1
|
Tunstad SA, Bull ID, Rands SA, Whitney HM. The cuticular wax composition and crystal coverage of leaves and petals differ in a consistent manner between plant species. Open Biol 2024; 14:230430. [PMID: 38806146 PMCID: PMC11293435 DOI: 10.1098/rsob.230430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/30/2024] Open
Abstract
Both leaves and petals are covered in a cuticle, which itself contains and is covered by cuticular waxes. The waxes perform various roles in plants' lives, and the cuticular composition of leaves has received much attention. To date, the cuticular composition of petals has been largely ignored. Being the outermost boundary between the plant and the environment, the cuticle is the first point of contact between a flower and a pollinator, yet we know little about how plant-pollinator interactions shape its chemical composition. Here, we investigate the general structure and composition of floral cuticular waxes by analysing the cuticular composition of leaves and petals of 49 plant species, representing 19 orders and 27 families. We show that the flowers of plants from across the phylogenetic range are nearly devoid of wax crystals and that the total wax load of leaves in 90% of the species is higher than that of petals. The proportion of alkanes is higher, and the chain lengths of the aliphatic compounds are shorter in petals than in leaves. We argue these differences are a result of adaptation to the different roles leaves and petals play in plant biology.
Collapse
Affiliation(s)
| | - Ian D. Bull
- Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
2
|
Roddy AB, Guilliams CM, Fine PVA, Mambelli S, Dawson TE, Simonin KA. Flowers are leakier than leaves but cheaper to build. THE NEW PHYTOLOGIST 2023; 239:2076-2082. [PMID: 37366068 DOI: 10.1111/nph.19104] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Affiliation(s)
- Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, 33199, FL, USA
| | | | - Paul V A Fine
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Stefania Mambelli
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California-Berkeley, Berkeley, 94720, CA, USA
| | - Kevin A Simonin
- Department of Biology, San Francisco State University, San Francisco, 94132, CA, USA
| |
Collapse
|
3
|
Carins-Murphy MR, Cochard H, Deans RM, Gracie AJ, Brodribb TJ. Combined heat and water stress leads to local xylem failure and tissue damage in pyrethrum flowers. PLANT PHYSIOLOGY 2023; 193:356-370. [PMID: 37325893 PMCID: PMC10469517 DOI: 10.1093/plphys/kiad349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023]
Abstract
Flowers are critical for angiosperm reproduction and the production of food, fiber, and pharmaceuticals, yet for unknown reasons, they appear particularly sensitive to combined heat and drought stress. A possible explanation for this may be the co-occurrence of leaky cuticles in flower petals and a vascular system that has a low capacity to supply water and is prone to failure under water stress. These characteristics may render reproductive structures more susceptible than leaves to runaway cavitation-an uncontrolled feedback cycle between rising water stress and declining water transport efficiency that can rapidly lead to lethal tissue desiccation. We provide modeling and empirical evidence to demonstrate that flower damage in the perennial crop pyrethrum (Tanacetum cinerariifolium), in the form of irreversible desiccation, corresponds with runaway cavitation in the flowering stem after a combination of heat and water stress. We show that tissue damage is linked to greater evaporative demand during high temperatures rather than direct thermal stress. High floral transpiration dramatically reduced the soil water deficit at which runaway cavitation was triggered in pyrethrum flowering stems. Identifying runaway cavitation as a mechanism leading to heat damage and reproductive losses in pyrethrum provides different avenues for process-based modeling to understand the impact of climate change on cultivated and natural plant systems. This framework allows future investigation of the relative susceptibility of diverse plant species to reproductive failure under hot and dry conditions.
Collapse
Affiliation(s)
- Madeline R Carins-Murphy
- School of Natural Sciences, Discipline of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Hervé Cochard
- INRAE, PIAF, Université Clermont-Auvergne, Clermont-Ferrand 63000, France
| | - Ross M Deans
- Department of Viticulture & Enology, University of California, Davis, California 95616, USA
| | - Alistair J Gracie
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, Discipline of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
4
|
Li HJ, Bai WP, Liu LB, Liu HS, Wei L, Garant TM, Kalinger RS, Deng YX, Wang GN, Bao AK, Ma Q, Rowland O, Wang SM. Massive increases in C31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. ANNALS OF BOTANY 2023; 131:723-736. [PMID: 36848247 PMCID: PMC10147333 DOI: 10.1093/aob/mcad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Desert plants possess excellent water-conservation capacities to survive in extreme environments. Cuticular wax plays a pivotal role in reducing water loss through plant aerial surfaces. However, the role of cuticular wax in water retention by desert plants is poorly understood. METHODS We investigated leaf epidermal morphology and wax composition of five desert shrubs from north-west China and characterized the wax morphology and composition for the typical xerophyte Zygophyllum xanthoxylum under salt, drought and heat treatments. Moreover, we examined leaf water loss and chlorophyll leaching of Z. xanthoxylum and analysed their relationships with wax composition under the above treatments. KEY RESULTS The leaf epidermis of Z. xanthoxylum was densely covered by cuticular wax, whereas the other four desert shrubs had trichomes or cuticular folds in addition to cuticular wax. The total amount of cuticular wax on leaves of Z. xanthoxylum and Ammopiptanthus mongolicus was significantly higher than that of the other three shrubs. Strikingly, C31 alkane, the most abundant component, composed >71 % of total alkanes in Z. xanthoxylum, which was higher than for the other four shrubs studied here. Salt, drought and heat treatments resulted in significant increases in the amount of cuticular wax. Of these treatments, the combined drought plus 45 °C treatment led to the largest increase (107 %) in the total amount of cuticular wax, attributable primarily to an increase of 122 % in C31 alkane. Moreover, the proportion of C31 alkane within total alkanes remained >75 % in all the above treatments. Notably, the water loss and chlorophyll leaching were reduced, which was negatively correlated with C31 alkane content. CONCLUSION Zygophyllum xanthoxylum could serve as a model desert plant for study of the function of cuticular wax in water retention because of its relatively uncomplicated leaf surface and because it accumulates C31 alkane massively to reduce cuticular permeability and resist abiotic stressors.
Collapse
Affiliation(s)
- Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Li Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Timothy M Garant
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yu-Xuan Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Owen Rowland
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
5
|
Cheng G, Ye C, Zhang J, Li H, Jiang Y, Duan X. Water permeability of different aerial tissues of carnations is related to cuticular wax composition. PHYSIOLOGIA PLANTARUM 2023; 175:e13883. [PMID: 36840510 DOI: 10.1111/ppl.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Cuticular wax protects aerial plant tissues against uncontrolled water loss. To compare the differences among tissues, cultivars, and postharvest stages, we characterized the surface morphology, water permeability, and chemical composition of cuticular wax on the leaf, calyx, and petals of two carnation cultivars ('Master' and 'Lady green') at two postharvest stages. Obvious differences in these characteristics were found among tissues but not among cultivars or postharvest stages. The leaf surface was relatively smooth, whereas convex cells were observed on the petals. The mean minimum conductance of leaves was significantly higher than that of the calyx, followed by that of petals. It ranged between 8.8 × 10-4 m s-1 for 'Lady green' leaves at Stage II and 3.6 × 10-5 m s-1 for 'Master' petals at Stage I. Petal wax contained high concentrations of n-alkanes, whereas primary alcohols dominated in leaf wax. The weighted average chain length (ACL) was higher in petal wax than in leaf wax; it ranged from 19.6 in 'Lady green' leaves to 24.14 in 'Lady green' petals at Stage I. In conclusion, carnation petals are characterized by numerous convex cells on both the adaxial and abaxial surfaces, and their main cuticular wax components, alkanes, have a higher ACL than leaf cuticular wax, which contributes to their higher water barrier property. The results provide further evidence for the association between cuticular chemical composition and the physiological function of the cuticle in blocking water transpiration.
Collapse
Affiliation(s)
- Guiping Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Changchun Ye
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiajun Zhang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongmei Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Zhu J, Huang K, Cheng D, Zhang C, Li R, Liu F, Wen H, Tao L, Zhang Y, Li C, Liu S, Wei C. Characterization of Cuticular Wax in Tea Plant and Its Modification in Response to Low Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13849-13861. [PMID: 36268795 DOI: 10.1021/acs.jafc.2c05470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cuticular wax ubiquitously covers the outer layer of plants and protects them against various abiotic and biotic stresses. Nevertheless, the characteristics of cuticular wax and its role in cold resistance in tea plants remain unclear. In our study, cuticular wax from different tissues, cultivars, and leaves during different spatio-temporal growth stages were characterized and compared in tea plants. The composition, distribution pattern, and structural profile of cuticular wax showed considerable tissue specificity, particularly in petals and seeds. During the spatial development of tea leaves, total wax content increased from the first to fifth leaf in June, while a decreasing pattern was observed in September. Additionally, the total wax content and number of wax compounds were enhanced, and the wax composition significantly varied with leaf growth from June to September. Ten cultivars showed considerable differences in total wax content and composition, such as the predominance of saturated fatty acids and primary alcohols in SYH and HJY cultivars, respectively. Correlation analysis suggested that n-hexadecanoic acid is positively related to cold resistance in tea plants. Further transcriptome analysis from cold-sensitive AJBC, cold-tolerant CYQ, and EC 12 cultivars indicated that the inducible expression of wax-related genes was associated with the cold tolerance of different cultivars in response to cold stress. Our results revealed the characterization of cuticular wax in tea plants and provided new insights into its modification in cold tolerance.
Collapse
Affiliation(s)
- Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Kelin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Daojie Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Cao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Rui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Fangbin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Huilin Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Youze Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Cuihong Li
- Tianfang Tea Company Limited by Share, Tianfang Industrial Park, Chizhou 245100, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| |
Collapse
|
7
|
Why do some funneliform flowers have petal folds accompanied with hierarchical surface microstructure? Evol Ecol 2022. [DOI: 10.1007/s10682-022-10217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Harrap MJM, Rands SA. The role of petal transpiration in floral humidity generation. PLANTA 2022; 255:78. [PMID: 35246754 PMCID: PMC8897325 DOI: 10.1007/s00425-022-03864-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/22/2022] [Indexed: 05/11/2023]
Abstract
MAIN CONCLUSION Using petrolatum gel as an antitranspirant on the flowers of California poppy and giant bindweed, we show that transpiration provides a large contribution to floral humidity generation. Floral humidity, an area of elevated humidity in the headspace of flowers, is believed to be produced predominantly through a combination of evaporation of liquid nectar and transpirational water loss from the flower. However, the role of transpiration in floral humidity generation has not been directly tested and is largely inferred by continued humidity production when nectar is removed from flowers. We test whether transpiration contributes to the floral humidity generation of two species previously identified to produce elevated floral humidity, Calystegia silvatica and Eschscholzia californica. Floral humidity production of flowers that underwent an antitranspirant treatment, petrolatum gel which blocks transpiration from treated tissues, is compared to flowers that did not receive such treatments. Gel treatments reduced floral humidity production to approximately a third of that produced by untreated flowers in C. silvatica, and half of that in E. californica. This confirms the previously untested inferences that transpiration has a large contribution to floral humidity generation and that this contribution may vary between species.
Collapse
Affiliation(s)
- Michael J M Harrap
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
- The John Krebs Field Station, University of Oxford, Wytham, Oxford, OX2 8QJ, UK.
| | - Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| |
Collapse
|
9
|
Bock P, Felhofer M, Mayer K, Gierlinger N. A Guide to Elucidate the Hidden Multicomponent Layered Structure of Plant Cuticles by Raman Imaging. FRONTIERS IN PLANT SCIENCE 2021; 12:793330. [PMID: 34975980 PMCID: PMC8718554 DOI: 10.3389/fpls.2021.793330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 05/29/2023]
Abstract
The cuticle covers almost all plant organs as the outermost layer and serves as a transpiration barrier, sunscreen, and first line of defense against pathogens. Waxes, fatty acids, and aromatic components build chemically and structurally diverse layers with different functionality. So far, electron microscopy has elucidated structure, while isolation, extraction, and analysis procedures have revealed chemistry. With this method paper, we close the missing link by demonstrating how Raman microscopy gives detailed information about chemistry and structure of the native cuticle on the microscale. We introduce an optimized experimental workflow, covering the whole process of sample preparation, Raman imaging experiment, data analysis, and interpretation and show the versatility of the approach on cuticles of a spruce needle, a tomato peel, and an Arabidopsis stem. We include laser polarization experiments to deduce the orientation of molecules and multivariate data analysis to separate cuticle layers and verify their molecular composition. Based on the three investigated cuticles, we discuss the chemical and structural diversity and validate our findings by comparing models based on our spectroscopic data with the current view of the cuticle. We amend the model by adding the distribution of cinnamic acids and flavonoids within the cuticle layers and their transition to the epidermal layer. Raman imaging proves as a non-destructive and fast approach to assess the chemical and structural variability in space and time. It might become a valuable tool to tackle knowledge gaps in plant cuticle research.
Collapse
Affiliation(s)
| | | | | | - Notburga Gierlinger
- Department of Nanobiotechnology, Institute of Biophysics, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Harrap MJM, Hempel de Ibarra N, Knowles HD, Whitney HM, Rands SA. Bumblebees can detect floral humidity. J Exp Biol 2021; 224:jeb240861. [PMID: 34161560 PMCID: PMC8246344 DOI: 10.1242/jeb.240861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
Floral humidity, a region of elevated humidity in the headspace of the flower, occurs in many plant species and may add to their multimodal floral displays. So far, the ability to detect and respond to floral humidity cues has been only established for hawkmoths when they locate and extract nectar while hovering in front of some moth-pollinated flowers. To test whether floral humidity can be used by other more widespread generalist pollinators, we designed artificial flowers that presented biologically relevant levels of humidity similar to those shown by flowering plants. Bumblebees showed a spontaneous preference for flowers that produced higher floral humidity. Furthermore, learning experiments showed that bumblebees are able to use differences in floral humidity to distinguish between rewarding and non-rewarding flowers. Our results indicate that bumblebees are sensitive to different levels of floral humidity. In this way floral humidity can add to the information provided by flowers and could impact pollinator behaviour more significantly than previously thought.
Collapse
Affiliation(s)
- Michael J. M. Harrap
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Henry D. Knowles
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Natural Resources Wales, Maes Newydd, Llandarcy, Neath Port Talbot, SA10 6JQ, UK
| | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| |
Collapse
|
11
|
Structure, Assembly and Function of Cuticle from Mechanical Perspective with Special Focus on Perianth. Int J Mol Sci 2021; 22:ijms22084160. [PMID: 33923850 PMCID: PMC8072621 DOI: 10.3390/ijms22084160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023] Open
Abstract
This review is devoted to the structure, assembly and function of cuticle. The topics are discussed from the mechanical perspective and whenever the data are available a special attention is paid to the cuticle of perianth organs, i.e., sepals, petals or tepals. The cuticle covering these organs is special in both its structure and function and some of these peculiarities are related to the cuticle mechanics. In particular, strengthening of the perianth surface is often provided by a folded cuticle that functionally resembles profiled plates, while on the surface of the petal epidermis of some plants, the cuticle is the only integral continuous layer. The perianth cuticle is distinguished also by those aspects of its mechanics and development that need further studies. In particular, more investigations are needed to explain the formation and maintenance of cuticle folding, which is typical for the perianth epidermis, and also to elucidate the mechanical properties and behavior of the perianth cuticle in situ. Gaps in our knowledge are partly due to technical problems caused by very small thicknesses of the perianth cuticle but modern tools may help to overcome these obstacles.
Collapse
|
12
|
Harrap MJM, Rands SA. Floral infrared emissivity estimates using simple tools. PLANT METHODS 2021; 17:23. [PMID: 33632239 PMCID: PMC7905901 DOI: 10.1186/s13007-021-00721-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/09/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Floral temperature has important consequences for plant biology, and accurate temperature measurements are therefore important to plant research. Thermography, also referred to as thermal imaging, is beginning to be used more frequently to measure and visualize floral temperature. Accurate thermographic measurements require information about the object's emissivity (its capacity to emit thermal radiation with temperature), to obtain accurate temperature readings. However, there are currently no published estimates of floral emissivity available. This is most likely to be due to flowers being unsuitable for the most common protocols for emissivity estimation. Instead, researchers have used emissivity estimates collected on vegetative plant tissue when conducting floral thermography, assuming these tissues to have the same emissivity. As floral tissue differs from vegetative tissue, it is unclear how appropriate and accurate these vegetative tissue emissivity estimates are when they are applied to floral tissue. RESULTS We collect floral emissivity estimates using two protocols, using a thermocouple and a water bath, providing a guide for making estimates of floral emissivity that can be carried out without needing specialist equipment (apart from the thermal camera). Both protocols involve measuring the thermal infrared radiation from flowers of a known temperature, providing the required information for emissivity estimation. Floral temperature is known within these protocols using either a thermocouple, or by heating the flowers within a water bath. Emissivity estimates indicate floral emissivity is high, near 1, at least across petals. While the two protocols generally indicated the same trends, the water bath protocol gave more realistic and less variable estimates. While some variation with flower species and location on the flower is observed in emissivity estimates, these are generally small or can be explained as resulting from artefacts of these protocols, relating to thermocouple or water surface contact quality. CONCLUSIONS Floral emissivity appears to be high, and seems quite consistent across most flowers and between species, at least across petals. A value near 1, for example 0.98, is recommended for accurate thermographic measurements of floral temperature. This suggests that the similarly high values based on vegetation emissivity estimates used by previous researchers were appropriate.
Collapse
Affiliation(s)
- Michael J M Harrap
- University of Bristol, Life Sciences Building, Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Sean A Rands
- University of Bristol, Life Sciences Building, Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
13
|
Sasani N, Bock P, Felhofer M, Gierlinger N. Raman imaging reveals in-situ microchemistry of cuticle and epidermis of spruce needles. PLANT METHODS 2021; 17:17. [PMID: 33557869 PMCID: PMC7871409 DOI: 10.1186/s13007-021-00717-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The cuticle is a protective layer playing an important role in plant defense against biotic and abiotic stresses. So far cuticle structure and chemistry was mainly studied by electron microscopy and chemical extraction. Thus, analysing composition involved sample destruction and the link between chemistry and microstructure remained unclear. In the last decade, Raman imaging showed high potential to link plant anatomical structure with microchemistry and to give insights into orientation of molecules. In this study, we use Raman imaging and polarization experiments to study the native cuticle and epidermal layer of needles of Norway spruce, one of the economically most important trees in Europe. The acquired hyperspectral dataset is the basis to image the chemical heterogeneity using univariate (band integration) as well as multivariate data analysis (cluster analysis and non-negative matrix factorization). RESULTS Confocal Raman microscopy probes the cuticle together with the underlying epidermis in the native state and tracks aromatics, lipids, carbohydrates and minerals with a spatial resolution of 300 nm. All three data analysis approaches distinguish a waxy, crystalline layer on top, in which aliphatic chains and coumaric acid are aligned perpendicular to the surface. Also in the lipidic amorphous cuticle beneath, strong signals of coumaric acid and flavonoids are detected. Even the unmixing algorithm results in mixed endmember spectra and confirms that lipids co-locate with aromatics. The underlying epidermal cell walls are devoid of lipids but show strong aromatic Raman bands. Especially the upper periclinal thicker cell wall is impregnated with aromatics. At the interface between epidermis and cuticle Calcium oxalate crystals are detected in a layer-like fashion. Non-negative matrix factorization gives the purest component spectra, thus the best match with reference spectra and by this promotes band assignments and interpretation of the visualized chemical heterogeneity. CONCLUSIONS Results sharpen our view about the cuticle as the outermost layer of plants and highlight the aromatic impregnation throughout. In the future, developmental studies tracking lipid and aromatic pathways might give new insights into cuticle formation and comparative studies might deepen our understanding why some trees and their needle and leaf surfaces are more resistant to biotic and abiotic stresses than others.
Collapse
Affiliation(s)
- Nadia Sasani
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Peter Bock
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Martin Felhofer
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria
| | - Notburga Gierlinger
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 11-II, 1190, Vienna, Austria.
| |
Collapse
|
14
|
Cheng G, Wang L, Wu H, Yu X, Zhang N, Wan X, He L, Huang H. Variation in Petal and Leaf Wax Deposition Affects Cuticular Transpiration in Cut Lily Flowers. FRONTIERS IN PLANT SCIENCE 2021; 12:781987. [PMID: 34899809 PMCID: PMC8652255 DOI: 10.3389/fpls.2021.781987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 05/10/2023]
Abstract
The vase life of cut flowers is largely affected by post-harvest water loss. Cuticular wax is the primary barrier to uncontrolled water loss for aerial plant organs. Studies on leaf cuticular transpiration have been widely conducted; however, little is known about cuticular transpiration in flowers. Here, the cuticular transpiration rate and wax composition of three lily cultivars were determined. The minimum water conductance of tepal cuticles was higher at the green bud than open flower stage. Lily cuticular transpiration exhibited cultivar- and organ-specific differences, where transpiration from the tepals was higher than leaves and was higher in the 'Huang Tianba' than 'Tiber' cultivar. The overall wax coverage of the tepals was higher compared to that of the leaves. Very-long-chain aliphatics were the main wax constituents and were dominated by n-alkanes with carbon (C) chain lengths of C27 and C29, and C29 and C31 in the tepal and leaf waxes, respectively. Primary alcohols and fatty acids as well as small amounts of alkyl esters, ketones, and branched or unsaturated n-alkanes were also detected in both tepal and leaf waxes, depending on the cultivar and organ. In addition, the chain-length distributions were similar between compound classes within cultivars, whereas the predominant C-chain lengths were substantially different between organs. This suggests that the less effective transpiration barrier provided by the tepal waxes may result from the shorter C-chain aliphatics in the tepal cuticle, compared to those in the leaf cuticle. These findings provide further insights to support the exploration of potential techniques for extending the shelf life of cut flowers based on cuticular transpiration barrier properties.
Collapse
Affiliation(s)
- Guiping Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ling Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hairong Wu
- Customs Technology Center of Guangzhou Customs District, Guangzhou, China
| | - Xinfan Yu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Zhang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xiaorong Wan
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lihong He
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hua Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- *Correspondence: Hua Huang,
| |
Collapse
|
15
|
Huang H, Lian Q, Wang L, Shan Y, Li F, Chang SK, Jiang Y. Chemical composition of the cuticular membrane in guava fruit (Psidium guajava L.) affects barrier property to transpiration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:589-595. [PMID: 32846394 DOI: 10.1016/j.plaphy.2020.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/16/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The cuticular membrane covering almost all aerial plant organs has a primary function in limiting uncontrolled water loss. The guava fruits were collected and this work was done to study the potential contribution of cuticular chemical composition to fruit transpiration after harvest. The detailed cuticular chemical composition, based on gas chromatography together with mass spectrometry, and the transpiration rate determined gravimetrically in guava fruit were characterized in the present study. The predominant wax mixtures were fatty acids and primary alcohols with homologous series of C16-C33, as well as various pentacyclic triterpenoids with abundant amounts of ursolic acid, maslinic acid and uvaol. The most prominent cutin compounds were C16 and C18‒type monomers dominated by 9(10),16-diOH-hexadecanoic acid and 9,10-epoxy-ω-OH-octadecanoic acid, respectively. Relatively high water permeability with a value of 5.1 × 10-4 m s-1 was detected for guava fruit. The lower efficiency of the cuticle as barrier to transpiration in guava fruit, as compared to that of other reported fruits, leaves, and petals, was seemingly related to the relatively short average chain-length of acyclic compounds in wax mixtures. These findings provide useful insights linking the chemical composition of the cuticular membrane that covers plant organs to putative physiological roles.
Collapse
Affiliation(s)
- Hua Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Qiaoqiao Lian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ling Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, PR China
| | - Youxia Shan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fengjun Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sui Kiat Chang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
16
|
Bourbia I, Carins-Murphy MR, Gracie A, Brodribb TJ. Xylem cavitation isolates leaky flowers during water stress in pyrethrum. THE NEW PHYTOLOGIST 2020; 227:146-155. [PMID: 32130731 DOI: 10.1111/nph.16516] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Flowers underpin plant evolution, genetic legacy and global food supply. They are exposed to similar evaporative conditions as leaves, yet floral physiology is a product of different selective forces. We used Tanacetum cinerariifolium, a perennial daisy, to examine the response of flowers to whole-plant water stress, determining if flowers constitute a liability during drought, and how this species has adapted to minimize risk associated with reproduction. We determined the relative transpiration cost of flowers and leaves and confirmed that flowers in this species are xylem-hydrated. The relative water stress tolerance of leaves and flowers then was compared using xylem vulnerability measurements linked with observed tissue damage during an acute drought treatment. Flowers were a major source of water loss during drought but the xylem supplying them was much more vulnerable to cavitation than leaves. This xylem vulnerability segmentation was confirmed by observations that most flowers died whereas leaves were minimally affected during drought. Early cavitation and hydraulic isolation of flowers during drought benefits the plant by slowing the dehydration of perennial vegetative organs and delaying systemic xylem damage. Our results highlight the need to understand flower xylem vulnerability as a means of predicting plant reproductive failure under future drought.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| | - Madeline R Carins-Murphy
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| | - Alistair Gracie
- Tasmania Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas., 7001, Australia
| |
Collapse
|
17
|
Harrap MJM, Hempel de Ibarra N, Knowles HD, Whitney HM, Rands SA. Floral Humidity in Flowering Plants: A Preliminary Survey. FRONTIERS IN PLANT SCIENCE 2020; 11:249. [PMID: 32211004 PMCID: PMC7068853 DOI: 10.3389/fpls.2020.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/18/2020] [Indexed: 05/18/2023]
Abstract
The area of space immediately around the floral display is likely to have an increased level of humidity relative to the environment around it, due to both nectar evaporation and floral transpiration. This increased level of floral humidity could act as a close-distance cue for pollinators or influence thermoregulation, pollen viability and infection of flowers by fungal pathogens. However, with a few exceptions, not much is known about the patterns of floral humidity in flowering plants or the physiological traits that result in its generation. We conducted a survey of 42 radially symmetrical flower species (representing 21 widely spread families) under controlled conditions. Humidity was measured using a novel robot arm technique that allowed us to take measurements along transects across and above the floral surface. The intensity of floral humidity was found to vary between different flower species. Thirty of the species we surveyed presented levels of humidity exceeding a control comparable to background humidity levels, while twelve species did not. Patterns of floral humidity also differed across species. Nevertheless, floral humidity tended to be highest near the center of the flower, and decreased logarithmically with increasing distance above the flower, normally declining to background levels within 30 mm. It remains unclear how physiological traits influence the diversity of floral humidity discovered in this survey, but floral shape seems to also influence floral humidity. These results demonstrate that floral humidity may occur in a wide range of species and that there might be greater level of diversity and complexity in this floral trait than previously known.
Collapse
Affiliation(s)
| | - Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Exeter, United Kingdom
| | - Henry D. Knowles
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Kraaij M, van der Kooi CJ. Surprising absence of association between flower surface microstructure and pollination system. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:177-183. [PMID: 31710761 PMCID: PMC7064994 DOI: 10.1111/plb.13071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/03/2019] [Indexed: 05/25/2023]
Abstract
The epidermal cells of flowers come in different shapes and have different functions, but how they evolved remains largely unknown. Floral micro-texture can provide tactile cues to insects, and increases in surface roughness by means of conical (papillose) epidermal cells may facilitate flower handling by landing insect pollinators. Whether flower microstructure correlates with pollination system remains unknown. Here, we investigate the floral epidermal microstructure in 29 (congeneric) species pairs with contrasting pollination system. We test whether flowers pollinated by bees and/or flies feature more structured, rougher surfaces than flowers pollinated by non-landing moths or birds and flowers that self-pollinate. In contrast with earlier studies, we find no correlation between epidermal microstructure and pollination system. The shape, cell height and roughness of floral epidermal cells varies among species, but is not correlated with pollinators at large. Intriguingly, however, we find that the upper (adaxial) flower surface that surrounds the reproductive organs and often constitutes the floral display is markedly more structured than the lower (abaxial) surface. We thus conclude that conical epidermal cells probably play a role in plant reproduction other than providing grip or tactile cues, such as increasing hydrophobicity or enhancing the visual signal.
Collapse
Affiliation(s)
- M. Kraaij
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - C. J. van der Kooi
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
19
|
Wu X, Chen Y, Shi X, Qi K, Cao P, Liu X, Yin H, Zhang S. Effects of palmitic acid (16:0), hexacosanoic acid (26:0), ethephon and methyl jasmonate on the cuticular wax composition, structure and expression of key gene in the fruits of three pear cultivars. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:156-169. [PMID: 31930956 DOI: 10.1071/fp19117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The chemical composition, crystal morphology and expression levels of associated genes involved in the cuticular wax of three pear cultivars 'Housui', 'Cuiguan' and 'Yuluxiang' after treatment with palmitic acid (PA), hexacosanoic acid (HA), ethephon and methyl jasmonate (Meja) were determined. A total of 59 cuticular wax compounds were detected across all samples. The wax coverage of 'Housui' fruits increased by 71.74, 93.48 and 89.13% after treatment with PA, ethephon and Meja, respectively, and treatment with PA, HA and Meja also increased the wax coverage in 'Cuiguan' (65.33, 20.00 and 21.33% respectively) and in 'Yuluxiang' (38.60, 63.16 and 42.11% respectively) fruits. Heatmap clustering analysis and partial least-squares-discriminate analysis (PLS-DA) also revealed that the different treatments exerted various influences on cuticular wax among the different cultivars. In addition, the wax component coverage and wax crystal structures showed variations among the different cultivars as well as different treatments. Gene expression analysis revealed 11 genes likely to be involved in pear fruit wax synthesis, transport and regulation. Taken together, the results of this study demonstrate that the differences in the cuticular waxes of the fruits of different cultivars after treatment with PA, HA, ethephon or Meja might lead to a better understanding of the regulatory effect of a substrate or elicitor on the composition and deposition of cuticular waxes.
Collapse
Affiliation(s)
- Xiao Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yangyang Chen
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xinjie Shi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Peng Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xueying Liu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hao Yin
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; and Corresponding authors. ;
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; and Corresponding authors. ;
| |
Collapse
|
20
|
Zhang Y, Du Z, Han Y, Chen X, Kong X, Sun W, Chen C, Chen M. Plasticity of the Cuticular Transpiration Barrier in Response to Water Shortage and Resupply in Camellia sinensis: A Role of Cuticular Waxes. FRONTIERS IN PLANT SCIENCE 2020; 11:600069. [PMID: 33505410 PMCID: PMC7829210 DOI: 10.3389/fpls.2020.600069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 05/08/2023]
Abstract
The cuticle is regarded as a non-living tissue; it remains unknown whether the cuticle could be reversibly modified and what are the potential mechanisms. In this study, three tea germplasms (Wuniuzao, 0202-10, and 0306A) were subjected to water deprivation followed by rehydration. The epicuticular waxes and intracuticular waxes from both leaf surfaces were quantified from the mature 5th leaf. Cuticular transpiration rates were then measured from leaf drying curves, and the correlations between cuticular transpiration rates and cuticular wax coverage were analyzed. We found that the cuticular transpiration barriers were reinforced by drought and reversed by rehydration treatment; the initial weak cuticular transpiration barriers were preferentially reinforced by drought stress, while the original major cuticular transpiration barriers were either strengthened or unaltered. Correlation analysis suggests that cuticle modifications could be realized by selective deposition of specific wax compounds into individual cuticular compartments through multiple mechanisms, including in vivo wax synthesis or transport, dynamic phase separation between epicuticular waxes and the intracuticular waxes, in vitro polymerization, and retro transportation into epidermal cell wall or protoplast for further transformation. Our data suggest that modifications of a limited set of specific wax components from individual cuticular compartments are sufficient to alter cuticular transpiration barrier properties.
Collapse
Affiliation(s)
- Yi Zhang
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenghua Du
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanting Han
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiaobing Chen
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuan, China
| | - Weijiang Sun
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuan, China
| | - Mingjie Chen
- Henan Key Laboratory of Tea Plant Biology, College of Life Sciences, Xinyang Normal University, Xinyang, China
- *Correspondence: Mingjie Chen, ;
| |
Collapse
|
21
|
Zhao X, Huang L, Kang L, Jetter R, Yao L, Li Y, Xiao Y, Wang D, Xiao Q, Ni Y, Guo Y. Comparative analyses of cuticular waxes on various organs of faba bean (Vicia faba L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:102-112. [PMID: 30884413 DOI: 10.1016/j.plaphy.2019.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Cuticular waxes cover the plant surface and serve as hydrophobic layer, exhibiting various wax profiles between plant species and plant organs. This paper reports comprehensive analysis of the waxes on organs exposed to air, including leaf, stem, pod pericarp, and petals (banner, wing and keel), and on seed coat enwrapped in pod pericarp of faba bean (Vicia faba). In total 7 classes of wax compounds were identified, including fatty acids, primary alcohols, alkyl esters, aldehydes, alkanes, cinnamyl alcohol esters, and alkylresorcinols. Overall, primary alcohols dominated the waxes on leaves and the seed coat enwrapped in pod pericarp, alkanes accumulated largely in stem and petals, whereas alkylresorcinols were observed in leaf, stem and pod pericarp. Organs exposed to air had higher coverage (>1.2 μg/cm2) than those on seed coat (<0.8 μg/cm2), and keel having the highest wax coverage. Meanwhile, the wax coverage on seed coat reduced during the seed development. The variations of wax coverages, compound class distributions and chain length profiles among organs suggested that wax depositions were associated with their ecophysiological functions, and the enzymes involved in wax biosynthesis also showed organ-specific.
Collapse
Affiliation(s)
- Xiao Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lei Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lin Kang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Luhua Yao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yang Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dengke Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yu Ni
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
22
|
Cheng G, Huang H, Zhou L, He S, Zhang Y, Cheng X. Chemical composition and water permeability of the cuticular wax barrier in rose leaf and petal: A comparative investigation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:404-410. [PMID: 30635221 DOI: 10.1016/j.plaphy.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 05/25/2023]
Abstract
Cuticular wax is the main transpiration barrier against uncontrolled water loss for all aerial plant organs. This study presents water permeability and chemical composition of the cuticle on the petals and leaves of two cultivars of Rosa chinensis ('Movie star' and 'Tineke'). Numerous cultivar- and organ-specific differences, such as the water permeability and total cuticular wax, were detected among rose petals and leaves. Overall, the permeability to water is higher in petals than in leaves, varying between 1.8 × 10-5 m s-1 ('Tineke' leaves) and 1.0 × 10-4 m s-1 ('Tineke' petals). The cuticular wax coverage ranges from 4.9 μg cm-2 ('Tineke' petals) to 13.2 μg cm-2 ('Movie star' petals). The most prominent components of the waxes are n-alkanes with the odd-numbered chain lengths C27 and C29 in petals, and C31 and C33 in leaves. The lower water permeability of leaves is deduced to be associated with the higher weighted average chain length of their acyclic cuticular waxes. This study on transpiration via the cuticular wax barrier of the leaf and petal of rose provides further insight to link the chemical composition to the cuticular transpiration barrier properties.
Collapse
Affiliation(s)
- Guiping Cheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Hua Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Linyan Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Shenggen He
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Yajun Zhang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Xing'an Cheng
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
23
|
Zhang J, Yang J, Yang Y, Luo J, Zheng X, Wen C, Xu Y. Transcription Factor CsWIN1 Regulates Pericarp Wax Biosynthesis in Cucumber Grafted on Pumpkin. FRONTIERS IN PLANT SCIENCE 2019; 10:1564. [PMID: 31850038 PMCID: PMC6895144 DOI: 10.3389/fpls.2019.01564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/07/2019] [Indexed: 05/21/2023]
Abstract
Pericarp wax of cucumber is an important economic trait, determining sales and marketing. Grafting of cucumber onto pumpkin rootstock (Cucurbita moschata) is an effective way to produce glossy cucumber fruits. However, the molecular regulation mechanism of this phenomenon remains largely unknown. In the present study, transcriptome analyses, genome-wide DNA methylation sequencing, and wax metabolite analysis were performed on the pericarp of self-rooted versus grafted cucumber. We identified the AP2/ERF-type transcription factor CsWIN1 as methylated and significantly upregulated in grafted cucumber compared to self-rooted cucumber. The increased expression of CsWIN1 was also positively correlated with several key wax biosynthesis genes, including CsCER1, CsCER1-1, CsCER4, CsKCS1, and the wax transporter gene CsABC. The transcriptome expression level of these genes was validated through qRT-PCR profiles. Furthermore, wax metabolite analysis showed that more wax ester (C20 fatty acid composition), but fewer alkanes (C29 and C31) were deposited in grafted cucumber pericarp. The higher expression of CsWIN1 and wax biosynthesis genes was reflected in the glossier appearance of grafted pericarp, possibly the result of higher wax ester content and higher integration of small trichomes in the pericarp. This study demonstrates that grafting can affect the content and composition of pericarp wax in cucumber grafted on pumpkin, and a unique regulation model of CsWIN1 for wax biosynthesis may exist in cucumber.
Collapse
Affiliation(s)
- Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Yang Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Jiang Luo
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Xuyang Zheng
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- *Correspondence: Changlong Wen, ; Yong Xu,
| | - Yong Xu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- *Correspondence: Changlong Wen, ; Yong Xu,
| |
Collapse
|
24
|
Kim H, Go YS, Suh MC. DEWAX2 Transcription Factor Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Leaves. PLANT & CELL PHYSIOLOGY 2018; 59:966-977. [PMID: 29425344 DOI: 10.1093/pcp/pcy033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 05/08/2023]
Abstract
The aerial parts of terrestrial plants are covered with hydrophobic wax layers, which represent the primary barrier between plant cells and the environment and act to protect plants from abiotic and biotic stresses. Although total wax loads are precisely regulated in an environmental- or organ-specific manner, regulatory mechanisms underlying cuticular wax biosynthesis remain largely unknown. In this study, we characterized DEWAX2 (DECREASE WAX BIOSYNTHESIS2) which encodes an APETALA 2 (AP2)/ethylene response element-binding factor (ERF)-type transcription factor and is predominantly expressed in young seedlings, and rosette and cauline leaves. Total wax loads increased by approximately 12% and 16% in rosette and cauline leaves of dewax2, respectively, but were not significantly altered in the stems of dewax2 relative to the wild type (WT). The excess wax phenotype of dewax2 leaves was rescued upon expression of DEWAX2 driven by its own promoter. Overexpression of DEWAX2 decreased total wax loads by approximately 15% and 26% in the stems and rosette leaves compared with those of the WT, respectively. DEWAX2:eYFP (enhanced yellow fluorescent protein) was localized to the nucleus in Arabidopsis roots and hypocotyls. DEWAX2 possessed transcriptional repression activity in tobacco protoplasts. Transcriptome and quantitative real-time PCR analyses showed that the transcript levels of CER1, ACLA2, LACS1, LACS2 and KCS12 were down-regulated in DEWAX2 overexpression lines compared with the WT. Transient transcriptional assays showed that DEWAX2 represses the expression of its putative target genes. Quantitative chromatin immunoprecipitation-PCR revealed that DEWAX2 binds directly to the GCC motifs of the LACS1, LACS2, KCS12 and CER1 promoters. These results suggest that DEWAX2-mediated transcriptional repression may contribute to the total wax load in Arabidopsis leaves.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Sam Go
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
25
|
Fernández V, Bahamonde HA, Javier Peguero-Pina J, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T. Physico-chemical properties of plant cuticles and their functional and ecological significance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5293-5306. [PMID: 28992247 DOI: 10.1093/jxb/erx302] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 05/19/2023]
Abstract
Most aerial plant surfaces are covered with a lipid-rich cuticle, which is a barrier for the bidirectional transport of substances between the plant and the surrounding environment. This review article provides an overview of the significance of the leaf cuticle as a barrier for the deposition and absorption of water and electrolytes. After providing insights into the physico-chemical properties of plant surfaces, the mechanisms of foliar absorption are revised with special emphasis on solutes. Due to the limited information and relative importance of the leaf cuticle of herbaceous and deciduous cultivated plants, an overview of the studies developed with Alpine conifers and treeline species is provided. The significance of foliar water uptake as a phenomenon of ecophysiological relevance in many areas of the world is also highlighted. Given the observed variability in structure and composition among, for example, plant species and organs, it is concluded that it is currently not possible to establish general permeability and wettability models that are valid for predicting liquid-surface interactions and the subsequent transport of water and electrolytes across plant surfaces.
Collapse
Affiliation(s)
- Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Hector A Bahamonde
- Instituto Nacional de Tecnología Agropecuaria (INTA), cc 332, 9400 Río Gallegos, Santa Cruz, Argentina
| | - José Javier Peguero-Pina
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, 50059 Zaragoza, Spain
| | - Eustaquio Gil-Pelegrín
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, 50059 Zaragoza, Spain
| | - Domingo Sancho-Knapik
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, 50059 Zaragoza, Spain
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, School of Forest Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Heiner E Goldbach
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Thomas Eichert
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
26
|
Guo Y, Busta L, Jetter R. Cuticular wax coverage and composition differ among organs of Taraxacum officinale. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:372-379. [PMID: 28432976 DOI: 10.1016/j.plaphy.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 05/25/2023]
Abstract
Primary plant surfaces are coated with hydrophobic cuticular waxes to minimize non-stomatal water loss. Wax compositions differ greatly between plant species and, in the few species studied systematically so far, also between organs, tissues, and developmental stages. However, the wax mixtures of more species in diverse plant families must be investigated to assess overall wax variability, and ultimately to correlate organ-specific composition with local water barrier properties. Here, we present comprehensive analyses of the waxes covering five organs of Taraxacum officinale (dandelion), to help close a gap in our understanding of wax chemistry in the Asteraceae family. First, novel wax constituents of the petal wax were identified as C25 6,8- and 8,10-ketols as well as C27 6,8- and 8,10-ketols. Nine other component classes (fatty acids, primary alcohols, esters, aldehydes, alkanes, triterpenols, triterpene acetates, sterols, and tocopherols) were detected in the wax mixtures covering leaves, peduncles, and petals, as well as fruit beaks and pappi. Wax coverages varied from 5 μg/cm2 on peduncles to 37 μg/cm2 on petals. Alcohols predominated in leaf wax, while both alcohols and alkanes were found in similar amounts on peduncles and petals, and mainly alkanes on the fruit beaks and pappi. Chain length distributions within the wax compound classes were similar between organs, centered around C26 for fatty acids, alcohols, and aldehydes, and C29 for alkanes. However, the quantities of homologs with longer chain lengths varied substantially between organs, reaching well beyond C30 on all surfaces except leaves, suggesting differences in elongation enzymes determining the alkyl chain structures. The detailed wax profiles presented here will serve as basis for future investigations into wax biosynthesis in the Asteraceae and into wax functions on different dandelion organs.
Collapse
Affiliation(s)
- Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
27
|
Guo Y, Jetter R. Comparative Analyses of Cuticular Waxes on Various Organs of Potato (Solanum tuberosum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3926-3933. [PMID: 28467851 DOI: 10.1021/acs.jafc.7b00818] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complex mixtures of cuticular waxes coat plant surfaces to seal them against environmental stresses, with compositions greatly varying between species and possibly organs. This paper reports comprehensive analyses of the waxes on both above- and below-ground organs of potato, where total wax coverages varied between petals (2.6 μg/cm2), leaves, stems, and tubers (1.8-1.9 μg/cm2), and rhizomes (1.1 μg/cm2). The wax mixtures on above-ground organs were dominated by alkanes, occurring in homologous series of isomeric C25-C35 n-alkanes, C25-C35 2-methylalkanes, and C26-C34 3-methylalkanes. In contrast, below-ground organs had waxes rich in monoacylglycerols (C22-C28 acyls) and C18-C30 alkyl ferulates, together with fatty acids (rhizomes) or primary alcohols (tubers). The organ-specific wax coverages, compound class distribution, and chain length profiles suggest highly regulated activities of wax biosynthesis enzymes, likely related to organ-specific ecophysiological functions.
Collapse
Affiliation(s)
- Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University , Chongqing 400716, China
- Department of Botany, University of British Columbia , 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia , 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia , 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
28
|
Guo N, Gao J, He Y, Guo Y. Compositae Plants Differed in Leaf Cuticular Waxes between High and Low Altitudes. Chem Biodivers 2016; 13:710-8. [DOI: 10.1002/cbdv.201500208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/30/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Na Guo
- College of Agronomy and Biotechnology; Southwest University; Chongqing 400716 P. R. China
| | - Jianhua Gao
- College of Agronomy and Biotechnology; Southwest University; Chongqing 400716 P. R. China
| | - Yuji He
- College of Agronomy and Biotechnology; Southwest University; Chongqing 400716 P. R. China
| | - Yanjun Guo
- College of Agronomy and Biotechnology; Southwest University; Chongqing 400716 P. R. China
| |
Collapse
|
29
|
Fernández V, Guzmán-Delgado P, Graça J, Santos S, Gil L. Cuticle Structure in Relation to Chemical Composition: Re-assessing the Prevailing Model. FRONTIERS IN PLANT SCIENCE 2016; 7:427. [PMID: 27066059 PMCID: PMC4814898 DOI: 10.3389/fpls.2016.00427] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/18/2016] [Indexed: 05/18/2023]
Abstract
The surface of most aerial plant organs is covered with a cuticle that provides protection against multiple stress factors including dehydration. Interest on the nature of this external layer dates back to the beginning of the 19th century and since then, several studies facilitated a better understanding of cuticular chemical composition and structure. The prevailing undertanding of the cuticle as a lipidic, hydrophobic layer which is independent from the epidermal cell wall underneath stems from the concept developed by Brongniart and von Mohl during the first half of the 19th century. Such early investigations on plant cuticles attempted to link chemical composition and structure with the existing technologies, and have not been directly challenged for decades. Beginning with a historical overview about the development of cuticular studies, this review is aimed at critically assessing the information available on cuticle chemical composition and structure, considering studies performed with cuticles and isolated cuticular chemical components. The concept of the cuticle as a lipid layer independent from the cell wall is subsequently challenged, based on the existing literature, and on new findings pointing toward the cell wall nature of this layer, also providing examples of different leaf cuticle structures. Finally, the need for a re-assessment of the chemical and structural nature of the plant cuticle is highlighted, considering its cell wall nature and variability among organs, species, developmental stages, and biotic and abiotic factors during plant growth.
Collapse
Affiliation(s)
- Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, Plant Physiology and Anatomy Unit, School of Forest Engineering, Technical University of MadridMadrid, Spain
| | - Paula Guzmán-Delgado
- Forest Genetics and Ecophysiology Research Group, Plant Physiology and Anatomy Unit, School of Forest Engineering, Technical University of MadridMadrid, Spain
- Department of Plant Sciences, University of California, Davis, DavisCA, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Sara Santos
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Luis Gil
- Forest Genetics and Ecophysiology Research Group, Plant Physiology and Anatomy Unit, School of Forest Engineering, Technical University of MadridMadrid, Spain
| |
Collapse
|
30
|
Rhizopoulou S, Spanakis E, Argiropoulos A. Study of petal topography ofLysimachia arvensisgrown under natural conditions. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/12538078.2015.1091985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Littlejohn GR, Mansfield JC, Parker D, Lind R, Perfect S, Seymour M, Smirnoff N, Love J, Moger J. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy. PLANT PHYSIOLOGY 2015; 168:18-28. [PMID: 25783412 PMCID: PMC4424026 DOI: 10.1104/pp.15.00119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/16/2015] [Indexed: 05/29/2023]
Abstract
The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - Jessica C Mansfield
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - David Parker
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - Rob Lind
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - Sarah Perfect
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - Mark Seymour
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - Nicholas Smirnoff
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - John Love
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| | - Julian Moger
- School of Biosciences, College of Life and Environmental Sciences (G.R.L., N.S., J.L.), and Department of Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences (J.C.M., J.M.), University of Exeter, Exeter, Devon EX4 4QD, United Kingdom;Biodomain Technology Group, Shell International Exploration and Production, Inc., Westhollow Technology Center, Houston, Texas 77082 (D.P.); andSyngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom (R.L., S.P., M.S.)
| |
Collapse
|