1
|
Munakata R, Yazaki K. How did plants evolve the prenylation of specialized phenolic metabolites by means of UbiA prenyltransferases? CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102601. [PMID: 38991464 DOI: 10.1016/j.pbi.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
Prenylated phenolics occur in over 4000 species in the plant kingdom, most of which are known as specialized metabolites with high chemical diversity. Many of them have been identified as pharmacologically active compounds from various medicinal plants, in which prenyl residues play a key role in these activities. Prenyltransferases (PTs) responsible for their biosynthesis have been intensively studied in the last two decades. These enzymes are membrane-bound proteins belonging to the UbiA superfamily that occurs from bacteria to humans, and in particular those involved in plant specialized metabolism show strict specificities for both substrates and products. This article reviews the enzymatic features of plant UbiA PTs, including C- and O-prenylation, molecular evolution, and application of UbiA PTs in synthetic biology.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| |
Collapse
|
2
|
Wu S, Tatsis EC. Specialized metabolism in St John's wort. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102625. [PMID: 39236592 DOI: 10.1016/j.pbi.2024.102625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The specialized metabolism of St. John's wort, Hypericum perforatum L., is a key focus in medicinal plant research due to its hallmark bioactive compounds hyperforin and hypericin. Known for its traditional medicinal uses dating back to ancient times, St. John's wort is currently used for mild depression therapy. Recent research works have shed light on the biosynthesis of various metabolites in this plant, such as flavonoids, xanthones, hyperforin, and hypericin. The elucidation of these pathways, along with the discovery of novel enzymes like hyperforin synthase, support the pharmaceutical research by enabling scalable production of bioactive compounds for the development of new drugs. Elucidation of the hyperforin biosynthesis based on single-cell RNA-seq is an approach that will be expanded and accelerate the gene discovery and full pathway reconstitution of plant specialized metabolites.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Shanghai, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Sciences, Shanghai, China.
| |
Collapse
|
3
|
Wu S, Morotti ALM, Yang J, Wang E, Tatsis EC. Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort. MOLECULAR PLANT 2024; 17:1439-1457. [PMID: 39135343 DOI: 10.1016/j.molp.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, "Hyper cells", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Science, Shanghai 200032, China.
| |
Collapse
|
4
|
Ernst L, Lyu H, Liu P, Paetz C, Sayed HMB, Meents T, Ma H, Beerhues L, El-Awaad I, Liu B. Regiodivergent biosynthesis of bridged bicyclononanes. Nat Commun 2024; 15:4525. [PMID: 38806518 PMCID: PMC11133429 DOI: 10.1038/s41467-024-48879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Medicinal compounds from plants include bicyclo[3.3.1]nonane derivatives, the majority of which are polycyclic polyprenylated acylphloroglucinols (PPAPs). Prototype molecules are hyperforin, the antidepressant constituent of St. John's wort, and garcinol, a potential anticancer compound. Their complex structures have inspired innovative chemical syntheses, however, their biosynthesis in plants is still enigmatic. PPAPs are divided into two subclasses, named type A and B. Here we identify both types in Hypericum sampsonii plants and isolate two enzymes that regiodivergently convert a common precursor to pivotal type A and B products. Molecular modelling and substrate docking studies reveal inverted substrate binding modes in the two active site cavities. We identify amino acids that stabilize these alternative binding scenarios and use reciprocal mutagenesis to interconvert the enzymatic activities. Our studies elucidate the unique biochemistry that yields type A and B bicyclo[3.3.1]nonane cores in plants, thereby providing key building blocks for biotechnological efforts to sustainably produce these complex compounds for preclinical development.
Collapse
Affiliation(s)
- Lukas Ernst
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Braunschweig, Germany.
| | - Hui Lyu
- Max Planck Institute for Chemical Ecology, NMR/Biosynthesis Group, Jena, Germany
| | - Pi Liu
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin, China
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, NMR/Biosynthesis Group, Jena, Germany
| | - Hesham M B Sayed
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Braunschweig, Germany
- Assiut University, Faculty of Pharmacy, Department of Pharmacognosy, Assiut, Egypt
| | - Tomke Meents
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Braunschweig, Germany
| | - Hongwu Ma
- Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Biodesign Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin, China
| | - Ludger Beerhues
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Braunschweig, Germany
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany
| | - Islam El-Awaad
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Braunschweig, Germany.
- Assiut University, Faculty of Pharmacy, Department of Pharmacognosy, Assiut, Egypt.
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany.
| | - Benye Liu
- Technische Universität Braunschweig, Institute of Pharmaceutical Biology, Braunschweig, Germany.
- Technische Universität Braunschweig, Center of Pharmaceutical Engineering, Braunschweig, Germany.
| |
Collapse
|
5
|
Morante-Carriel J, Živković S, Nájera H, Sellés-Marchart S, Martínez-Márquez A, Martínez-Esteso MJ, Obrebska A, Samper-Herrero A, Bru-Martínez R. Prenylated Flavonoids of the Moraceae Family: A Comprehensive Review of Their Biological Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1211. [PMID: 38732426 PMCID: PMC11085352 DOI: 10.3390/plants13091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Prenylated flavonoids (PFs) are natural flavonoids with a prenylated side chain attached to the flavonoid skeleton. They have great potential for biological activities such as anti-diabetic, anti-cancer, antimicrobial, antioxidant, anti-inflammatory, enzyme inhibition, and anti-Alzheimer's effects. Medicinal chemists have recently paid increasing attention to PFs, which have become vital for developing new therapeutic agents. PFs have quickly developed through isolation and semi- or full synthesis, proving their high value in medicinal chemistry research. This review comprehensively summarizes the research progress of PFs, including natural PFs from the Moraceae family and their pharmacological activities. This information provides a basis for the selective design and optimization of multifunctional PF derivatives to treat multifactorial diseases.
Collapse
Affiliation(s)
- Jaime Morante-Carriel
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Plant Biotechnology Group, Faculty of Forestry and Agricultural Sciences, Quevedo State Technical University, Av. Quito km. 1 1/2 vía a Santo Domingo de los Tsachilas, Quevedo 120501, Ecuador
| | - Suzana Živković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia;
| | - Hugo Nájera
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana–Cuajimalpa, Av. Vasco de Quiroga 4871, Colonia Santa Fe Cuajimalpa, Alcaldía Cuajimalpa de Morelos, Mexico City 05348, Mexico
| | - Susana Sellés-Marchart
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain;
| | - Ascensión Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - María José Martínez-Esteso
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Anna Obrebska
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain; (H.N.); (M.J.M.-E.); (A.O.); (A.S.-H.); (R.B.-M.)
- Multidisciplinary Institute for the Study of the Environment (IMEM), University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Alicante, Spain
| |
Collapse
|
6
|
Yang S, Chen R, Cao X, Wang G, Zhou YJ. De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat Commun 2024; 15:253. [PMID: 38177132 PMCID: PMC10766616 DOI: 10.1038/s41467-023-44654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The flavonoid xanthohumol is an important flavor substance in the brewing industry that has a wide variety of bioactivities. However, its unstable structure results in its low content in beer. Microbial biosynthesis is considered a sustainable and economically viable alternative. Here, we harness the yeast Saccharomyces cerevisiae for the de novo biosynthesis of xanthohumol from glucose by balancing the three parallel biosynthetic pathways, prenyltransferase engineering, enhancing precursor supply, constructing enzyme fusion, and peroxisomal engineering. These strategies improve the production of the key xanthohumol precursor demethylxanthohumol (DMX) by 83-fold and achieve the de novo biosynthesis of xanthohumol in yeast. We also reveal that prenylation is the key limiting step in DMX biosynthesis and develop tailored metabolic regulation strategies to enhance the DMAPP availability and prenylation efficiency. Our work provides feasible approaches for systematically engineering yeast cell factories for the de novo biosynthesis of complex natural products.
Collapse
Affiliation(s)
- Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibing Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
7
|
An T, Lin G, Liu Y, Qin L, Xu Y, Feng X, Li C. De novo biosynthesis of anticarcinogenic icariin in engineered yeast. Metab Eng 2023; 80:207-215. [PMID: 37852432 DOI: 10.1016/j.ymben.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Icariin (ICA) has wide applications in nutraceuticals and medicine with strong anticancer activities. However, the structural complexity and low abundance in plants of ICA lead to the unsustainable and high-cost supply from chemical synthesis and plant extraction. Here, the whole biosynthesis pathway of ICA was elucidated, then was constructed in Saccharomyces cerevisiae, including a 13-step heterologous ICA pathway from eleven kinds of plants as well as deletions or overexpression of ten yeast endogenous genes. Spatial regulation of 8-C-prenyltransferase to mitochondria and three-stage sequential control of 4'-O-methyltransferase, 3-OH rhamnosyltransferase, and 7-OH glycosyltransferase expression successfully achieved the de novo synthesis of ICA with a titer of 130 μg/L under shake-flask culture. The ICA synthesis from glucose represents the longest reconstructed pathway of flavonoid in microbe so far. This study provides a potential choice for the sustainable microbial production of number of complex flavonoids.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Guangyuan Lin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
8
|
Wu Y, Liu C, Koganitsky A, Gong FL, Li S. Discovering Dynamic Plant Enzyme Complexes in Yeast for Kratom Alkaloid Pathway Identification. Angew Chem Int Ed Engl 2023; 62:e202307995. [PMID: 37549372 PMCID: PMC10530425 DOI: 10.1002/anie.202307995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Discovering natural product biosynthetic pathways of medicinal plants is challenging and laborious. Capturing the coregulation patterns of pathway enzymes, particularly transcriptomic regulation, has proven an effective method to accelerate pathway identification. In this study, we developed a yeast-based screening method to capture the protein-protein interactions (PPI) between plant enzymes, which is another useful pattern to complement the prevalent approach. Combining this method with plant multiomics analysis, we discovered four enzyme complexes and their organized pathways from kratom, an alkaloid-producing plant. The four pathway branches involved six enzymes, including a strictosidine synthase, a strictosidine β-D-glucosidase (MsSGD), and four medium-chain dehydrogenase/reductases (MsMDRs). PPI screening selected six MsMDRs interacting with MsSGD from 20 candidates predicted by multiomics analysis. Four of the six MsMDRs were then characterized as functional, indicating the high selectivity of the PPI screening method. This study highlights the opportunity of leveraging post-translational regulation features to discover novel plant natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Yinan Wu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Chang Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Koganitsky
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Franklin L Gong
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
9
|
Wang P, Fan Z, Wei W, Yang C, Wang Y, Shen X, Yan X, Zhou Z. Biosynthesis of the Plant Coumarin Osthole by Engineered Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:2455-2462. [PMID: 37450901 DOI: 10.1021/acssynbio.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Osthole is a coumarin compound found in the traditional Chinese medicine Cnidium monnieri. Extensive studies have shown that osthole exhibits many medicinal properties, and recently, researchers have found that it possesses potent airway-relaxation activity by inhibiting phosphodiesterase 4D activity, making it a potential novel bronchodilator that does not target β2-adrenoceptors for asthma treatment. Here, we report the complete biosynthesis of osthole in engineered yeast. We created an umbelliferone (UMB)-producing strain by reconstituting the complete UMB pathway in yeast. We found that coumarin synthase (COSY) is essential for the conversion of 2',4'-dihydroxycinnamoyl-CoA into UMB in yeast; this conversion has been treated as a spontaneous step in previously reported UMB-producing microbials. By introducing downstream prenyltransferase and methyltransferase genes and addressing problems such as protein expression and cofactor supply to fulfill the downstream steps, complete biosynthesis of osthole was achieved. Finally, through metabolic engineering, to ensure precursor supply, and the debugging of rate-limited steps, the osthole titer reached 108.10 mg/L in shake flasks and 255.1 mg/L in fed-batch fermentation. Our study is the first to produce osthole using engineered microbes, providing a blueprint for the supply of plant-derived osthole via microbial fermentation, which will remove the barriers of resource limitations for osthole-based drug development.
Collapse
Affiliation(s)
- Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhenjun Fan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen X, Wang MY, Deng CH, Beatson RA, Templeton KR, Atkinson RG, Nieuwenhuizen NJ. The hops (Humulus lupulus) genome contains a mid-sized terpene synthase family that shows wide functional and allelic diversity. BMC PLANT BIOLOGY 2023; 23:280. [PMID: 37231379 DOI: 10.1186/s12870-023-04283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Hops (Humulus lupulus L.) are a dioecious climbing perennial, with the dried mature "cones" (strobili) of the pistillate/female inflorescences being widely used as both a bittering agent and to enhance the flavour of beer. The glandular trichomes of the bract and bracteole flowering structures of the cones produce an abundance of secondary metabolites, such as terpenoids, bitter acids and prenylated phenolics depending on plant genetics, developmental stage and environment. More knowledge is required on the functional and allelic diversity of terpene synthase (TPS) genes responsible for the biosynthesis of volatile terpenes to assist in flavour-directed hop breeding. RESULTS Major volatile terpene compounds were identified using gas chromatography-mass spectrometry (GC-MS) in the ripe cones of twenty-one hop cultivars grown in New Zealand. All cultivars produced the monoterpene β-myrcene and the sesquiterpenes α-humulene and β-caryophyllene, but the quantities varied broadly. Other terpenes were found in large quantities in only a smaller subset of cultivars, e.g. β-farnesene (in seven cultivars) and α-pinene (in four). In four contrasting cultivars (Wakatu™, Wai-iti™, Nelson Sauvin™, and 'Nugget'), terpene production during cone development was investigated in detail, with concentrations of some of the major terpenes increasing up to 1000-fold during development and reaching maximal levels from 50-60 days after flowering. Utilising the published H. lupulus genome, 87 putative full-length and partial terpene synthase genes were identified. Alleles corresponding to seven TPS genes were amplified from ripe cone cDNA from multiple cultivars and subsequently functionally characterised by transient expression in planta. Alleles of the previously characterised HlSTS1 produced humulene/caryophyllene as the major terpenes. HlRLS alleles produced (R)-(-)-linalool, whilst alleles of two sesquiterpene synthase genes, HlAFS1 and HlAFS2 produced α-farnesene. Alleles of HlMTS1, HlMTS2 and HlTPS1 were inactive in all the hop cultivars studied. CONCLUSIONS Alleles of four TPS genes were identified and shown to produce key aroma volatiles in ripe hop cones. Multiple expressed but inactive TPS alleles were also identified, suggesting that extensive loss-of-function has occurred during domestication and breeding of hops. Our results can be used to develop hop cultivars with novel/improved terpene profiles using marker-assisted breeding strategies to select for, or against, specific TPS alleles.
Collapse
Affiliation(s)
- Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ron A Beatson
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198, New Zealand
| | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
11
|
Wang S, Shi L, Wang R, Liu C, Wang J, Shen Y, Tatsumi K, Navrot N, Liu T, Guo L. Characterization of Arnebia euchroma PGT homologs involved in the biosynthesis of shikonin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:587-595. [PMID: 36780721 DOI: 10.1016/j.plaphy.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Linyuan Shi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruishan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changzheng Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinye Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kanade Tatsumi
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Nicolas Navrot
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Tan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
An T, Feng X, Li C. Prenylation: A Critical Step for Biomanufacturing of Prenylated Aromatic Natural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2211-2233. [PMID: 36716399 DOI: 10.1021/acs.jafc.2c07287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prenylated aromatic natural products (PANPs) have received much attention due to their biomedical benefits for human health. The prenylation of aromatic natural products (ANPs), which is mainly catalyzed by aromatic prenyltransferases (aPTs), contributes significantly to their structural and functional diversity by providing higher lipophilicity and enhanced bioactivity. aPTs are widely distributed in bacteria, fungi, animals, and plants and play a key role in the regiospecific prenylation of ANPs. Recent studies have greatly advanced our understanding of the characteristics and application of aPTs. In this review, we comment on research progress regarding sources, evolutionary relationships, structural features, reaction mechanism, engineering modification, and application of aPTs. Particular emphasis is also placed on recent advances, challenges, and prospects about applications of aPTs in microbial cell factories for producing PANPs. Generally, this review could provide guidance for using aPTs as robust biocatalytic tools to produce various PANPs with high efficiency.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
14
|
LIU S, YU B, DAI J, CHEN R. Targeting the biological activity and biosynthesis of hyperforin: a mini-review. Chin J Nat Med 2022; 20:721-728. [DOI: 10.1016/s1875-5364(22)60189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/03/2022]
|
15
|
Isogai S, Tominaga M, Kondo A, Ishii J. Plant Flavonoid Production in Bacteria and Yeasts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.880694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids, a major group of secondary metabolites in plants, are promising for use as pharmaceuticals and food supplements due to their health-promoting biological activities. Industrial flavonoid production primarily depends on isolation from plants or organic synthesis, but neither is a cost-effective or sustainable process. In contrast, recombinant microorganisms have significant potential for the cost-effective, sustainable, environmentally friendly, and selective industrial production of flavonoids, making this an attractive alternative to plant-based production or chemical synthesis. Structurally and functionally diverse flavonoids are derived from flavanones such as naringenin, pinocembrin and eriodictyol, the major basic skeletons for flavonoids, by various modifications. The establishment of flavanone-producing microorganisms can therefore be used as a platform for producing various flavonoids. This review summarizes metabolic engineering and synthetic biology strategies for the microbial production of flavanones. In addition, we describe directed evolution strategies based on recently-developed high-throughput screening technologies for the further improvement of flavanone production. We also describe recent progress in the microbial production of structurally and functionally complicated flavonoids via the flavanone modifications. Strategies based on synthetic biology will aid more sophisticated and controlled microbial production of various flavonoids.
Collapse
|
16
|
Wu S, Malaco Morotti AL, Wang S, Wang Y, Xu X, Chen J, Wang G, Tatsis EC. Convergent gene clusters underpin hyperforin biosynthesis in St John's wort. THE NEW PHYTOLOGIST 2022; 235:646-661. [PMID: 35377483 DOI: 10.1111/nph.18138] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The meroterpenoid hyperforin is responsible for the antidepressant activity of St John's wort extracts, but the genes controlling its biosynthesis are unknown. Using genome mining and biochemical work, we characterize two biosynthetic gene clusters (BGCs) that encode the first three steps in the biosynthesis of hyperforin precursors. The findings of syntenic and phylogenetic analyses reveal the parallel assembly of the two BGCs. The syntenous BGC in Mesua ferrea indicates that the first cluster was assembled before the divergence of the Hypericaceae and Calophyllaceae families. The assembly of the second cluster is the result of a coalescence of genomic fragments after a major duplication event. The differences between the two BGCs - in terms of gene expression, response to methyl jasmonate, substrate specificity and subcellular localization of key enzymes - suggest that the presence of the two clusters could serve to generate separate pools of precursors. The parallel assembly of two BGCs with similar compositions in a single plant species is uncommon, and our work provides insights into how and when these gene clusters form. Our discovery helps to advance our understanding of the evolution of plant specialized metabolism and its genomic organization. Additionally, our results offer a foundation from which hyperforin biosynthesis can be more fully understood, and which can be used in future metabolic engineering applications.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
| | - Ya Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyan Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, 666303, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 300 Feng Lin Road, 200032, China
- CEPAMS - Centre of Excellence for Plant and Microbial Science, Shanghai, 200032, China
| |
Collapse
|
17
|
Remali J, Sahidin I, Aizat WM. Xanthone Biosynthetic Pathway in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:809497. [PMID: 35463410 PMCID: PMC9024401 DOI: 10.3389/fpls.2022.809497] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Xanthones are secondary metabolites rich in structural diversity and possess a broad array of pharmacological properties, such as antitumor, antidiabetic, and anti-microbes. These aromatic compounds are found in higher plants, such as Clusiaceae, Hypericaceae, and Gentianaceae, yet their biosynthetic pathways have not been comprehensively updated especially within the last decade (up to 2021). In this review, plant xanthone biosynthesis is detailed to illuminate their intricacies and differences between species. The pathway initially involves the shikimate pathway, either through L-phenylalanine-dependent or -independent pathway, that later forms an intermediate benzophenone, 2,3',4,6-tetrahydoxybenzophenone. This is followed by a regioselective intramolecular mediated oxidative coupling to form xanthone ring compounds, 1,3,5-trihydroxyxanthone (1,3,5-THX) or 1,3,7-THX, the core precursors for xanthones in most plants. Recent evidence has shed some lights onto the enzymes and reactions involved in this xanthone pathway. In particular, several biosynthetic enzymes have been characterized at both biochemical and molecular levels from various organisms including Hypericum spp., Centaurium erythraea and Garcinia mangostana. Proposed pathways for a plethora of other downstream xanthone derivatives including swertianolin and gambogic acid (derived from 1,3,5-THX) as well as gentisin, hyperixanthone A, α-mangostin, and mangiferin (derived from 1,3,7-THX) have also been thoroughly covered. This review reports one of the most complete xanthone pathways in plants. In the future, the information collected here will be a valuable resource for a more directed molecular works in xanthone-producing plants as well as in synthetic biology application.
Collapse
Affiliation(s)
- Juwairiah Remali
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Idin Sahidin
- Faculty of Pharmacy, Universitas Halu Oleo, Kendari, Indonesia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
18
|
Sun S, Wang X, Yuan A, Liu J, Li Z, Xie D, Zhang H, Luo W, Xu H, Liu J, Nie C, Zhang H. Chemical constituents and bioactivities of hops (
Humulus lupulus L
.) and their effects on beer‐related microorganisms. Food Energy Secur 2022. [DOI: 10.1002/fes3.367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Shaokang Sun
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Xiaochen Wang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Ai Yuan
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jianlin Liu
- College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Zebin Li
- State Key Laboratory of Biobased Material and Green Papermaking School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Dongxiao Xie
- Biology Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Huimin Zhang
- College of Life Sciences Shandong Normal University Jinan China
| | - Wenqing Luo
- Global Leaders College Yonsei University Seoul Korea
| | - Hengyuan Xu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Jinshang Liu
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Cong Nie
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Haojun Zhang
- Key Microbiology Laboratory of Shandong Province School of Bioengineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
19
|
Liu J, Jiang W. Identification and characterization of unique 5-hydroxyisoflavonoid biosynthetic key enzyme genes in Lupinus albus. PLANT CELL REPORTS 2022; 41:415-430. [PMID: 34851457 DOI: 10.1007/s00299-021-02818-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
5-Hydroxyisoflavonoids, no 5-deoxyisoflavonoids, in Lupinus species, are due to lack of CHRs and Type II CHIs, and the key enzymes of isoflavonoid biosynthetic pathway in white lupin were identified. White lupin (Lupinus albus) is used as food ingredients owing to rich protein, low starch, and rich bioactive compounds such as isoflavonoids. The isoflavonoids biosynthetic pathway in white lupin still remains unclear. In this study, only 5-hydroxyisoflavonoids, but no 5-deoxyisoflavonoids, were detected in white lupin and other Lupinus species. No 5-deoxyisoflavonoids in Lupinus species are due to lack of CHRs and Type II CHIs. We further found that the CHI gene cluster containing both Type I and Type II CHIs possibly arose after the divergence of Lupinus with other legume clade. LaCHI1 and LaCHI2 identified from white lupin metabolized naringenin chalcone to naringenin in yeast and tobacco (Nicotiana benthamiana), and were bona fide Type I CHIs. We further identified two isoflavone synthases (LaIFS1 and LaIFS2), catalyzing flavanone naringenin into isoflavone genistein and also catalyzing liquiritigenin into daidzein in yeast and tobacco. In addition, LaG6DT1 and LaG6DT2 prenylated genistein at the C-6 position into wighteone. Two glucosyltransferases LaUGT1 and LaUGT2 metabolized genistein and wighteone into its 7-O-glucosides. Taken together, our study not only revealed that exclusive 5-hydroxyisoflavonoids do exist in Lupinus species, but also identified key enzymes in the isoflavonoid biosynthetic pathway in white lupin.
Collapse
Affiliation(s)
- Jinyue Liu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Wenbo Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
20
|
Gomes D, Rodrigues LR, Rodrigues JL. Perspectives on the design of microbial cell factories to produce prenylflavonoids. Int J Food Microbiol 2022; 367:109588. [DOI: 10.1016/j.ijfoodmicro.2022.109588] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|
21
|
Xu Y, Li D, Wang W, Xu K, Tan G, Li J, Li SM, Yu X. Dearomative gem-diprenylation of hydroxynaphthalenes by an engineered fungal prenyltransferase. RSC Adv 2022; 12:27550-27554. [PMID: 36276050 PMCID: PMC9514087 DOI: 10.1039/d2ra04837j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
Prenylation usually improves structural diversity and bioactivity in natural products. Unlike the discovered enzymatic gem-diprenylation of mono- and tri-cyclic aromatic systems, the enzymatic approach for gem-diprenylation of bi-cyclic hydroxynaphthalenes is new to science. Here we report an enzymatic example for dearomative C4 gem-diprenylation of α-hydroxynaphthalenes, by the F253G mutant of a fungal prenyltransferase CdpC3PT. Experimental evidence suggests a sequential electrophilic substitution mechanism. We also explained the alteration of catalytic properties on CdpC3PT after mutation on F253 by modeling. This study provides a valuable addition to the synthetic toolkit for compound prenylation and it also contributes to the mechanistic study of prenylating enzymes. A new catalyst for regiospecific dearomative gem-diprenylation of α-hydroxynaphthalenes from the F253G mutant of the fungal prenyltransferase CdpC3PT.![]()
Collapse
Affiliation(s)
- Yuanyuan Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Dan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Wenxuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Kangping Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| | - Guishan Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jing Li
- Xiangya Hospital of Central South University, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Xia Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, People's Republic of China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, P. R. China
| |
Collapse
|
22
|
Patzak J, Henychová A, Matoušek J. Developmental regulation of lupulin gland-associated genes in aromatic and bitter hops (Humulus lupulus L.). BMC PLANT BIOLOGY 2021; 21:534. [PMID: 34773975 PMCID: PMC8590222 DOI: 10.1186/s12870-021-03292-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Hop (Humulus lupulus L.) bitter acids are valuable metabolites for the brewing industry. They are biosynthesized and accumulate in glandular trichomes of the female inflorescence (hop cone). The content of alpha bitter acids, such as humulones, in hop cones can differentiate aromatic from bitter hop cultivars. These contents are subject to genetic and environmental control but significantly correlate with the number and size of glandular trichomes (lupulin glands). RESULTS We evaluated the expression levels of 37 genes involved in bitter acid biosynthesis and morphological and developmental differentiation of glandular trichomes to identify key regulatory factors involved in bitter acid content differences. For bitter acid biosynthesis genes, upregulation of humulone synthase genes, which are important for the biosynthesis of alpha bitter acids in lupulin glands, could explain the higher accumulation of alpha bitter acids in bitter hops. Several transcription factors, including HlETC1, HlMYB61 and HlMYB5 from the MYB family, as well as HlGLABRA2, HlCYCB2-4, HlZFP8 and HlYABBY1, were also more highly expressed in the bitter hop cultivars; therefore, these factors may be important for the higher density of lupulin glands also seen in the bitter hop cultivars. CONCLUSIONS Gene expression analyses enabled us to investigate the differences between aromatic and bitter hops. This study confirmed that the bitter acid content in glandular trichomes (lupulin glands) is dependent on the last step of alpha bitter acid biosynthesis and glandular trichome density.
Collapse
Affiliation(s)
- Josef Patzak
- Hop Research Institute Co., Ltd., Kadaňská 2525, 438 01, Žatec, Czech Republic.
| | - Alena Henychová
- Hop Research Institute Co., Ltd., Kadaňská 2525, 438 01, Žatec, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005, České Budějovice, Czech Republic
| |
Collapse
|
23
|
Shi S, Li J, Zhao X, Liu Q, Song SJ. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. PHYTOCHEMISTRY 2021; 191:112895. [PMID: 34403885 DOI: 10.1016/j.phytochem.2021.112895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Prenylated flavonoids, a unique class of flavonoids which combine a flavonoid skeleton and a lipophilic prenyl side-chain, possess great potential biological activities including cytotoxicity, anti-inflammation, anti-Alzheimer, anti-microbial, anti-oxidant, anti-diabetes, estrogenic, vasorelaxant and enzyme inhibition. Recently, prenylated flavonoids have become an indispensable anchor for the development of new therapeutic agents, and have received increasing from medicinal chemists. The prenylated flavonoids have been outstanding developed through isolation, semi or fully synthesis in a very short period of time, which proves the great value in medicinal chemistry researches. In this review, research progress of prenylated flavonoids including natural prenylated flavonoids, structural modification, synthetic methodologies and pharmacological activities was summarized comprehensively. Furthermore, the structure-activity relationships (SARs) of prenylated flavonoids were summarized which provided a basis for the selective design and optimization of multifunctional prenylated flavonoid derivatives for the treatment of multi-factorial diseases in clinic.
Collapse
Affiliation(s)
- Shaochun Shi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xuemei Zhao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping, 136001, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
24
|
Eriksen RL, Padgitt-Cobb LK, Randazzo AM, Hendrix DA, Henning JA. Gene Expression of Agronomically Important Secondary Metabolites in cv. ‘USDA Cascade’ Hop (Humulus lupulus L.) Cones during Critical Developmental Stages. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1973328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Renée L. Eriksen
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| | | | - Angela M. Randazzo
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, U.S.A
| | - David A. Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, U.S.A
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, U.S.A
| | - John A. Henning
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
25
|
Patzak J, Henychová A, Krofta K, Svoboda P, Malířová I. The Influence of Hop Latent Viroid (HLVd) Infection on Gene Expression and Secondary Metabolite Contents in Hop ( Humulus lupulus L.) Glandular Trichomes. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112297. [PMID: 34834660 PMCID: PMC8617911 DOI: 10.3390/plants10112297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 05/10/2023]
Abstract
Viroids are small infectious pathogens, composed of a short single-stranded circular RNA. Hop (Humulus lupulus L.) plants are hosts to four viroids from the family Pospiviroidae. Hop latent viroid (HLVd) is spread worldwide in all hop-growing regions without any visible symptoms on infected hop plants. In this study, we evaluated the influence of HLVd infection on the content and the composition of secondary metabolites in maturated hop cones, together with gene expression analyses of involved biosynthesis and regulation genes for Saaz, Sládek, Premiant and Agnus cultivars. We confirmed that the contents of alpha bitter acids were significantly reduced in the range from 8.8% to 34% by viroid infection. New, we found that viroid infection significantly reduced the contents of xanthohumol in the range from 3.9% to 23.5%. In essential oils of Saaz cultivar, the contents of monoterpenes, terpene epoxides and terpene alcohols were increased, but the contents of sesquiterpenes and terpene ketones were decreased. Secondary metabolites changes were supported by gene expression analyses, except essential oils. Last-step biosynthesis enzyme genes, namely humulone synthase 1 (HS1) and 2 (HS2) for alpha bitter acids and O-methytransferase 1 (OMT1) for xanthohumol, were down-regulated by viroid infection. We found that the expression of ribosomal protein L5 (RPL5) RPL5 and the splicing of transcription factor IIIA-7ZF were affected by viroid infection and a disbalance in proteosynthesis can influence transcriptions of biosynthesis and regulatory genes involved in of secondary metabolites biosynthesis. We suppose that RPL5/TFIIIA-7ZF regulatory cascade can be involved in HLVd replication as for other viroids of the family Pospiviroidae.
Collapse
|
26
|
Wang P, Li C, Li X, Huang W, Wang Y, Wang J, Zhang Y, Yang X, Yan X, Wang Y, Zhou Z. Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli. Sci Bull (Beijing) 2021; 66:1906-1916. [PMID: 36654400 DOI: 10.1016/j.scib.2021.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Icaritin is a prenylflavonoid present in the Chinese herbal medicinal plant Epimedium spp. and is under investigation in a phase III clinical trial for advanced hepatocellular carcinoma. Here, we report the biosynthesis of icaritin from glucose by engineered microbial strains. We initially designed an artificial icaritin biosynthetic pathway by identifying a novel prenyltransferase from the Berberidaceae-family species Epimedium sagittatum (EsPT2) that catalyzes the C8 prenylation of kaempferol to yield 8-prenlykaempferol and a novel methyltransferase GmOMT2 from soybean to transfer a methyl to C4'-OH of 8-prenlykaempferol to produce icaritin. We next introduced 11 heterologous genes and modified 12 native yeast genes to construct a yeast strain capable of producing 8-prenylkaempferol with high efficiency. GmOMT2 was sensitive to low pH and lost its activity when expressed in the yeast cytoplasm. By relocating GmOMT2 into mitochondria (higher pH than cytoplasm) of the 8-prenylkaempferol-producing yeast strain or co-culturing the 8-prenylkaempferol-producing yeast with an Escherichia coli strain expressing GmOMT2, we obtained icaritin yields of 7.2 and 19.7 mg/L, respectively. Beyond the characterizing two previously unknown plant enzymes and conducting the first biosynthesis of icaritin from glucose, we describe two strategies of overcoming the widespread issue of incompatible pH conditions encountered in basic and applied bioproduction research. Our findings will facilitate industrial-scale production of icaritin and other prenylflavonoids.
Collapse
Affiliation(s)
- Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chaojing Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiali Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoman Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Center of Economic Botany/Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ying Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Center of Economic Botany/Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Hong K, Wang L, Johnpaul A, Lv C, Ma C. Key Enzymes Involved in the Synthesis of Hops Phytochemical Compounds: From Structure, Functions to Applications. Int J Mol Sci 2021; 22:9373. [PMID: 34502286 PMCID: PMC8430942 DOI: 10.3390/ijms22179373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Humulus lupulus L. is an essential source of aroma compounds, hop bitter acids, and xanthohumol derivatives mainly exploited as flavourings in beer brewing and with demonstrated potential for the treatment of certain diseases. To acquire a comprehensive understanding of the biosynthesis of these compounds, the primary enzymes involved in the three major pathways of hops' phytochemical composition are herein critically summarized. Hops' phytochemical components impart bitterness, aroma, and antioxidant activity to beers. The biosynthesis pathways have been extensively studied and enzymes play essential roles in the processes. Here, we introduced the enzymes involved in the biosynthesis of hop bitter acids, monoterpenes and xanthohumol derivatives, including the branched-chain aminotransferase (BCAT), branched-chain keto-acid dehydrogenase (BCKDH), carboxyl CoA ligase (CCL), valerophenone synthase (VPS), prenyltransferase (PT), 1-deoxyxylulose-5-phosphate synthase (DXS), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), Geranyl diphosphate synthase (GPPS), monoterpene synthase enzymes (MTS), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS_H1), chalcone isomerase (CHI)-like proteins (CHIL), and O-methyltransferase (OMT1). Furthermore, research advancements of each enzyme in terms of reaction conditions, substrate recognition, enzyme structures, and use in engineered microbes are described in depth. Hence, an extensive review of the key enzymes involved in the phytochemical compounds of hops will provide fundamentals for their applications in beer production.
Collapse
Affiliation(s)
| | | | | | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| | - Changwei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu Road, Haidian District, Beijing 100083, China; (K.H.); (L.W.); (A.J.)
| |
Collapse
|
28
|
Zhang G, Zhang N, Yang A, Huang J, Ren X, Xian M, Zou H. Hop bitter acids: resources, biosynthesis, and applications. Appl Microbiol Biotechnol 2021; 105:4343-4356. [PMID: 34021813 DOI: 10.1007/s00253-021-11329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023]
Abstract
Diversified members of hop bitter acids (α- and β-acids) have been found in hop (Humulus lupulus). Mixtures of hop bitter acids have been traditionally applied in brewing and food industries as bitterness flavors or food additives. Recent studies have discovered novel applications of hop bitter acids and their derivatives in medicinal and pharmaceutical fields. The increasing demands of purified hop bitter acid promoted biosynthesis efforts for the heterologous biosynthesis of objective hop bitter acids by engineered microbial factories. In this study, the updated information of hop bitter acids and their representative application in brewing, food, and medicine fields are reviewed. We also speculate future trends on the development of robust microbial cell factories and biotechnologies for the biosynthesis of hop bitter acids. KEY POINTS: • Structures and applications of hop bitter acids are summarized in this study. • Biosynthesis of hop bitter acids remains challenging. • We discuss potential strategies in the microbial production of hop bitter acids.
Collapse
Affiliation(s)
- Guoqing Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Nan Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Anran Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jingling Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xueni Ren
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
29
|
Parallel evolution of UbiA superfamily proteins into aromatic O-prenyltransferases in plants. Proc Natl Acad Sci U S A 2021; 118:2022294118. [PMID: 33883279 DOI: 10.1073/pnas.2022294118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants produce ∼300 aromatic compounds enzymatically linked to prenyl side chains via C-O bonds. These O-prenylated aromatic compounds have been found in taxonomically distant plant taxa, with some of them being beneficial or detrimental to human health. Although their O-prenyl moieties often play crucial roles in the biological activities of these compounds, no plant gene encoding an aromatic O-prenyltransferase (O-PT) has been isolated to date. This study describes the isolation of an aromatic O-PT gene, CpPT1, belonging to the UbiA superfamily, from grapefruit (Citrus × paradisi, Rutaceae). This gene was shown responsible for the biosynthesis of O-prenylated coumarin derivatives that alter drug pharmacokinetics in the human body. Another coumarin O-PT gene encoding a protein of the same family was identified in Angelica keiskei, an apiaceous medicinal plant containing pharmaceutically active O-prenylated coumarins. Phylogenetic analysis of these O-PTs suggested that aromatic O-prenylation activity evolved independently from the same ancestral gene in these distant plant taxa. These findings shed light on understanding the evolution of plant secondary (specialized) metabolites via the UbiA superfamily.
Collapse
|
30
|
Isogai S, Okahashi N, Asama R, Nakamura T, Hasunuma T, Matsuda F, Ishii J, Kondo A. Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases. Metab Eng Commun 2021; 12:e00169. [PMID: 33868922 PMCID: PMC8040282 DOI: 10.1016/j.mec.2021.e00169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes. A stable yeast strain that produced naringenin from l-phenylalanine was constructed. A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin. AnaPT catalyzed the first microbial production of 3′-prenylnaringenin. Microbial prenyltransferases permit the production of various prenylated compounds.
Collapse
Affiliation(s)
- Shota Isogai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ririka Asama
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomomi Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
31
|
Eriksen RL, Padgitt-Cobb LK, Townsend MS, Henning JA. Gene expression for secondary metabolite biosynthesis in hop (Humulus lupulus L.) leaf lupulin glands exposed to heat and low-water stress. Sci Rep 2021; 11:5138. [PMID: 33664420 PMCID: PMC7970847 DOI: 10.1038/s41598-021-84691-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Hops are valued for their secondary metabolites, including bitter acids, flavonoids, oils, and polyphenols, that impart flavor in beer. Previous studies have shown that hop yield and bitter acid content decline with increased temperatures and low-water stress. We looked at physiological traits and differential gene expression in leaf, stem, and root tissue from hop (Humulus lupulus) cv. USDA Cascade in plants exposed to high temperature stress, low-water stress, and a compound treatment of both high temperature and low-water stress for six weeks. The stress conditions imposed in these experiments caused substantial changes to the transcriptome, with significant reductions in the expression of numerous genes involved in secondary metabolite biosynthesis. Of the genes involved in bitter acid production, the critical gene valerophenone synthase (VPS) experienced significant reductions in expression levels across stress treatments, suggesting stress-induced lability in this gene and/or its regulatory elements may be at least partially responsible for previously reported declines in bitter acid content. We also identified a number of transcripts with homology to genes shown to affect abiotic stress tolerance in other plants that may be useful as markers for breeding improved abiotic stress tolerance in hop. Lastly, we provide the first transcriptome from hop root tissue.
Collapse
Affiliation(s)
- Renée L. Eriksen
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Lillian K. Padgitt-Cobb
- grid.4391.f0000 0001 2112 1969Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331 USA
| | - M. Shaun Townsend
- grid.4391.f0000 0001 2112 1969Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331 USA
| | - John A. Henning
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
32
|
Zhang Y, Fernie AR. Metabolons, enzyme-enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. PLANT COMMUNICATIONS 2021; 2:100081. [PMID: 33511342 PMCID: PMC7816073 DOI: 10.1016/j.xplc.2020.100081] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Metabolons are transient multi-protein complexes of sequential enzymes that mediate substrate channeling. They differ from multi-enzyme complexes in that they are dynamic, rather than permanent, and as such have considerably lower dissociation constants. Despite the fact that a huge number of metabolons have been suggested to exist in plants, most of these claims are erroneous as only a handful of these have been proven to channel metabolites. We believe that physical protein-protein interactions between consecutive enzymes of a pathway should rather be called enzyme-enzyme assemblies. In this review, we describe how metabolons are generally assembled by transient interactions and held together by both structural elements and non-covalent interactions. Experimental evidence for their existence comes from protein-protein interaction studies, which indicate that the enzymes physically interact, and direct substrate channeling measurements, which indicate that they functionally interact. Unfortunately, advances in cell biology and proteomics have far outstripped those in classical enzymology and flux measurements, rendering most reports reliant purely on interactome studies. Recent developments in co-fractionation mass spectrometry will likely further exacerbate this bias. Given this, only dynamic enzyme-enzyme assemblies in which both physical and functional interactions have been demonstrated should be termed metabolons. We discuss the level of evidence for the manifold plant pathways that have been postulated to contain metabolons and then list examples in both primary and secondary metabolism for which strong evidence has been provided to support these claims. In doing so, we pay particular attention to experimental and mathematical approaches to study metabolons as well as complexities that arise in attempting to follow them. Finally, we discuss perspectives for improving our understanding of these fascinating but enigmatic interactions.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
33
|
Xu SY, Weng J. Climate change shapes the future evolution of plant metabolism. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10022. [PMID: 36619247 PMCID: PMC9744464 DOI: 10.1002/ggn2.10022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/02/2020] [Indexed: 01/11/2023]
Abstract
Planet Earth has experienced many dramatic atmospheric and climatic changes throughout its 4.5-billion-year history that have profoundly impacted the evolution of life as we know it. Photosynthetic organisms, and specifically plants, have played a paramount role in shaping the Earth's atmosphere through oxygen production and carbon sequestration. In turn, the diversity of plants has been shaped by historical atmospheric and climatic changes: plants rose to this challenge by evolving new developmental and metabolic traits. These adaptive traits help plants to thrive in diverse growth conditions, while benefiting humanity through the production of food, raw materials, and medicines. However, the current rapid rate of climate change caused by human activities presents unprecedented new challenges to the future of plants. Here, we discuss the potential effects of modern climate change on plants, with specific attention to plant specialized metabolism. We explore potential avenues of future scientific investigations, powered by cutting-edge methods such as synthetic biology and genome engineering, to better understand and mitigate the consequences of rapid climate change on plant fitness and plant usage by humans.
Collapse
Affiliation(s)
- Sophia Y. Xu
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Jing‐Ke Weng
- Whitehead Institute for Biomedical ResearchCambridgeMassachusettsUSA
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
34
|
Gülck T, Booth JK, Carvalho Â, Khakimov B, Crocoll C, Motawia MS, Møller BL, Bohlmann J, Gallage NJ. Synthetic Biology of Cannabinoids and Cannabinoid Glucosides in Nicotiana benthamiana and Saccharomyces cerevisiae. JOURNAL OF NATURAL PRODUCTS 2020; 83:2877-2893. [PMID: 33000946 DOI: 10.1021/acs.jnatprod.0c00241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phytocannabinoids are a group of plant-derived metabolites that display a wide range of psychoactive as well as health-promoting effects. The production of pharmaceutically relevant cannabinoids relies on extraction and purification from cannabis (Cannabis sativa) plants yielding the major constituents, Δ9-tetrahydrocannabinol and cannabidiol. Heterologous biosynthesis of cannabinoids in Nicotiana benthamiana or Saccharomyces cerevisiae may provide cost-efficient and rapid future production platforms to acquire pure and high quantities of both the major and the rare cannabinoids as well as novel derivatives. Here, we used a meta-transcriptomic analysis of cannabis to identify genes for aromatic prenyltransferases of the UbiA superfamily and chalcone isomerase-like (CHIL) proteins. Among the aromatic prenyltransferases, CsaPT4 showed CBGAS activity in both N. benthamiana and S. cerevisiae. Coexpression of selected CsaPT pairs and of CHIL proteins encoding genes with CsaPT4 did not affect CBGAS catalytic efficiency. In a screen of different plant UDP-glycosyltransferases, Stevia rebaudiana SrUGT71E1 and Oryza sativa OsUGT5 were found to glucosylate olivetolic acid, cannabigerolic acid, and Δ9-tetrahydrocannabinolic acid. Metabolic engineering of N. benthamiana for production of cannabinoids revealed intrinsic glucosylation of olivetolic acid and cannabigerolic acid. S. cerevisiae was engineered to produce olivetolic acid glucoside and cannabigerolic acid glucoside.
Collapse
Affiliation(s)
- Thies Gülck
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - J K Booth
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - Â Carvalho
- River Stone Biotech ApS, Fruebjergvej 3, 2100 København Ø, Denmark
| | - B Khakimov
- Chemometrics & Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - C Crocoll
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - M S Motawia
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - B L Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - J Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada V6T 1Z4
| | - N J Gallage
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Octarine Bio, Fruebjergvej 3, 2100 København Ø, Denmark
| |
Collapse
|
35
|
Liew YJM, Lee YK, Khalid N, Rahman NA, Tan BC. Enhancing flavonoid production by promiscuous activity of prenyltransferase, BrPT2 from Boesenbergia rotunda. PeerJ 2020; 8:e9094. [PMID: 32391211 PMCID: PMC7197402 DOI: 10.7717/peerj.9094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/09/2020] [Indexed: 11/20/2022] Open
Abstract
Flavonoids and prenylated flavonoids are active components in medicinal plant extracts which exhibit beneficial effects on human health. Prenylated flavonoids consist of a flavonoid core with a prenyl group attached to it. This prenylation process is catalyzed by prenyltranferases (PTs). At present, only a few flavonoid-related PT genes have been identified. In this study, we aimed to investigate the roles of PT in flavonoid production. We isolated a putative PT gene (designated as BrPT2) from a medicinal ginger, Boesenbergia rotunda. The deduced protein sequence shared highest gene sequence homology (81%) with the predicted homogentisate phytyltransferase 2 chloroplastic isoform X1 from Musa acuminata subsp. Malaccensis. We then cloned the BrPT2 into pRI vector and expressed in B. rotunda cell suspension cultures via Agrobacterium-mediated transformation. The BrPT2-expressing cells were fed with substrate, pinostrobin chalcone, and their products were analyzed by liquid chromatography mass spectrometry. We found that the amount of flavonoids, namely alpinetin, pinostrobin, naringenin and pinocembrin, in BrPT2-expressing cells was higher than those obtained from the wild type cells. However, we were unable to detect any targeted prenylated flavonoids. Further in-vitro assay revealed that the reaction containing the BrPT2 protein produced the highest accumulation of pinostrobin from the substrate pinostrobin chalcone compared to the reaction without BrPT2 protein, suggesting that BrPT2 was able to accelerate the enzymatic reaction. The finding of this study implied that the isolated BrPT2 may not be involved in the prenylation of pinostrobin chalcone but resulted in high yield and production of other flavonoids, which is likely related to enzyme promiscuous activities.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Norzulaani Khalid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Chin Tan
- Center for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Kovalchuk I, Pellino M, Rigault P, van Velzen R, Ebersbach J, Ashnest JR, Mau M, Schranz ME, Alcorn J, Laprairie RB, McKay JK, Burbridge C, Schneider D, Vergara D, Kane NC, Sharbel TF. The Genomics of Cannabis and Its Close Relatives. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:713-739. [PMID: 32155342 DOI: 10.1146/annurev-arplant-081519-040203] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social interests. We have performed a meta-analysis of pooled published genomics data, andwe present a comprehensive literature review on the evolutionary history of Cannabis and Humulus, including medicinal and industrial applications. We demonstrate that current Cannabis genome assemblies are incomplete, with ∼10% missing, 10-25% unmapped, and 45S and 5S ribosomal DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are also ordered at a low resolution, and their consensus quality clouds the accurate annotation of complete, partial, and pseudogenized gene copies. Considering the importance of genomics in the development of any crop, this analysis underlines the need for a coordinated effort to quantify the genetic and biochemical diversity of this species.
Collapse
Affiliation(s)
- I Kovalchuk
- Department of Biology, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - M Pellino
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - P Rigault
- Gydle Inc., Québec, Québec G1S 1E7, Canada
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - R van Velzen
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
- Bedrocan International, 9640 CA Veendam, The Netherlands
| | - J Ebersbach
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - J R Ashnest
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M Mau
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M E Schranz
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
| | - J Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - R B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - J K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - C Burbridge
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Schneider
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Vergara
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - N C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - T F Sharbel
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| |
Collapse
|
37
|
de Bruijn WJC, Levisson M, Beekwilder J, van Berkel WJH, Vincken JP. Plant Aromatic Prenyltransferases: Tools for Microbial Cell Factories. Trends Biotechnol 2020; 38:917-934. [PMID: 32299631 DOI: 10.1016/j.tibtech.2020.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
In plants, prenylation of aromatic compounds, such as (iso)flavonoids and stilbenoids, by membrane-bound prenyltransferases (PTs), is an essential step in the biosynthesis of many bioactive compounds. Prenylated aromatic compounds have various health-beneficial properties that are interesting for industrial applications, but their exploitation is limited due to their low abundance in nature. Harnessing plant aromatic PTs for prenylation in microbial cell factories may be a sustainable and economically viable alternative. Limitations in prenylated aromatic compound production have been identified, including availability of prenyl donor substrate. In this review, we summarize the current knowledge about plant aromatic PTs and discuss promising strategies towards the optimized production of prenylated aromatic compounds by microbial cell factories.
Collapse
Affiliation(s)
- Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, Netherlands
| | - Mark Levisson
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, Netherlands
| | - Jules Beekwilder
- Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, Netherlands.
| |
Collapse
|
38
|
Munakata R, Kitajima S, Nuttens A, Tatsumi K, Takemura T, Ichino T, Galati G, Vautrin S, Bergès H, Grosjean J, Bourgaud F, Sugiyama A, Hehn A, Yazaki K. Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants. THE NEW PHYTOLOGIST 2020; 225:2166-2182. [PMID: 31642055 PMCID: PMC7028039 DOI: 10.1111/nph.16277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/09/2019] [Indexed: 05/03/2023]
Abstract
Furanocoumarins (FCs) are plant-specialized metabolites with potent allelochemical properties. The distribution of FCs is scattered with a chemotaxonomical tendency towards four distant families with highly similar FC pathways. The mechanism by which this pathway emerged and spread in plants has not been elucidated. Furanocoumarin biosynthesis was investigated in Ficus carica (fig, Moraceae), focusing on the first committed reaction catalysed by an umbelliferone dimethylallyltransferase (UDT). Comparative RNA-seq analysis among latexes of different fig organs led to the identification of a UDT. The phylogenetic relationship of this UDT to previously reported Apiaceae UDTs was evaluated. The expression pattern of F. carica prenyltransferase 1 (FcPT1) was related to the FC contents in different latexes. Enzymatic characterization demonstrated that one of the main functions of FcPT1 is UDT activity. Phylogenetic analysis suggested that FcPT1 and Apiaceae UDTs are derived from distinct ancestors, although they both belong to the UbiA superfamily. These findings are supported by significant differences in the related gene structures. This report describes the identification of FcPT1 involved in FC biosynthesis in fig and provides new insights into multiple origins of the FC pathway and, more broadly, into the adaptation of plants to their environments.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
- Université de LorraineINRA, LAEF54000NancyFrance
| | - Sakihito Kitajima
- Department of Applied BiologyKyoto Institute of TechnologyMatsugasaki Sakyo‐kuKyoto606‐8585Japan
- The Center for Advanced Insect Research PromotionKyoto Institute of TechnologyMatsugasaki Sakyo‐kuKyoto606‐8585Japan
| | | | - Kanade Tatsumi
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Tomoya Takemura
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Takuji Ichino
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | | | - Sonia Vautrin
- Centre National de Ressources Genomiques Vegetales – INRA24 Chemin de Borde RougeAuzeville CS 5262731326Castanet Tolosan CedexFrance
| | - Hélène Bergès
- Centre National de Ressources Genomiques Vegetales – INRA24 Chemin de Borde RougeAuzeville CS 5262731326Castanet Tolosan CedexFrance
| | | | - Frédéric Bourgaud
- Plant Advanced Technologies – PAT19 Avenue de la forêt de Haye54500VandoeuvreFrance
| | - Akifumi Sugiyama
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Alain Hehn
- Université de LorraineINRA, LAEF54000NancyFrance
| | - Kazufumi Yazaki
- Laboratory of Plant Gene ExpressionResearch Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| |
Collapse
|
39
|
Levisson M, Araya-Cloutier C, de Bruijn WJC, van der Heide M, Salvador López JM, Daran JM, Vincken JP, Beekwilder J. Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13478-13486. [PMID: 31016981 PMCID: PMC6909231 DOI: 10.1021/acs.jafc.9b01367] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
Prenylated flavonoids possess a wide variety of biological activities, including estrogenic, antioxidant, antimicrobial, and anticancer activities. Hence, they have potential applications in food products, medicines, or supplements with health-promoting activities. However, the low abundance of prenylated flavonoids in nature is limiting their exploitation. Therefore, we investigated the prospect of producing prenylated flavonoids in the yeast Saccharomyces cerevisiae. As a proof of concept, we focused on the production of the potent phytoestrogen 8-prenylnaringenin. Introduction of the flavonoid prenyltransferase SfFPT from Sophora flavescens in naringenin-producing yeast strains resulted in de novo production of 8-prenylnaringenin. We generated several strains with increased production of the intermediate precursor naringenin, which finally resulted in a production of 0.12 mg L-1 (0.35 μM) 8-prenylnaringenin under shake flask conditions. A number of bottlenecks in prenylated flavonoid production were identified and are discussed.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Carla Araya-Cloutier
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Wouter J. C. de Bruijn
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Menno van der Heide
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - José Manuel Salvador López
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Jean-Marc Daran
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, Netherlands
| | - Jules Beekwilder
- Laboratory
of Plant Physiology and Wageningen Plant Research, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| |
Collapse
|
40
|
Munakata R, Takemura T, Tatsumi K, Moriyoshi E, Yanagihara K, Sugiyama A, Suzuki H, Seki H, Muranaka T, Kawano N, Yoshimatsu K, Kawahara N, Yamaura T, Grosjean J, Bourgaud F, Hehn A, Yazaki K. Isolation of Artemisia capillaris membrane-bound di-prenyltransferase for phenylpropanoids and redesign of artepillin C in yeast. Commun Biol 2019; 2:384. [PMID: 31646187 PMCID: PMC6802118 DOI: 10.1038/s42003-019-0630-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/24/2019] [Indexed: 11/08/2022] Open
Abstract
Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl-p-coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified. This study describes the isolation from Artemisia capillaris of a phenylpropane-specific PT gene, AcPT1, belonging to UbiA superfamily. This gene encodes a membrane-bound enzyme, which accepts p-coumaric acid as its specific substrate and transfers two prenyl residues stepwise to yield artepillin C. These findings provide novel insights into the molecular evolution of this gene family, contributing to the chemical diversification of plant specialized metabolites. These results also enabled the design of a yeast platform for the synthetic biology of artepillin C.
Collapse
Affiliation(s)
- Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Tomoya Takemura
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Kanade Tatsumi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Eiko Moriyoshi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Koki Yanagihara
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| | - Hideyuki Suzuki
- Department of Research & Development, Kazusa DNA Research Institute, Kisarazu, 292-0818 Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Noriaki Kawano
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Kayo Yoshimatsu
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Nobuo Kawahara
- Tsukuba Division, Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, 305-0843 Japan
| | - Takao Yamaura
- The Yamashina Botanical Research Institute, Nippon Shinyaku Co. Ltd., 39 Sakanotsuji-cho, Ohyake, Yamashina-ku Kyoto, 607-8182 Japan
| | | | - Frédéric Bourgaud
- Plant Advanced Technologies – PAT, 19 Avenue de la forêt de Haye, 54500 Vandoeuvre, France
| | - Alain Hehn
- Université de Lorraine, INRA, LAE, F54000 Nancy, France
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011 Japan
| |
Collapse
|
41
|
Chen YH, He JB, Bai X, Li XN, Lu LF, Liu YC, Zhang KQ, Li SH, Niu XM. Unexpected Biosynthesis of Fluorescein-Like Arthrocolins against Resistant Strains in an Engineered Escherichia coli. Org Lett 2019; 21:6499-6503. [PMID: 31343888 DOI: 10.1021/acs.orglett.9b02371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we provide an unprecedented biofactory where fluorescent dye-like complex xanthenes could be produced in an engineered Escherichia coli. Feeding the strain with toluquinol or hydroquinones resulted in production of novel "unnatural" natural products including four arthrocolins embedded with indolyltriphenyl quaternary carbons. Arthrocolins A-C potently inhibited various human cancer cell lines including paclitaxel-resistant cell line A549/Taxol and methicillin-resistant Staphylococcus aureus and immensely restored the sensitivity of intractable fluconazole-resistant human pathogen Candida albicans to fluconazole.
Collapse
Affiliation(s)
- Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences , Yunnan University , Kunming 650091 , P.R. China
| | - Jiang-Bo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences , Yunnan University , Kunming 650091 , P.R. China.,Kunming Key Laboratory of Respiratory Disease , Kunming University , Kunming 650214 , P. R. China
| | - Xue Bai
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P.R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P.R. China
| | - Lan-Feng Lu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences , Yunnan University , Kunming 650091 , P.R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences , Yunnan University , Kunming 650091 , P.R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , P.R. China
| | - Xue-Mei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences , Yunnan University , Kunming 650091 , P.R. China
| |
Collapse
|
42
|
Rea KA, Casaretto JA, Al-Abdul-Wahid MS, Sukumaran A, Geddes-McAlister J, Rothstein SJ, Akhtar TA. Biosynthesis of cannflavins A and B from Cannabis sativa L. PHYTOCHEMISTRY 2019; 164:162-171. [PMID: 31151063 DOI: 10.1016/j.phytochem.2019.05.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 05/18/2023]
Abstract
In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.
Collapse
Affiliation(s)
- Kevin A Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - José A Casaretto
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
43
|
Booth JK, Bohlmann J. Terpenes in Cannabis sativa - From plant genome to humans. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:67-72. [PMID: 31084880 DOI: 10.1016/j.plantsci.2019.03.022] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 05/18/2023]
Abstract
Cannabis sativa (cannabis) produces a resin that is valued for its psychoactive and medicinal properties. Despite being the foundation of a multi-billion dollar global industry, scientific knowledge and research on cannabis is lagging behind compared to other high-value crops. This is largely due to legal restrictions that have prevented many researchers from studying cannabis, its products, and their effects in humans. Cannabis resin contains hundreds of different terpene and cannabinoid metabolites. Many of these metabolites have not been conclusively identified. Our understanding of the genomic and biosynthetic systems of these metabolites in cannabis, and the factors that affect their variability, is rudimentary. As a consequence, there is concern about lack of consistency with regard to the terpene and cannabinoid composition of different cannabis 'strains'. Likewise, claims of some of the medicinal properties attributed to cannabis metabolites would benefit from thorough scientific validation.
Collapse
Affiliation(s)
- Judith K Booth
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, B.C., V6T 1Z4, Canada.
| |
Collapse
|
44
|
Nagia M, Gaid M, Biedermann E, Fiesel T, El-Awaad I, Hänsch R, Wittstock U, Beerhues L. Sequential regiospecific gem-diprenylation of tetrahydroxyxanthone by prenyltransferases from Hypericum sp. THE NEW PHYTOLOGIST 2019; 222:318-334. [PMID: 30485455 DOI: 10.1111/nph.15611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/19/2018] [Indexed: 05/09/2023]
Abstract
Polyprenylated acylphloroglucinol derivatives, such as xanthones, are natural plant products with interesting pharmacological properties. They are difficult to synthesize chemically. Biotechnological production is desirable but it requires an understanding of the biosynthetic pathways. cDNAs encoding membrane-bound aromatic prenyltransferase (aPT) enzymes from Hypericum sampsonii seedlings (HsPT8px and HsPTpat) and Hypericum calycinum cell cultures (HcPT8px and HcPTpat) were cloned and expressed in Saccharomyces cerevisiae and Nicotiana benthamiana, respectively. Microsomes and chloroplasts were used for functional analysis. The enzymes catalyzed the prenylation of 1,3,6,7-tetrahydroxyxanthone (1367THX) and/or 1,3,6,7-tetrahydroxy-8-prenylxanthone (8PX) and discriminated nine additionally tested acylphloroglucinol derivatives. The transient expression of the two aPT genes preceded the accumulation of the products in elicitor-treated H. calycinum cell cultures. C-terminal yellow fluorescent protein fusions of the two enzymes were localized to the envelope of chloroplasts in N. benthamiana leaves. Based on the kinetic properties of HsPT8px and HsPTpat, the enzymes catalyze sequential rather than parallel addition of two prenyl groups to the carbon atom 8 of 1367THX, yielding gem-diprenylated patulone under loss of aromaticity of the gem-dialkylated ring. Coexpression in yeast significantly increased product formation. The patulone biosynthetic pathway involves multiple subcellular compartments. The aPTs studied here and related enzymes may be promising tools for plant/microbe metabolic pathway engineering.
Collapse
Affiliation(s)
- Mohamed Nagia
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, 38106, Braunschweig, Germany
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, 38106, Braunschweig, Germany
| | - Eline Biedermann
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, 38106, Braunschweig, Germany
| | - Tobias Fiesel
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Islam El-Awaad
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, 38106, Braunschweig, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, 38106, Braunschweig, Germany
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, 38106, Braunschweig, Germany
| |
Collapse
|
45
|
Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 2019; 567:123-126. [PMID: 30814733 DOI: 10.1038/s41586-019-0978-9] [Citation(s) in RCA: 398] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/24/2019] [Indexed: 01/25/2023]
Abstract
Cannabis sativa L. has been cultivated and used around the globe for its medicinal properties for millennia1. Some cannabinoids, the hallmark constituents of Cannabis, and their analogues have been investigated extensively for their potential medical applications2. Certain cannabinoid formulations have been approved as prescription drugs in several countries for the treatment of a range of human ailments3. However, the study and medicinal use of cannabinoids has been hampered by the legal scheduling of Cannabis, the low in planta abundances of nearly all of the dozens of known cannabinoids4, and their structural complexity, which limits bulk chemical synthesis. Here we report the complete biosynthesis of the major cannabinoids cannabigerolic acid, Δ9-tetrahydrocannabinolic acid, cannabidiolic acid, Δ9-tetrahydrocannabivarinic acid and cannabidivarinic acid in Saccharomyces cerevisiae, from the simple sugar galactose. To accomplish this, we engineered the native mevalonate pathway to provide a high flux of geranyl pyrophosphate and introduced a heterologous, multi-organism-derived hexanoyl-CoA biosynthetic pathway5. We also introduced the Cannabis genes that encode the enzymes involved in the biosynthesis of olivetolic acid6, as well as the gene for a previously undiscovered enzyme with geranylpyrophosphate:olivetolate geranyltransferase activity and the genes for corresponding cannabinoid synthases7,8. Furthermore, we established a biosynthetic approach that harnessed the promiscuity of several pathway genes to produce cannabinoid analogues. Feeding different fatty acids to our engineered strains yielded cannabinoid analogues with modifications in the part of the molecule that is known to alter receptor binding affinity and potency9. We also demonstrated that our biological system could be complemented by simple synthetic chemistry to further expand the accessible chemical space. Our work presents a platform for the production of natural and unnatural cannabinoids that will allow for more rigorous study of these compounds and could be used in the development of treatments for a variety of human health problems.
Collapse
|
46
|
Guo X, Shen H, Liu Y, Wang Q, Wang X, Peng C, Liu W, Zhao ZK. Enabling Heterologous Synthesis of Lupulones in the Yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 2019; 188:787-797. [PMID: 30684240 DOI: 10.1007/s12010-019-02957-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 01/26/2023]
Abstract
Lupulones, naturally produced by glandular trichomes of hop (Humulus lupulus), are prenylated phloroglucinol derivatives that contribute the bitter flavor of beer and demonstrate antimicrobial and anticancer activities. It is appealing to develop microbial cell factories such that lupulones may be produced via fermentation technology in lieu of extraction from limited plant resources. In this study, the yeast Saccharomyces cerevisiae transformants harboring a synthetic lupulone pathway that consisted of five genes from hop were constructed. The transformants accumulated several precursors but failed to accumulate lupulones. Overexpression of 3-hydroxy-3-methyl glutaryl co-enzyme A reductase, the key enzyme in precursor formation in the mevalonate pathway, also failed to achieve a detectable level of lupulones. To decrease the consumption of the precursors, the ergosterol biosynthesis pathway was chemically downregulated by a small molecule ketoconazole, leading to successful production of lupulones. Our study demonstrated a combination of molecular biology and chemical biology to regulate the metabolism for heterologous production of lupulones. The strategy may be valuable for future engineering microbial process for other prenylated natural products.
Collapse
Affiliation(s)
- Xiaojia Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxue Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chang Peng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wujun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
47
|
Nakayama T, Takahashi S, Waki T. Formation of Flavonoid Metabolons: Functional Significance of Protein-Protein Interactions and Impact on Flavonoid Chemodiversity. FRONTIERS IN PLANT SCIENCE 2019; 10:821. [PMID: 31338097 PMCID: PMC6629762 DOI: 10.3389/fpls.2019.00821] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
Flavonoids are a class of plant specialized metabolites with more than 6,900 known structures and play important roles in plant survival and reproduction. These metabolites are derived from p-coumaroyl-CoA via the sequential actions of a variety of flavonoid enzymes, which have been proposed to form weakly bound, ordered protein complexes termed flavonoid metabolons. This review discusses the impacts of the formation of flavonoid metabolons on the chemodiversity of flavonoids. Specific protein-protein interactions in the metabolons of Arabidopsis thaliana and other plant species have been studied for two decades. In many cases, metabolons are associated with the ER membrane, with ER-bound cytochromes P450 hypothesized to serve as nuclei for metabolon formation. Indeed, cytochromes P450 have been found to be components of flavonoid metabolons in rice, snapdragon, torenia, and soybean. Recent studies illustrate the importance of specific interactions for the efficient production and temporal/spatial distribution of flavonoids. For example, in diverse plant species, catalytically inactive type-IV chalcone isomerase-like protein serves as an enhancer of flavonoid production via its involvement in flavonoid metabolons. In soybean roots, a specific isozyme of chalcone reductase (CHR) interacts with 2-hydroxyisoflavanone synthase, to which chalcone synthase (CHS) can also bind, providing a mechanism to prevent the loss of the unstable CHR substrate during its transfer from CHS to CHR. Thus, diversification in chemical structures and temporal/spatial distribution patterns of flavonoids in plants is likely to be mediated by the formation of specific flavonoid metabolons via specific protein-protein interactions.
Collapse
|
48
|
Liu Y, Jing SX, Luo SH, Li SH. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Nat Prod Rep 2019; 36:626-665. [PMID: 30468448 DOI: 10.1039/c8np00077h] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The investigation methods, chemistry, bioactivities, and biosynthesis of non-volatile natural products involving 489 compounds in plant glandular trichomes are reviewed.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| | - Shi-Hong Luo
- College of Bioscience and Biotechnology
- Shenyang Agricultural University
- Shenyang
- P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650201
- P. R. China
| |
Collapse
|
49
|
Zhong Z, Zhu W, Liu S, Guan Q, Chen X, Huang W, Wang T, Yang B, Tian J. Molecular Characterization of a Geranyl Diphosphate-Specific Prenyltransferase Catalyzing Stilbenoid Prenylation from Morus alba. PLANT & CELL PHYSIOLOGY 2018; 59:2214-2227. [PMID: 30020500 DOI: 10.1093/pcp/pcy138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceutically active compounds from medical plants are attractive as a major source for new drug development. Prenylated stilbenoids with increased lipophilicity are valuable secondary metabolites which possess a wide range of biological activities. So far, many prenylated stilbenoids have been isolated from Morus alba but the enzyme responsible for the crucial prenyl modification remains unknown. In the present study, a stilbenoid-specific prenyltransferase (PT), termed Morus alba oxyresveratrol geranyltransferase (MaOGT), was identified and functionally characterized in vitro. MaOGT recognized oxyresveratrol and geranyl diphosphate (GPP) as natural substrates, and catalyzed oxyresveratrol prenylation. Our results indicated that MaOGT shared common features with other aromatic PTs, e.g. multiple transmembrane regions, conserved functional domains and targeting to plant plastids. This distinct PT represents the first stilbenoid-specific PT accepting GPP as a natural prenyl donor, and could help identify additional functionally varied PTs in moraceous plants. Furthermore, MaOGT might be applied for high-efficiency and large-scale prenylation of oxyresveratrol to produce bioactive compounds for potential therapeutic applications.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Wei Huang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, PR China
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
50
|
Saeki H, Hara R, Takahashi H, Iijima M, Munakata R, Kenmoku H, Fuku K, Sekihara A, Yasuno Y, Shinada T, Ueda D, Nishi T, Sato T, Asakawa Y, Kurosaki F, Yazaki K, Taura F. An Aromatic Farnesyltransferase Functions in Biosynthesis of the Anti-HIV Meroterpenoid Daurichromenic Acid. PLANT PHYSIOLOGY 2018; 178:535-551. [PMID: 30097469 PMCID: PMC6181053 DOI: 10.1104/pp.18.00655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 05/04/2023]
Abstract
Rhododendron dauricum produces daurichromenic acid, an anti-HIV meroterpenoid, via oxidative cyclization of the farnesyl group of grifolic acid. The prenyltransferase (PT) that synthesizes grifolic acid is a farnesyltransferase in plant specialized metabolism. In this study, we demonstrated that the isoprenoid moiety of grifolic acid is derived from the 2-C-methyl-d-erythritol-4-phosphate pathway that takes place in plastids. We explored candidate sequences of plastid-localized PT homologs and identified a cDNA for this PT, RdPT1, which shares moderate sequence similarity with known aromatic PTs. RdPT1 is expressed exclusively in the glandular scales, where daurichromenic acid accumulates. In addition, the gene product was targeted to plastids in plant cells. The recombinant RdPT1 regiospecifically synthesized grifolic acid from orsellinic acid and farnesyl diphosphate, demonstrating that RdPT1 is the farnesyltransferase involved in daurichromenic acid biosynthesis. This enzyme strictly preferred orsellinic acid as a prenyl acceptor, whereas it had a relaxed specificity for prenyl donor structures, also accepting geranyl and geranylgeranyl diphosphates with modest efficiency to synthesize prenyl chain analogs of grifolic acid. Such a broad specificity is a unique catalytic feature of RdPT1 that is not shared among secondary metabolic aromatic PTs in plants. We discuss the unusual substrate preference of RdPT1 using a molecular modeling approach. The biochemical properties as well as the localization of RdPT1 suggest that this enzyme produces meroterpenoids in glandular scales cooperatively with previously identified daurichromenic acid synthase, probably for chemical defense on the surface of R. dauricum plants.
Collapse
Affiliation(s)
- Haruna Saeki
- Laboratory of Medicinal Bioresources, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Ryota Hara
- Laboratory of Medicinal Bioresources, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Hironobu Takahashi
- Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Miu Iijima
- Laboratory of Medicinal Bioresources, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Hiromichi Kenmoku
- Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Kazuma Fuku
- Department of Material Science, Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ai Sekihara
- Department of Material Science, Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yoko Yasuno
- Department of Material Science, Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tetsuro Shinada
- Department of Material Science, Graduate School of Science, Osaka City University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Daijiro Ueda
- Department of Applied Biological Chemistry, Faculty of Agriculture and Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoyuki Nishi
- Department of Applied Biological Chemistry, Faculty of Agriculture and Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Tsutomu Sato
- Department of Applied Biological Chemistry, Faculty of Agriculture and Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata 950-2181, Japan
| | - Yoshinori Asakawa
- Institute of Pharmacognosy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Fumiya Kurosaki
- Laboratory of Medicinal Bioresources, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Futoshi Taura
- Laboratory of Medicinal Bioresources, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|