1
|
Peng Y, Liang Z, Cai M, Wang J, Li D, Chen Q, Du X, Gu R, Wang G, Schnable PS, Wang J, Li L. ZmPTOX1, a plastid terminal oxidase, contributes to redox homeostasis during seed development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:460-477. [PMID: 38678554 DOI: 10.1111/tpj.16776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.
Collapse
Affiliation(s)
- Yixuan Peng
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhi Liang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Minghao Cai
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jie Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Delin Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Quanquan Chen
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuemei Du
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Riliang Gu
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, 2035 Roy J. Carver Co-Lab, Ames, 50011-3650, Iowa, USA
| | - Jianhua Wang
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
| | - Li Li
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, P. R. China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
2
|
Rodriguez-Heredia M, Saccon F, Wilson S, Finazzi G, Ruban AV, Hanke GT. Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. PLANT PHYSIOLOGY 2022; 188:1028-1042. [PMID: 35060611 PMCID: PMC8825262 DOI: 10.1093/plphys/kiab550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.
Collapse
Affiliation(s)
| | - Francesco Saccon
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Sam Wilson
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Alexander V Ruban
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Guy T Hanke
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
3
|
Xue C, Tai P, Gao Y, Qu B. Phytoremediation potential of hybrids of the exotic plant Xanthium strumarium and its native congener Xanthium sibiricum for cadmium-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1292-1300. [PMID: 35062836 DOI: 10.1080/15226514.2021.2025205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exotic plants could play an essential role in the restoration of heavy metal-contaminated soil. This study evaluated the tolerance of and extraction of cadmium (Cd) by ZCR (CR♀ × LT♂), hybrids of Xanthium strumarium (LT, exotic species) and X. sibiricum (CR, indigenous congener), and their parental species under different Cd treatments (0, 10, 40, and 80 mg·kg-1). The results showed that the hybrids had significantly improved tolerance to Cd. Under Cd stress, the biomass of ZCR increased by more than 50% on average compared with that of CR. Moreover, the hybrids showed a more remarkable ability to transport Cd from the root to the shoot. The Cd content of the shoots of ZCR increased by 128.33, 147.22, and 252.63% when treated with 10, 40, and 80 mg·kg-1 Cd, respectively. ZCR stored more than 70% of Cd in litter leaves, thereby reducing the toxic effects of Cd on photosynthesis and growth. The results showed that ZCR showed excellent Cd tolerance and enrichment in the presence of Cd. The hybrids of Xanthium strumarium and its native congener X. sibiricum may remediate soil Cd pollution.Novelty statementWith the changing world economy and increasing human activities, exotic plants have become a global issue of common concern to the international community. This study describes new findings on using hybrids of the exotic plant of Xanthium strumarium and its native congener Xanthium sibiricum for the restoration of cadmium-contaminated soils. Under Cd stress, the hybrids' biomass, tolerance, and ability to accumulate Cd were significantly higher than that of X. sibiricum, indicating that hybrids gained useful heavy metal extraction traits from X. strumarium.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yingmei Gao
- Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| | - Bo Qu
- Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Biological Invasions and Global Changes, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Vilyanen D, Naydov I, Ivanov B, Borisova-Mubarakshina M, Kozuleva M. Inhibition of plastoquinol oxidation at the cytochrome b 6f complex by dinitrophenyl ether of iodonitrothymol (DNP-INT) depends on irradiance and H + uptake by thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148506. [PMID: 34751144 DOI: 10.1016/j.bbabio.2021.148506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Inhibitory analysis is a useful tool for studying reactions in the photosynthetic apparatus. After introducing by Aachim Trebst in 1978, dinitrophenylether of iodonitrothymol (DNP-INT), a competitive inhibitor of plastoquinol oxidation at the cytochrome (cyt.) b6f complex, has been widely applied to study reactions occurring in the plastoquinone pool and the cyt. b6f complex. Here we examine the inhibitory efficiency of DNP-INT by implementing three approaches to estimate the extent of blockage of electron flow from the plastoquinone pool to photosystem I in isolated thylakoids from spinach (Spinacia oleracea). We confirm that DNP-INT is a potent inhibitor of electron flow to photosystem I and demonstrate that inhibitory action of DNP-INT depends on irradiance and H+ uptake by thylakoid membranes. Based on these findings, we infer that affinity of the quinol-oxidizing site of the cyt. b6f complex to DNP-INT is increased in the light due to hydrogen bonding between DNP-INT molecules and acidic amino acid residue(s), which is (are) protonated in the light.
Collapse
Affiliation(s)
- Daria Vilyanen
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Ilya Naydov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Boris Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Maria Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia
| | - Marina Kozuleva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
5
|
Zhuang Y, Wei M, Ling C, Liu Y, Amin AK, Li P, Li P, Hu X, Bao H, Huo H, Smalle J, Wang S. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Rep 2021; 36:109384. [PMID: 34260941 DOI: 10.1016/j.celrep.2021.109384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The chloroplast is the main organelle for stress-induced production of reactive oxygen species (ROS). However, how chloroplastic ROS homeostasis is maintained under salt stress is largely unknown. We show that EGY3, a gene encoding a chloroplast-localized protein, is induced by salt and oxidative stresses. The loss of EGY3 function causes stress hypersensitivity while EGY3 overexpression increases the tolerance to both salt and chloroplastic oxidative stresses. EGY3 interacts with chloroplastic Cu/Zn-SOD2 (CSD2) and promotes CSD2 stability under stress conditions. In egy3-1 mutant plants, the stress-induced CSD2 degradation limits H2O2 production in chloroplasts and impairs H2O2-mediated retrograde signaling, as indicated by the decreased expression of retrograde-signal-responsive genes required for stress tolerance. Both exogenous application of H2O2 (or APX inhibitor) and CSD2 overexpression can rescue the salt-stress hypersensitivity of egy3-1 mutants. Our findings reveal that EGY3 enhances the tolerance to salt stress by promoting the CSD2 stability and H2O2-mediated chloroplastic retrograde signaling.
Collapse
Affiliation(s)
- Yong Zhuang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ming Wei
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chengcheng Ling
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yangxuan Liu
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Abdul Karim Amin
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Pengwei Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xufan Hu
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Huaxu Bao
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL 32703, USA
| | - Jan Smalle
- Plant Physiology, Biochemistry and Molecular Biology Program, Department of Plant and Soil Sciences, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China; CAS Center for Excellence in Molecular Plant Sciences, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Mauceri A, Abenavoli MR, Toppino L, Panda S, Mercati F, Aci MM, Aharoni A, Sunseri F, Rotino GL, Lupini A. Transcriptomics reveal new insights into molecular regulation of nitrogen use efficiency in Solanum melongena. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4237-4253. [PMID: 33711100 DOI: 10.1093/jxb/erab121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen-use efficiency (NUE) is a complex trait of great interest in breeding programs because through its improvement, high crop yields can be maintained whilst N supply is reduced. In this study, we report a transcriptomic analysis of four NUE-contrasting eggplant (Solanum melongena) genotypes following short- and long-term exposure to low N, to identify key genes related to NUE in the roots and shoots. The differentially expressed genes in the high-NUE genotypes are involved in the light-harvesting complex and receptor, a ferredoxin-NADP reductase, a catalase and WRKY33. These genes were then used as bait for a co-expression gene network analysis in order to identify genes with the same trends in expression. This showed that up-regulation of WRKY33 triggered higher expression of a cluster of 21 genes and also of other genes, many of which were related to N-metabolism, that were able to improve both nitrogen uptake efficiency and nitrogen utilization efficiency, the two components of NUE. We also conducted an independent de novo experiment to validate the significantly higher expression of WRKY33 and its gene cluster in the high-NUE genotypes. Finally, examination of an Arabidopsis transgenic 35S::AtWRKY33 overexpression line showed that it had a bigger root system and was more efficient at taking up N from the soil, confirming the pivotal role of WRKY33 for NUE improvement.
Collapse
Affiliation(s)
- Antonio Mauceri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Maria Rosa Abenavoli
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Laura Toppino
- CREA - Research Centre for Genomics and Bioinformatics, Via Paullese 28, Montanaso Lombardo, Italy
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Mercati
- Istituto di Bioscienze e Biorisorse CNR - Consiglio Nazionale Ricerche, Corso Calatafimi 414, Palermo, Italy
| | - Meriem Miyassa Aci
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Sunseri
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| | - Giuseppe Leonardo Rotino
- CREA - Research Centre for Genomics and Bioinformatics, Via Paullese 28, Montanaso Lombardo, Italy
| | - Antonio Lupini
- Dipartimento Agraria, Università degli Studi Mediterranea di Reggio Calabria, Loc. Feo di Vito, Reggio Calabria, Italy
| |
Collapse
|
7
|
Grabsztunowicz M, Rantala M, Ivanauskaite A, Blomster T, Koskela MM, Vuorinen K, Tyystjärvi E, Burow M, Overmyer K, Mähönen AP, Mulo P. Root-type ferredoxin-NADP + oxidoreductase isoforms in Arabidopsis thaliana: Expression patterns, location and stress responses. PLANT, CELL & ENVIRONMENT 2021; 44:548-558. [PMID: 33131061 DOI: 10.1111/pce.13932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis, two leaf-type ferredoxin-NADP+ oxidoreductase (LFNR) isoforms function in photosynthetic electron flow in reduction of NADP+ , while two root-type FNR (RFNR) isoforms catalyse reduction of ferredoxin in non-photosynthetic plastids. As the key to understanding, the function of RFNRs might lie in their spatial and temporal distribution in different plant tissues and cell types, we examined expression of RFNR1 and RFNR2 genes using β-glucuronidase (GUS) reporter lines and investigated accumulation of distinct RFNR isoforms using a GFP approach and Western blotting upon various stresses. We show that while RFNR1 promoter is active in leaf veins, root tips and in the stele of roots, RFNR2 promoter activity is present in leaf tips and root stele, epidermis and cortex. RFNR1 protein accumulates as a soluble protein within the plastids of root stele cells, while RFNR2 is mainly present in the outer root layers. Ozone treatment of plants enhanced accumulation of RFNR1, whereas low temperature treatment specifically affected RFNR2 accumulation in roots. We further discuss the physiological roles of RFNR1 and RFNR2 based on characterization of rfnr1 and rfnr2 knock-out plants and show that although the function of these proteins is partly redundant, the RFNR proteins are essential for plant development and survival.
Collapse
Affiliation(s)
- Magda Grabsztunowicz
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Tiina Blomster
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Minna M Koskela
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Katariina Vuorinen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ari P Mähönen
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Paula Mulo
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow. Biochem J 2020; 477:1631-1650. [PMID: 32267468 DOI: 10.1042/bcj20190914] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
Proton gradient regulation 5 (PGR5) is involved in the control of photosynthetic electron transfer, but its mechanistic role is not yet clear. Several models have been proposed to explain phenotypes such as a diminished steady-state proton motive force (pmf) and increased photodamage of photosystem I (PSI). Playing a regulatory role in cyclic electron flow (CEF) around PSI, PGR5 contributes indirectly to PSI protection by enhancing photosynthetic control, which is a pH-dependent down-regulation of electron transfer at the cytochrome b6f complex (b6f). Here, we re-evaluated the role of PGR5 in the green alga Chlamydomonas reinhardtii and conclude that pgr5 possesses a dysfunctional b6f. Our data indicate that the b6f low-potential chain redox activity likely operated in two distinct modes - via the canonical Q cycle during linear electron flow and via an alternative Q cycle during CEF, which allowed efficient oxidation of the low-potential chain in the WT b6f. A switch between the two Q cycle modes was dependent on PGR5 and relied on unknown stromal electron carrier(s), which were a general requirement for b6f activity. In CEF-favoring conditions, the electron transfer bottleneck in pgr5 was the b6f, in which insufficient low-potential chain redox tuning might account for the mutant pmf phenotype. By attributing a ferredoxin-plastoquinone reductase activity to the b6f and investigating a PGR5 cysteine mutant, a current model of CEF is challenged.
Collapse
|
9
|
Sukhova E, Khlopkov A, Vodeneev V, Sukhov V. Simulation of a nonphotochemical quenching in plant leaf under different light intensities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148138. [PMID: 31825810 DOI: 10.1016/j.bbabio.2019.148138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
An analysis of photosynthetic response on action of stressors is an important problem, which can be solved by experimental and theoretical methods, including mathematical modeling of photosynthetic processes. The aim of our work was elaboration of a mathematical model, which simulated development of a nonphotochemical quenching under different light conditions. We analyzed two variants of the model: the first variant included a light-induced activation of the electron transport chain; in contrast, the second variant did not describe this activation. Both variants of the model described interactions between transitions from open reaction centers to closed ones (and vice versa) and development of the nonphotochemical quenching. Investigation of both variants of the model showed well qualitative and quantitative accordance between simulated and experimental changes in coefficient of the nophotochemical quenching which were analyzed under different light regimes: (i) the stepped increase of the light intensity without dark intervals between steps, (ii) periodical illuminations by different light intensities with constant durations which were separated by constant dark intervals, and (iii) periodical illuminations by the constant light intensity with different durations which were separated by different dark intervals. Thus, the model can be used for theoretical prediction of stress changes in photosynthesis under fluctuations in light intensity and search of optimal regimes of plant illumination.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - Andrey Khlopkov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
10
|
Alova A, Erofeev A, Gorelkin P, Bibikova T, Korchev Y, Majouga A, Bulychev A. Prolonged oxygen depletion in microwounded cells of Chara corallina detected with novel oxygen nanosensors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:386-398. [PMID: 31563950 DOI: 10.1093/jxb/erz433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Primary physicochemical steps in microwounding of plants were investigated using electrochemical nano- and microprobes, with a focus on the role of oxygen in the wounding responses of individual plant cells. Electrochemical measurements of cell oxygen content were made with carbon-filled quartz micropipettes with platinum-coated tips (oxygen nanosensors). These novel platinum nanoelectrodes are useful for understanding cell oxygen metabolism and can be employed to study the redox biochemistry and biology of cells, tissues and organisms. We show here that microinjury of Chara corallina internodal cells with the tip of a glass micropipette is associated with a drastic decrease in oxygen concentration at the vicinity of the stimulation site. This decrease is reversible and lasts for up to 40 minutes. Membrane stretching, calcium influx, and cytoskeleton rearrangements were found to be essential for the localized oxygen depletion induced by cell wall microwounding. Inhibition of electron transport in chloroplasts or mitochondria did not affect the magnitude or timing of the observed response. In contrast, the inhibition of NADPH oxidase activity caused a significant reduction in the amplitude of the decrease in oxygen concentration. We suggest that the observed creation of localized anoxic conditions in response to cell wall puncture might be mediated by NADPH oxidase.
Collapse
Affiliation(s)
- Anna Alova
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
| | - Alexander Erofeev
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
- National University of Science and Technology 'MISIS', Moscow, Russian Federation
| | - Petr Gorelkin
- Medical Nanotechnology LLC, Skolkovo Innovation Center, Moscow, Russian Federation
| | - Tatyana Bibikova
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
| | - Yury Korchev
- Department of Medicine, Imperial College, London, UK
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Alexander Majouga
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya, Moscow, Russian Federation
| | - Alexander Bulychev
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
| |
Collapse
|
11
|
Fulgosi H, Vojta L. Tweaking Photosynthesis: FNR-TROL Interaction as Potential Target for Crop Fortification. FRONTIERS IN PLANT SCIENCE 2020; 11:318. [PMID: 32265967 PMCID: PMC7108012 DOI: 10.3389/fpls.2020.00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/04/2020] [Indexed: 05/10/2023]
|
12
|
Annibaldi V, Yu T, Breslin CB. Electrostatic interactions between viologens and a sulfated β-cyclodextrin; formation of insoluble aggregates with benzyl viologens. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wei Y, Wang Y, Wu X, Shu S, Sun J, Guo S. Redox and thylakoid membrane proteomic analysis reveals the Momordica (Momordica charantia L.) rootstock-induced photoprotection of cucumber leaves under short-term heat stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:98-108. [PMID: 30660678 DOI: 10.1016/j.plaphy.2019.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Heat stress adversely affects plant physiological and metabolic processes and is considered an important constraint on crop growth and productivity in agriculture worldwide. Grafting techniques are capable of mitigating various stresses. Here, compared with self-grafted cucumbers subjected to 42 °C heat stress for 24 h, we found that Momordica-grafted cucumbers exhibited higher cytomembrane thermostability, less photoinhibition reflected by their chlorophyll fluorescence, and a reduction in oxidative stress. To better understand the mechanism, optimized Blue-Native/SDS-PAGE two-dimensional electrophoresis (2-DE) was firstly applied to entire thylakoid membrane of grafted cucumbers, and 25 significantly differential accumulated protein spots were identified by MALDI-TOF/TOF MS analysis. The proteomic analysis revealed that high temperatures suppressed the accumulation of 13 proteins in self-grafted cucumbers, while Momordica rootstock stimulated the accumulation of 12 of these proteins. The transcriptional analysis indicated that grafting onto Momordica significantly increased the expression of genes that encode the photosystem II subunit S (PsbS) and minor light-harvesting complexes (CP24, CP26 and CP29.1), which are closely associated with non-photochemical quenching (NPQ) after heat shock. Immunoblotting for PsbS corroborated the Momordica-induced acceleration of heat dissipation. Taken together, Momordica rootstock alleviated heat-induced photoinhibition by maintaining intracellular redox homeostasis, stabilizing the protein library of the thylakoid membrane and modulating NPQ in the scions.
Collapse
Affiliation(s)
- Ying Wei
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyi Wu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement in Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China.
| |
Collapse
|
14
|
Ji Y, Li Q, Liu G, Selvaraj G, Zheng Z, Zou J, Wei Y. Roles of Cytosolic Glutamine Synthetases in Arabidopsis Development and Stress Responses. PLANT & CELL PHYSIOLOGY 2019; 60:657-671. [PMID: 30649517 DOI: 10.1093/pcp/pcy235] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 12/05/2018] [Indexed: 05/14/2023]
Abstract
Glutamine (Gln) has as a central role in nitrogen (N) and carbon (C) metabolism. It is synthesized during assimilation of ammonium by cytosolic and plastidial glutamine synthetases (GS; EC 6.1.1.3). Arabidopsis thaliana has five cytosolic GS (GS1) encoding genes designated as GLN1;1-GLN1;5 and one plastidial GS (GS2) gene. In this report that concerns cytosolic GS, we show by analyzing single, double and triple mutants that single genes were dispensable for growth under laboratory conditions. However, loss of two or three GS1 isoforms impacted plant form, function and the capacity to tolerate abiotic stresses. The loss of GLN1;1, GLN1;2 and GLN1;3 resulted in a significant reduction of vegetative growth and seed size. In addition, we infer that GLN1;4 is essential for pollen viability but only in the absence of GLN1;1 and GLN1;3. Transcript profiling revealed that expression of GLN1;1, GLN1;2, GLN1;3 and GLN1;4 was repressed by salinity and cold stresses. Among all single gln1 mutants, growth of gln1;1 seedlings showed an enhanced sensitivity to the GS inhibitor phosphinothricin (PPT), as well as to cold and salinity treatments, suggesting a non-redundant role for GLN1;1. Furthermore, the increased sensitivity of gln1;1 mutants to methyl viologen was associated with an accelerated accumulation of reactive oxygen species (ROS) in the thylakoid of chloroplasts. Our data demonstrate, for the first time, an involvement of the cytosolic GS1 in modulating ROS homeostasis in chloroplasts. Collectively, the current study establishes a link between cytosolic Gln production and plant development, ROS production and stress tolerance.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Qiang Li
- College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Guosheng Liu
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Gopalan Selvaraj
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada
| | - Zhifu Zheng
- College of Agricultural and Food Sciences, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Jitao Zou
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| |
Collapse
|
15
|
Zhang Y, Cao S, Zhao J, Alsaihati B, Ma Q, Zhang C. MRHCA: a nonparametric statistics based method for hub and co-expression module identification in large gene co-expression network. QUANTITATIVE BIOLOGY 2018. [DOI: 10.1007/s40484-018-0131-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Mulo P, Medina M. Interaction and electron transfer between ferredoxin-NADP + oxidoreductase and its partners: structural, functional, and physiological implications. PHOTOSYNTHESIS RESEARCH 2017; 134:265-280. [PMID: 28361449 DOI: 10.1007/s11120-017-0372-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/20/2017] [Indexed: 05/25/2023]
Abstract
Ferredoxin-NADP+ reductase (FNR) catalyzes the last step of linear electron transfer in photosynthetic light reactions. The FAD cofactor of FNR accepts two electrons from two independent reduced ferredoxin molecules (Fd) in two sequential steps, first producing neutral semiquinone and then the fully anionic reduced, or hydroquinone, form of the enzyme (FNRhq). FNRhq transfers then both electrons in a single hydride transfer step to NADP+. We are presenting the recent progress in studies focusing on Fd:FNR interaction and subsequent electron transfer processes as well as on interaction of FNR with NADP+/H followed by hydride transfer, both from the structural and functional point of views. We also present the current knowledge about the physiological role(s) of various FNR isoforms present in the chloroplasts of higher plants and the functional impact of subchloroplastic location of FNR. Moreover, open questions and current challenges about the structure, function, and physiology of FNR are discussed.
Collapse
Affiliation(s)
- Paula Mulo
- Molecular Plant Biology, University of Turku, 20520, Turku, Finland
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, and Institute of Biocomputation and Physics of Complex Systems (Joint Units: BIFI-IQFR and GBsC-CSIC), University of Zaragoza, 50009, Zaragoza, Spain.
| |
Collapse
|
17
|
Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. J Proteomics 2017; 170:1-13. [PMID: 28986270 DOI: 10.1016/j.jprot.2017.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Drought stress, a major abiotic stress, commonly occurs in metal-contaminated environments and affects crop growth and yield. In this study, we performed the first integrated phenotypic, physiological, and proteomic analysis of Brachypodium distachyon L. seedling leaves under polyethylene glycol (PEG) mock osmotic stress, cadmium (Cd2+), and their combined stresses. Combined osmotic and Cd2+ stress had more significant effects than each individual stress on seedling growth, and the physiological traits and ultrastructures of leaves. Totally 117 differentially accumulated protein (DAP) spots detected by two-dimensional difference gel electrophoresis (2D-DIGE) were identified, and representing 89 unique proteins under individual and combined stresses. These DAPs were involved in photosynthesis/respiration (34%), energy and carbon metabolism (21%), stress/defense/detoxification (13%), protein folding and degradation (12%), and amino acid metabolism (7%). Principal component analysis (PCA) revealed that DAPs from the Cd2+ and combined stresses grouped much closer than those from osmotic stress, indicating Cd2+ and combined stresses resulted in more changes to the leaf proteome than osmotic stress alone. Protein-protein interaction analyses showed that a 14-3-3 centered sub-network could play important roles in responses to abiotic stresses. An overview pathway of proteome metabolic changes in Bd21 seedling leaves under combined stresses is proposed, representing a synergistic responsive network and underlying response and defense mechanisms. SIGNIFICANCE Drought stress is one of the major abiotic stresses, which commonly occurs in metal-contaminated environments, and affects crop growth and yield performance. We performed the first integrated phenotypic, physiological and proteomic analysis of Brachypodium distachyon L. seedling leaves under drought (PEG), cadmium (Cd2+) and their combined stresses.
Collapse
|
18
|
Jean N, Dumont E, Herzi F, Balliau T, Laabir M, Masseret E, Mounier S. Modifications of the soluble proteome of a mediterranean strain of the invasive neurotoxic dinoflagellate Alexandrium catenella under metal stress conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:80-91. [PMID: 28472730 DOI: 10.1016/j.aquatox.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/06/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
The soluble proteome of the mediterranean strain ACT03 of the invasive neurotoxic dinoflagellate Alexandrium catenella exposed to lead or zinc at 6, 12 or 18μM (total concentrations), or under control conditions, was characterized by two-dimensional gel electrophoresis (2-DE). Zinc reduced (P<0.05) the total number of protein spots (-41%, -52% and -60%, at 6, 12 or 18μM, respectively). Besides, most of the proteins constituting the soluble proteome were down-regulated in response to lead or zinc stresses. These proteins were involved mainly in photosynthesis (20-37% for lead; 36-50% for zinc) (ribulose-1,5-bisphosphate carboxylase/oxygenase: RUBISCO; ferredoxin-NADP+ reductase: FNR; peridinin-chlorophyll a-protein: PCP), and in the oxidative stress response (29-34% for lead; 17-36% for zinc) (superoxide dismutase: SOD; proteasome α/β subunits). These negative effects could be partly compensated by the up-regulation of specific proteins such as ATP-synthase β subunit (+16.3 fold after exposure to lead at 12μM). Indeed, an increase in the abundance of ATP-synthase could enrich the ATP pool and provide more energy available for the cells to survive under metal stress, and make the ATP-synthase transport of metal cations out of the cells more efficient. Finally, this study shows that exposure to lead or zinc have a harmful effect on the soluble proteome of A. catenella ACT03, but also suggests the existence of an adaptative proteomic response to metal stresses, which could contribute to maintaining the development of this dinoflagellate in trace metal-contaminated ecosystems.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Estelle Dumont
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Faouzi Herzi
- Université de Toulon, PROTEE, EA 3819, 83957 La Garde, France.
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| | - Mohamed Laabir
- MARBEC UMR 9190 IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | - Estelle Masseret
- MARBEC UMR 9190 IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095 Montpellier Cedex 5, France.
| | | |
Collapse
|
19
|
Han BC, Wei W, Mi XC, Ma KP. De Novo Sequencing and Comparative Analysis of Schima superba Seedlings to Explore the Response to Drought Stress. PLoS One 2016; 11:e0166975. [PMID: 27930677 PMCID: PMC5145176 DOI: 10.1371/journal.pone.0166975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/07/2016] [Indexed: 12/01/2022] Open
Abstract
Schima superba is an important dominant species in subtropical evergreen broadleaved forests of China, and plays a vital role in community structure and dynamics. However, the survival rate of its seedlings in the field is low, and water shortage could be a factor that limits its regeneration. In order to better understand the response of its seedlings to drought stress on a functional genomics scale, RNA-seq technology was utilized in this study to perform a large-scale transcriptome sequencing of the S. superba seedlings under drought stress. More than 320 million clean reads were generated and 72218 unique transcripts were obtained through de novo assembly. These unigenes were further annotated by blasting with different public databases and a total of 53300 unique transcripts were annotated. A total of 31586 simple sequence repeat (SSR) loci were presented. Through gene expression profiling analysis between drought treatment and control, 11038 genes were found to be significantly enriched in drought-stressed seedlings. Based on these differentially expressed genes (DEGs), Gene Ontology (GO) terms enrichment and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analysis indicated that drought stress caused a number of changes in the types of sugars, enzymes, secondary mechanisms, and light responses, and induced some potential physical protection mechanisms. In addition, the expression patterns of 18 transcripts induced by drought, as determined by quantitative real-time PCR, were consistent with their transcript abundance changes, as identified by RNA-seq. This transcriptome study provides a rapid method for understanding the response of S. superba seedlings to drought stress and provides a number of gene sequences available for further functional genomics studies.
Collapse
Affiliation(s)
- Bao-cai Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences (IBCAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences (IBCAS), Beijing, China
| | - Xiang-cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences (IBCAS), Beijing, China
| | - Ke-ping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences (IBCAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT. Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance. PLANT PHYSIOLOGY 2016; 172:1480-1493. [PMID: 27634426 PMCID: PMC5100767 DOI: 10.1104/pp.16.01084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/13/2016] [Indexed: 05/20/2023]
Abstract
In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) transfers electrons from ferredoxin (Fd) to NADP+ Both NADPH and reduced Fd (Fdred) are required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. A correlation between FNR content and tolerance to oxidative stress is well established, although the precise mechanism remains unclear. We investigated the impact of altered FNR content and localization on electron transport and superoxide radical evolution in isolated thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress markers, and tolerance to high light in planta. Our data indicate that the ratio of Fdred to FNR is critical, with either too much or too little FNR potentially leading to increased superoxide production, and perception of oxidative stress at the level of gene transcription. In FNR overexpressing plants, which show more NADP(H) and glutathione pools, improved tolerance to high-light stress indicates that disturbance of chloroplast redox poise and increased free radical generation may help "prime" the plant and induce protective mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized relative to the wild type, and the photoprotective effect is absent despite perception of oxidative stress at the level of gene transcription.
Collapse
Affiliation(s)
- Marina Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Tatjana Goss
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Manuel Twachtmann
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Katherina Rudi
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Trapka
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Selinski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Boris Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Prashanth Garapati
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Heinz-Juergen Steinhoff
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Toshiharu Hase
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Renate Scheibe
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Johann P Klare
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Guy T Hanke
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.);
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany;
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| |
Collapse
|
21
|
Vojta L, Carić D, Cesar V, Antunović Dunić J, Lepeduš H, Kveder M, Fulgosi H. TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Sci Rep 2015; 5:10085. [PMID: 26041075 PMCID: PMC4455228 DOI: 10.1038/srep10085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/27/2015] [Indexed: 01/14/2023] Open
Abstract
In photosynthesis, final electron transfer from ferredoxin to NADP(+) is accomplished by the flavo enzyme ferredoxin:NADP(+) oxidoreductase (FNR). FNR is recruited to thylakoid membranes via integral membrane thylakoid rhodanase-like protein TROL. We address the fate of electrons downstream of photosystem I when TROL is absent. We have employed electron paramagnetic resonance (EPR) spectroscopy to study free radical formation and electron partitioning in TROL-depleted chloroplasts. DMPO was used to detect superoxide anion (O2(.-)) formation, while the generation of other free radicals was monitored by Tiron. Chloroplasts from trol plants pre-acclimated to different light conditions consistently exhibited diminished O2(.-) accumulation. Generation of other radical forms was elevated in trol chloroplasts in all tested conditions, except for the plants pre-acclimated to high-light. Remarkably, dark- and growth light-acclimated trol chloroplasts were resilient to O2(.-) generation induced by methyl-viologen. We propose that the dynamic binding and release of FNR from TROL can control the flow of photosynthetic electrons prior to activation of the pseudo-cyclic electron transfer pathway.
Collapse
Affiliation(s)
- Lea Vojta
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Dejana Carić
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vera Cesar
- Department of Biology, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | | | - Marina Kveder
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Hrvoje Fulgosi
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Gharechahi J, Hajirezaei MR, Salekdeh GH. Comparative proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its wild type under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:48-58. [PMID: 25506766 DOI: 10.1016/j.jplph.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 05/02/2023]
Abstract
Tobacco plants expressing cyanobacterial flavodoxin (Fld) show enhanced tolerance to a wide range of abiotic stresses including drought, temperature and UV. The mechanisms of adaptation to stress conditions under Fld expression are largely unknown. Here, we applied comparative proteomic analysis to uncover the changes in the proteome profile of Fld-expressing plants in response to drought stress. Using high-resolution two-dimensional gel electrophoresis, we were able to detect 930 protein spots and compare their abundance. We found changes up to 1.5 fold for 52 spots under drought in transgenic and/or wild type plants. Using combined MALDI-TOF/TOF and ESI-Q/TOF analysis 39 (24 in wild type, 11 in transgenic, and 4 in both) drought-responsive proteins (DRPs) could be identified. The majority of DRPs are known to be involved in photosynthesis, carbohydrate and energy metabolism, amino acid and protein synthesis and processing, and oxidative stress responses. Among candidate DRPs, the abundance of remurin, ferredoxin-NADP reductase, chloroplast manganese stabilizing protein-II, phosphoglycerate mutase, and glutathione S-transferase decreased in drought stressed Fld-tobacco while S-formylglutathione hydrolase and pyridoxine biosynthesis protein abundance increased. In wild type plants, drought caused a reduction of proteins related to carbohydrate metabolism. These results suggest that the stress tolerance conferred by Fld expression is strongly related to control mechanisms regarding carbohydrate and energy metabolism as well as oxidative stress responses.
Collapse
Affiliation(s)
- Javad Gharechahi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (Leibniz-IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran.
| |
Collapse
|
23
|
Song Q, Wang S, Zhang G, Li Y, Li Z, Guo J, Niu N, Wang J, Ma S. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat. FRONTIERS IN PLANT SCIENCE 2015; 6:669. [PMID: 26379693 PMCID: PMC4549638 DOI: 10.3389/fpls.2015.00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 05/21/2023]
Abstract
The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2 (-), H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding.
Collapse
Affiliation(s)
| | | | - Gaisheng Zhang
- *Correspondence: Gaisheng Zhang, College of Agronomy, Northwest Agriculture and Forestry University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China,
| | | | | | | | | | | | | |
Collapse
|
24
|
Tewari RK, Satoh M, Kado S, Mishina K, Anma M, Enami K, Hanaoka M, Watanabe M. Overproduction of stromal ferredoxin:NADPH oxidoreductase in H2O 2-accumulating Brassica napus leaf protoplasts. PLANT MOLECULAR BIOLOGY 2014; 86:627-639. [PMID: 25255860 DOI: 10.1007/s11103-014-0252-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
The isolation of Brassica napus leaf protoplasts induces reactive oxygen species generation and accumulation in the chloroplasts. An activated isoform of NADPH oxidase-like protein was detected in the protoplasts and the protoplast chloroplasts. The purpose of this study is to define the NADH oxidase-like activities in the H2O2-accumulating protoplast chloroplasts. Proteomic analysis of this protein revealed an isoform of ferredoxin:NADPH oxidoreductase (FNR1). While leaves highly expressed the LFNR1 transcript, protoplasts decreased the expression significantly. The protoplast chloroplasts predominantly expressed soluble FNR1 proteins. While the albino leaves of white kale (Brassica oleracea var. acephala f. tricolor cv. white pigeon) expressed FNR1 protein at the same level as B. napus leaves, the protoplasts of albino leaves displayed reduced FNR1 expression. The albino leaf protoplasts of white kale generated and accumulated H2O2 in the cytoplasm and on the plasma membrane. Intracellular pH showed that the chloroplasts were acidic, which suggest that excess H(+) was generated in chloroplast stroma. NADPH content of the protoplast chloroplasts increased by over sixfold during the isolation of protoplasts. This study reports a possibility of mediating electrons to oxygen by an overproduced soluble FNR, and suggests that the FNR has a function in utilizing any excess reducing power of NADPH.
Collapse
Affiliation(s)
- Rajesh Kumar Tewari
- Laboratory of Plant Nutrition, Faculty of Horticulture, Chiba University, 648 Matsudo, Chiba, 271-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Screening and identification of resistance related proteins from apple leaves inoculated with Marssonina coronaria (EII. & J. J. Davis). Proteome Sci 2014; 12:7. [PMID: 24507458 PMCID: PMC4015879 DOI: 10.1186/1477-5956-12-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background Apple, an invaluable fruit crop worldwide, is often prone to infection by pathogenic fungi. Identification of potentially resistance-conferring apple proteins is one of the most important aims for studying apple resistance mechanisms and promoting the development of disease-resistant apple strains. In order to find proteins which promote resistance to Marssonina coronaria, a deadly pathogen which has been related to premature apple maturation, proteomes from apple leaves inoculated with M. coronaria were characterized at 3 and 6 days post-inoculation by two dimensional electrophoresis (2-DE). Results Overall, 59 differentially accumulated protein spots between inoculation and non-inoculation were successfully identified and aligned as 35 different proteins or protein families which involved in photosynthesis, amino acid metabolism, transport, energy metabolism, carbohydrate metabolism, binding, antioxidant, defense and stress. Quantitative real-time PCR (qRT-PCR) was also used to examine the change of some defense and stress related genes abundance under inoculated conditions. Conclusions In a conclusion, different proteins in response to Marssonina coronaria were identified by proteomic analysis. Among of these proteins, there are some PR proteins, for example class III endo-chitinase, beta-1,3-glucanase and thaumatine-like protein, and some antioxidant related proteins including aldo/keto reductase AKR, ascorbate peroxidase and phi class glutathione S-transferase protein that were associated with disease resistance. The transcription levels of class III endo-chitinase (L13) and beta-1, 3-glucanase (L17) have a good relation with the abundance of the encoded protein’s accumulation, however, the mRNA abundance of thaumatine-like protein (L22) and ascorbate peroxidase (L28) are not correlated with their protein abundance of encoded protein. To elucidate the resistant mechanism, the data in the present study will promote us to investigate further the expression regulation of these target proteins.
Collapse
|
26
|
Wu L, Han Z, Wang S, Wang X, Sun A, Zu X, Chen Y. Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus. J Proteomics 2013; 89:124-40. [PMID: 23770298 DOI: 10.1016/j.jprot.2013.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022]
Abstract
UNLABELLED Sugarcane mosaic virus (SCMV) is an important viral pathogen and has caused serious losses in grain and forage yield. To identify candidate SCMV resistance proteins and to explore the molecular mechanisms involved in the plant-SCMV interaction, we conducted proteomic analyses of leaf samples from resistant and susceptible ecotypes of maize infected with SCMV. Proteins were analyzed by quantitative two-dimensional differential gel electrophoresis (2D-DIGE), and 93 protein spots showed statistically significant differences after virus inoculation. Functional categorization showed that SCMV-responsive proteins were mainly involved in energy and metabolism, stress and defense responses, photosynthesis, and carbon fixation. The majority of the identified proteins were located in chloroplast and cytoplasm based on bioinformatic analysis. Among these identified proteins, 17 have not been identified previously as virus-responsive proteins, and 7 were new and did not have assigned functions. Western blotting analyses confirmed the expression patterns of proteins of specific interest, and the genes encoding these proteins were further analyzed by real-time PCR. The results of this study showed overlapping and specific proteomic responses to SCMV infection between resistant and susceptible maize ecotypes. This study provides further insight into the molecular events during compatible and incompatible interactions between viruses and host plants. BIOLOGICAL SIGNIFICANCE Sugarcane mosaic virus (SCMV) is an important viral pathogen and has caused serious losses in grain and forage yield. However, little is known about host-SCMV interactions from the proteome perspective. This study analyzed proteomic changes in resistant and susceptible plants that are infected with SCMV using DIGE based proteomics. We identified 17 proteins that have not been identified previously as virus-responsive proteins, and 7 new proteins without assigned functions. These proteins are interesting candidates for future research, as they may be associated with new biological functions and play important roles in plant-virus interactions. Real-time RT-PCR analysis of genes encoding several proteins of interest provided indication on whether the changes in protein abundance were regulated at the mRNA level. The results of this study showed overlapping and specific proteomic responses to SCMV infection between resistant and susceptible ecotypes. After inoculation, the proteins involved in energy and metabolism, stress and defense responses, photosynthesis and other four functional groups showed significant changes in both ecotypes, which suggested that SCMV infection influenced these physiological processes in both the resistant Siyi and the susceptible Mo17. However, the oxidative burst was more pronounced during incompatible plant-SCMV interactions, as compared to those defined as compatible. We also observed an increase of enzymes involved in glycolysis and gluconeogenesis pathways in the resistant maize ecotype Siyi, while decrease in the susceptible maize ecotype Mo17. In addition, there is a marked increase of guanine nucleotide-binding protein beta submit in the resistant Siyi, which suggests a possible involvement of G-protein associated pathways in the resistant responses of maize to SCMV. These observations may possibly reveal protein targets/markers that are useful in the design of future diagnosis or plant protection strategies and provide new insights into the molecular mechanism of plant-virus interactions.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain Crops, Zhengzhou 450002, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Yamauchi Y, Hasegawa A, Mizutani M, Sugimoto Y. Chloroplastic NADPH-dependent alkenal/one oxidoreductase contributes to the detoxification of reactive carbonyls produced under oxidative stress. FEBS Lett 2012; 586:1208-13. [PMID: 22575657 DOI: 10.1016/j.febslet.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lipid peroxide-derived reactive carbonyls (RCs) can cause serious damage to plant functions. A chloroplastic NADPH-dependent alkenal/one oxidoreductase (AOR) detoxifies RCs, but its physiological significance remains unknown. In this study, we investigated the biological impacts of AOR using an AOR-knock out Arabidopsis line (aor). Methyl viologen treatment, mainly to enhance photosystem (PS) I-originated reactive oxygen species (ROS) production, caused more severe damage to aor than wild type (Col-0). In contrast, the high light treatment used to enhance PSII-originated ROS production resulted in no difference in PSII damage between Col-0 and aor. In conclusion, AOR can contribute to detoxify stromal RCs produced under oxidative stress.
Collapse
Affiliation(s)
- Yasuo Yamauchi
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| | | | | | | |
Collapse
|
28
|
Benz JP, Lintala M, Soll J, Mulo P, Bölter B. A new concept for ferredoxin-NADP(H) oxidoreductase binding to plant thylakoids. TRENDS IN PLANT SCIENCE 2010; 15:608-13. [PMID: 20851663 DOI: 10.1016/j.tplants.2010.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/18/2010] [Accepted: 08/23/2010] [Indexed: 05/25/2023]
Abstract
During the evolution of photosynthesis, regulatory circuits were established that allow the precise coupling of light-driven electron transfer chains with downstream processes such as carbon fixation. The ferredoxin (Fd):ferredoxin-NADP(+) oxidoreductase (FNR) couple is an important mediator for these processes because it provides the transition from exclusively membrane-bound light reactions to the mostly stromal metabolic pathways. Recent progress has allowed us to revisit how FNR is bound to thylakoids and to revaluate the current view that only membrane-bound FNR is active in photosynthetic reactions. We argue that the vast majority of thylakoid-bound FNR of higher plants is not necessary for photosynthesis. We furthermore propose that the correct distribution of FNR between stroma and thylakoids is used to efficiently regulate Fd-dependent electron partitioning in the chloroplast.
Collapse
Affiliation(s)
- J Philipp Benz
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
29
|
Mediavilla MG, Di Venanzio GA, Guibert EE, Tiribelli C. Heterologous ferredoxin reductase and flavodoxin protect Cos-7 cells from oxidative stress. PLoS One 2010; 5:e13501. [PMID: 20976072 PMCID: PMC2957446 DOI: 10.1371/journal.pone.0013501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/27/2010] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ferredoxin-NADP(H) reductase (FNR) from Pisum sativum and Flavodoxin (Fld) from Anabaena PCC 7119 have been reported to protect a variety of cells and organisms from oxidative insults. In this work, these two proteins were expressed in mitochondria of Cos-7 cells and tested for their efficacy to protect these cells from oxidative stress in vitro. PRINCIPAL FINDINGS Cos-7/pFNR and Cos-7/pFld cell lines expressing FNR and Fld, respectively, showed a significantly higher resistance to 24 h exposure to 300-600 µM hydrogen peroxide measured by LDH retention, MTT reduction, malondialdehyde (MDA) levels and lipid peroxide (LPO; FOX assay) levels. However, FNR and Fld did not exhibit any protection at shorter incubation times (2 h and 4 h) to 4 mM hydrogen peroxide or to a 48 h exposure to 300 µM methyl viologen. We found enhanced methyl viologen damage exerted by FNR that may be due to depletion of NADPH pools through NADPH-MV diaphorase activity as previously observed for other overexpressed enzymes. SIGNIFICANCE The results presented are a first report of antioxidant function of these heterologous enzymes of vegetal and cyanobacterial origin in mammalian cells.
Collapse
Affiliation(s)
- María G Mediavilla
- Centro Binacional Argentina-Italia de Investigaciones en Criobiología Clínica y Aplicada CAIC and Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina.
| | | | | | | |
Collapse
|
30
|
Chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR): structure, function and location. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:927-34. [PMID: 20934402 DOI: 10.1016/j.bbabio.2010.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/01/2010] [Accepted: 10/02/2010] [Indexed: 11/20/2022]
Abstract
Ferredoxin-NADP(+) oxidoreductase (FNR) is a ubiquitous flavin adenine dinucleotide (FAD)-binding enzyme encoded by a small nuclear gene family in higher plants. The chloroplast targeted FNR isoforms are known to be responsible for the final step of linear electron flow transferring electrons from ferredoxin to NADP(+), while the putative role of FNR in cyclic electron transfer has been under discussion for decades. FNR has been found from three distinct chloroplast compartments (i) at the thylakoid membrane, (ii) in the soluble stroma, and (iii) at chloroplast inner envelope. Recent in vivo studies have indicated that besides the membrane-bound FNR, also the soluble FNR is photosynthetically active. Two chloroplast proteins, Tic62 and TROL, were recently identified and shown to form high molecular weight protein complexes with FNR at the thylakoid membrane, and thus seem to act as the long-sought molecular anchors of FNR to the thylakoid membrane. Tic62-FNR complexes are not directly involved in photosynthetic reactions, but Tic62 protects FNR from inactivation during the dark periods. TROL-FNR complexes, however, have an impact on the photosynthetic performance of the plants. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
31
|
Moolna A, Bowsher CG. The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2669-81. [PMID: 20410318 PMCID: PMC2882262 DOI: 10.1093/jxb/erq101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ferredoxin NADP(+) oxidoreductase (FNR) enzymes catalyse electron transfer between ferredoxin and NADPH. In plants, a photosynthetic FNR (pFNR) transfers electrons from reduced ferredoxin to NADPH for the final step of linear electron flow, providing reductant for carbon fixation. pFNR is also thought to play important roles in two different mechanisms of cyclic electron flow around photosystem I; and photosynthetic reductant is itself partitioned between competing linear, cyclic, and alternative electron flow pathways. Four pFNR protein isoforms in wheat that display distinct reaction kinetics with leaf-type ferredoxin have previously been identified. It has been suggested that these isoforms may be crucial to the regulation of reductant partition between carbon fixation and other metabolic pathways. Here the 12 cm primary wheat leaf has been used to show that the alternative N-terminal pFNRI and pFNRII protein isoforms have statistically significant differences in response to the physiological parameters of chloroplast maturity, nitrogen regime, and oxidative stress. More specifically, the results obtained suggest that the alternative N-terminal forms of pFNRI have distinct roles in the partitioning of photosynthetic reductant. The role of alternative N-terminal processing of pFNRI is also discussed in terms of its importance for thylakoid targeting. The results suggest that the four pFNR protein isoforms are each present in the chloroplast in phosphorylated and non-phosphorylated states. pFNR isoforms vary in putative phosphorylation responses to physiological parameters, but the physiological significance requires further investigation.
Collapse
|
32
|
Schröter Y, Steiner S, Matthäi K, Pfannschmidt T. Analysis of oligomeric protein complexes in the chloroplast sub-proteome of nucleic acid-binding proteins from mustard reveals potential redox regulators of plastid gene expression. Proteomics 2010; 10:2191-204. [DOI: 10.1002/pmic.200900678] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Jurić S, Hazler-Pilepić K, Tomasić A, Lepedus H, Jelicić B, Puthiyaveetil S, Bionda T, Vojta L, Allen JF, Schleiff E, Fulgosi H. Tethering of ferredoxin:NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:783-94. [PMID: 19682289 DOI: 10.1111/j.1365-313x.2009.03999.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Working in tandem, two photosystems in the chloroplast thylakoid membranes produce a linear electron flow from H(2)O to NADP(+). Final electron transfer from ferredoxin to NADP(+) is accomplished by a flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR). Here we describe TROL (thylakoid rhodanese-like protein), a nuclear-encoded component of thylakoid membranes that is required for tethering of FNR and sustaining efficient linear electron flow (LEF) in vascular plants. TROL consists of two distinct modules; a centrally positioned rhodanese-like domain and a C-terminal hydrophobic FNR binding region. Analysis of Arabidopsis mutant lines indicates that, in the absence of TROL, relative electron transport rates at high-light intensities are severely lowered accompanied with significant increase in non-photochemical quenching (NPQ). Thus, TROL might represent a missing thylakoid membrane docking site for a complex between FNR, ferredoxin and NADP(+). Such association might be necessary for maintaining photosynthetic redox poise and enhancement of the NPQ.
Collapse
Affiliation(s)
- Snjezana Jurić
- Department of Molecular Biology, Ruder Bosković Institute, Bijenicka cesta 54, HR-10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Korn A, Ajlani G, Lagoutte B, Gall A, Sétif P. Ferredoxin:NADP+ oxidoreductase association with phycocyanin modulates its properties. J Biol Chem 2009; 284:31789-97. [PMID: 19759024 DOI: 10.1074/jbc.m109.024638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic organisms, ferredoxin:NADP(+) oxidoreductase (FNR) is known to provide NADPH for CO(2) assimilation, but it also utilizes NADPH to provide reduced ferredoxin. The cyanobacterium Synechocystis sp. strain PCC6803 produces two FNR isoforms, a small one (FNR(S)) similar to the one found in plant plastids and a large one (FNR(L)) that is associated with the phycobilisome, a light-harvesting complex. Here we show that a mutant lacking FNR(L) exhibits a higher NADP(+)/NADPH ratio. We also purified to homogeneity a phycobilisome subcomplex comprising FNR(L,) named FNR(L)-PC. The enzymatic activities of FNR(L)-PC were compared with those of FNR(S). During NADPH oxidation, FNR(L)-PC exhibits a 30% decrease in the Michaelis constant K(m)((NADPH)), and a 70% increase in K(m)((ferredoxin)), which is in agreement with its predicted lower activity of ferredoxin reduction. During NADP(+) reduction, the FNR(L)-PC shows a 29/43% decrease in the rate of single electron transfer from reduced ferredoxin in the presence/absence of NADP(+). The increase in K(m)((ferredoxin)) and the rate decrease of single reduction are attributed to steric hindrance by the phycocyanin moiety of FNR(L)-PC. Both isoforms are capable of catalyzing the NADP(+) reduction under multiple turnover conditions. Furthermore, we obtained evidence that, under high ionic strength conditions, electron transfer from reduced ferredoxin is rate limiting during this process. The differences that we observe might not fully explain the in vivo properties of the Synechocystis mutants expressing only one of the isoforms. Therefore, we advocate that FNR localization and/or substrates availability are essential in vivo.
Collapse
Affiliation(s)
- Anja Korn
- Institut de Biologie et de Technologie de Saclay, Commissariat à L'Energie Atomique, CNRS, F-91191 Gif sur Yvette, France
| | | | | | | | | |
Collapse
|
35
|
Xiao X, Yang F, Zhang S, Korpelainen H, Li C. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. PHYSIOLOGIA PLANTARUM 2009; 136:150-68. [PMID: 19453505 DOI: 10.1111/j.1399-3054.2009.01222.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The acclimation of plants to water deficit is the result of many different physiological and biochemical mechanisms. To gain a better understanding of drought stress acclimation and tolerance mechanisms in Populus cathayana Rehder, we carried out an integrated physiological and comparative proteomic analysis on the drought stress responses of two contrasting populations originating from wet and dry regions in western China. The plantlets were subjected to continuous drought stress by withholding soil water content at 25% of field capacity (FC) for 45 days, while the control treatments were kept at 100% FC. Drought stress significantly inhibited plant growth, decreased net photosynthetic rate and stomatal conductance of leaves, increased the relative electrolyte leakage and malondialdehyde (MDA) content, and, at the same time, accumulated soluble sugars and free proline in both populations tested. The population from the dry climate region exhibited stronger tolerance to drought stress compared with the wet climate population. The proteomic analyses resulted in the identification of 40 drought-responsive proteins. The functional categories of these proteins include the regulation of transcription and translation, photosynthesis, cytoskeleton, secondary metabolism, HSPs/chaperones, redox homeostasis and defense response. The results suggest that poplars' tolerance to drought stress relates to the control of reactive oxygen species (ROS) and to osmoprotective capacity. The differential regulation of some drought-responsive proteins, such as HSPs and the enzymes related to redox homeostasis and regulation of secondary metabolism, plays an important role in poplars' tolerance and acclimation to drought stress. In conclusion, acclimation to water deficit involves changes in cellular metabolism and the regulation of gene networks. The present study not only provides new insights into the mechanisms of acclimation and tolerance to drought stress in different poplar populations but also provides clues for improving poplars' drought tolerance through breeding or genetic engineering.
Collapse
Affiliation(s)
- Xiangwen Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O.Box 416, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
36
|
Hanke GT, Endo T, Satoh F, Hase T. Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin:NADP(H) reductase. PLANT, CELL & ENVIRONMENT 2008; 31:1017-28. [PMID: 18410491 DOI: 10.1111/j.1365-3040.2008.01814.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mechanism by which plants regulate channelling of photosynthetically derived electrons into different areas of chloroplast metabolism remains obscure. Possible fates of such electrons include use in carbon assimilation, nitrogen assimilation and redox signalling pathways, or return to the plastoquinone pool through cyclic electron flow. In higher plants, these electrons are made accessible to stromal enzymes, or for cyclic electron flow, as reduced ferredoxin (Fd), or NADPH. We investigated how knockout of an Arabidopsis (Arabidopsis thaliana) ferredoxin:NADPH reductase (FNR) isoprotein and the loss of strong thylakoid binding by the remaining FNR in this mutant affected the channelling of photosynthetic electrons into NADPH- and Fd-dependent metabolism. Chlorophyll fluorescence data show that these mutants have complex variation in cyclic electron flow, dependent on light conditions. Measurements of electron transport in isolated thylakoid and chloroplast systems demonstrated perturbed channelling to NADPH-dependent carbon and Fd-dependent nitrogen assimilating metabolism, with greater competition in the mutant. Moreover, mutants accumulate greater biomass than the wild type under low nitrate growth conditions, indicating that such altered chloroplast electron channelling has profound physiological effects. Taken together, our results demonstrate the integral role played by FNR isoform and location in the partitioning of photosynthetic reducing power.
Collapse
Affiliation(s)
- Guy Thomas Hanke
- Laboratory of Regulation of Biological Reactions and Laboratory of Protein Profiling Function Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
37
|
Pandey SP, Baldwin IT. Silencing RNA-directed RNA polymerase 2 increases the susceptibility of Nicotiana attenuata to UV in the field and in the glasshouse. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:845-62. [PMID: 18298673 DOI: 10.1111/j.1365-313x.2008.03450.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-directed RNA-polymerases (RdRs) are essential in small interfering RNA (siRNA) biogenesis and appear to be functionally specialized. We examined the consequences of silencing RdR2 in Nicotiana attenuata with a field release, and transcriptional, two-dimensional proteomic and metabolite analyses. NaRdR2-silenced plants (irRdR2) had large reductions (46% of wild type) in 22-24-nt small RNAs (smRNAs), and smaller reductions (35, 23 and 26% of wild type) in the 19-21, 25-27 and 28-30-nt smRNAs, respectively. When planted into their native habitats in the Great Basin Desert, irRdR2 plants had impaired growth and reproductive output, which were associated with reduced levels of leaf phenolics (rutin and 4'-chlorogenic acid) and MYB and PAL transcripts, but were unaffected in their herbivore resistance. These phenotypes were confirmed in glasshouse experiments, but only when irRdR2 plants were grown with UV-B radiation. irRdR2 plants had wild-type levels of elicited phytohormones and resistance to Manduca sexta attack, but when exposed to UV-B, had reduced growth, fitness, levels of MYB and PAL transcripts, and phenolics. Proteins related to protection against oxidative and physiological stresses, chromatin remodeling and transcription were also downregulated. Silencing the MYB gene by virus-induced gene silencing (VIGS) in wild-type plants reduced levels of PAL transcripts and phenolics, as it did in UV-exposed irRdR2 plants. Bioinformatic analysis revealed that genes involved in phenylpropanoid biosynthesis contained a large number of smRNA binding motives, suggesting that these genes are targets of smRNAs. We conclude that although NaRdR2 transcripts are upregulated in response to both UV-B and herbivore elicitation, the responses they regulate have been tailored to provide protection from UV-B radiation.
Collapse
Affiliation(s)
- Shree P Pandey
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| | | |
Collapse
|
38
|
Stengel A, Benz P, Balsera M, Soll J, Bölter B. TIC62 redox-regulated translocon composition and dynamics. J Biol Chem 2008; 283:6656-67. [PMID: 18180301 DOI: 10.1074/jbc.m706719200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preprotein translocon at the inner envelope of chloroplasts (Tic complex) facilitates the import of nuclear-encoded preproteins into the organelle. Seven distinct subunits have been identified so far. For each of those, specific functions have been proposed based on structural prediction or experimental evidence. Three of those subunits possess modules that could act as redox-active regulatory components in the import process. To date, however, the mode of redox regulation of the import process remains enigmatic. To investigate how the chloroplast redox state influences translocon behavior and composition, we studied the Tic component and the putative redox sensor Tic62 in more detail. The experimental results provide evidence that Tic62 can act as a bona fide dehydrogenase in vitro, and that it changes its localization in the chloroplast dependent on the NADP+/NADPH ratio in the stroma. Moreover, the redox state influences the interactions of Tic62 with the translocon and the flavoenzyme ferredoxin-NADP+ oxidoreductase. Additionally, we give initial experimental insights into the Tic62 structure using circular dichroism measurements and demonstrate that the protein consists of two structurally different domains. Our results indicate that Tic62 possesses redox-dependent properties that would allow it to fulfill a role as redox sensor protein in the chloroplast.
Collapse
Affiliation(s)
- Anna Stengel
- Munich Center for Integrated Protein Science CiPS, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
39
|
Bustos DM, Bustamante CA, Iglesias AA. Involvement of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in response to oxidative stress. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:456-61. [PMID: 17913294 DOI: 10.1016/j.jplph.2007.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/19/2007] [Accepted: 06/21/2007] [Indexed: 05/03/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenases catalyze key steps in energy and reducing power partitioning in cells of higher plants. Because non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (NP-Ga3PDHase) is involved in the production of reductive power (NADPH) in the cytosol, its behavior under oxidative stress conditions was analyzed. The specific activity of the enzyme was found to increase up to 2-fold after oxidative conditions imposed by methylviologen in wheat and maize seedlings. Under moderate oxidant concentration, lack of mRNA induction was observed. The increase in specific activity would thus be a consequence of a significant stability of NP-Ga3PDHase. Our results suggest that the enzyme could be modified by oxidation of cysteine residues, but formation of disulfide bridges is dependent on levels of divalent cations and 14-3-3 proteins. The latter differential effect could be critical to relatively maintain energy and reductant levels in the cytoplasm of plant cells under oxidative stress.
Collapse
Affiliation(s)
- Diego M Bustos
- Instituto Tecnológico de Chascomùs (IIB-INTECH), Chascomùs, Argentina
| | | | | |
Collapse
|
40
|
Geddes J, Eudes F, Laroche A, Selinger LB. Differential expression of proteins in response to the interaction between the pathogenFusarium graminearum and its host,Hordeum vulgare. Proteomics 2008; 8:545-54. [DOI: 10.1002/pmic.200700115] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Oreb M, Tews I, Schleiff E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol 2008; 18:19-27. [PMID: 18068366 DOI: 10.1016/j.tcb.2007.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 10/08/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
The organization of eukaryotic cells into different membrane-enclosed compartments requires an ordered and regulated system for targeting and translocating proteins synthesized in the cytosol across organellar membranes. Protein translocation through integral membrane proteinaceous complexes shares common principles in different organelles, whereas molecular mechanisms and energy requirements are diverse. Translocation into mitochondria and plastids requires most proteins to cross two membranes, and translocation must be regulated to accommodate environmental or metabolic changes. In the last decade, the first ideas were formulated about the regulation of protein translocation into chloroplasts, thereby laying the foundation for this field. Here, we describe recent models for the regulation of translocation by precursor protein phosphorylation, receptor dimerization, redox sensing and calcium signaling. We suggest how these mechanisms might fit within the regulatory framework for the entry of proteins into chloroplasts.
Collapse
Affiliation(s)
- Mislav Oreb
- LMU München, Cluster of Excellence CIPS, Department of Biology I, Menziger Str. 67, 80638 München, Germany
| | | | | |
Collapse
|
42
|
Sakurai T, Plata G, Rodríguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y, Shinozaki K, Ishitani M. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC PLANT BIOLOGY 2007; 7:66. [PMID: 18096061 PMCID: PMC2245942 DOI: 10.1186/1471-2229-7-66] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 12/20/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cassava, an allotetraploid known for its remarkable tolerance to abiotic stresses is an important source of energy for humans and animals and a raw material for many industrial processes. A full-length cDNA library of cassava plants under normal, heat, drought, aluminum and post harvest physiological deterioration conditions was built; 19968 clones were sequence-characterized using expressed sequence tags (ESTs). RESULTS The ESTs were assembled into 6355 contigs and 9026 singletons that were further grouped into 10577 scaffolds; we found 4621 new cassava sequences and 1521 sequences with no significant similarity to plant protein databases. Transcripts of 7796 distinct genes were captured and we were able to assign a functional classification to 78% of them while finding more than half of the enzymes annotated in metabolic pathways in Arabidopsis. The annotation of sequences that were not paired to transcripts of other species included many stress-related functional categories showing that our library is enriched with stress-induced genes. Finally, we detected 230 putative gene duplications that include key enzymes in reactive oxygen species signaling pathways and could play a role in cassava stress response features. CONCLUSION The cassava full-length cDNA library here presented contains transcripts of genes involved in stress response as well as genes important for different areas of cassava research. This library will be an important resource for gene discovery, characterization and cloning; in the near future it will aid the annotation of the cassava genome.
Collapse
Affiliation(s)
- Tetsuya Sakurai
- Metabolomics Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Germán Plata
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Fausto Rodríguez-Zapata
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Motoaki Seki
- Plant Functional Genomics Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Andrés Salcedo
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Atsushi Toyoda
- Genome Core Technology Facilities, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Atsushi Ishiwata
- Metabolomics Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Joe Tohme
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| | - Yoshiyuki Sakaki
- Genome Core Technology Facilities, RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kazuo Shinozaki
- Plant Functional Genomics Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Manabu Ishitani
- Agrobiodiversity and Biotechnology Project, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|
43
|
Rodriguez RE, Lodeyro A, Poli HO, Zurbriggen M, Peisker M, Palatnik JF, Tognetti VB, Tschiersch H, Hajirezaei MR, Valle EM, Carrillo N. Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. PLANT PHYSIOLOGY 2007; 143:639-49. [PMID: 17189326 PMCID: PMC1803747 DOI: 10.1104/pp.106.090449] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/13/2006] [Indexed: 05/13/2023]
Abstract
Ferredoxin-NADP(H) reductase (FNR) catalyzes the last step of photosynthetic electron transport in chloroplasts, driving electrons from reduced ferredoxin to NADP+. This reaction is rate limiting for photosynthesis under a wide range of illumination conditions, as revealed by analysis of plants transformed with an antisense version of the FNR gene. To investigate whether accumulation of this flavoprotein over wild-type levels could improve photosynthetic efficiency and growth, we generated transgenic tobacco (Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts. The alien product distributed between the thylakoid membranes and the chloroplast stroma. Transformants grown at 150 or 700 micromol quanta m(-2) s(-1) displayed wild-type phenotypes regardless of FNR content. Thylakoids isolated from plants with a 5-fold FNR increase over the wild type displayed only moderate stimulation (approximately 20%) in the rates of electron transport from water to NADP+. In contrast, when donors of photosystem I were used to drive NADP+ photoreduction, the activity was 3- to 4-fold higher than the wild-type controls. Plants expressing various levels of FNR (from 1- to 3.6-fold over the wild type) failed to show significant differences in CO2 assimilation rates when assayed over a range of light intensities and CO2 concentrations. Transgenic lines exhibited enhanced tolerance to photooxidative damage and redox-cycling herbicides that propagate reactive oxygen species. The results suggest that photosynthetic electron transport has several rate-limiting steps, with FNR catalyzing just one of them.
Collapse
Affiliation(s)
- Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario, División Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M. Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. PLANT PHYSIOLOGY 2006; 142:1603-20. [PMID: 17028151 PMCID: PMC1676056 DOI: 10.1104/pp.106.086231] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/21/2006] [Indexed: 05/12/2023]
Abstract
Alterations in the proteome of Arabidopsis (Arabidopsis thaliana) leaves during responses to challenge by Pseudomonas syringae pv tomato DC3000 were analyzed using two-dimensional gel electrophoresis. Protein changes characteristic of the establishment of disease, basal resistance, and resistance-gene-mediated resistance were examined by comparing responses to DC3000, a hrp mutant, and DC3000 expressing avrRpm1, respectively. The abundance of each protein identified was compared with that of selected transcripts obtained from comparable GeneChip experiments. We report changes in three subcellular fractions: total soluble protein, chloroplast enriched, and mitochondria enriched over four time points (1.5-6 h after inoculation). In total, 73 differential spots representing 52 unique proteins were successfully identified. Many of the changes in protein spot density occurred before significant transcriptional reprogramming was evident between treatments. The high proportion of proteins represented by more than one spot indicated that many of the changes to the proteome can be attributed to posttranscriptional modifications. Proteins found to show significant change after bacterial challenge are representative of two main functional groups: defense-related antioxidants and metabolic enzymes. Significant changes to photosystem II and to components of the mitochondrial permeability transition were also identified. Rapid communication between organelles and regulation of primary metabolism through redox-mediated signaling are supported by our data.
Collapse
Affiliation(s)
- Alexandra M E Jones
- Department of Agricultural Science, Imperial College London, Wye TN25 5AH, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Pleite R, Martínez-Force E, Garcés R. Inhibitors of fatty acid biosynthesis in sunflower seeds. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:885-94. [PMID: 16500723 DOI: 10.1016/j.jplph.2005.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 11/05/2005] [Indexed: 05/06/2023]
Abstract
During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds.
Collapse
Affiliation(s)
- Rafael Pleite
- Instituto de la Grasa, CSIC, Av Padre García Tejero 4, Sevilla, Spain
| | | | | |
Collapse
|
46
|
Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, Del Río LA, Barroso JB. The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. PLANT, CELL & ENVIRONMENT 2006; 29:1449-59. [PMID: 17080966 DOI: 10.1111/j.1365-3040.2006.01530.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
NADPH is an important molecule in the redox balance of the cell. In this paper, using olive tissue cultures as a model of the function of the NADPH-generating dehydrogenases in the mechanism of oxidative stress induced by severe salinity conditions was studied. When olive (Olea europaea) plants were grown with 200 mM NaCl, a 40% reduction in leaf fresh weight was produced. The content of non-enzymatic antioxidants such as ascorbate and glutathione was diminished between 20% to 39%, whereas the H2O2 content was increased threefold. In contrast, the analysis of the activity and protein contents of the main antioxidative enzymes showed a significant increase of catalase, superoxide dismutase and glutathione reductase. Overall, these changes strongly suggests that NaCl induces oxidative stress in olive plants. On the other hand, while the content of glucose-6-phosphate was increased almost eightfold in leaves of plants grown under salt stress, the content of NAD(P)H (reduced and oxided forms) did not show significant variations. Under salt stress conditions, the activity and protein contents of the main NADPH-recycling enzymes, glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (ICDH), malic enzyme (ME) and ferrodoxin-NADP reductase (FNR) showed an enhancement of 30-50%. In leaves of olive plants grown with 200 mM NaCl, analysis of G6PDH by immunocytochemistry and confocal laser scanning microscopy showed a general increase of this protein in epidermis, palisade and spongy mesophyll cells. These results indicate that in olive plants, salinity causes reactive oxygen species (ROS)-mediated oxidative stress, and plants respond to this situation by inducing different antioxidative enzymes, especially the NADPH-producing dehydrogenases in order to recycle NADPH necessary for the protection against oxidative damages. These NADP-dehydrogenases appear to be key antioxidative enzymes in olive plants under salt stress conditions.
Collapse
Affiliation(s)
- Raquel Valderrama
- Grupo de Señalización Molecular y Sistemas Antioxidants en Plantas, Unidad Asociada al CSIC (EEZ), Departamento de Bioquímica y Biología Molecular, Universidad de Jaén, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Waloszek A, Wieckowski S. Dioxygen uptake by isolated thylakoids from lettuce (Lactuca sativa L.): simultaneous measurements of dioxygen uptake, pH change of the medium and chlorophyll fluorescence parameters. PHOTOSYNTHESIS RESEARCH 2005; 83:287-96. [PMID: 16143918 DOI: 10.1007/s11120-004-5829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 11/04/2004] [Indexed: 05/04/2023]
Abstract
The setup has been elaborated for the simultaneous measurements of dioxygen uptake, pH changes, and chlorophyll a fluorescence parameters of an isolated thylakoid suspension. Using this equipment we have found at least three kinetically distinguishable components in the response of dioxygen uptake and pH increase to light intensity in the range of 0-1600 microE m(-2) s(-1). The pH changes were not observed in the presence of uncouplers (2 microM valinomycin plus 2 microM nigericin) while O(2) uptake increased by about 10% and F (v)/F (m) ratio appeared to be unaffected by this treatment. Treatment with DNP-INT, an inhibitor of plastoquinol oxidation, led to a significant reduction of pH increase and O(2) consumption whereas F (v) /F (m) was impaired only to 71% of the control. Incubation with catalase (580 U/ml) caused a total inhibition of oxygen uptake, while the pH increased and the F (v) /F (m) ratio decreased to about 60% and 85% of the control, respectively. The addition of catalase after the irradiation period led to an evolution of the same amount of dioxygen as was consumed during the light period. These results show that hydrogen peroxide was formed in the investigated system and accumulated during illumination. On the basis of the obtained data, three sites of dioxygen reduction within isolated thylakoid membranes and the dependence of dioxygen uptake on the photosystem activities were discussed.
Collapse
Affiliation(s)
- Andrzej Waloszek
- Faculty of Biotechnology, Jagiellonian University, Cracow, Poland.
| | | |
Collapse
|
48
|
Cuevas JC, Sánchez DH, Marina M, Ruiz OA. Do polyamines modulate the Lotus glaber NADPH oxidation activity induced by the herbicide methyl viologen? FUNCTIONAL PLANT BIOLOGY : FPB 2004; 31:921-928. [PMID: 32688960 DOI: 10.1071/fp04007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 06/07/2004] [Indexed: 06/11/2023]
Abstract
In recent years, there has been a growing interest in NADPH-oxidases which are involved in the active generation of reactive oxygen species (ROS), owing to their role in oxidative burst, signalling and oxidative damage derived from biotic and abiotic stresses. NADPH oxidase activity is enhanced by some environmental cues, such as zinc deficiency and chilling stress, where zinc and polyamines have been suggested to be involved in the modulation of ROS generation. In order to further characterise NADPH oxidation activity during oxidative stress we exposed Lotus glaber Mill. (narrow-leaf trefoil; syn. L. tenuis Waldst. et Kit. ex Wild var. Miller) plants to the herbicide methyl viologen (MV) and evaluated zinc and polyamines as oxidative stress regulatory compounds. For this purpose we conducted in vitro and in vivo experiments, observing that zinc and the higher polyamines spermidine and spermine inhibited the NADPH oxidation activity in vitro while preventing methyl viologen-induced superoxide production in vivo. It is suggested that these substances act through a direct effect on flavin oxidases. However, it was not possible to correlate free polyamine content of L. glaber with their hypothetical inhibitory role during oxidative stress, probably owing to the plant's natural tolerance to the herbicide tested. Therefore, tobacco, a more sensitive species, was tested for methyl viologen toxicity. High concentrations of methyl viologen induced free polyamine levels in crude extracts and intercellular fluids. However, only free polyamine content in the intercellular fluids was increased in plants treated with low methyl viologen concentrations. These results support the notion that polyamine metabolism in the apoplast is involved in the physiological response to oxidative stress.
Collapse
Affiliation(s)
- Juan C Cuevas
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús / Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH / UNSAM-CONICET), Camino circunvalación laguna, Km. 6 CC164 (B7130IWA) Chascomús, Pcia. de Buenos Aires, Argentina
| | - Diego H Sánchez
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús / Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH / UNSAM-CONICET), Camino circunvalación laguna, Km. 6 CC164 (B7130IWA) Chascomús, Pcia. de Buenos Aires, Argentina
| | - María Marina
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús / Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH / UNSAM-CONICET), Camino circunvalación laguna, Km. 6 CC164 (B7130IWA) Chascomús, Pcia. de Buenos Aires, Argentina
| | - Oscar A Ruiz
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús / Universidad Nacional de General San Martín-Consejo Nacional de Investigaciones Científicas y Técnicas (IIB-INTECH / UNSAM-CONICET), Camino circunvalación laguna, Km. 6 CC164 (B7130IWA) Chascomús, Pcia. de Buenos Aires, Argentina. Corresponding author;
| |
Collapse
|
49
|
Bueno M, Fillat MF, Strasser RJ, Maldonado-Rodriguez R, Marina N, Smienk H, Gómez-Moreno C, Barja F. Effects of lindane on the photosynthetic apparatus of the cyanobacterium Anabaena: fluorescence induction studies and immunolocalization of ferredoxin-NADP+ reductase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2004; 11:98-106. [PMID: 15108857 DOI: 10.1007/bf02979709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
INTENTION, GOAL, SCOPE, BACKGROUND Cyanobacteria have the natural ability to degrade moderate amounts of organic pollutants. However, when pollutant concentration exceeds the level of tolerance, bleaching of the cells and death occur within 24 hours. Under stress conditions, cyanobacterial response includes the short-term adaptation of the photosynthetic apparatus to light quality, named state transitions. Moreover, prolonged stresses produce changes in the functional organization of phycobilisomes and in the core-complexes of both photosystems, which can result in large changes in the PS II fluorescence yield. The localization of ferredoxin-NADP+ reductase (FNR) at the ends of some peripheral rods of the cyanobacterial phycobilisomes, makes this protein a useful marker to check phycobilisome integrity. OBJECTIVE The goal of this work is to improve the knowledge of the mechanism of action of a very potent pesticide, lindane (gamma-hexaclorociclohexane), in the cyanobacterium Anabaena sp., which can be considered a potential candidate for bioremediation of pesticides. We have studied the effect of lindane on the photosynthetic apparatus of Anabaena using fluorescence induction studies. As ferredoxin-NADP+ reductase plays a key role in the response to oxidative stress in several systems, changes in synthesis, degradation and activity of FNR were analyzed. Immunolocalization of this enzyme was used as a marker of phycobilisome integrity. The knowledge of the changes caused by lindane in the photosynthetic apparatus is essential for rational further design of genetically-modified cyanobacteria with improved biorremediation abilities. METHODS Polyphasic chlorophyll a fluorescence rise measurements (OJIP) have been used to evaluate the vitality and stress adaptation of the nitrogen-fixing cyanobacterium Anabaena PCC 7119 in the presence of increasing concentrations of lindane. Effects of the pesticide on the ultrastructure have been investigated by electron microscopy, and FNR has been used as a marker of phycobilisome integrity. RESULTS AND DISCUSSION Cultures of Anabaena sp. treated with moderate amounts of lindane showed a decrease in growth rate followed by a recovery after 72 hours of pesticide treatment. Concentrations of lindane below 5 ppm increased the photosynthetic performance and activity of the cells. Higher amounts of pesticide caused a decrease in these activities which seems to be due to a non-competitive inhibition of PS II. Active PS II units are converted into non-QA reducing, so called heat sink centers. Specific activity and amount of FNR in lindane-treated cells were similar to the values measured in control cultures. Release of FNR from the thylakoid after 48 hours of exposure to 5 ppm of lindane towards the cytoplasm was detected by immunogold labeling and electron microscopy. CONCLUSIONS From these results, we conclude that the photosynthetic performance and activity of the cells are slightly increased in the presence of lindane up to 5 ppm. Moreover, in those conditions, lindane did not produce significant changes in the synthesis, degradation or activity of FNR. The high capability of Anabaena to tolerate lindane makes this cyanobacterium a good candidate for phytoremediation of polluted areas. RECOMMENDATION AND OUTLOOK The results of this study show that cultures of Anabaena PCC 7119 tolerate lindane up to 5 ppm, without significant changes in the photosynthetic vitality index of the cells. However, a slight increase in phycobiliprotein synthesis is observed, which is related to total protein content. This change might be due to degradation of proteins less stable than phycobiliproteins. An identification of the proteins with altered expression pattern in the presence of the pesticide remains the subject of further work and will provide valuable information for the preparation of strains which are highly tolerant to lindane.
Collapse
Affiliation(s)
- Marta Bueno
- Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Pedro Cerbuna 12, University of Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Palatnik JF, Tognetti VB, Poli HO, Rodríguez RE, Blanco N, Gattuso M, Hajirezaei MR, Sonnewald U, Valle EM, Carrillo N. Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:332-41. [PMID: 12887584 DOI: 10.1046/j.1365-313x.2003.01809.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ferredoxin-NADP(H) reductase (FNR) catalyses the final step of the photosynthetic electron transport in chloroplasts. Using an antisense RNA strategy to reduce expression of this flavoenzyme in transgenic tobacco plants, it has been demonstrated that FNR mediates a rate-limiting step of photosynthesis under both limiting and saturating light conditions. Here, we show that these FNR-deficient plants are abnormally prone to photo-oxidative injury. When grown under autotrophic conditions for 3 weeks, specimens with 20-40% extant reductase undergo leaf bleaching, lipid peroxidation and membrane damage. The magnitude of the effect was proportional to the light intensity and to the extent of FNR depletion, and was accompanied by morphological changes involving accumulation of aberrant plastids with defective thylakoid stacking. Damage was initially confined to chloroplast membranes, whereas Rubisco and other stromal proteins began to decline only after several weeks of autotrophic growth, paralleled by partial recovery of NADPH levels. Exposure of the transgenic plants to moderately high irradiation resulted in rapid loss of photosynthetic capacity and accumulation of singlet oxygen in leaves. The collected results suggest that the extensive photo-oxidative damage sustained by plants impaired in FNR expression was caused by singlet oxygen building up to toxic levels in these tissues, as a direct consequence of the over-reduction of the electron transport chain in FNR-deficient chloroplasts.
Collapse
Affiliation(s)
- Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario, Suipacha 531, S2002-LRK Rosario, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|