1
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Hui J, You H, Van Beek A, Zhang J, Elahi A, Downing JR, Chaney LE, Lee D, Ainsworth EA, Chaudhuri S, Dunn JB, Chen W, Rowan SJ, Hersam MC. Biorenewable Exfoliation of Electronic-Grade Printable Graphene Using Carboxylated Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57534-57543. [PMID: 39392856 DOI: 10.1021/acsami.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The absence of scalable and environmentally sustainable methods for producing electronic-grade graphene nanoplatelets remains a barrier to the industrial-scale application of graphene in printed electronics and conductive composites. To address this unmet need, here we report the utilization of carboxylated cellulose nanocrystals (CNCs) extracted from the perennial tall grass Miscanthus × giganteus as a biorenewable dispersant for the aqueous liquid-phase exfoliation of few-layer graphene nanoplatelets. This CNC-based exfoliation procedure was optimized using a Bayesian machine learning model, resulting in a significant graphite-to-graphene conversion yield of 13.4% and a percolating graphene thin-film electrical conductivity of 3.4 × 104 S m-1. The as-exfoliated graphene dispersions were directly formulated into an aerosol jet printing ink using cellulose-based additives to achieve high-resolution printing (∼20 μm line width). Life cycle assessment of this CNC-based exfoliation method showed substantial improvements for fossil fuel consumption, greenhouse gas emissions, and water consumption compared to incumbent liquid-phase exfoliation methods for electronic-grade graphene nanoplatelets. Mechanistically, potential mean force calculations from molecular dynamics simulations reveal that the high exfoliation yield can be traced back to the favorable surface interactions between CNCs and graphene. Ultimately, the use of biorenewable CNCs for liquid-phase exfoliation will accelerate the scalable and eco-friendly manufacturing of graphene for electronically conductive applications.
Collapse
Affiliation(s)
- Janan Hui
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyang You
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anton Van Beek
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jinrui Zhang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arash Elahi
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
| | - Julia R Downing
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Lindsay E Chaney
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - DoKyoung Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Urbana, Illinois 61801, United States
| | - Santanu Chaudhuri
- Department of Chemical Engineering, University of Illinois at Chicago, 929 West Taylor Street, Chicago, Illinois 60607, United States
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, Illinois 60607, United States
| | - Jennifer B Dunn
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei Chen
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stuart J Rowan
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
- Chemical and Engineering Sciences, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Cosgrove D, Dupree P, Gomez ED, Haigler CH, Kubicki JD, Zimmer J. How Many Glucan Chains Form Plant Cellulose Microfibrils? A Mini Review. Biomacromolecules 2024; 25:6357-6366. [PMID: 39207939 PMCID: PMC11480985 DOI: 10.1021/acs.biomac.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Assessing the number of glucan chains in cellulose microfibrils (CMFs) is crucial for understanding their structure-property relationships and interactions within plant cell walls. This Review examines the conclusions and limitations of the major experimental techniques that have provided insights into this question. Small-angle X-ray and neutron scattering data predominantly support an 18-chain model, although analysis is complicated by factors such as fibril coalescence and matrix polysaccharide associations. Solid-state nuclear magnetic resonance (NMR) spectroscopy allows the estimation of the CMF width from the ratio of interior to surface glucose residues. However, there is uncertainty in the assignment of NMR spectral peaks to surface or interior chains. Freeze-fracture transmission electron microscopy images show cellulose synthase complexes to be "rosettes" of six lobes each consistent with a trimer of cellulose synthase enzymes, consistent with the synthesis of 18 parallel glucan chains in the CMF. Nevertheless, the number of chains in CMFs remains to be conclusively demonstrated.
Collapse
Affiliation(s)
- Daniel
J. Cosgrove
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Paul Dupree
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Enrique D. Gomez
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Candace H. Haigler
- Crop
Sciences and Department of Botany, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - James D. Kubicki
- Department
of Geological Sciences, UTEP University
of Texas El Paso, El Paso, Texas 79968, United States
| | - Jochen Zimmer
- Molecular
Physiology and Biological Physics, University
of Virginia, Charlottesville, Virginia 22903-1738, United States
| |
Collapse
|
4
|
Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Crit Rev Food Sci Nutr 2024:1-29. [PMID: 39141568 DOI: 10.1080/10408398.2024.2390556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.
Collapse
Affiliation(s)
- Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Penttilä PA, Paajanen A. Critical comment on the assumptions leading to 24-chain microfibrils in wood. NATURE PLANTS 2024; 10:1064-1066. [PMID: 38769445 DOI: 10.1038/s41477-024-01689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Paavo A Penttilä
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.
| | - Antti Paajanen
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| |
Collapse
|
6
|
Tai HC, Tsao CS, Lin JH. Reply to: Critical comment on the assumptions leading to 24-chain microfibrils in wood. NATURE PLANTS 2024; 10:1067-1070. [PMID: 38849570 DOI: 10.1038/s41477-024-01727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, People's Republic of China.
| | - Cheng-Si Tsao
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Republic of China
| | - Jer-Horng Lin
- Department of Chemistry, National Taiwan University, Taipei, Republic of China
| |
Collapse
|
7
|
Wang Q, Zhang X, Tian J, Zheng C, Khan MR, Guo J, Zhu W, Jin Y, Xiao H, Song J, Rojas OJ. High throughput disassembly of cellulose nanoribbons and colloidal stabilization of gel-like Pickering emulsions. Carbohydr Polym 2023; 315:121000. [PMID: 37230640 DOI: 10.1016/j.carbpol.2023.121000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
We introduce a strategy to disintegrate cellulose microfibrils present in the cell walls of plant fibers. The process includes impregnation and mild oxidation followed by ultrasonication, which loosens the hydrophilic planes of crystalline cellulose while preserving the hydrophobic ones. The resultant molecularly-sized cellulose structures (cellulose ribbons, CR) retain a length of the order of a micron (1.47 ± 0.48 μm, AFM). A very high axial aspect ratio is determined (at least 190), considering the CR height (0.62 ± 0.38 nm, AFM), corresponding to 1-2 cellulose chains, and width (7.64 ± 1.82 nm, TEM). The new molecularly-thin cellulose proposes excellent hydrophilicity and flexibility, enabling a remarkable viscosifying effect when dispersed in aqueous media (shear-thinning, zero shear viscosity of 6.3 × 105 mPa·s). As such, CR suspensions readily develop into gel-like Pickering emulsions in the absence of crosslinking, suitable for direct ink writing at ultra-low solids content.
Collapse
Affiliation(s)
- Qingcheng Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Tian
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China; Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Chenyu Zheng
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
8
|
Wu SZ, Chaves AM, Li R, Roberts AW, Bezanilla M. Cellulose synthase-like D movement in the plasma membrane requires enzymatic activity. J Cell Biol 2023; 222:e202212117. [PMID: 37071416 PMCID: PMC10120407 DOI: 10.1083/jcb.202212117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Cellulose Synthase-Like D (CSLD) proteins, important for tip growth and cell division, are known to generate β-1,4-glucan. However, whether they are propelled in the membrane as the glucan chains they produce assemble into microfibrils is unknown. To address this, we endogenously tagged all eight CSLDs in Physcomitrium patens and discovered that they all localize to the apex of tip-growing cells and to the cell plate during cytokinesis. Actin is required to target CSLD to cell tips concomitant with cell expansion, but not to cell plates, which depend on actin and CSLD for structural support. Like Cellulose Synthase (CESA), CSLD requires catalytic activity to move in the plasma membrane. We discovered that CSLD moves significantly faster, with shorter duration and less linear trajectories than CESA. In contrast to CESA, CSLD movement was insensitive to the cellulose synthesis inhibitor isoxaben, suggesting that CSLD and CESA function within different complexes possibly producing structurally distinct cellulose microfibrils.
Collapse
Affiliation(s)
- Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Rongrong Li
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
9
|
Fujisawa S, Daicho K, Yurtsever A, Fukuma T, Saito T. Molecular Dynamics of Drying-Induced Structural Transformations in a Single Nanocellulose. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302276. [PMID: 37183294 DOI: 10.1002/smll.202302276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Nanocellulose is attracting attention in the field of materials science as a sustainable building block. Nanocellulose-based materials, such as films, membranes, and foams, are fabricated by drying colloidal dispersions. However, little is known about how the structure of a single nanocellulose changes during the complex drying process. Here, all-atom molecular dynamics simulations and atomic force microscopy is used to investigate the structural dynamics of single nanocellulose during drying. It is found that the twist morphology of the nanocellulose became localized along the fibril axis during the final stage of the drying process. Moreover, it is shown that conformational changes at C6 hydroxymethyl groups and glycoside bond is accompanied by the twist localization, indicating that the increase in the crystallinity occurred in the process. It is expected that the results will provide molecular insights into nanocellulose structures in material processing, which is helpful for the design of materials with advanced functionalities.
Collapse
Affiliation(s)
- Shuji Fujisawa
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657, Japan
| | - Kazuho Daicho
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tsuguyuki Saito
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 1138657, Japan
| |
Collapse
|
10
|
Fujisawa S, Takasaki Y, Saito T. Structure of Polymer-Grafted Nanocellulose in the Colloidal Dispersion System. NANO LETTERS 2023; 23:880-886. [PMID: 36521008 PMCID: PMC9912338 DOI: 10.1021/acs.nanolett.2c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Clarifying the primary structure of nanomaterials is invaluable to understand how the nanostructures lead to macroscopic material functions. Nanocellulose is attracting attention as a sustainable building block in materials science. The surface of nanocellulose is often chemically modified by polymer grafting to tune the material properties, such as the viscoelastic properties in rheology modifiers and the reinforcement effect in composites. However, the structure, such as molecular conformation of the grafted polymer and the twist of the core nanocellulose, is not well understood. Here, we investigated the structure of polymer-grafted nanocellulose in the colloidal dispersion system by combining small-angle X-ray scattering measurement and all-atom molecular dynamics simulation. We demonstrated formation of the polymer brush layer on the nanocellulose surface in solvents, which explains the excellent colloidal stability. We also found that twisting of the nanocellulose in the core is suppressed by the existence of the polymer brush layer.
Collapse
Affiliation(s)
- Shuji Fujisawa
- Department
of Biomaterial Sciences, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuichi Takasaki
- Business
Unit Characterization, Anton-Paar Japan, Tokyo 131-0034, Japan
| | - Tsuguyuki Saito
- Department
of Biomaterial Sciences, Graduate School of Agricultural and Life
Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Heise K, Koso T, King AWT, Nypelö T, Penttilä P, Tardy BL, Beaumont M. Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:23413-23432. [PMID: 36438677 PMCID: PMC9664451 DOI: 10.1039/d2ta05277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Maximizing the benefits of nanomaterials from biomass requires unique considerations associated with their native chemical and physical structure. Both cellulose nanofibrils and nanocrystals are extracted from cellulose fibers via a top-down approach and have significantly advanced materials chemistry and set new benchmarks in the last decade. One major challenge has been to prepare defined and selectively modified nanocelluloses, which would, e.g., allow optimal particle interactions and thereby further improve the properties of processed materials. At the molecular and crystallite level, the surface of nanocelluloses offers an alternating chemical structure and functional groups of different reactivity, enabling straightforward avenues towards chemically anisotropic and molecularly patterned nanoparticles via spatioselective chemical modification. In this review, we will explain the influence and role of the multiscale hierarchy of cellulose fibers in chemical modifications, and critically discuss recent advances in selective surface chemistry of nanocelluloses. Finally, we will demonstrate the potential of those chemically anisotropic nanocelluloses in materials science and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Tetyana Koso
- Materials Chemistry Division, Chemistry Department, University of Helsinki FI-00560 Helsinki Finland
| | - Alistair W T King
- VTT Technical Research Centre of Finland Ltd., Biomaterial Processing and Products 02044 Espoo Finland
| | - Tiina Nypelö
- Chalmers University of Technology 41296 Gothenburg Sweden
- Wallenberg Wood Science Center, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Paavo Penttilä
- Department of Bioproducts and Biosystems, Aalto University P.O. Box 16300 FI-00076 Aalto Espoo Finland
| | - Blaise L Tardy
- Khalifa University, Department of Chemical Engineering Abu Dhabi United Arab Emirates
- Center for Membrane and Advanced Water Technology, Khalifa University Abu Dhabi United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen, Khalifa University Abu Dhabi United Arab Emirates
| | - Marco Beaumont
- Institute of Chemistry of Renewable Resources, Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Str. 24 A-3430 Tulln Austria
| |
Collapse
|
12
|
Gupta A, Khodayari A, van Duin ACT, Hirn U, Van Vuure AW, Seveno D. Cellulose Nanocrystals: Tensile Strength and Failure Mechanisms Revealed Using Reactive Molecular Dynamics. Biomacromolecules 2022; 23:2243-2254. [PMID: 35549173 DOI: 10.1021/acs.biomac.1c01110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellulose nanocrystals (CNCs) offer excellent mechanical properties. However, measuring the strength by performing reliable experiments at the nanoscale is challenging. In this paper, we model Iβ crystalline cellulose using reactive molecular dynamics simulations. Taking the fibril twist into account, structural changes and hydrogen-bonding characteristics of CNCs during the tensile test are inspected and the failure mechanism of CNCs is analyzed down to the scale of individual bonds. The C4-O4 glycosidic bond is found to be responsible for the failure of CNCs. Finally, the effect of strain rate on ultimate properties is analyzed and a nonlinear model is used to predict the ultimate strength of 9.2 GPa and ultimate strain of 8.5% at a 1 s-1 strain rate. This study sheds light on the applications of cellulose in nanocomposites and further modeling of cellulose nanofibres.
Collapse
Affiliation(s)
- Aman Gupta
- Indian Institute of Science, Bangalore 560012, India
| | - Ali Khodayari
- Department of Materials Engineering, KU Leuven, Leuven 3000, Belgium
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Graz 8010, Austria
| | - Aart W Van Vuure
- Department of Materials Engineering, KU Leuven, Leuven 3000, Belgium
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
13
|
Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydr Polym 2022; 283:119171. [DOI: 10.1016/j.carbpol.2022.119171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022]
|
14
|
Krichen F, Walha S, Abdelmouleh M. Hirshfeld surface analysis of the intermolecular interaction networks in cellulose Iα and Iβ. Carbohydr Res 2022; 518:108600. [DOI: 10.1016/j.carres.2022.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
|
15
|
Bregado JL, Tavares FW, Secchi AR, Segtovich ISV. Molecular dynamics of dissolution of a 36-chain cellulose Iβ microfibril at different temperatures above the critical pressure of water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Huang L, Zhang C. The Mode of Action of Endosidin20 Differs from That of Other Cellulose Biosynthesis Inhibitors. PLANT & CELL PHYSIOLOGY 2021; 61:2139-2152. [PMID: 33104193 DOI: 10.1093/pcp/pcaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Endosidin20 (ES20) was recently identified as a cellulose biosynthesis inhibitor (CBI) that targets the catalytic domain of CELLULOSE SYNTHASE 6 (CESA6) and thus inhibits the growth of Arabidopsis thaliana. Here, we characterized the effects of ES20 on the growth of other plant species and found that ES20 is a broad-spectrum plant growth inhibitor. We tested the inhibitory effects of previously characterized CBIs (isoxaben, indaziflam and C17) on the growth of Arabidopsis cesa6 mutants that have reduced sensitivity to ES20. We found that most of these mutants are sensitive to isoxaben, indaziflam and C17, indicating that these tested CBIs have a different mode of action than ES20. ES20 also has a synergistic inhibitory effect on plant growth when jointly applied with other CBIs, further confirming that ES20 has a different mode of action than isoxaben, indaziflam and C17. We demonstrated that plants carrying two missense mutations conferring resistance to ES20 and isoxaben can tolerate the dual inhibitory effects of these CBIs when combined. ES20 inhibits Arabidopsis growth in growth medium and in soil following direct spraying. Therefore, our results pave the way for using ES20 as a broad-spectrum herbicide, and for the use of gene-editing technologies to produce ES20-resistant crop plants.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
- Purdue Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
17
|
Heise K, Kontturi E, Allahverdiyeva Y, Tammelin T, Linder MB, Nonappa, Ikkala O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004349. [PMID: 33289188 PMCID: PMC11468234 DOI: 10.1002/adma.202004349] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Indexed: 06/12/2023]
Abstract
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
| | - Yagut Allahverdiyeva
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFI‐20014Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland LtdVTT, PO Box 1000FIN‐02044EspooFinland
| | - Markus B. Linder
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Nonappa
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
| |
Collapse
|
18
|
Rolland N, Mehandzhiyski AY, Garg M, Linares M, Zozoulenko IV. New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal. J Chem Theory Comput 2020; 16:3699-3711. [DOI: 10.1021/acs.jctc.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | | | - Mohit Garg
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Scientific Visualization Group, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
19
|
Song B, Zhao S, Shen W, Collings C, Ding SY. Direct Measurement of Plant Cellulose Microfibril and Bundles in Native Cell Walls. FRONTIERS IN PLANT SCIENCE 2020; 11:479. [PMID: 32391038 PMCID: PMC7193091 DOI: 10.3389/fpls.2020.00479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/31/2020] [Indexed: 05/07/2023]
Abstract
Plants use rigid cellulose together with non-cellulosic matrix polymers to build cell walls. Cellulose microfibrils comprise linear β(1,4)-glucan chains packed through inter- and intra-chain hydrogen-bonding networks and van der Waals forces. Due to its small size, the number of glucan chains and their arrangement in a microfibril remains elusive. Here we used atomic force microscopy (AFM) to directly image primary cell walls (PCWs) and secondary cell walls (SCWs) from fresh tissues of maize (Zea mays) under near-native conditions. By analyzing cellulose structure in different types of cell walls, we were able to measure the individual microfibrils in elongated PCWs at the sub-nanometer scale. The dimension of the microfibril was measured at 3.68 ± 0.13 nm in width and 2.25 ± 0.10 nm in height. By superimposing multiple AFM height profiles of these microfibrils, the overlay area representing the cross-section was estimated at 5.6 ± 0.4 nm2, which fitted well to an 18-chain model packed as six sheets with 234432 conformation. Interestingly we found in PCW, all these individual microfibrils could be traced back to a bundle in larger imaging area, suggesting cellulose are synthesized as large bundles in PCWs, and then split during cell expansion or elongation. In SCWs where cell growth has ceased we observed nearly-parallel twined or individual microfibrils that appeared to be embedded separately in the matrix polymers without the splitting effect, indicating different mechanisms of cellulose biosynthesis in PCW and SCW. The sub-nanometer structure of the microfibril presented here was measured exclusively from elongated PCWs, further study is required to verify if it represents the inherent structure synthesized by the cellulose synthase complex in PCWs and SCWs.
Collapse
Affiliation(s)
- Bo Song
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Shuai Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wei Shen
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Cynthia Collings
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Enzymes to unravel bioproducts architecture. Biotechnol Adv 2020; 41:107546. [PMID: 32275940 DOI: 10.1016/j.biotechadv.2020.107546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022]
Abstract
Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.
Collapse
|
21
|
Ishida T. Theoretical Investigation of Dissolution and Decomposition Mechanisms of a Cellulose Fiber in Ionic Liquids. J Phys Chem B 2020; 124:3090-3102. [DOI: 10.1021/acs.jpcb.9b11527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tateki Ishida
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
22
|
Affiliation(s)
- Andreas Mautner
- Polymer and Composite Engineering (PaCE) GroupInstitute of Materials Chemistry and Research, University of Vienna Vienna Austria
| |
Collapse
|
23
|
Abbas M, Peszlen I, Shi R, Kim H, Katahira R, Kafle K, Xiang Z, Huang X, Min D, Mohamadamin M, Yang C, Dai X, Yan X, Park S, Li Y, Kim SH, Davis M, Ralph J, Sederoff RR, Chiang VL, Li Q. Involvement of CesA4, CesA7-A/B and CesA8-A/B in secondary wall formation in Populus trichocarpa wood. TREE PHYSIOLOGY 2020; 40:73-89. [PMID: 31211386 DOI: 10.1093/treephys/tpz020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/10/2019] [Accepted: 02/18/2019] [Indexed: 05/13/2023]
Abstract
Cellulose synthase A genes (CesAs) are responsible for cellulose biosynthesis in plant cell walls. In this study, functions of secondary wall cellulose synthases PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B were characterized during wood formation in Populus trichocarpa (Torr. & Gray). CesA RNAi knockdown transgenic plants exhibited stunted growth, narrow leaves, early necrosis, reduced stature, collapsed vessels, thinner fiber cell walls and extended fiber lumen diameters. In the RNAi knockdown transgenics, stems exhibited reduced mechanical strength, with reduced modulus of rupture (MOR) and modulus of elasticity (MOE). The reduced mechanical strength may be due to thinner fiber cell walls. Vessels in the xylem of the transgenics were collapsed, indicating that water transport in xylem may be affected and thus causing early necrosis in leaves. A dramatic decrease in cellulose content was observed in the RNAi knockdown transgenics. Compared with wildtype, the cellulose content was significantly decreased in the PtrCesA4, PtrCesA7 and PtrCesA8 RNAi knockdown transgenics. As a result, lignin and xylem contents were proportionally increased. The wood composition changes were confirmed by solid-state NMR, two-dimensional solution-state NMR and sum-frequency-generation vibration (SFG) analyses. Both solid-state nuclear magnetic resonance (NMR) and SFG analyses demonstrated that knockdown of PtrCesAs did not affect cellulose crystallinity index. Our results provided the evidence for the involvement of PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B in secondary cell wall formation in wood and demonstrated the pleiotropic effects of their perturbations on wood formation.
Collapse
Affiliation(s)
- Manzar Abbas
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ilona Peszlen
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Rui Shi
- Department of Crop and Soil Science, North Carolina State University, Raleigh, NC, USA
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, WI, USA
| | - Rui Katahira
- National Bioenergy Center, NREL, Golden, Co, USA
| | - Kabindra Kafle
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Douyong Min
- Light Industry and Food Engineering College, Guangxi University, Nanning, China
| | - Makarem Mohamadamin
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Sunkyu Park
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Mark Davis
- National Bioenergy Center, NREL, Golden, Co, USA
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, WI, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Vincent L Chiang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
24
|
Chen P, Terenzi C, Furó I, Berglund LA, Wohlert J. Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pan Chen
- Beijing Engineering Research Center of Cellulose and its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Camilla Terenzi
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Stalker MR, Grant J, Yong CW, Ohene-Yeboah LA, Mays TJ, Parker SC. Molecular simulation of hydrogen storage and transport in cellulose. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1593975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. R. Stalker
- Centre for Sustainable Chemical Technologies, University of Bath, Bath, UK
- Department of Chemistry, University of Bath, Bath, UK
| | - J. Grant
- Department of Chemistry, University of Bath, Bath, UK
- Computing Services, University of Bath, Bath, UK
| | - C. W. Yong
- Scientific Computing Department, STFC Daresbury Laboratory, Daresbury, UK
| | - L. A. Ohene-Yeboah
- Centre for Sustainable Chemical Technologies, University of Bath, Bath, UK
- Department of Chemistry, University of Bath, Bath, UK
| | - T. J. Mays
- Department of Chemical Engineering, University of Bath, Bath, UK
| | - S. C. Parker
- Department of Chemistry, University of Bath, Bath, UK
| |
Collapse
|
26
|
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC. Evolution of Cell Wall Polymers in Tip-Growing Land Plant Gametophytes: Composition, Distribution, Functional Aspects and Their Remodeling. FRONTIERS IN PLANT SCIENCE 2019; 10:441. [PMID: 31057570 PMCID: PMC6482432 DOI: 10.3389/fpls.2019.00441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 05/22/2023]
Abstract
During evolution of land plants, the first colonizing species presented leafy-dominant gametophytes, found in non-vascular plants (bryophytes). Today, bryophytes include liverworts, mosses, and hornworts. In the first seedless vascular plants (lycophytes), the sporophytic stage of life started to be predominant. In the seed producing plants, gymnosperms and angiosperms , the gametophytic stage is restricted to reproduction. In mosses and ferns, the haploid spores germinate and form a protonema, which develops into a leafy gametophyte producing rhizoids for anchorage, water and nutrient uptakes. The basal gymnosperms (cycads and Ginkgo) reproduce by zooidogamy. Their pollen grains develop a multi-branched pollen tube that penetrates the nucellus and releases flagellated sperm cells that swim to the egg cell. The pollen grain of other gymnosperms (conifers and gnetophytes) as well as angiosperms germinates and produces a pollen tube that directly delivers the sperm cells to the ovule (siphonogamy). These different gametophytes, which are short or long-lived structures, share a common tip-growing mode of cell expansion. Tip-growth requires a massive cell wall deposition to promote cell elongation, but also a tight spatial and temporal control of the cell wall remodeling in order to modulate the mechanical properties of the cell wall. The growth rate of these cells is very variable depending on the structure and the species, ranging from very slow (protonemata, rhizoids, and some gymnosperm pollen tubes), to a slow to fast-growth in other gymnosperms and angiosperms. In addition, the structural diversity of the female counterparts in angiosperms (dry, semi-dry vs wet stigmas, short vs long, solid vs hollow styles) will impact the speed and efficiency of sperm delivery. As the evolution and diversity of the cell wall polysaccharides accompanied the diversification of cell wall structural proteins and remodeling enzymes, this review focuses on our current knowledge on the biochemistry, the distribution and remodeling of the main cell wall polymers (including cellulose, hemicelluloses, pectins, callose, arabinogalactan-proteins and extensins), during the tip-expansion of gametophytes from bryophytes, pteridophytes (lycophytes and monilophytes), gymnosperms and the monocot and eudicot angiosperms.
Collapse
|
27
|
Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: The effect of hemicelluloses on hydrogen bonding. Carbohydr Polym 2018; 208:97-107. [PMID: 30658836 DOI: 10.1016/j.carbpol.2018.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022]
Abstract
Inter-fibre adhesion is a key contributing factor to the mechanical response and functionality of cellulose-based biomaterials. 'Dip-and-Drag' lateral force atomic force microscopy technique is used here to evaluate the influence of arabinoxylan and xyloglucan on interactions between nanoscale cellulose fibres within a hydrated network of bacterial cellulose. A cohesive zone model of the detachment event between two nano-fibres is used to interpret the experimental data and evaluate inter-fibre adhesion energy. The presence of xyloglucan or arabinoxylan is found to increase the adhesive energy by a factor of 4.3 and 1.3, respectively, which is consistent with these two hemicellulose polysaccharides having different specificity of hydrogen bonding with cellulose. Importantly, xyloglucan's ability to strengthen adhesion between cellulose nano-fibres supports emergent models of the primary plant cell walls (Park & Cosgrove, 2012b), which suggest that xyloglucan chains confined within cellulose-cellulose junctions play a key role in cell wall's mechanical response.
Collapse
|
28
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
29
|
Gartaula G, Dhital S, Netzel G, Flanagan BM, Yakubov GE, Beahan CT, Collins HM, Burton RA, Bacic A, Gidley MJ. Quantitative structural organisation model for wheat endosperm cell walls: Cellulose as an important constituent. Carbohydr Polym 2018; 196:199-208. [DOI: 10.1016/j.carbpol.2018.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 12/01/2022]
|
30
|
Yang N, Zhang W, Ye C, Chen X, Ling S. Nanobiopolymers Fabrication and Their Life Cycle Assessments. Biotechnol J 2018; 14:e1700754. [PMID: 29952081 DOI: 10.1002/biot.201700754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/24/2018] [Indexed: 11/09/2022]
Abstract
Living organisms produced nanopolymers (nanobiopolymers for short), such as nanocellulose, nanochitin, nanosilk, nanostarch, and microbial nanobiopolymers, having received widely scientific and engineering interests in recent years. Compare with petroleum-based polymers, biopolymers are sustainable and biodegradable. The unique structural features that stem from nanosized effects, such as ultrahigh aspect ratio and length-diameter ratio, further endow nanobiopolymers with high transparence and versatile processability. To fabricate these nanobiopolymers, a variety of mechanical, chemical, and synthetic biology techniques have been developed. The applications of the isolated nanobiopolymers have been extended from polymer fillers into wide emerging high-tech fields, such as biomedical devices, bioplastics, display panels, ultrafiltration membranes, energy storage devices, and catalytic supports. Accordingly, in the review, the authors first introduce isolation techniques to fabricate nanocellulose, nanochitin, nanosilk, and nanostarch. Then, the authors summarized the nanobiopolymers produced from biosynthetic pathway, including microbial polyamides, polysaccharides, and polyesters. On the other hand, most of these techniques require high energy consumption and usage of chemical reagents. In this regard, life cycle assessment offered a quantitative route to precisely evaluate and compare environmental benefits of different artificial isolation approaches, which are also summarized in the second section of the review.
Collapse
Affiliation(s)
- Ningning Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wenwen Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xue Chen
- School of Entrepreneurship and Management, ShanghaiTech University, Shanghai, 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
31
|
Watanabe Y, Schneider R, Barkwill S, Gonzales-Vigil E, Hill JL, Samuels AL, Persson S, Mansfield SD. Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. Proc Natl Acad Sci U S A 2018; 115:E6366-E6374. [PMID: 29871949 PMCID: PMC6142216 DOI: 10.1073/pnas.1802113115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs.
Collapse
Affiliation(s)
- Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rene Schneider
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Sarah Barkwill
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eliana Gonzales-Vigil
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph L Hill
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia;
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
32
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
33
|
Phyo P, Wang T, Yang Y, O’Neill H, Hong M. Direct Determination of Hydroxymethyl Conformations of Plant Cell Wall Cellulose Using 1H Polarization Transfer Solid-State NMR. Biomacromolecules 2018; 19:1485-1497. [DOI: 10.1021/acs.biomac.8b00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pyae Phyo
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Yu Yang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Hugh O’Neill
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Martínez-Sanz M, Pettolino F, Flanagan B, Gidley MJ, Gilbert EP. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr Polym 2017; 175:450-463. [DOI: 10.1016/j.carbpol.2017.07.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
|
35
|
Johnson KL, Gidley MJ, Bacic A, Doblin MS. Cell wall biomechanics: a tractable challenge in manipulating plant cell walls 'fit for purpose'! Curr Opin Biotechnol 2017; 49:163-171. [PMID: 28915438 DOI: 10.1016/j.copbio.2017.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
The complexity and recalcitrance of plant cell walls has contributed to the success of plants colonising land. Conversely, these attributes have also impeded progress in understanding the roles of walls in controlling and directing developmental processes during plant growth and also in unlocking their potential for biotechnological innovation. Recent technological advances have enabled the probing of how primary wall structures and molecular interactions of polysaccharides define their biomechanical (and hence functional) properties. The outputs have led to a new paradigm that places greater emphasis on understanding how the wall, as a biomechanical construct and cell surface sensor, modulates both plant growth and material properties. Armed with this knowledge, we are gaining the capacity to design walls 'fit for (biotechnological) purpose'!
Collapse
Affiliation(s)
- Kim L Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
36
|
Norris JH, Li X, Huang S, Van de Meene AML, Tran ML, Killeavy E, Chaves AM, Mallon B, Mercure D, Tan HT, Burton RA, Doblin MS, Kim SH, Roberts AW. Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels with Seed Plants. PLANT PHYSIOLOGY 2017; 175:210-222. [PMID: 28768816 PMCID: PMC5580779 DOI: 10.1104/pp.17.00885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 05/02/2023]
Abstract
The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis.
Collapse
Affiliation(s)
- Joanna H Norris
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Xingxing Li
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Shixin Huang
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Allison M L Van de Meene
- Australian Research Council Centre of Excellence in Plant Cell Walls, Plant Cell Biology Research Centre, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mai L Tran
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Erin Killeavy
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Arielle M Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Bailey Mallon
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Danielle Mercure
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| | - Hwei-Ting Tan
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, Plant Cell Biology Research Centre, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Seong H Kim
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Alison W Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881
| |
Collapse
|
37
|
|
38
|
Kannam SK, Oehme DP, Doblin MS, Gidley MJ, Bacic A, Downton MT. Hydrogen bonds and twist in cellulose microfibrils. Carbohydr Polym 2017; 175:433-439. [PMID: 28917886 DOI: 10.1016/j.carbpol.2017.07.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
There is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges. For the majority of simulations a consistent right handed twist is observed. The exceptions are two sets of simulations that block the O2-O6' intrachain hydrogen bond, where no consistent twist is observed in multiple independent simulations suggesting that the O2-O6' hydrogen bond can drive twist. However, in a further simulation where exocyclic group rotation is also blocked, right-handed twist still develops suggesting that intrachain hydrogen bonds are not necessary to drive twist in cellulose microfibrils.
Collapse
Affiliation(s)
- Sridhar Kumar Kannam
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Daniel P Oehme
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew T Downton
- IBM Research Australia, Level 5, 204 Lygon Street, 3053 Carlton, Victoria, Australia.
| |
Collapse
|
39
|
Busse-Wicher M, Li A, Silveira RL, Pereira CS, Tryfona T, Gomes TCF, Skaf MS, Dupree P. Evolution of Xylan Substitution Patterns in Gymnosperms and Angiosperms: Implications for Xylan Interaction with Cellulose. PLANT PHYSIOLOGY 2016; 171:2418-31. [PMID: 27325663 PMCID: PMC4972281 DOI: 10.1104/pp.16.00539] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/16/2016] [Indexed: 05/17/2023]
Abstract
The interaction between cellulose and xylan is important for the load-bearing secondary cell wall of flowering plants. Based on the precise, evenly spaced pattern of acetyl and glucuronosyl (MeGlcA) xylan substitutions in eudicots, we recently proposed that an unsubstituted face of xylan in a 2-fold helical screw can hydrogen bond to the hydrophilic surfaces of cellulose microfibrils. In gymnosperm cell walls, any role for xylan is unclear, and glucomannan is thought to be the important cellulose-binding polysaccharide. Here, we analyzed xylan from the secondary cell walls of the four gymnosperm lineages (Conifer, Gingko, Cycad, and Gnetophyta). Conifer, Gingko, and Cycad xylan lacks acetylation but is modified by arabinose and MeGlcA. Interestingly, the arabinosyl substitutions are located two xylosyl residues from MeGlcA, which is itself placed precisely on every sixth xylosyl residue. Notably, the Gnetophyta xylan is more akin to early-branching angiosperms and eudicot xylan, lacking arabinose but possessing acetylation on alternate xylosyl residues. All these precise substitution patterns are compatible with gymnosperm xylan binding to hydrophilic surfaces of cellulose. Molecular dynamics simulations support the stable binding of 2-fold screw conifer xylan to the hydrophilic face of cellulose microfibrils. Moreover, the binding of multiple xylan chains to adjacent planes of the cellulose fibril stabilizes the interaction further. Our results show that the type of xylan substitution varies, but an even pattern of xylan substitution is maintained among vascular plants. This suggests that 2-fold screw xylan binds hydrophilic faces of cellulose in eudicots, early-branching angiosperm, and gymnosperm cell walls.
Collapse
Affiliation(s)
- Marta Busse-Wicher
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| | - An Li
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| | - Rodrigo L Silveira
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| | - Caroline S Pereira
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| | - Theodora Tryfona
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| | - Thiago C F Gomes
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| | - Munir S Skaf
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| | - Paul Dupree
- Department of Biochemistry and The Leverhulme Trust Centre for Natural Material Innovation, University of Cambridge, Cambridge CB2 1QW, United Kingdom (M.B.-W., A.L., T.T., P.D.); Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13084-862, Brazil (R.L.S, C.S.P., M.S.S.); andDepartment of Chemistry, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, SP 12228-900, Brazil (T.C.F.G.)
| |
Collapse
|
40
|
Sorieul M, Dickson A, Hill SJ, Pearson H. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite. MATERIALS 2016; 9:ma9080618. [PMID: 28773739 PMCID: PMC5509024 DOI: 10.3390/ma9080618] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023]
Abstract
Plant cell walls form an organic complex composite material that fulfils various functions. The hierarchical structure of this material is generated from the integration of its elementary components. This review provides an overview of wood as a composite material followed by its deconstruction into fibres that can then be incorporated into biobased composites. Firstly, the fibres are defined, and their various origins are discussed. Then, the organisation of cell walls and their components are described. The emphasis is on the molecular interactions of the cellulose microfibrils, lignin and hemicelluloses in planta. Hemicelluloses of diverse species and cell walls are described. Details of their organisation in the primary cell wall are provided, as understanding of the role of hemicellulose has recently evolved and is likely to affect our perception and future study of their secondary cell wall homologs. The importance of the presence of water on wood mechanical properties is also discussed. These sections provide the basis for understanding the molecular arrangements and interactions of the components and how they influence changes in fibre properties once isolated. A range of pulping processes can be used to individualise wood fibres, but these can cause damage to the fibres. Therefore, issues relating to fibre production are discussed along with the dispersion of wood fibres during extrusion. The final section explores various ways to improve fibres obtained from wood.
Collapse
Affiliation(s)
| | - Alan Dickson
- Scion, Private Bag 3020, Rotorua 3046, New Zealand.
| | | | | |
Collapse
|
41
|
Silveira RL, Stoyanov SR, Kovalenko A, Skaf MS. Cellulose Aggregation under Hydrothermal Pretreatment Conditions. Biomacromolecules 2016; 17:2582-90. [DOI: 10.1021/acs.biomac.6b00603] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rodrigo L. Silveira
- Institute
of Chemistry, University of Campinas, Caixa Postal 6154, Campinas, São Paulo 13083-970, Brazil
| | - Stanislav R. Stoyanov
- National Institute for Nanotechnology, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, 9107 −
116 Street, Edmonton, Alberta T6G 2 V4, Canada
- Department
of Mechanical Engineering, University of Alberta, 4-9 Mechanical
Engineering Building, Edmonton, Alberta T6G 2G8, Canada
- CanmetENERGY-Devon,
Natural Resources Canada, 1 Oil Patch
Drive, Devon, Alberta T9G 1A8, Canada
| | - Andriy Kovalenko
- National Institute for Nanotechnology, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
- Department
of Mechanical Engineering, University of Alberta, 4-9 Mechanical
Engineering Building, Edmonton, Alberta T6G 2G8, Canada
| | - Munir S. Skaf
- Institute
of Chemistry, University of Campinas, Caixa Postal 6154, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
42
|
Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee JG, Slabaugh E, Vandavasi VG, O’Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex. Sci Rep 2016; 6:28696. [PMID: 27345599 PMCID: PMC4921827 DOI: 10.1038/srep28696] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains.
Collapse
Affiliation(s)
- B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Katayoun Mansouri
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Abhishek Singh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Juan Du
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Jonathan K. Davis
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jung-Goo Lee
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Erin Slabaugh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Hugh O’Neill
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric M. Roberts
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Yaroslava G. Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Candace H. Haigler
- Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
43
|
Wang T, Yang H, Kubicki JD, Hong M. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations. Biomacromolecules 2016; 17:2210-22. [PMID: 27192562 DOI: 10.1021/acs.biomac.6b00441] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of bacterial, algal, and animal cellulose, interacts with hemicellulose, is poorly hydrated, and is targeted by the protein expansin during wall loosening. To obtain information about the C6 hydroxymethyl conformation of these plant celluloses, we carried out DFT calculations of (13)C chemical shifts, using the Iα and Iβ crystal structures as templates and varying the C5-C6 torsion angle. Comparison with the experimental chemical shifts suggests that all interior cellulose favor the tg conformation, but cellulose d also has a similar propensity to adopt the gt conformation. These results indicate that cellulose in plant primary cell walls, due to their interactions with matrix polysaccharides, and has polymorphic structures that are not a simple superposition of the Iα and Iβ allomorphs, thus distinguishing them from bacterial and animal celluloses.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Hui Yang
- Department of Geosciences, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - James D Kubicki
- Department of Geological Sciences, University of Texas at El Paso , El Paso, Texas 79968, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Xylan decoration patterns and the plant secondary cell wall molecular architecture. Biochem Soc Trans 2016; 44:74-8. [DOI: 10.1042/bst20150183] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular architecture of plant secondary cell walls is still not resolved. There are several proposed structures for cellulose fibrils, the main component of plant cell walls and the conformation of other molecules is even less well known. Glucuronic acid (GlcA) substitution of xylan (GUX) enzymes, in CAZy family glycosyl transferase (GT)8, decorate the xylan backbone with various specific patterns of GlcA. It was recently discovered that dicot xylan has a domain with the side chain decorations distributed on every second unit of the backbone (xylose). If the xylan backbone folds in a similar way to glucan chains in cellulose (2-fold helix), this kind of arrangement may allow the undecorated side of the xylan chain to hydrogen bond with the hydrophilic surface of cellulose microfibrils. MD simulations suggest that such interactions are energetically stable. We discuss the possible role of this xylan decoration pattern in building of the plant cell wall.
Collapse
|
45
|
Vandavasi VG, Putnam DK, Zhang Q, Petridis L, Heller WT, Nixon BT, Haigler CH, Kalluri U, Coates L, Langan P, Smith JC, Meiler J, O'Neill H. A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers. PLANT PHYSIOLOGY 2016; 170:123-35. [PMID: 26556795 PMCID: PMC4704586 DOI: 10.1104/pp.15.01356] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/05/2015] [Indexed: 05/18/2023]
Abstract
A cellulose synthesis complex with a "rosette" shape is responsible for synthesis of cellulose chains and their assembly into microfibrils within the cell walls of land plants and their charophyte algal progenitors. The number of cellulose synthase proteins in this large multisubunit transmembrane protein complex and the number of cellulose chains in a microfibril have been debated for many years. This work reports a low resolution structure of the catalytic domain of CESA1 from Arabidopsis (Arabidopsis thaliana; AtCESA1CatD) determined by small-angle scattering techniques and provides the first experimental evidence for the self-assembly of CESA into a stable trimer in solution. The catalytic domain was overexpressed in Escherichia coli, and using a two-step procedure, it was possible to isolate monomeric and trimeric forms of AtCESA1CatD. The conformation of monomeric and trimeric AtCESA1CatD proteins were studied using small-angle neutron scattering and small-angle x-ray scattering. A series of AtCESA1CatD trimer computational models were compared with the small-angle x-ray scattering trimer profile to explore the possible arrangement of the monomers in the trimers. Several candidate trimers were identified with monomers oriented such that the newly synthesized cellulose chains project toward the cell membrane. In these models, the class-specific region is found at the periphery of the complex, and the plant-conserved region forms the base of the trimer. This study strongly supports the "hexamer of trimers" model for the rosette cellulose synthesis complex that synthesizes an 18-chain cellulose microfibril as its fundamental product.
Collapse
Affiliation(s)
- Venu Gopal Vandavasi
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Daniel K Putnam
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Qiu Zhang
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Loukas Petridis
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - William T Heller
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - B Tracy Nixon
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Candace H Haigler
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Udaya Kalluri
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Leighton Coates
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Paul Langan
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Jeremy C Smith
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Jens Meiler
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| | - Hugh O'Neill
- Biology and Soft Matter Division (V.G.V., Q.Z., W.T.H., L.C., H.O.), BioSciences Division (L.P., U.K.), Center for Molecular Biophysics (L.P., J.C.S.), and Neutron Sciences Directorate (P.L.), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831;Department of Biomedical Informatics (D.K.P., J.M.) and Department of Chemistry (J.M.), Vanderbilt University, Nashville, Tennessee 37232;Biochemistry and Molecular Biology, Pennsylvania State University, Pennsylvania 16802 (B.T.N.);Department of Crop Science and Department of Plant and Microbial Biology, North Carolina State University, North Carolina 27695 (C.H.H.); andDepartment of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996 (J.C.S., H.O.)
| |
Collapse
|
46
|
Wang T, Park YB, Cosgrove DJ, Hong M. Cellulose-Pectin Spatial Contacts Are Inherent to Never-Dried Arabidopsis Primary Cell Walls: Evidence from Solid-State Nuclear Magnetic Resonance. PLANT PHYSIOLOGY 2015; 168:871-84. [PMID: 26036615 PMCID: PMC4741345 DOI: 10.1104/pp.15.00665] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/29/2015] [Indexed: 05/18/2023]
Abstract
The structural role of pectins in plant primary cell walls is not yet well understood because of the complex and disordered nature of the cell wall polymers. We recently introduced multidimensional solid-state nuclear magnetic resonance spectroscopy to characterize the spatial proximities of wall polysaccharides. The data showed extensive cross peaks between pectins and cellulose in the primary wall of Arabidopsis (Arabidopsis thaliana), indicating subnanometer contacts between the two polysaccharides. This result was unexpected because stable pectin-cellulose interactions are not predicted by in vitro binding assays and prevailing cell wall models. To investigate whether the spatial contacts that give rise to the cross peaks are artifacts of sample preparation, we now compare never-dried Arabidopsis primary walls with dehydrated and rehydrated samples. One-dimensional (13)C spectra, two-dimensional (13)C-(13)C correlation spectra, water-polysaccharide correlation spectra, and dynamics data all indicate that the structure, mobility, and intermolecular contacts of the polysaccharides are indistinguishable between never-dried and rehydrated walls. Moreover, a partially depectinated cell wall in which 40% of homogalacturonan is extracted retains cellulose-pectin cross peaks, indicating that the cellulose-pectin contacts are not due to molecular crowding. The cross peaks are observed both at -20 °C and at ambient temperature, thus ruling out freezing as a cause of spatial contacts. These results indicate that rhamnogalacturonan I and a portion of homogalacturonan have significant interactions with cellulose microfibrils in the native primary wall. This pectin-cellulose association may be formed during wall biosynthesis and may involve pectin entrapment in or between cellulose microfibrils, which cannot be mimicked by in vitro binding assays.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); andDepartment of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.B.P., D.J.C.)
| | - Yong Bum Park
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); andDepartment of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.B.P., D.J.C.)
| | - Daniel J Cosgrove
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); andDepartment of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.B.P., D.J.C.)
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (T.W., M.H.); andDepartment of Biology, Pennsylvania State University, University Park, Pennsylvania 16802 (Y.B.P., D.J.C.)
| |
Collapse
|