - Vivien Rolland
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - Rosemary G White
- Department of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Ulrike Mathesius
- Department of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
22
|
He C, Gao H, Wang H, Guo Y, He M, Peng Y, Wang X. GSK3-mediated stress signaling inhibits legume-rhizobium symbiosis by phosphorylating GmNSP1 in soybean. MOLECULAR PLANT 2021; 14:488-502. [PMID: 33359013 DOI: 10.1016/j.molp.2020.12.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 05/27/2023]
Abstract
Legumes establish symbiotic associations with rhizobia for biological nitrogen fixation. This process is highly regulated by various abiotic stresses, but the underlying genetic and molecular mechanisms remain largely unknown. In this study, we discovered that the glycogen synthase kinase 3 (GSK3)-like kinase, GmSK2-8, plays an important role in inhibiting symbiotic signaling and nodule formation in soybean (Glycine max) under salt stress. We found that GmSK2-8 is strongly induced in soybean under high-salt conditions, while GmSK2-8 could interact with two G. max Nodulation Signaling Pathway 1 (GmNSP1) proteins, GmNSP1a and GmNSP1b; these key transcription factors are essential for rhizobial infection, nodule initiation, and symbiotic gene expression in soybean. Furthermore, we demonstrated that GmSK2-8 phosphorylates the LHRI domain of GmNSP1a, inhibits its binding to the promoters of symbiotic genes, and thus suppresses nodule formation under salt stress. Knockdown of GmSK2-8 and its close homologs also resulted in reduced plant sensitivity to salt stress during nodule formation. Taken together, our findings indicate that GSK3-like kinases directly regulate the activities of GmNSP1s to mediate salt-inhibited legume-rhizobium symbiosis, providing novel targets for improving symbiotic nitrogen fixation under environmental stress conditions in soybean and possibly other legumes.
Collapse
Affiliation(s)
- Chunmei He
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hui Gao
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haijiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yun Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Miao He
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqi Peng
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China.
| |
Collapse
|
23
|
Dowd TG, Braun DM, Sharp RE. Maize lateral root developmental plasticity induced by mild water stress. II: Genotype-specific spatio-temporal effects on determinate development. PLANT, CELL & ENVIRONMENT 2020; 43:2409-2427. [PMID: 32644247 DOI: 10.1111/pce.13840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Maize lateral roots exhibit determinate growth, whereby the meristem is genetically programmed to stop producing new cells. To explore whether lateral root determinacy is modified under water deficits, we studied two maize genotypes (B73 and FR697) with divergent responses of lateral root growth to mild water stress using an experimental system that provided near-stable water potential environments throughout lateral root development. First-order laterals of the primary root system of FR697 exhibited delayed determinacy when grown at a water potential of -0.28 MPa, resulting in longer and wider roots than in well-watered (WW) controls. In B73, in contrast, neither the length nor width of lateral roots was affected by water deficit. In water-stressed FR697, root elongation continued at or above the maximum rate in WW roots for 3 days longer, and was still 45% of maximum when WW roots approached their determinate length. Maintenance of root elongation was associated with sustained rates of cell production. In addition, kinematic analyses showed that reductions in tissue expansion rates with aging were delayed in the longitudinal, radial and tangential planes throughout the root growth zone. Thus, this study reveals large genotypic differences in the interaction of water stress with developmental determinacy of maize lateral roots.
Collapse
Affiliation(s)
- Tyler G Dowd
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - David M Braun
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Robert E Sharp
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
24
|
Kitin P, Nakaba S, Hunt CG, Lim S, Funada R. Direct fluorescence imaging of lignocellulosic and suberized cell walls in roots and stems. AOB PLANTS 2020; 12:plaa032. [PMID: 32793329 PMCID: PMC7415075 DOI: 10.1093/aobpla/plaa032] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Investigating plant structure is fundamental in botanical science and provides crucial knowledge for the theories of plant evolution, ecophysiology and for the biotechnological practices. Modern plant anatomy often targets the formation, localization and characterization of cellulosic, lignified or suberized cell walls. While classical methods developed in the 1960s are still popular, recent innovations in tissue preparation, fluorescence staining and microscopy equipment offer advantages to the traditional practices for investigation of the complex lignocellulosic walls. Our goal is to enhance the productivity and quality of microscopy work by focusing on quick and cost-effective preparation of thick sections or plant specimen surfaces and efficient use of direct fluorescent stains. We discuss popular histochemical microscopy techniques for visualization of cell walls, such as autofluorescence or staining with calcofluor, Congo red (CR), fluorol yellow (FY) and safranin, and provide detailed descriptions of our own approaches and protocols. Autofluorescence of lignin in combination with CR and FY staining can clearly differentiate between lignified, suberized and unlignified cell walls in root and stem tissues. Glycerol can serve as an effective clearing medium as well as the carrier of FY for staining of suberin and lipids allowing for observation of thick histological preparations. Three-dimensional (3D) imaging of all cell types together with chemical information by wide-field fluorescence or confocal laser scanning microscopy (CLSM) was achieved.
Collapse
Affiliation(s)
- Peter Kitin
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| | - Satoshi Nakaba
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| | | | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ryo Funada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo, Japan
| |
Collapse
|
25
|
Teng C, Zhang H, Hammond R, Huang K, Meyers BC, Walbot V. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat Commun 2020; 11:2912. [PMID: 32518237 PMCID: PMC7283321 DOI: 10.1038/s41467-020-16634-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
Small RNAs play important roles during plant development by regulating transcript levels of target mRNAs, maintaining genome integrity, and reinforcing DNA methylation. Dicer-like 5 (Dcl5) is proposed to be responsible for precise slicing in many monocots to generate diverse 24-nt phased, secondary small interfering RNAs (phasiRNAs), which are exceptionally abundant in meiotic anthers of diverse flowering plants. The importance and functions of these phasiRNAs remain unclear. Here, we characterized several mutants of dcl5, including alleles generated by the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system and a transposon-disrupted allele. We report that dcl5 mutants have few or no 24-nt phasiRNAs, develop short anthers with defective tapetal cells, and exhibit temperature-sensitive male fertility. We propose that DCL5 and 24-nt phasiRNAs are critical for fertility under growth regimes for optimal yield. Small RNAs act to regulate gene or transposon activity during plant development. Here, the authors show that maize Dicer-like 5 is required for 24-nt phased, secondary small interfering RNA production in anthers and that dicer-like 5 mutants show abnormal tapetal development and temperature-sensitive sterility.
Collapse
Affiliation(s)
- Chong Teng
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Han Zhang
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Reza Hammond
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Kun Huang
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA. .,Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
26
|
Ueda HR, Dodt HU, Osten P, Economo MN, Chandrashekar J, Keller PJ. Whole-Brain Profiling of Cells and Circuits in Mammals by Tissue Clearing and Light-Sheet Microscopy. Neuron 2020; 106:369-387. [PMID: 32380050 PMCID: PMC7213014 DOI: 10.1016/j.neuron.2020.03.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/11/2020] [Accepted: 03/04/2020] [Indexed: 01/12/2023]
Abstract
Tissue clearing and light-sheet microscopy have a 100-year-plus history, yet these fields have been combined only recently to facilitate novel experiments and measurements in neuroscience. Since tissue-clearing methods were first combined with modernized light-sheet microscopy a decade ago, the performance of both technologies has rapidly improved, broadening their applications. Here, we review the state of the art of tissue-clearing methods and light-sheet microscopy and discuss applications of these techniques in profiling cells and circuits in mice. We examine outstanding challenges and future opportunities for expanding these techniques to achieve brain-wide profiling of cells and circuits in primates and humans. Such integration will help provide a systems-level understanding of the physiology and pathology of our central nervous system.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, The University of Tokyo, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN BDR, Suita, Osaka 565-0871, Japan.
| | - Hans-Ulrich Dodt
- Department of Bioelectronics, FKE, Vienna University of Technology-TU Wien, Vienna, Austria; Section of Bioelectronics, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Osten
- Cold Spring Harbor Laboratories, Cold Spring Harbor, NY 11724, USA
| | - Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
27
|
Miki Y, Saito S, Niki T, Gladish DK. Three-dimensional digital image construction of metaxylem vessels in root tips of Zea mays subsp. mexicana from thin transverse sections. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11347. [PMID: 32477843 PMCID: PMC7249274 DOI: 10.1002/aps3.11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/27/2019] [Indexed: 05/12/2023]
Abstract
PREMISE Young plant roots share a common architecture: a central vascular cylinder surrounded by enveloping cylinders of ground and dermal tissue produced by an apical promeristem. Roots with closed apical organization can be studied to explore how ontogeny is managed. The analysis of transverse and longitudinal sections has been the most useful approach for this, but suffers from limitations. We developed a new method that utilizes digital photography of transverse sections and three-dimensional (3D) computer virtual reconstructions to overcome the limitations of other techniques. METHODS Serial transverse sections of teosinte root tips (Zea mays subsp. mexicana) were used to construct longitudinal images, 3D images, and an animated 3D model. The high-resolution, high-contrast, and low-distortion sectioning method developed previously by the authors enabled high-quality virtual image construction with the aid of a standard laptop computer. RESULTS The resulting 3D images allowed greater insight into root tissue ontogeny and organization, especially specific cellular structures such as histogen layers, xylem vessels, pericycle, and meristematic initials. DISCUSSION This new method has advantages over confocal laser scanning microscopy and magnetic resonance imaging for visualizing anatomy, and includes a procedure to correct for sectioning distortion. An additional advantage of this method, developed to produce better knowledge about the developmental anatomy of procambium in roots, is its applicability to a wide range of anatomical subjects.
Collapse
Affiliation(s)
- Yasushi Miki
- Image Processing SectionMikiOn LLC103 Ishikawa Heights, 1737 Hazama‐machiHachiojiTokyo193‐0941Japan
| | - Susumu Saito
- Image Processing SectionMikiOn LLC103 Ishikawa Heights, 1737 Hazama‐machiHachiojiTokyo193‐0941Japan
| | - Teruo Niki
- Image Processing SectionMikiOn LLC103 Ishikawa Heights, 1737 Hazama‐machiHachiojiTokyo193‐0941Japan
| | - Daniel K. Gladish
- Department of BiologyMiami University1601 University BoulevardHamiltonOhio45011USA
| |
Collapse
|
28
|
Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, Keller PJ. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 2020; 21:61-79. [PMID: 31896771 PMCID: PMC8121164 DOI: 10.1038/s41583-019-0250-1] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
State-of-the-art tissue-clearing methods provide subcellular-level optical access to intact tissues from individual organs and even to some entire mammals. When combined with light-sheet microscopy and automated approaches to image analysis, existing tissue-clearing methods can speed up and may reduce the cost of conventional histology by several orders of magnitude. In addition, tissue-clearing chemistry allows whole-organ antibody labelling, which can be applied even to thick human tissues. By combining the most powerful labelling, clearing, imaging and data-analysis tools, scientists are extracting structural and functional cellular and subcellular information on complex mammalian bodies and large human specimens at an accelerated pace. The rapid generation of terabyte-scale imaging data furthermore creates a high demand for efficient computational approaches that tackle challenges in large-scale data analysis and management. In this Review, we discuss how tissue-clearing methods could provide an unbiased, system-level view of mammalian bodies and human specimens and discuss future opportunities for the use of these methods in human neuroscience.
Collapse
Affiliation(s)
- Hiroki R Ueda
- Department of Systems Pharmacology, University of Tokyo, Tokyo, Japan.
- Laboratory for Synthetic Biology, RIKEN BDR, Suita, Japan.
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian University of Munich, Munich, Germany
- Institute of Tissue Engineering and Regenerative Medicine, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Kwanghun Chung
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Eli & Edythe Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for NanoMedicine, Institute for Basic Science, Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering, Yonsei-IBS Institute, Yonsei University, Seoul, Republic of Korea
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
29
|
Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods Mol Biol 2020. [PMID: 31975291 DOI: 10.1007/978-1-0716-0342-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The major tissue types and stem-cell niches of plants are established during embryogenesis, and thus knowledge of embryo development is essential for a full understanding of plant development. Studies of seed development are also important for human health, because the nutrients stored in both the embryo and endosperm of plant seeds provide an essential part of our diet. Arabidopsis and maize have evolved different types of seeds, opening a range of experimental opportunities. Development of the Arabidopsis embryo follows an almost invariant pattern, while cell division patterns of maize embryos are variable. Embryo-endosperm interactions are also different between the two species: in Arabidopsis, the endosperm is consumed during seed development, while mature maize seeds contain an enormous endosperm. Genetic screens have provided important insights into seed development in both species. In the genomic era, genetic analysis will continue to provide important tools for understanding embryo and endosperm biology in plants, because single gene functional studies can now be integrated with genome-wide information. Here, we lay out important factors to consider when designing genetic screens to identify new genes or to probe known pathways in seed development. We then highlight the technical details of two previous genetic screens that may serve as useful examples for future experiments.
Collapse
|
30
|
Beć KB, Grabska J, Bonn GK, Popp M, Huck CW. Principles and Applications of Vibrational Spectroscopic Imaging in Plant Science: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:1226. [PMID: 32849759 PMCID: PMC7427587 DOI: 10.3389/fpls.2020.01226] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
Detailed knowledge about plant chemical constituents and their distributions from organ level to sub-cellular level is of critical interest to basic and applied sciences. Spectral imaging techniques offer unparalleled advantages in that regard. The core advantage of these technologies is that they acquire spatially distributed semi-quantitative information of high specificity towards chemical constituents of plants. This forms invaluable asset in the studies on plant biochemical and structural features. In certain applications, non-invasive analysis is possible. The information harvested through spectral imaging can be used for exploration of plant biochemistry, physiology, metabolism, classification, and phenotyping among others, with significant gains for basic and applied research. This article aims to present a general perspective about vibrational spectral imaging/micro-spectroscopy in the context of plant research. Within the scope of this review are infrared (IR), near-infrared (NIR) and Raman imaging techniques. To better expose the potential and limitations of these techniques, fluorescence imaging is briefly overviewed as a method relatively less flexible but particularly powerful for the investigation of photosynthesis. Included is a brief introduction to the physical, instrumental, and data-analytical background essential for the applications of imaging techniques. The applications are discussed on the basis of recent literature.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| | - Justyna Grabska
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | - Günther K. Bonn
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- ADSI, Austrian Drug Screening Institute, Innsbruck, Austria
| | - Michael Popp
- Michael Popp Research Institute for New Phyto Entities, University of Innsbruck, Innsbruck, Austria
| | - Christian W. Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
- *Correspondence: Krzysztof B. Beć, ; Christian W. Huck,
| |
Collapse
|
31
|
Tofanelli R, Vijayan A, Scholz S, Schneitz K. Protocol for rapid clearing and staining of fixed Arabidopsis ovules for improved imaging by confocal laser scanning microscopy. PLANT METHODS 2019; 15:120. [PMID: 31673277 PMCID: PMC6814113 DOI: 10.1186/s13007-019-0505-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND A salient topic in developmental biology relates to the molecular and genetic mechanisms that underlie tissue morphogenesis. Modern quantitative approaches to this central question frequently involve digital cellular models of the organ or tissue under study. The ovules of the model species Arabidopsis thaliana have long been established as a model system for the study of organogenesis in plants. While ovule development in Arabidopsis can be followed by a variety of different imaging techniques, no experimental strategy presently exists that enables an easy and straightforward investigation of the morphology of internal tissues of the ovule with cellular resolution. RESULTS We developed a protocol for rapid and robust confocal microscopy of fixed Arabidopsis ovules of all stages. The method combines clearing of fixed ovules in ClearSee solution with marking the cell outline using the cell wall stain SCRI Renaissance 2200 and the nuclei with the stain TO-PRO-3 iodide. We further improved the microscopy by employing a homogenous immersion system aimed at minimizing refractive index differences. The method allows complete inspection of the cellular architecture even deep within the ovule. Using the new protocol we were able to generate digital three-dimensional models of ovules of various stages. CONCLUSIONS The protocol enables the quick and reproducible imaging of fixed Arabidopsis ovules of all developmental stages. From the imaging data three-dimensional digital ovule models with cellular resolution can be rapidly generated using image analysis software, for example MorphographX. Such digital models will provide the foundation for a future quantitative analysis of ovule morphogenesis in a model species.
Collapse
Affiliation(s)
- Rachele Tofanelli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Athul Vijayan
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
- Present Address: EU Research Lab, Technische Hochschule Wildau, 15745 Wildau, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354 Freising, Germany
| |
Collapse
|
32
|
Vavrdová T, Šamajová O, Křenek P, Ovečka M, Floková P, Šnaurová R, Šamaj J, Komis G. Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins. PLANT METHODS 2019; 15:22. [PMID: 30899319 PMCID: PMC6408805 DOI: 10.1186/s13007-019-0406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND In the present work, we provide an account of structured illumination microscopy (SIM) imaging of fixed and immunolabeled plant probes. We take advantage of SIM, to superresolve intracellular structures at a considerable z-range and circumvent its low temporal resolution capacity during the study of living samples. Further, we validate the protocol for the imaging of fixed transgenic material expressing fluorescent protein-based markers of different subcellular structures. RESULTS Focus is given on 3D imaging of bulky subcellular structures, such as mitotic and cytokinetic microtubule arrays as well as on the performance of SIM using multichannel imaging and the quantitative correlations that can be deduced. As a proof of concept, we provide a superresolution output on the organization of cortical microtubules in wild-type and mutant Arabidopsis cells, including aberrant preprophase microtubule bands and phragmoplasts in a cytoskeletal mutant devoid of the p60 subunit of the microtubule severing protein KATANIN and refined details of cytoskeletal aberrations in the mitogen activated protein kinase (MAPK) mutant mpk4. We further demonstrate, in a qualitative and quantitative manner, colocalizations between MPK6 and unknown dually phosphorylated and activated MAPK species and we follow the localization of the microtubule associated protein 65-3 (MAP65-3) in telophase and cytokinetic microtubular arrays. CONCLUSIONS 3D SIM is a powerful, versatile and adaptable microscopy method for elucidating spatial relationships between subcellular compartments. Improved methods of sample preparation aiming to the compensation of refractive index mismatches, allow the use of 3D SIM in the documentation of complex plant cell structures, such as microtubule arrays and the elucidation of their interactions with microtubule associated proteins.
Collapse
Affiliation(s)
- T. Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - O. Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Křenek
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - M. Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - P. Floková
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - R. Šnaurová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - J. Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - G. Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
33
|
Nadzieja M, Stougaard J, Reid D. A Toolkit for High Resolution Imaging of Cell Division and Phytohormone Signaling in Legume Roots and Root Nodules. FRONTIERS IN PLANT SCIENCE 2019; 10:1000. [PMID: 31428118 PMCID: PMC6688427 DOI: 10.3389/fpls.2019.01000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 05/22/2023]
Abstract
Legume plants benefit from a nitrogen-fixing symbiosis in association with rhizobia hosted in specialized root nodules. Formation of root nodules is initiated by de novo organogenesis and coordinated infection of these developing lateral root organs by rhizobia. Both bacterial infection and nodule organogenesis involve cell cycle activation and regulation by auxin and cytokinin is tightly integrated in the process. To characterize the hormone dynamics and cell division patterns with cellular resolution during nodulation, sensitive and specific sensors suited for imaging of multicellular tissues are required. Here we report a modular toolkit, optimized in the model legume Lotus japonicus, for use in legume roots and root nodules. This toolkit includes synthetic transcriptional reporters for auxin and cytokinin, auxin accumulation sensors and cell cycle progression markers optimized for fluorescent and bright field microscopy. The developed vectors allow for efficient one-step assembly of multiple units using the GoldenGate cloning system. Applied together with a fluorescence-compatible clearing approach, these reporters improve imaging depth and facilitate fluorescence examination in legume roots. We additionally evaluate the utility of the dynamic gravitropic root response in altering the timing and location of auxin accumulation and nodule emergence. We show that alteration of auxin distribution in roots allows for preferential nodule emergence at the outer side of the bend corresponding to a region of high auxin signaling capacity. The presented tools and procedures open new possibilities for comparative mutant studies and for developing a more comprehensive understanding of legume-rhizobia interactions.
Collapse
|
34
|
Weinman LM, Running KLD, Carey NS, Stevenson EJ, Swaney DL, Chow BY, Krogan NJ, Krogan NT. TCO, a Putative Transcriptional Regulator in Arabidopsis, Is a Target of the Protein Kinase CK2. Int J Mol Sci 2018; 20:ijms20010099. [PMID: 30597831 PMCID: PMC6337506 DOI: 10.3390/ijms20010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
As multicellular organisms grow, spatial and temporal patterns of gene expression are strictly regulated to ensure that developmental programs are invoked at appropriate stages. In this work, we describe a putative transcriptional regulator in Arabidopsis, TACO LEAF (TCO), whose overexpression results in the ectopic activation of reproductive genes during vegetative growth. Isolated as an activation-tagged allele, tco-1D displays gene misexpression and phenotypic abnormalities, such as curled leaves and early flowering, characteristic of chromatin regulatory mutants. A role for TCO in this mode of transcriptional regulation is further supported by the subnuclear accumulation patterns of TCO protein and genetic interactions between tco-1D and chromatin modifier mutants. The endogenous expression pattern of TCO and gene misregulation in tco loss-of-function mutants indicate that this factor is involved in seed development. We also demonstrate that specific serine residues of TCO protein are targeted by the ubiquitous kinase CK2. Collectively, these results identify TCO as a novel regulator of gene expression whose activity is likely influenced by phosphorylation, as is the case with many chromatin regulators.
Collapse
Affiliation(s)
- Laina M Weinman
- Department of Biology, American University, 4400 Massachusetts Avenue NW, Washington, DC 20016, USA.
| | - Katherine L D Running
- Department of Biology, American University, 4400 Massachusetts Avenue NW, Washington, DC 20016, USA.
| | - Nicholas S Carey
- Department of Biology, American University, 4400 Massachusetts Avenue NW, Washington, DC 20016, USA.
| | - Erica J Stevenson
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA.
| | - Brenda Y Chow
- Department of Biology, American University, 4400 Massachusetts Avenue NW, Washington, DC 20016, USA.
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA 94158, USA.
| | - Naden T Krogan
- Department of Biology, American University, 4400 Massachusetts Avenue NW, Washington, DC 20016, USA.
| |
Collapse
|
35
|
Fisher J, Gaillard P, Fellbaum CR, Subramanian S, Smith S. Quantitative 3D imaging of cell level auxin and cytokinin response ratios in soybean roots and nodules. PLANT, CELL & ENVIRONMENT 2018; 41:2080-2092. [PMID: 29469230 DOI: 10.1111/pce.13169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 05/08/2023]
Abstract
Legume-Rhizobium symbiosis results in root nodules where rhizobia fix atmospheric nitrogen into plant usable forms in exchange for plant-derived carbohydrates. The development of these specialized root organs involves a set of carefully orchestrated plant hormone signalling. In particular, a spatio-temporal balance between auxin and cytokinin appears to be crucial for proper nodule development. We put together a construct that carried nuclear localized fluorescence sensors for auxin and cytokinin and used two photon induced fluorescence microscopy for concurrent quantitative 3-dimensional imaging to determine cellular level auxin and cytokinin outputs and ratios in root and nodule tissues of soybean. The use of nuclear localization signals on the markers and nuclei segmentation during image processing enabled accurate monitoring of outputs in 3D image volumes. The ratiometric method used here largely compensates for variations in individual outputs due to sample turbidity and scattering, an inherent issue when imaging thick root and nodule samples typical of many legumes. Overlays of determined auxin/cytokinin ratios on specific root zones and cell types accurately reflected those predicted based on previously reported outputs for each hormone individually. Importantly, distinct auxin/cytokinin ratios corresponded to distinct nodule cell types indicating a key role for these hormones in nodule cell type identity.
Collapse
Affiliation(s)
- Jon Fisher
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Paul Gaillard
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Carl R Fellbaum
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Senthil Subramanian
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| |
Collapse
|
36
|
Three-Dimensional Multiphoton Imaging of Transcription Factor by ClearSee. Methods Mol Biol 2018. [PMID: 30043375 DOI: 10.1007/978-1-4939-8657-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In plants, transcription factors often act as cell-to-cell trafficking mobile proteins and specify cell fate. Thus, to visualize spatiotemporal expression pattern and localization of transcription factors are essential to understand their functions during development. Several protocols have been developed to observe fluorescent protein. However, plant-specific autofluorescent compounds and various tissue components with different refractive indexes interfere with detection of fluorescent signals of your interest. Furthermore, cell fate specification often occurs in a limited number of cells covered by lateral/layers of organs. To overcome those issues, the plant clearing method, ClearSee, was recently developed for high-resolution imaging inside tissues by making background transparent. In this chapter, we provide three-dimensional imaging of fluorescent-protein-fused transcription factors by two-photon excitation microscopy in Arabidopsis and rice. Complex cell patterning with gene expression could be observed from any direction three-dimensionally. This method could be applicable to visualize any protein of your interest or it can readily be adapted in various other plants.
Collapse
|
37
|
Nadzieja M, Kelly S, Stougaard J, Reid D. Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:101-111. [PMID: 29676826 DOI: 10.1111/tpj.13934] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Symbiotic nitrogen fixation in legumes requires nodule organogenesis to be coordinated with infection by rhizobia. The plant hormone auxin influences symbiotic infection, but the precise timing of auxin accumulation and the genetic network governing it remain unclear. We used a Lotus japonicus optimised variant of the DII-based auxin accumulation sensor and identified a rapid accumulation of auxin in the epidermis, specifically in the root hair cells. This auxin accumulation occurs in the infected root hairs during rhizobia invasion, while Nod factor application induces this response across a broader range of root hairs. Using the DR5 auxin responsive promoter, we demonstrate that activation of auxin signalling also occurs specifically in infected root hairs. Analysis of root hair transcriptome data identified induction of an auxin biosynthesis gene of the Tryptophan Amino-transferase Related (LjTar1) family following both bacteria inoculation and Nod factor treatment. Genetic analysis showed that both expression of the LjTar1 biosynthesis gene and the auxin response requires Nod factor perception, while common symbiotic pathway transcription factors are only partially required or act redundantly to initiate auxin accumulation. Using a chemical genetics approach, we confirmed that auxin biosynthesis has a functional role in promoting symbiotic infection events in the epidermis.
Collapse
Affiliation(s)
- Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| |
Collapse
|
38
|
Murakami E, Cheng J, Gysel K, Bozsoki Z, Kawaharada Y, Hjuler CT, Sørensen KK, Tao K, Kelly S, Venice F, Genre A, Thygesen MB, de Jong N, Vinther M, Jensen DB, Jensen KJ, Blaise M, Madsen LH, Andersen KR, Stougaard J, Radutoiu S. Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. eLife 2018; 7:e33506. [PMID: 29957177 PMCID: PMC6025957 DOI: 10.7554/elife.33506] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 06/05/2018] [Indexed: 02/04/2023] Open
Abstract
Recognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor (NFRe), ensures robust signalling in L. japonicus. Mutants of Nfre react to Nod factors with increased calcium spiking interval, reduced transcriptional response and fewer nodules in the presence of rhizobia. NFRe has an active kinase capable of phosphorylating NFR5, which in turn, controls NFRe downstream signalling. Our findings provide evidence for a more complex Nod factor signalling mechanism than previously anticipated. The spatio-temporal interplay between Nfre and Nfr1, and their divergent signalling through distinct kinases suggests the presence of an NFRe-mediated idling state keeping the epidermal cells of the expanding root system attuned to rhizobia.
Collapse
Affiliation(s)
- Eiichi Murakami
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Jeryl Cheng
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Kira Gysel
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | | | - Ke Tao
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Simon Kelly
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Francesco Venice
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | - Andrea Genre
- Department of Life Sciences and Systems BiologyUniversity of TorinoTorinoItaly
| | | | - Noor de Jong
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Maria Vinther
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | - Michael Blaise
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | | | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
39
|
Baroux C, Schubert V. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods Mol Biol 2018; 1675:537-589. [PMID: 29052212 DOI: 10.1007/978-1-4939-7318-7_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
40
|
Chemical Processing of Brain Tissues for Large-Volume, High-Resolution Optical Imaging. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-981-10-9020-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
41
|
Kirschner GK, Stahl Y, Imani J, von Korff M, Simon R. Fluorescent reporter lines for auxin and cytokinin signalling in barley (Hordeum vulgare). PLoS One 2018; 13:e0196086. [PMID: 29694399 PMCID: PMC5918912 DOI: 10.1371/journal.pone.0196086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
The phytohormones auxin and cytokinin control development and maintenance of plant meristems and stem cell systems. Fluorescent protein reporter lines that monitor phytohormone controlled gene expression programmes have been widely used to study development and differentiation in the model species Arabidopsis, but equivalent tools are still missing for the majority of crop species. Barley (Hordeum vulgare) is the fourth most abundant cereal crop plant, but knowledge on these important phytohormones in regard to the barley root and shoot stem cell niches is still negligible. We have now analysed the role of auxin and cytokinin in barley root meristem development, and present fluorescent protein reporter lines that allow to dissect auxin and cytokinin signalling outputs in vivo. We found that application of either auxin or cytokinin to barley seedlings negatively impacts root meristem growth. We further established a barley cytokinin reporter, TCSnew, which revealed significant cytokinin signalling in the stele cells proximal to the QC, and in the differentiated root cap cells. Application of exogenous cytokinin activated signalling in the root stem cell niche. Commonly employed auxin reporters DR5 or DR5v2 failed to respond to auxin in barley. However, analysis of putative auxin signalling targets barley PLETHORA1 (HvPLT1) is expressed in a similar pattern as its orthologue AtPLT1 from Arabidopsis, i.e. in the QC and the surrounding cells. Furthermore, the PINFORMED1 (HvPIN1) auxin efflux carrier was found to be expressed in root and shoot meristems, where it polarly localized to the plasma membrane. HvPIN1 expression is negatively regulated by cytokinin and its intracellular localisation is sensitive to brefeldinA (BFA). With this study, we provide the first fluorescent reporter lines as a tool to study auxin and cytokinin signalling and response pathways in barley.
Collapse
Affiliation(s)
- Gwendolyn K. Kirschner
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Jafargholi Imani
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University, Institute of Phytopathology and Applied Zoology, Giessen, Germany
| | - Maria von Korff
- Institute for Plant Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
42
|
Hedhly A, Vogler H, Eichenberger C, Grossniklaus U. Whole-mount Clearing and Staining of Arabidopsis Flower Organs and Siliques. J Vis Exp 2018. [PMID: 29708535 DOI: 10.3791/56441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Due to its formidable tools for molecular genetic studies, Arabidopsis thaliana is one of the most prominent model species in plant biology and, especially, in plant reproductive biology. However, plant morphological, anatomical, and ultrastructural analyses traditionally involve time-consuming embedding and sectioning procedures for bright field, scanning, and electron microscopy. Recent progress in confocal fluorescence microscopy, state-of-the-art 3-D computer-aided microscopic analyses, and the continuous refinement of molecular techniques to be used on minimally processed whole-mount specimens, has led to an increased demand for developing efficient and minimal sample processing techniques. In this protocol, we describe techniques for properly dissecting Arabidopsis flowers and siliques, basic clearing techniques, and some staining procedures for whole-mount observations of reproductive structures.
Collapse
Affiliation(s)
- Afif Hedhly
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich;
| | - Hannes Vogler
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich
| | - Christof Eichenberger
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich
| |
Collapse
|
43
|
Tanaka E, Ono Y. Whole-leaf fluorescence imaging to visualize in planta fungal structures of Victory onion leaf rust fungus, Uromyces japonicus, and its taxonomic evaluation. MYCOSCIENCE 2018. [DOI: 10.1016/j.myc.2017.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Yu T, Qi Y, Gong H, Luo Q, Zhu D. Optical clearing for multiscale biological tissues. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 29024450 DOI: 10.1002/jbio.201700187] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/08/2017] [Indexed: 05/03/2023]
Abstract
Three-dimensional reconstruction of tissue structures is essential for biomedical research. The development of light microscopes and various fluorescent labeling techniques provides powerful tools for this motivation. However, optical imaging depth suffers from strong light scattering due to inherent heterogeneity of biological tissues. Tissue optical clearing technology provides a distinct solution and permits us to image large volumes with high resolution. Until now, various clearing methods have been developed. In this study, from the perspective of the end users, we review in vitro tissue optical clearing techniques based on the sample features in terms of size and age, enumerate the methods suitable for immunostaining and lipophilic dyes and summarize the combinations with various imaging techniques. We hope this review will be helpful for researchers to choose the most suitable clearing method from a variety of protocols to meet their specific needs.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yisong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
45
|
Ursache R, Andersen TG, Marhavý P, Geldner N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:399-412. [PMID: 29171896 DOI: 10.1111/tpj.13784] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 05/04/2023]
Abstract
Higher plant function is contingent upon the complex three-dimensional (3D) architecture of plant tissues, yet severe light scattering renders deep, 3D tissue imaging very problematic. Although efforts to 'clear' tissues have been ongoing for over a century, many innovations have been made in recent years. Among them, a protocol called ClearSee efficiently clears tissues and diminishes chlorophyll autofluorescence while maintaining fluorescent proteins - thereby allowing analysis of gene expression and protein localisation in cleared samples. To further increase the usefulness of this protocol, we have developed a ClearSee-based toolbox in which a number of classical histological stains for lignin, suberin and other cell wall components can be used in conjunction with fluorescent reporter lines. We found that a number of classical dyes are highly soluble in ClearSee solution, allowing the old staining protocols to be enormously simplified; these additionally have been unsuitable for co-visualisation with fluorescent markers due to harsh fixation and clearing. Consecutive staining with several dyes allows 3D co-visualisation of distinct cell wall modifications with fluorescent proteins - used as transcriptional reporters or protein localisation tools - deep within tissues. Moreover, the protocol is easily applied on hand sections of different organs. In combination with confocal microscopy, this improves image quality while decreasing the time and cost of embedding/sectioning. It thus provides a low-cost, efficient method for studying thick plant tissues which are usually cumbersome to visualise. Our ClearSee-adapted protocols significantly improve and speed up anatomical and developmental investigations in numerous plant species, and we hope they will contribute to new discoveries in many areas of plant research.
Collapse
Affiliation(s)
- Robertas Ursache
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Peter Marhavý
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
46
|
Palmer WM, Flynn JR, Martin AP, Reed SL, Grof CPL, White RG, Furbank RT. 3D Clearing and Molecular Labeling in Plant Tissues. Methods Mol Biol 2018; 1770:285-304. [PMID: 29978409 DOI: 10.1007/978-1-4939-7786-4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant histology and imaging traditionally involve the transformation of tissues into thin sections to minimize light scatter in opaque material, allowing optical clarity and high-resolution microscopy. Recently, new techniques in 3D tissue clearing, including PEA-CLARITY, have been developed to minimize light scatter within intact, whole samples. These techniques can achieve equivalent microscopic resolution to that of thin section imaging with the added benefit of maintaining the original 3D structure and position of biomolecules of interest. Furthermore, PEA-CLARITY is compatible with standard stains and immunohistochemistry, allowing molecular interrogation of intact, 3D tissues. This chapter outlines the current methods available for 3D histology in plants and details the materials, equipment, reagents, and procedure for the PEA-CLARITY technique.
Collapse
Affiliation(s)
- William M Palmer
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| | - Jamie R Flynn
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Antony P Martin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Stephanie L Reed
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher P L Grof
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | | | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, Australia
| |
Collapse
|
47
|
Wang Z, Verboven P, Nicolai B. Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques. PLANT METHODS 2017; 13:105. [PMID: 29209409 PMCID: PMC5706332 DOI: 10.1186/s13007-017-0256-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/21/2017] [Indexed: 06/02/2023]
Abstract
BACKGROUND X-ray micro-CT has increasingly been used for 3D imaging of plant structures. At the micrometer resolution however, limitations in X-ray contrast often lead to datasets with poor qualitative and quantitative measures, especially within dense cell clusters of plant tissue specimens. The current study developed protocols for delivering a cesium based contrast enhancing solution to varying plant tissue specimens for the purpose of improving 3D tissue structure characterization within plant specimens, accompanied by new image processing workflows to extract the additional data generated by the contrast enhanced scans. RESULTS Following passive delivery of a 10% cesium iodide contrast solution, significant increases of 85.4 and 38.0% in analyzable cell volumes were observed in pear fruit hypanthium and tomato fruit outer mesocarp samples. A significant increase of 139.6% in the number of analyzable cells was observed in the pear fruit samples along the added ability to locate and isolate better brachysclereids and vasculature in the sample volume. Furthermore, contrast enhancement resulted in significant improvement in the definition of collenchyma and parenchyma in the petiolule of tomato leaflets, from which both qualitative and quantitative data can be extracted with respect to cell measures. However, contrast enhancement was not achieved in leaf vasculature and mesophyll tissue due to fundamental limitations. Active contrast delivery to apple fruit hypanthium samples did yield a small but insignificant increase in analyzable volume and cells, but data on vasculature can now be extracted better in correspondence to the pear hypanthium samples. Contrast delivery thus improved visualization and analysis the most in dense tissue types. CONCLUSIONS The cesium based contrast enhancing protocols and workflows can be utilized to obtain detailed 3D data on the internal microstructure of plant samples, and can be adapted to additional samples of interest with minimal effort. The resulting datasets can therefore be utilized for more accurate downstream studies that requires 3D data.
Collapse
Affiliation(s)
- Zi Wang
- Division MeBioS, Department of Biosystems, KU Leuven – University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Pieter Verboven
- Division MeBioS, Department of Biosystems, KU Leuven – University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bart Nicolai
- Division MeBioS, Department of Biosystems, KU Leuven – University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Flanders Centre of Postharvest Technology, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
48
|
Reid D, Nadzieja M, Novák O, Heckmann AB, Sandal N, Stougaard J. Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. PLANT PHYSIOLOGY 2017; 175:361-375. [PMID: 28733389 PMCID: PMC5580777 DOI: 10.1104/pp.17.00832] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 05/22/2023]
Abstract
Legume mutants have shown the requirement for receptor-mediated cytokinin signaling in symbiotic nodule organogenesis. While the receptors are central regulators, cytokinin also is accumulated during early phases of symbiotic interaction, but the pathways involved have not yet been fully resolved. To identify the source, timing, and effect of this accumulation, we followed transcript levels of the cytokinin biosynthetic pathway genes in a sliding developmental zone of Lotus japonicus roots. LjIpt2 and LjLog4 were identified as the major contributors to the first cytokinin burst. The genetic dependence and Nod factor responsiveness of these genes confirm that cytokinin biosynthesis is a key target of the common symbiosis pathway. The accumulation of LjIpt2 and LjLog4 transcripts occurs independent of the LjLhk1 receptor during nodulation. Together with the rapid repression of both genes by cytokinin, this indicates that LjIpt2 and LjLog4 contribute to, rather than respond to, the initial cytokinin buildup. Analysis of the cytokinin response using the synthetic cytokinin sensor, TCSn, showed that this response occurs in cortical cells before spreading to the epidermis in L. japonicus While mutant analysis identified redundancy in several biosynthesis families, we found that mutation of LjIpt4 limits nodule numbers. Overexpression of LjIpt3 or LjLog4 alone was insufficient to produce the robust formation of spontaneous nodules. In contrast, overexpressing a complete cytokinin biosynthesis pathway leads to large, often fused spontaneous nodules. These results show the importance of cytokinin biosynthesis in initiating and balancing the requirement for cortical cell activation without uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Dugald Reid
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Marcin Nadzieja
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, CZ-78371 Olomouc, Czech Republic
| | - Anne B Heckmann
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
49
|
Kirschner GK, Stahl Y, Von Korff M, Simon R. Unique and Conserved Features of the Barley Root Meristem. FRONTIERS IN PLANT SCIENCE 2017; 8:1240. [PMID: 28785269 PMCID: PMC5519606 DOI: 10.3389/fpls.2017.01240] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Plant root growth is enabled by root meristems that harbor the stem cell niches as a source of progenitors for the different root tissues. Understanding the root development of diverse plant species is important to be able to control root growth in order to gain better performances of crop plants. In this study, we analyzed the root meristem of the fourth most abundant crop plant, barley (Hordeum vulgare). Cell division studies revealed that the barley stem cell niche comprises a Quiescent Center (QC) of around 30 cells with low mitotic activity. The surrounding stem cells contribute to root growth through the production of new cells that are displaced from the meristem, elongate and differentiate into specialized root tissues. The distal stem cells produce the root cap and lateral root cap cells, while cells lateral to the QC generate the epidermis, as it is typical for monocots. Endodermis and inner cortex are derived from one common initial lateral to the QC, while the outer cortex cell layers are derived from a distinct stem cell. In rice and Arabidopsis, meristem homeostasis is achieved through feedback signaling from differentiated cells involving peptides of the CLE family. Application of synthetic CLE40 orthologous peptide from barley promotes meristem cell differentiation, similar to rice and Arabidopsis. However, in contrast to Arabidopsis, the columella stem cells do not respond to the CLE40 peptide, indicating that distinct mechanisms control columella cell fate in monocot and dicot plants.
Collapse
Affiliation(s)
- Gwendolyn K. Kirschner
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Institute for Plant Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
| | - Maria Von Korff
- Institute for Plant Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine UniversityDüsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine UniversityDüsseldorf, Germany
| |
Collapse
|
50
|
Wang S, Tholen D, Zhu X. C 4 photosynthesis in C 3 rice: a theoretical analysis of biochemical and anatomical factors. PLANT, CELL & ENVIRONMENT 2017; 40:80-94. [PMID: 27628301 PMCID: PMC6139432 DOI: 10.1111/pce.12834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 05/05/2023]
Abstract
Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic efficiency. To explore this question, we developed a 3D reaction diffusion model of bundle-sheath and connected mesophyll cells in a C3 rice leaf. Our results show that integrating a C4 metabolic pathway into rice leaves with a C3 metabolism and mesophyll structure may lead to an improved photosynthesis under current ambient CO2 concentration. We analysed a number of physiological factors that influence the CO2 uptake rate, which include the chloroplast surface area exposed to intercellular air space, bundle-sheath cell wall thickness, bundle-sheath chloroplast envelope permeability, Rubisco concentration and the energy partitioning between C3 and C4 cycles. Among these, partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle-sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3 -C4 leaf. The implications of the results for the sequence of C4 evolution are also discussed.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Danny Tholen
- Institute of Botany, Department of Integrative BiologyUniversity of Natural Resources and Applied Life Sciences, BOKU ViennaGregor‐Mendel‐Str. 33A‐1180ViennaAustria
| | - Xin‐Guang Zhu
- Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|