1
|
Jiang H, Su J, Ren Z, Wang D, Hills A, Kinoshita T, Blatt MR, Wang Y, Wang Y. Dual function of overexpressing plasma membrane H +-ATPase in balancing carbon-water use. SCIENCE ADVANCES 2024; 10:eadp8017. [PMID: 39514663 PMCID: PMC11546806 DOI: 10.1126/sciadv.adp8017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Stomata respond slowly to changes in light when compared with photosynthesis, undermining plant water-use efficiency (WUE). We know much about stomatal mechanics, yet efforts to accelerate stomatal responsiveness have been limited despite the breadth of potential targets for manipulation. Here, we use mechanistic modeling to establish a hierarchy of putative targets affecting stomatal kinetics. Counterintuitively, modeling predicted that overexpressing plasma membrane H+-ATPases could speed stomata and enhance WUE under fluctuating light, even though overexpressed H+-ATPases is known to promote stomatal opening and reduce WUE in the steady state. Experiments validated the prediction, implicating an unexpected role of the H+-ATPases in improving WUE under fluctuating light. It suggests that H+-ATPases have a dual function, acting as a facilitator of carbon assimilation and water use, depending on the light conditions. These findings highlight the importance of integrating in silico modeling with experiments in future efforts toward enhancing stomatal function.
Collapse
Affiliation(s)
- Hangjin Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Center for Data Science, Zhejiang University, Hangzhou 310058, China
| | - Jinghan Su
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirong Ren
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dexian Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Yin Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou 310058, China
- Key Lab of Plant Factory for Generation-adding Breeding of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Yang Y, Xu L, Hao C, Wan M, Tao Y, Zhuang Y, Su Y, Li L. The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells. THE PLANT CELL 2024; 36:4338-4355. [PMID: 38723161 PMCID: PMC11448907 DOI: 10.1093/plcell/koae144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 10/05/2024]
Abstract
The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.
Collapse
Affiliation(s)
- Yanzhi Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Miaomiao Wan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanning Su
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Su J, He B, Li P, Yu B, Cen Q, Xia L, Jing Y, Wu F, Karnik R, Xue D, Blatt MR, Wang Y. Overexpression of tonoplast Ca 2+-ATPase in guard cells synergistically enhances stomatal opening and drought tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1587-1602. [PMID: 38923303 DOI: 10.1111/jipb.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Stomata play a crucial role in plants by controlling water status and responding to drought stress. However, simultaneously improving stomatal opening and drought tolerance has proven to be a significant challenge. To address this issue, we employed the OnGuard quantitative model, which accurately represents the mechanics and coordination of ion transporters in guard cells. With the guidance of OnGuard, we successfully engineered plants that overexpressed the main tonoplast Ca2+-ATPase gene, ACA11, which promotes stomatal opening and enhances plant growth. Surprisingly, these transgenic plants also exhibited improved drought tolerance due to reduced water loss through their stomata. Again, OnGuard assisted us in understanding the mechanism behind the unexpected stomatal behaviors observed in the ACA11 overexpressing plants. Our study revealed that the overexpression of ACA11 facilitated the accumulation of Ca2+ in the vacuole, thereby influencing Ca2+ storage and leading to an enhanced Ca2+ elevation in response to abscisic acid. This regulatory cascade finely tunes stomatal responses, ultimately leading to enhanced drought tolerance. Our findings underscore the importance of tonoplast Ca2+-ATPase in manipulating stomatal behavior and improving drought tolerance. Furthermore, these results highlight the diverse functions of tonoplast-localized ACA11 in response to different conditions, emphasizing its potential for future applications in plant enhancement.
Collapse
Affiliation(s)
- Jinghan Su
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Bingqing He
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Peiyuan Li
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Baiyang Yu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Cen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Lingfeng Xia
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yi Jing
- BGI Research, Sanya, 572025, China
| | - Feibo Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yizhou Wang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Yudina L, Popova A, Zolin Y, Grebneva K, Sukhova E, Sukhov V. Local Action of Moderate Heating and Illumination Induces Electrical Signals, Suppresses Photosynthetic Light Reactions, and Increases Drought Tolerance in Wheat Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1173. [PMID: 38732388 PMCID: PMC11085084 DOI: 10.3390/plants13091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Local actions of stressors induce electrical signals (ESs), influencing photosynthetic processes and probably increasing tolerance to adverse factors in higher plants. However, the participation of well-known depolarization ESs (action potentials and variation potentials) in these responses seems to be rare under natural conditions, particularly in the case of variation potentials, which are induced by extreme stressors (e.g., burning). Earlier, we showed that the local action of moderate heating and illumination can induce low-amplitude hyperpolarization ESs influencing photosynthetic light reactions in wheat plants cultivated in a vegetation room. In the current work, we analyzed ESs and changes in photosynthetic light reactions and drought tolerance that were induced by a combination of moderate heating and illumination in wheat plants cultivated under open-ground conditions. It was shown that the local heating and illumination induced low-amplitude ESs, and the type of signal (depolarization or hyperpolarization) was dependent on distance from the irritated zone and wheat age. Induction of depolarization ESs was not accompanied by photosynthetic changes in plants under favorable conditions or under weak drought. In contrast, the changes were observed after induction of these signals under moderate drought. Increasing drought tolerance was also observed in the last case. Thus, low-amplitude ESs can participate in photosynthetic regulation and increase tolerance to drought in plants cultivated under open-ground conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (L.Y.); (A.P.); (Y.Z.); (K.G.); (E.S.)
| |
Collapse
|
6
|
Sukhova EM, Yudina LM, Sukhov VS. Changes in Activity of the Plasma Membrane H+-ATPase as a Link Between Formation of Electrical Signals and Induction of Photosynthetic Responses in Higher Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1488-1503. [PMID: 38105019 DOI: 10.1134/s0006297923100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023]
Abstract
Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.
Collapse
Affiliation(s)
- Ekaterina M Sukhova
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Lyubov' M Yudina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
| | - Vladimir S Sukhov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
7
|
Yudina L, Popova A, Zolin Y, Sukhova E, Sukhov V. Local Action of Increased Pressure Induces Hyperpolarization Electrical Signals and Influences Photosynthetic Light Reactions in Wheat Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2570. [PMID: 37447131 DOI: 10.3390/plants12132570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Long-distance electrical signals caused by the local action of stressors influence numerous physiological processes in plants including photosynthesis and increase their tolerance to the action of adverse factors. Depolarization electrical signals were mainly investigated; however, we earlier showed that hyperpolarization electrical signals (HESs) can be caused by moderate stressors (e.g., local moderate heating) and induce photosynthetic inactivation. We hypothesized that HESs are related to stressor-induced increases in the hydrostatic pressure in the zone of action of the stressor and following the propagation of a hydraulic wave. In the current work, we tested this hypothesis through the direct investigation of electrical signals induced by the local action of artificially increased pressure and an analysis of the subsequent photosynthetic changes in the nonirritated parts of plants. The electrical signals and parameters of photosynthetic light reactions were investigated in wheat plants. The local action of the increased pressure was induced by the action of weights on the wheat leaf. Extracellular electrodes were used for electrical signal measurements. Pulse-amplitude-modulation fluorescent imaging was used for measurements of the quantum yield of photosystem II and nonphotochemical quenching of chlorophyll fluorescence in wheat leaves. It was shown that the local action of pressure on wheat leaf induced electrical signals near the irritated zone: HESs were caused by low pressure (10 kPa) and depolarization signals were induced by high pressure (100 kPa). The local action of moderate pressure (50 kPa) induced weak electrical signals near the irritated zone; however, HESs were observed with increasing distance from this zone. It was also shown that the local action of this moderate pressure induced the photosynthetic inactivation (decreasing the quantum yield of photosystem II and increasing the nonphotochemical quenching of chlorophyll fluorescence) in the nonirritated parts of the wheat leaves. Thus, our results show that the local action of the increased pressure and, probably, subsequent propagation of the hydraulic wave induce electrical signals (including HESs) and photosynthetic inactivation in nonirritated parts of plants that are similar to ones caused by the local action of moderate stressors (e.g., moderate heating). This means that both HESs and depolarization electrical signals can have a hydraulic mechanism of propagation.
Collapse
Affiliation(s)
- Lyubov Yudina
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alyona Popova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Yuriy Zolin
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Lv X, Li Y, Chen R, Rui M, Wang Y. Stomatal Responses of Two Drought-Tolerant Barley Varieties with Different ROS Regulation Strategies under Drought Conditions. Antioxidants (Basel) 2023; 12:antiox12040790. [PMID: 37107165 PMCID: PMC10135251 DOI: 10.3390/antiox12040790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Drought stress is a major obstacle to agricultural production. Stomata are central to efforts to improve photosynthesis and water use. They are targets for manipulation to improve both processes and the balance between them. An in-depth understanding of stomatal behavior and kinetics is important for improving photosynthesis and the WUE of crops. In this study, a drought stress pot experiment was performed, and a transcriptome analysis of the leaves of three contrasting, cultivated barley genotypes Lumley (Lum, drought-tolerant), Golden Promise (GP, drought-sensitive), and Tadmor (Tad, drought-tolerant), generated by high-throughput sequencing, were compared. Lum exhibited a different WUE at the leaf and whole-plant levels and had greater CO2 assimilation, with a higher gs under drought stress. Interestingly, Lum showed a slower stomatal closure in response to a light-dark transition and significant differences compared to Tad in stomatal response to the exogenous application of ABA, H2O2, and CaCl2. A transcriptome analysis revealed that 24 ROS-related genes were indeed involved in drought response regulation, and impaired ABA-induced ROS accumulation in Lum was identified using ROS and antioxidant capacity measurements. We conclude that different stomatal ROS responses affect stomatal closure in barley, demonstrating different drought regulation strategies. These results provide valuable insight into the physiological and molecular basis of stomatal behavior and drought tolerance in barley.
Collapse
Affiliation(s)
- Xiachen Lv
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yihong Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Rongjia Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Sato K, Saito S, Endo K, Kono M, Kakei T, Taketa H, Kato M, Hamamoto S, Grenzi M, Costa A, Munemasa S, Murata Y, Ishimaru Y, Uozumi N. Green Tea Catechins, (-)-Catechin Gallate, and (-)-Gallocatechin Gallate are Potent Inhibitors of ABA-Induced Stomatal Closure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201403. [PMID: 35524639 PMCID: PMC9313475 DOI: 10.1002/advs.202201403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Indexed: 06/04/2023]
Abstract
Stomatal movement is indispensable for plant growth and survival in response to environmental stimuli. Cytosolic Ca2+ elevation plays a crucial role in ABA-induced stomatal closure during drought stress; however, to what extent the Ca2+ movement across the plasma membrane from the apoplast to the cytosol contributes to this process still needs clarification. Here the authors identify (-)-catechin gallate (CG) and (-)-gallocatechin gallate (GCG), components of green tea, as inhibitors of voltage-dependent K+ channels which regulate K+ fluxes in Arabidopsis thaliana guard cells. In Arabidopsis guard cells CG/GCG prevent ABA-induced: i) membrane depolarization; ii) activation of Ca2+ permeable cation (ICa ) channels; and iii) cytosolic Ca2+ transients. In whole Arabidopsis plants co-treatment with CG/GCG and ABA suppressed ABA-induced stomatal closure and surface temperature increase. Similar to ABA, CG/GCG inhibited stomatal closure is elicited by the elicitor peptide, flg22 but has no impact on dark-induced stomatal closure or light- and fusicoccin-induced stomatal opening, suggesting that the inhibitory effect of CG/GCG is associated with Ca2+ -related signaling pathways. This study further supports the crucial role of ICa channels of the plasma membrane in ABA-induced stomatal closure. Moreover, CG and GCG represent a new tool for the study of abiotic or biotic stress-induced signal transduction pathways.
Collapse
Affiliation(s)
- Kanane Sato
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Shunya Saito
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Kohsuke Endo
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Masaru Kono
- Department of BiologyGraduate School of ScienceUniversity of TokyoBunkyo‐ku113‐0033Japan
| | - Taishin Kakei
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Haruka Taketa
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Megumi Kato
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Shin Hamamoto
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Matteo Grenzi
- Department of BiosciencesUniversity of MilanVia G. Celoria 26Milan20133Italy
| | - Alex Costa
- Department of BiosciencesUniversity of MilanVia G. Celoria 26Milan20133Italy
- Institute of BiophysicsNational Research Council of Italy (CNR)Via G. Celoria 26Milan20133Italy
| | - Shintaro Munemasa
- Graduate School of Environmental and Life ScienceOkayama UniversityTsushimaOkayama700‐8530Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life ScienceOkayama UniversityTsushimaOkayama700‐8530Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular EngineeringGraduate School of EngineeringTohoku UniversityAobayama 6‐6‐07Sendai980‐8579Japan
| |
Collapse
|
10
|
Blatt MR, Jezek M, Lew VL, Hills A. What can mechanistic models tell us about guard cells, photosynthesis, and water use efficiency? TRENDS IN PLANT SCIENCE 2022; 27:166-179. [PMID: 34565672 DOI: 10.1016/j.tplants.2021.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. The pores open to enable CO2 entry for photosynthesis and close to reduce transpirational water loss. How stomata respond to the environment has long attracted interest in modeling as a tool to understand the consequences for the plant and for the ecosystem. Models that focus on stomatal conductance for gas exchange make intuitive sense, but such models need also to connect with the mechanics of the guard cells that regulate pore aperture if we are to understand the 'decisions made' by stomata, their impacts on the plant and on the global environment.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK.
| | - Mareike Jezek
- Journal of Experimental Botany, Lancaster University, Lancaster LA1 4YW, UK
| | - Virgilio L Lew
- The Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, UK
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Lefoulon C. The bare necessities of plant K+ channel regulation. PLANT PHYSIOLOGY 2021; 187:2092-2109. [PMID: 34618033 PMCID: PMC8644596 DOI: 10.1093/plphys/kiab266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 05/29/2023]
Abstract
Potassium (K+) channels serve a wide range of functions in plants from mineral nutrition and osmotic balance to turgor generation for cell expansion and guard cell aperture control. Plant K+ channels are members of the superfamily of voltage-dependent K+ channels, or Kv channels, that include the Shaker channels first identified in fruit flies (Drosophila melanogaster). Kv channels have been studied in depth over the past half century and are the best-known of the voltage-dependent channels in plants. Like the Kv channels of animals, the plant Kv channels are regulated over timescales of milliseconds by conformational mechanisms that are commonly referred to as gating. Many aspects of gating are now well established, but these channels still hold some secrets, especially when it comes to the control of gating. How this control is achieved is especially important, as it holds substantial prospects for solutions to plant breeding with improved growth and water use efficiencies. Resolution of the structure for the KAT1 K+ channel, the first channel from plants to be crystallized, shows that many previous assumptions about how the channels function need now to be revisited. Here, I strip the plant Kv channels bare to understand how they work, how they are gated by voltage and, in some cases, by K+ itself, and how the gating of these channels can be regulated by the binding with other protein partners. Each of these features of plant Kv channels has important implications for plant physiology.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
12
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
13
|
Nuhkat M, Brosché M, Stoelzle-Feix S, Dietrich P, Hedrich R, Roelfsema MRG, Kollist H. Rapid depolarization and cytosolic calcium increase go hand-in-hand in mesophyll cells' ozone response. THE NEW PHYTOLOGIST 2021; 232:1692-1702. [PMID: 34482538 DOI: 10.1111/nph.17711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Plant stress signalling involves bursts of reactive oxygen species (ROS), which can be mimicked by the application of acute pulses of ozone. Such ozone-pulses inhibit photosynthesis and trigger stomatal closure in a few minutes, but the signalling that underlies these responses remains largely unknown. We measured changes in Arabidopsis thaliana gas exchange after treatment with acute pulses of ozone and set up a system for simultaneous measurement of membrane potential and cytosolic calcium with the fluorescent reporter R-GECO1. We show that within 1 min, prior to stomatal closure, O3 triggered a drop in whole-plant CO2 uptake. Within this early phase, O3 pulses (200-1000 ppb) elicited simultaneous membrane depolarization and cytosolic calcium increase, whereas these pulses had no long-term effect on either stomatal conductance or photosynthesis. In contrast, pulses of 5000 ppb O3 induced cell death, systemic Ca2+ signals and an irreversible drop in stomatal conductance and photosynthetic capacity. We conclude that mesophyll cells respond to ozone in a few seconds by distinct pattern of plasma membrane depolarizations accompanied by an increase in the cytosolic calcium ion (Ca2+ ) level. These responses became systemic only at very high ozone concentrations. Thus, plants have rapid mechanism to sense and discriminate the strength of ozone signals.
Collapse
Affiliation(s)
- Maris Nuhkat
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Viikinkaari 1, Biocentre 3, Helsinki, 00790, Finland
| | | | - Petra Dietrich
- Molecular Plant Physiology, Department of Biology, University of Erlangen-Nürnberg, Staudtstrasse 5, Erlangen, 91058, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
14
|
Jezek M, Silva-Alvim FAL, Hills A, Donald N, Ishka MR, Shadbolt J, He B, Lawson T, Harper JF, Wang Y, Lew VL, Blatt MR. Guard cell endomembrane Ca 2+-ATPases underpin a 'carbon memory' of photosynthetic assimilation that impacts on water-use efficiency. NATURE PLANTS 2021; 7:1301-1313. [PMID: 34326530 DOI: 10.1038/s41477-021-00966-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Stomata of most plants close to preserve water when the demand for CO2 by photosynthesis is reduced. Stomatal responses are slow compared with photosynthesis, and this kinetic difference erodes assimilation and water-use efficiency under fluctuating light. Despite a deep knowledge of guard cells that regulate the stoma, efforts to enhance stomatal kinetics are limited by our understanding of its control by foliar CO2. Guided by mechanistic modelling that incorporates foliar CO2 diffusion and mesophyll photosynthesis, here we uncover a central role for endomembrane Ca2+ stores in guard cell responsiveness to fluctuating light and CO2. Modelling predicted and experiments demonstrated a delay in Ca2+ cycling that was enhanced by endomembrane Ca2+-ATPase mutants, altering stomatal conductance and reducing assimilation and water-use efficiency. Our findings illustrate the power of modelling to bridge the gap from the guard cell to whole-plant photosynthesis, and they demonstrate an unforeseen latency, or 'carbon memory', of guard cells that affects stomatal dynamics, photosynthesis and water-use efficiency.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | | | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Naomi Donald
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Maryam Rahmati Ishka
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Jessica Shadbolt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK
| | - Bingqing He
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Virgilio L Lew
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, UK.
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Tahjib-Ul-Arif M, Munemasa S, Nakamura T, Nakamura Y, Murata Y. Modulation of frequency and height of cytosolic calcium spikes by plasma membrane anion channels in guard cells. Biosci Biotechnol Biochem 2021; 85:2003-2010. [PMID: 34191003 DOI: 10.1093/bbb/zbab118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022]
Abstract
Cytosolic calcium ([Ca2+]cyt) elevation activates plasma membrane anion channels in guard cells, which is required for stomatal closure. However, involvement of the anion channels in the [Ca2+]cyt elevation remains unclear. We investigated the involvement using Arabidopsis thaliana anion channel mutants, slac1-4 slah3-3 and slac1-4 almt12-1. Extracellular calcium induced stomatal closure in the wild-type plants but not in the anion channel mutant plants whereas extracellular calcium induced [Ca2+]cyt elevation both in the wild-type guard cells and in the mutant guard cells. The peak height and the number of the [Ca2+]cyt spike were lower and larger in the slac1-4 slah3-3 than in the wild-type and the height and the number in the slac1-4 almt12-1 were much lower and much larger than in the wild-type. These results suggest that the anion channels are involved in the regulation of [Ca2+]cyt elevation in guard cells.
Collapse
Affiliation(s)
- Md Tahjib-Ul-Arif
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
16
|
Klejchova M, Silva-Alvim FAL, Blatt MR, Alvim JC. Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation. PLANT PHYSIOLOGY 2021; 185:1523-1541. [PMID: 33598675 PMCID: PMC8133626 DOI: 10.1093/plphys/kiab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 05/10/2023]
Abstract
Membrane voltage arises from the transport of ions through ion-translocating ATPases, ion-coupled transport of solutes, and ion channels, and is an integral part of the bioenergetic "currency" of the membrane. The dynamics of membrane voltage-so-called action, systemic, and variation potentials-have also led to a recognition of their contributions to signal transduction, both within cells and across tissues. Here, we review the origins of our understanding of membrane voltage and its place as a central element in regulating transport and signal transmission. We stress the importance of understanding voltage as a common intermediate that acts both as a driving force for transport-an electrical "substrate"-and as a product of charge flux across the membrane, thereby interconnecting all charge-carrying transport across the membrane. The voltage interconnection is vital to signaling via second messengers that rely on ion flux, including cytosolic free Ca2+, H+, and the synthesis of reactive oxygen species generated by integral membrane, respiratory burst oxidases. These characteristics inform on the ways in which long-distance voltage signals and voltage oscillations give rise to unique gene expression patterns and influence physiological, developmental, and adaptive responses such as systemic acquired resistance to pathogens and to insect herbivory.
Collapse
Affiliation(s)
- Martina Klejchova
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fernanda A L Silva-Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
- Author for communication:
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Schulze S, Dubeaux G, Ceciliato PHO, Munemasa S, Nuhkat M, Yarmolinsky D, Aguilar J, Diaz R, Azoulay-Shemer T, Steinhorst L, Offenborn JN, Kudla J, Kollist H, Schroeder JI. A role for calcium-dependent protein kinases in differential CO 2 - and ABA-controlled stomatal closing and low CO 2 -induced stomatal opening in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:2765-2779. [PMID: 33187027 PMCID: PMC7902375 DOI: 10.1111/nph.17079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/02/2020] [Indexed: 05/11/2023]
Abstract
Low concentrations of CO2 cause stomatal opening, whereas [CO2 ] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+ and protein phosphorylation in CO2 -induced stomatal closing. Calcium-dependent protein kinases (CPKs) and calcineurin-B-like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+ into specific phosphorylation events. However, Ca2+ -binding proteins that function in the stomatal CO2 response remain unknown. Time-resolved stomatal conductance measurements using intact plants, and guard cell patch-clamp experiments were performed. We isolated cpk quintuple mutants and analyzed stomatal movements in response to CO2 , light and abscisic acid (ABA). Interestingly, we found that cpk3/5/6/11/23 quintuple mutant plants, but not other analyzed cpk quadruple/quintuple mutants, were defective in high CO2 -induced stomatal closure and, unexpectedly, also in low CO2 -induced stomatal opening. Furthermore, K+ -uptake-channel activities were reduced in cpk3/5/6/11/23 quintuple mutants, in correlation with the stomatal opening phenotype. However, light-mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2 -regulated stomatal movement kinetics were not clearly affected in plasma membrane-targeted cbl1/4/5/8/9 quintuple mutant plants. Our findings describe combinatorial cpk mutants that function in CO2 control of stomatal movements and support the results of classical studies showing a role for Ca2+ in this response.
Collapse
Affiliation(s)
- Sebastian Schulze
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Paulo H. O. Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama 700–8530, Japan
| | - Maris Nuhkat
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Dmitry Yarmolinsky
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Jaimee Aguilar
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Renee Diaz
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
- Fruit Tree Sciences, Agricultural Research Organization (ARO), The Volcani Center, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Leonie Steinhorst
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Jan Niklas Offenborn
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Jörg Kudla
- Institute of Plant Biology and Biotechnology, University of Münster, 48149 Münster, Germany
| | - Hannes Kollist
- Plant Signal Research Group, Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
18
|
Wong JH, Klejchová M, Snipes SA, Nagpal P, Bak G, Wang B, Dunlap S, Park MY, Kunkel EN, Trinidad B, Reed JW, Blatt MR, Gray WM. SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements. PLANT PHYSIOLOGY 2021; 185:256-273. [PMID: 33631805 PMCID: PMC8133658 DOI: 10.1093/plphys/kiaa023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/27/2020] [Indexed: 05/12/2023]
Abstract
Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Present address: Department of Biological Sciences, National University of Singapore, Singapore
| | - Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stephen A Snipes
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Punita Nagpal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Gwangbae Bak
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Bryan Wang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Sonja Dunlap
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Mee Yeon Park
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Emma N Kunkel
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Brendan Trinidad
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Jason W Reed
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA
- Author for communication:
| |
Collapse
|
19
|
Inoue S, Kaiserli E, Zhao X, Waksman T, Takemiya A, Okumura M, Takahashi H, Seki M, Shinozaki K, Endo Y, Sawasaki T, Kinoshita T, Zhang X, Christie JM, Shimazaki K. CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:679-692. [PMID: 32780529 PMCID: PMC7693358 DOI: 10.1111/tpj.14955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.
Collapse
Affiliation(s)
- Shin‐Ichiro Inoue
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Eirini Kaiserli
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Xiang Zhao
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - Thomas Waksman
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Atsushi Takemiya
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
- Present address:
Department of BiologyGraduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchi753‐8512Japan
| | - Masaki Okumura
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota
| | | | - Motoaki Seki
- RIKEN Cluster for Pioneering Research2‐1 HirosawaWako351‐0198Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22, Suehiro, Tsurumi‐kuYokohama230‐0045Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukuba305‐0074Japan
| | - Yaeta Endo
- Institute for the Promotion of Science and TechnologyEhime UniversityMatsuyama790‐8577Japan
| | | | - Toshinori Kinoshita
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8602Japan
| | - Xiao Zhang
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - John M. Christie
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Ken‐Ichiro Shimazaki
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
| |
Collapse
|
20
|
Babla MH, Tissue DT, Cazzonelli CI, Chen ZH. Effect of high light on canopy-level photosynthesis and leaf mesophyll ion flux in tomato. PLANTA 2020; 252:80. [PMID: 33037481 DOI: 10.1007/s00425-020-03493-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
This study highlights the potential link between high light-induced canopy-level photosynthesis and mesophyll cell K+, Cl-, Ca2+, and H+ homeostasis in tomato. Light is a primary energy source for photosynthesis and a vital regulator of mineral nutrient uptake and distribution in plants. Plants need to optimize photosynthesis and nutrient balance in leaves for performance in fluctuating light conditions that are partially regulated by light-induced ion homeostatsis in the mesophyll cells. It is still elusive whether high light-induced leaf mesophyll ion fluxes affect leaf photosynthesis at different canopy levels in Solanum lycopersicum L. Leaf gas exchange and microelectrode ion flux (MIFE) measurements were employed to study the effects of prolonged light-induced canopy-level leaf physiological responses of tomato plants. High light resulted in a significant lowering in photosynthesis in the fully-exposed top canopy leaves of tomato, but not to mid- or low-canopy leaves. Leaf mesophyll K+ effluxes of all canopies were significantly decreased after three weeks of high light treatment. However, high light-induced leaf mesophyll Ca2+ effluxes were significantly enhanced only in the top and mid canopies. Moreover, we found that photosynthetic parameters were significantly correlated with leaf mesophyll ion fluxes. We thus propose that canopy-level significant Ca2+ efflux and K+ efflux of leaf mesophyll may serve as early indicators for light-induced regulation on photosynthesis. We conclude that light-induced differential photosynthetic performance and ion fluxes in leaves may implicate a requirement of more uniform light irradiance and spectra at different canopy levels of tall greenhouse tomato plants. This can be achieved through new innovative greenhouse lighting technologies and covering materials towards the enhancement of crop photosynthesis and yield.
Collapse
Affiliation(s)
| | - David Thomas Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | | | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
21
|
Lefoulon C, Boxall SF, Hartwell J, Blatt MR. Crassulacean acid metabolism guard cell anion channel activity follows transcript abundance and is suppressed by apoplastic malate. THE NEW PHYTOLOGIST 2020; 227:1847-1857. [PMID: 32367511 DOI: 10.1111/nph.16640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Plants utilising crassulacean acid metabolism (CAM) concentrate CO2 around RuBisCO while reducing transpirational water loss associated with photosynthesis. Unlike stomata of C3 and C4 species, CAM stomata open at night for the mesophyll to fix CO2 into malate (Mal) and store it in the vacuole. CAM plants decarboxylate Mal in the light, generating high CO2 concentrations within the leaf behind closed stomata for refixation by RuBisCO. CO2 may contribute to stomatal closure but additional mechanisms, plausibly including Mal activation of anion channels, ensure closure in the light. In the CAM species Kalanchoë fedtschenkoi, we found that guard cell anion channel activity, recorded under voltage clamp, follows KfSLAC1 and KfALMT12 transcript abundance, declining to near zero by the end of the light period. Unexpectedly, however, we found that extracellular Mal inhibited the anion current of Kalanchoë guard cells, both in wild-type and RNAi mutants with impaired Mal metabolism. We conclude that the diurnal cycle of anion channel gene transcription, rather than the physiological signal of Mal release, is a key factor in the inverted CAM stomatal cycle.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Susanna F Boxall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool,, L69 7ZB, UK
| | - James Hartwell
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool,, L69 7ZB, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
22
|
Klejchová M, Hills A, Blatt MR. Predicting the unexpected in stomatal gas exchange: not just an open-and-shut case. Biochem Soc Trans 2020; 48:881-889. [PMID: 32453378 PMCID: PMC7329339 DOI: 10.1042/bst20190632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Plant membrane transport, like transport across all eukaryotic membranes, is highly non-linear and leads to interactions with characteristics so complex that they defy intuitive understanding. The physiological behaviour of stomatal guard cells is a case in point in which, for example, mutations expected to influence stomatal closing have profound effects on stomatal opening and manipulating transport across the vacuolar membrane affects the plasma membrane. Quantitative mathematical modelling is an essential tool in these circumstances, both to integrate the knowledge of each transport process and to understand the consequences of their manipulation in vivo. Here, we outline the OnGuard modelling environment and its use as a guide to predicting the emergent properties arising from the interactions between non-linear transport processes. We summarise some of the recent insights arising from OnGuard, demonstrate its utility in interpreting stomatal behaviour, and suggest ways in which the OnGuard environment may facilitate 'reverse-engineering' of stomata to improve water use efficiency and carbon assimilation.
Collapse
Affiliation(s)
- Martina Klejchová
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, U.K
| |
Collapse
|
23
|
Ye W, Ando E, Rhaman MS, Tahjib-Ul-Arif M, Okuma E, Nakamura Y, Kinoshita T, Murata Y. Inhibition of light-induced stomatal opening by allyl isothiocyanate does not require guard cell cytosolic Ca2+ signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2922-2932. [PMID: 32103265 PMCID: PMC7260714 DOI: 10.1093/jxb/eraa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/26/2020] [Indexed: 05/20/2023]
Abstract
The glucosinolate-myrosinase system is a well-known defense system that has been shown to induce stomatal closure in Brassicales. Isothiocyanates are highly reactive hydrolysates of glucosinolates, and an isothiocyanate, allyl isothiocyanate (AITC), induces stomatal closure accompanied by elevation of free cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis. It remains unknown whether AITC inhibits light-induced stomatal opening. This study investigated the role of Ca2+ in AITC-induced stomatal closure and inhibition of light-induced stomatal opening. AITC induced stomatal closure and inhibited light-induced stomatal opening in a dose-dependent manner. A Ca2+ channel inhibitor, La3+, a Ca2+chelator, EGTA, and an inhibitor of Ca2+ release from internal stores, nicotinamide, inhibited AITC-induced [Ca2+]cyt elevation and stomatal closure, but did not affect inhibition of light-induced stomatal opening. AITC activated non-selective Ca2+-permeable cation channels and inhibited inward-rectifying K+ (K+in) channels in a Ca2+-independent manner. AITC also inhibited stomatal opening induced by fusicoccin, a plasma membrane H+-ATPase activator, but had no significant effect on fusicoccin-induced phosphorylation of the penultimate threonine of H+-ATPase. Taken together, these results suggest that AITC induces Ca2+ influx and Ca2+ release to elevate [Ca2+]cyt, which is essential for AITC-induced stomatal closure but not for inhibition of K+in channels and light-induced stomatal opening.
Collapse
Affiliation(s)
- Wenxiu Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
- Institute of Transformative Bio-Molecule, Nagoya University, Chikusa, Nagoya, Japan
| | - Eigo Ando
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Mohammad Saidur Rhaman
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Md Tahjib-Ul-Arif
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecule, Nagoya University, Chikusa, Nagoya, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-Naka, Okayama, Japan
- Correspondence:
| |
Collapse
|
24
|
Biel A, Moser M, Meier I. A Role for Plant KASH Proteins in Regulating Stomatal Dynamics. PLANT PHYSIOLOGY 2020; 182:1100-1113. [PMID: 31767690 PMCID: PMC6997697 DOI: 10.1104/pp.19.01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/10/2019] [Indexed: 05/19/2023]
Abstract
Stomatal movement, which regulates gas exchange in plants, is controlled by a variety of environmental factors, including biotic and abiotic stresses. The stress hormone abscisic acid (ABA) initiates a signaling cascade, which leads to increased H2O2 and Ca2+ levels and F-actin reorganization, but the mechanism of, and connection between, these events is unclear. SINE1, an outer nuclear envelope component of a plant Linker of Nucleoskeleton and Cytoskeleton complex, associates with F-actin and is, along with its putative paralog SINE2, expressed in guard cells. Here, we have determined that Arabidopsis (Arabidopsis thaliana) SINE1 and SINE2 play an important role in stomatal opening and closing. Loss of SINE1 or SINE2 results in ABA hyposensitivity and impaired stomatal dynamics but does not affect stomatal closure induced by the bacterial elicitor flg22. The ABA-induced stomatal closure phenotype is, in part, attributed to impairments in Ca2+ and F-actin regulation. Together, the data suggest that SINE1 and SINE2 act downstream of ABA but upstream of Ca2+ and F-actin. While there is a large degree of functional overlap between the two proteins, there are also critical differences. Our study makes an unanticipated connection between stomatal regulation and nuclear envelope-associated proteins, and adds two new players to the increasingly complex system of guard cell regulation.
Collapse
Affiliation(s)
- Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Durand M, Cohen D, Aubry N, Buré C, Tomášková I, Hummel I, Brendel O, Le Thiec D. Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance. PLANT, CELL & ENVIRONMENT 2020; 43:87-102. [PMID: 31423592 DOI: 10.1111/pce.13644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/11/2019] [Indexed: 05/23/2023]
Abstract
Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs ) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+ -ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+ -vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.
Collapse
Affiliation(s)
- Maxime Durand
- Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France
| | - David Cohen
- Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France
| | - Nathalie Aubry
- Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France
| | - Cyril Buré
- Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France
| | - Ivana Tomášková
- Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Irène Hummel
- Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France
| | - Oliver Brendel
- Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France
| | - Didier Le Thiec
- Inra, Université de Lorraine, AgroParisTech, SILVA, F-54280, Champenoux, France
| |
Collapse
|
26
|
Prodhan MY, Munemasa S, Nahar MNEN, Nakamura Y, Murata Y. Guard Cell Salicylic Acid Signaling Is Integrated into Abscisic Acid Signaling via the Ca 2+/CPK-Dependent Pathway. PLANT PHYSIOLOGY 2018; 178:441-450. [PMID: 30037808 PMCID: PMC6130018 DOI: 10.1104/pp.18.00321] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/05/2018] [Indexed: 05/19/2023]
Abstract
The phenolic hormone salicylic acid (SA) induces stomatal closure. It has been suggested that SA signaling is integrated with abscisic acid (ABA) signaling in guard cells, but the integration mechanism remains unclear. The Ca2+-independent protein kinase Open Stomata1 (OST1) and Ca2+-dependent protein kinases (CPKs) are key for ABA-induced activation of the slow-type anion channel SLAC1 and stomatal closure. Here, we show that SA-induced stomatal closure and SA activation of slow-type anion channel are impaired in the CPK disruption mutant cpk3-2 cpk6-1 but not in the OST1 disruption mutant ost1-3 We also found that the key phosphorylation sites of SLAC1 in ABA signaling, serine-59 and serine-120, also are important for SA signaling. Chemiluminescence-based detection of superoxide anion revealed that SA did not require CPK3 and CPK6 for the induction of reactive oxygen species production. Taken together, our results suggest that SA activates peroxidase-mediated reactive oxygen species signal that is integrated into Ca2+/CPK-dependent ABA signaling branch but not the OST1-dependent signaling branch in Arabidopsis (Arabidopsis thaliana) guard cells.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Mst Nur-E-Nazmun Nahar
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama 700-8530 Japan
| |
Collapse
|
27
|
Qi GN, Yao FY, Ren HM, Sun SJ, Hussain J, Huang CF, Wang YF. Constitutive activation of calcium-dependent protein kinase 3 confers a drought tolerance by inhibiting inward K + channel KAT1 and stomatal opening in Arabidopsis. Sci Bull (Beijing) 2018; 63:1037-1039. [PMID: 36755455 DOI: 10.1016/j.scib.2018.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Guo-Ning Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fen-Yong Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui-Min Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Jing Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jamshaid Hussain
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, 22060 Abbottabad, Pakistan
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
28
|
Yao X, Zhao W, Yang R, Wang J, Zhao F, Wang S. Preparation and applications of guard cell protoplasts from the leaf epidermis of Solanum lycopersicum. PLANT METHODS 2018; 14:26. [PMID: 29593827 PMCID: PMC5866509 DOI: 10.1186/s13007-018-0294-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 03/16/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Guard cell protoplasts (GCPs) isolated from various plants have proven to be especially useful for studies of signal transduction pathways and plant development. But it is not easy to isolate highly purified preparations of large numbers of GCPs from plants. In this research, our focus is on a method to isolate large numbers of guard cells from tomato leaves. The protocols described yield millions of highly purified, viable GCPs, which are also suitable for studies on guard cell physiology. RESULTS We developed an efficient method for isolating GCPs from epidermal fragments of tomato leaves. The protocol requires a two-step digestion to isolate high-quality tomato GCPs. In this procedure, cellulysin (in method L) was replaced by cellulose "Onozuka" RS (in method S) in the first digestion step, which indicated that cellulase RS was more effective than cellulysin. Method S dramatically shortened the time required for obtaining high yields and high-quality GCPs. Moreover, according to the GCP yields, hydroponic plants were more effective than substrate-cultured plants. CONCLUSIONS In this paper, protocols for large-scale preparation of GCPs and mesophyll cell protoplasts were described, followed by some success examples of their use in biochemical and molecular approaches such as reverse-transcription polymerase chain reaction, real-time polymerase chain reaction and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The method was proved to be a more efficient GCP-isolating method, capable of providing high yields with better quality in less time.
Collapse
Affiliation(s)
- Xuehui Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206 People’s Republic of China
| | - Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206 People’s Republic of China
| | - Rui Yang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206 People’s Republic of China
| | - Jianli Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206 People’s Republic of China
| | - Fukuan Zhao
- Biological Science and Technology College, Beijing University of Agriculture, No. 7 BeiNong Road, Changping District, Beijing, 102206 People’s Republic of China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206 People’s Republic of China
| |
Collapse
|
29
|
Wang Y, Hills A, Vialet-Chabrand S, Papanatsiou M, Griffiths H, Rogers S, Lawson T, Lew VL, Blatt MR. Unexpected Connections between Humidity and Ion Transport Discovered Using a Model to Bridge Guard Cell-to-Leaf Scales. THE PLANT CELL 2017; 29:2921-2939. [PMID: 29093213 PMCID: PMC5728137 DOI: 10.1105/tpc.17.00694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 05/18/2023]
Abstract
Stomatal movements depend on the transport and metabolism of osmotic solutes that drive reversible changes in guard cell volume and turgor. These processes are defined by a deep knowledge of the identities of the key transporters and of their biophysical and regulatory properties, and have been modeled successfully with quantitative kinetic detail at the cellular level. Transpiration of the leaf and canopy, by contrast, is described by quasilinear, empirical relations for the inputs of atmospheric humidity, CO2, and light, but without connection to guard cell mechanics. Until now, no framework has been available to bridge this gap and provide an understanding of their connections. Here, we introduce OnGuard2, a quantitative systems platform that utilizes the molecular mechanics of ion transport, metabolism, and signaling of the guard cell to define the water relations and transpiration of the leaf. We show that OnGuard2 faithfully reproduces the kinetics of stomatal conductance in Arabidopsis thaliana and its dependence on vapor pressure difference (VPD) and on water feed to the leaf. OnGuard2 also predicted with VPD unexpected alterations in K+ channel activities and changes in stomatal conductance of the slac1 Cl- channel and ost2 H+-ATPase mutants, which we verified experimentally. OnGuard2 thus bridges the micro-macro divide, offering a powerful tool with which to explore the links between guard cell homeostasis, stomatal dynamics, and foliar transpiration.
Collapse
Affiliation(s)
- Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | - Maria Papanatsiou
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Howard Griffiths
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Simon Rogers
- Computing Science, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Tracy Lawson
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Virgilio L Lew
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
30
|
Tran D, Galletti R, Neumann ED, Dubois A, Sharif-Naeini R, Geitmann A, Frachisse JM, Hamant O, Ingram GC. A mechanosensitive Ca 2+ channel activity is dependent on the developmental regulator DEK1. Nat Commun 2017; 8:1009. [PMID: 29044106 PMCID: PMC5647327 DOI: 10.1038/s41467-017-00878-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
Responses of cells to mechanical stress are thought to be critical in coordinating growth and development. Consistent with this idea, mechanically activated channels play important roles in animal development. For example, the PIEZO1 channel controls cell division and epithelial-layer integrity and is necessary for vascular development in mammals. In plants, the actual contribution of mechanoperception to development remains questionable because very few putative mechanosensors have been identified and the phenotypes of the corresponding mutants are rather mild. Here, we show that the Arabidopsis Defective Kernel 1 (DEK1) protein, which is essential for development beyond early embryogenesis, is associated with a mechanically activated Ca2+ current in planta, suggesting that perception of mechanical stress plays a critical role in plant development.
Collapse
Affiliation(s)
- Daniel Tran
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Sciences Plant Saclay, Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
- Department of Physiology and Cell Information Systems, McGill University, Montreal, Québec, Canada, H3G-0B1
| | - Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Enrique D Neumann
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Annick Dubois
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems, McGill University, Montreal, Québec, Canada, H3G-0B1
| | - Anja Geitmann
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Montreal, Québec, Canada, H9X3V9
| | - Jean-Marie Frachisse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Sciences Plant Saclay, Avenue de la Terrasse, 91198, Gif sur Yvette Cedex, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
31
|
Prodhan MY, Issak M, Nakamura T, Munemasa S, Nakamura Y, Murata Y. Chitosan signaling in guard cells requires endogenous salicylic acid. Biosci Biotechnol Biochem 2017; 81:1536-1541. [DOI: 10.1080/09168451.2017.1332979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
An elicitor chitosan (CHT) induces stomatal closure but the mechanism remains to be clarified. A phytohormone salicylic acid (SA) is crucial for elicitor-induced defense signaling in plants. Here we investigated whether endogenous SA is required for CHT signaling in guard cells. In the SA-deficient nahG mutant, treatment of CHT did not induce either apoplastic reactive oxygen species (ROS) production or stomatal closure but co-treatment of CHT and SA induced both apoplastic ROS production and stomatal closure, indicating the involvement of endogenous SA in CHT-induced apoplastic ROS production and CHT-induced stomatal closure. Furthermore, CHT induced transient cytosolic free calcium concentration increments in the nahG mutant in the presence of exogenous SA but not in the absence of exogenous SA. These results provide evidence that endogenous SA is a crucial element in CHT-induced stomatal closure.
Collapse
Affiliation(s)
- Md Yeasin Prodhan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mohammad Issak
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Toshiyuki Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Jezek M, Blatt MR. The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:487-519. [PMID: 28408539 PMCID: PMC5462021 DOI: 10.1104/pp.16.01949] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/11/2017] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved water use efficiency and agricultural yields.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
33
|
Vialet-Chabrand S, Hills A, Wang Y, Griffiths H, Lew VL, Lawson T, Blatt MR, Rogers S. Global Sensitivity Analysis of OnGuard Models Identifies Key Hubs for Transport Interaction in Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:680-688. [PMID: 28432256 PMCID: PMC5462055 DOI: 10.1104/pp.17.00170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/20/2017] [Indexed: 05/18/2023]
Abstract
The physical requirement for charge to balance across biological membranes means that the transmembrane transport of each ionic species is interrelated, and manipulating solute flux through any one transporter will affect other transporters at the same membrane, often with unforeseen consequences. The OnGuard systems modeling platform has helped to resolve the mechanics of stomatal movements, uncovering previously unexpected behaviors of stomata. To date, however, the manual approach to exploring model parameter space has captured little formal information about the emergent connections between parameters that define the most interesting properties of the system as a whole. Here, we introduce global sensitivity analysis to identify interacting parameters affecting a number of outputs commonly accessed in experiments in Arabidopsis (Arabidopsis thaliana). The analysis highlights synergies between transporters affecting the balance between Ca2+ sequestration and Ca2+ release pathways, notably those associated with internal Ca2+ stores and their turnover. Other, unexpected synergies appear, including with the plasma membrane anion channels and H+-ATPase and with the tonoplast TPK K+ channel. These emergent synergies, and the core hubs of interaction that they define, identify subsets of transporters associated with free cytosolic Ca2+ concentration that represent key targets to enhance plant performance in the future. They also highlight the importance of interactions between the voltage regulation of the plasma membrane and tonoplast in coordinating transport between the different cellular compartments.
Collapse
Affiliation(s)
- Silvere Vialet-Chabrand
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Adrian Hills
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Yizhou Wang
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Howard Griffiths
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Virgilio L Lew
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Tracy Lawson
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Michael R Blatt
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom;
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Simon Rogers
- Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.)
- Laboratory of Plant Physiology and Biophysics (A.H., Y.W., M.R.B.) and Computing Science (S.R.), University of Glasgow, Glasgow G12 8QQ, United Kingdom
- Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (H.G); and
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| |
Collapse
|
34
|
Zhang Y, Sa G, Zhang Y, Zhu Z, Deng S, Sun J, Li N, Li J, Yao J, Zhao N, Zhao R, Ma X, Polle A, Chen S. Paxillus involutus-Facilitated Cd 2+ Influx through Plasma Membrane Ca 2+-Permeable Channels Is Stimulated by H 2O 2 and H +-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2017; 7:1975. [PMID: 28111579 PMCID: PMC5216326 DOI: 10.3389/fpls.2016.01975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/13/2016] [Indexed: 05/13/2023]
Abstract
Using a Non-invasive Micro-test Technique, flux profiles of Cd2+, Ca2+, and H+ were investigated in axenically grown cultures of two strains of Paxillus involutus (MAJ and NAU), ectomycorrhizae formed by these fungi with the woody Cd2+-hyperaccumulator, Populus × canescens, and non-mycorrhizal (NM) roots. The influx of Cd2+ increased in fungal mycelia, NM and ectomycorrhizal (EM) roots upon a 40-min shock, after short-term (ST, 24 h), or long-term (LT, 7 days) exposure to a hydroponic environment of 50 μM CdCl2. Cd2+ treatments (shock, ST, and LT) decreased Ca2+ influx in NM and EM roots but led to an enhanced influx of Ca2+ in axenically grown EM cultures of the two P. involutus isolates. The susceptibility of Cd2+ flux to typical Ca2+ channel blockers (LaCl3, GdCl3, verapamil, and TEA) in fungal mycelia and poplar roots indicated that the Cd2+ entry occurred mainly through Ca2+-permeable channels in the plasma membrane (PM). Cd2+ treatment resulted in H2O2 production. H2O2 exposure accelerated the entry of Cd2+ and Ca2+ in NM and EM roots. Cd2+ further stimulated H+ pumping activity benefiting NM and EM roots to maintain an acidic environment, which favored the entry of Cd2+ across the PM. A scavenger of reactive oxygen species, DMTU, and an inhibitor of PM H+-ATPase, orthovanadate, decreased Ca2+ and Cd2+ influx in NM and EM roots, suggesting that the entry of Cd2+ through Ca2+-permeable channels is stimulated by H2O2 and H+ pumps. Compared to NM roots, EM roots exhibited higher Cd2+-fluxes under shock, ST, and LT Cd2+ treatments. We conclude that ectomycorrhizal P. × canescens roots retained a pronounced H2O2 production and a high H+-pumping activity, which activated PM Ca2+ channels and thus facilitated a high influx of Cd2+ under Cd2+ stress.
Collapse
Affiliation(s)
- Yuhong Zhang
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Gang Sa
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yinan Zhang
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Zhimei Zhu
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Shurong Deng
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jian Sun
- College of Life Science, Jiangsu Normal UniversityXuzhou, China
| | - Nianfei Li
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jing Li
- School of Computer Science and Technology, Henan Polytechnic UniversityJiaozuo, China
| | - Jun Yao
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Nan Zhao
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Xujun Ma
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Andrea Polle
- Büsgen-Institut, Forstbotanik und Baumphysiologie, Georg-August-Universität GöttingenGöttingen, Germany
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
35
|
Agurla S, Raghavendra AS. Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors. FRONTIERS IN PLANT SCIENCE 2016; 7:1332. [PMID: 27605934 PMCID: PMC4996035 DOI: 10.3389/fpls.2016.01332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/05/2016] [Indexed: 05/20/2023]
Abstract
Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca(2+), and ion channels. Once formed, the ROS and free Ca(2+) of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca(2+) in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca(2+) and modulate ion channels, through a network of events, in such a way that the guard cells lose K(+)/Cl(-)/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO, and cytosolic free Ca(2+) act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids, and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca(2+) are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research.
Collapse
|
36
|
Minguet-Parramona C, Wang Y, Hills A, Vialet-Chabrand S, Griffiths H, Rogers S, Lawson T, Lew VL, Blatt MR. An Optimal Frequency in Ca2+ Oscillations for Stomatal Closure Is an Emergent Property of Ion Transport in Guard Cells. PLANT PHYSIOLOGY 2016; 170:33-42. [PMID: 26628748 PMCID: PMC4704601 DOI: 10.1104/pp.15.01607] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 12/01/2015] [Indexed: 05/18/2023]
Abstract
Oscillations in cytosolic-free Ca(2+) concentration ([Ca(2+)]i) have been proposed to encode information that controls stomatal closure. [Ca(2+)]i oscillations with a period near 10 min were previously shown to be optimal for stomatal closure in Arabidopsis (Arabidopsis thaliana), but the studies offered no insight into their origins or mechanisms of encoding to validate a role in signaling. We have used a proven systems modeling platform to investigate these [Ca(2+)]i oscillations and analyze their origins in guard cell homeostasis and membrane transport. The model faithfully reproduced differences in stomatal closure as a function of oscillation frequency with an optimum period near 10 min under standard conditions. Analysis showed that this optimum was one of a range of frequencies that accelerated closure, each arising from a balance of transport and the prevailing ion gradients across the plasma membrane and tonoplast. These interactions emerge from the experimentally derived kinetics encoded in the model for each of the relevant transporters, without the need of any additional signaling component. The resulting frequencies are of sufficient duration to permit substantial changes in [Ca(2+)]i and, with the accompanying oscillations in voltage, drive the K(+) and anion efflux for stomatal closure. Thus, the frequency optima arise from emergent interactions of transport across the membrane system of the guard cell. Rather than encoding information for ion flux, these oscillations are a by-product of the transport activities that determine stomatal aperture.
Collapse
Affiliation(s)
- Carla Minguet-Parramona
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Silvere Vialet-Chabrand
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Howard Griffiths
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Simon Rogers
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Tracy Lawson
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Virgilio L Lew
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom (C.M.-P., Y.W., A.H., M.R.B.);Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom (S.V.-C., T.L.);Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom (H.G.);Computing Science, University of Glasgow, Alwyn Williams Building, Glasgow G12 8QQ, United Kingdom (S.R.); andPhysiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| |
Collapse
|
37
|
Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int J Mol Sci 2015; 16:15251-70. [PMID: 26154766 PMCID: PMC4519898 DOI: 10.3390/ijms160715251] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022] Open
Abstract
The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses—especially ABA receptors—have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jangho Jung
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jung-Hyun Kim
- Department of Home Economics Education, Chung-Ang University, Seoul 156-756, Korea.
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
38
|
Lim CW, Baek W, Jung J, Kim JH, Lee SC. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int J Mol Sci 2015; 16:15251-15270. [PMID: 26154766 DOI: 10.3390/ijms16071525111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 05/20/2023] Open
Abstract
The plant hormone abscisic acid (ABA) regulates many key processes involved in plant development and adaptation to biotic and abiotic stresses. Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense-related genes conferring resistance to environmental stresses. The regulation of stomatal opening and closure is important to pathogen defense and control of transpirational water loss. Recent studies using a combination of approaches, including genetics, physiology, and molecular biology, have contributed considerably to our understanding of ABA signal transduction. A number of proteins associated with ABA signaling and responses--especially ABA receptors--have been identified. ABA signal transduction initiates signal perception by ABA receptors and transfer via downstream proteins, including protein kinases and phosphatases. In the present review, we focus on the function of ABA in stomatal defense against biotic and abiotic stresses, through analysis of each ABA signal component and the relationships of these components in the complex network of interactions. In particular, two ABA signal pathway models in response to biotic and abiotic stress were proposed, from stress signaling to stomatal closure, involving the pyrabactin resistance (PYR)/PYR-like (PYL) or regulatory component of ABA receptor (RCAR) family proteins, 2C-type protein phosphatases, and SnRK2-type protein kinases.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jangho Jung
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| | - Jung-Hyun Kim
- Department of Home Economics Education, Chung-Ang University, Seoul 156-756, Korea.
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
39
|
Zou JJ, Li XD, Ratnasekera D, Wang C, Liu WX, Song LF, Zhang WZ, Wu WH. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress. THE PLANT CELL 2015; 27:1445-60. [PMID: 25966761 PMCID: PMC4456645 DOI: 10.1105/tpc.15.00144] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/11/2015] [Accepted: 04/23/2015] [Indexed: 05/18/2023]
Abstract
Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, while the transgenic plants overexpressing CPK8 showed enhanced tolerance to drought stress compared with wild-type plants. ABA-, H2O2-, and Ca(2+)-induced stomatal closing were impaired in cpk8 mutants. Arabidopsis CATALASE3 (CAT3) was identified as a CPK8-interacting protein, confirmed by yeast two-hybrid, coimmunoprecipitation, and bimolecular fluorescence complementation assays. CPK8 can phosphorylate CAT3 at Ser-261 and regulate its activity. Both cpk8 and cat3 plants showed lower catalase activity and higher accumulation of H2O2 compared with wild-type plants. The cat3 mutant displayed a similar drought stress-sensitive phenotype as cpk8 mutant. Moreover, ABA and Ca(2+) inhibition of inward K(+) currents were diminished in guard cells of cpk8 and cat3 mutants. Together, these results demonstrated that CPK8 functions in ABA-mediated stomatal regulation in responses to drought stress through regulation of CAT3 activity.
Collapse
Affiliation(s)
- Jun-Jie Zou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Xi-Dong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Disna Ratnasekera
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Cun Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Wen-Xin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Lian-Fen Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Wen-Zheng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Centre (Beijing), China Agricultural University, Beijing 100193, China
| |
Collapse
|
40
|
Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Brière C, Leonhardt N, Thibaud JB, Xiong TC. CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. PLANT PHYSIOLOGY 2014; 166:314-26. [PMID: 25037208 PMCID: PMC4149717 DOI: 10.1104/pp.114.240226] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
Ca(2) (+)-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca(2+), CPKs can be sorted into three types: strictly Ca(2+)-dependent CPKs, Ca(2+)-stimulated CPKs (with a significant basal activity in the absence of Ca(2+)), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K(+) Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.
Collapse
Affiliation(s)
- Elsa Ronzier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Claire Corratgé-Faillie
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Frédéric Sanchez
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Karine Prado
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Christian Brière
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Nathalie Leonhardt
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Jean-Baptiste Thibaud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Tou Cheu Xiong
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| |
Collapse
|
41
|
Blatt MR, Wang Y, Leonhardt N, Hills A. Exploring emergent properties in cellular homeostasis using OnGuard to model K+ and other ion transport in guard cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:770-8. [PMID: 24268743 PMCID: PMC4030602 DOI: 10.1016/j.jplph.2013.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 05/17/2023]
Abstract
It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward 'reverse engineering' of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual 'mindset' of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the 'communication' evident between the plasma membrane and tonoplast of the guard cell.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK.
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, UMR 7265, CNRS/CEA/Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
42
|
Wang Y, Chen ZH, Zhang B, Hills A, Blatt MR. PYR/PYL/RCAR abscisic acid receptors regulate K+ and Cl- channels through reactive oxygen species-mediated activation of Ca2+ channels at the plasma membrane of intact Arabidopsis guard cells. PLANT PHYSIOLOGY 2013; 163:566-77. [PMID: 23899646 PMCID: PMC3793038 DOI: 10.1104/pp.113.219758] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/25/2013] [Indexed: 05/17/2023]
Abstract
The discovery of the START family of abscisic acid (ABA) receptors places these proteins at the front of a protein kinase/phosphatase signal cascade that promotes stomatal closure. The connection of these receptors to Ca(2+) signals evoked by ABA has proven more difficult to resolve, although it has been implicated by studies of the pyrbactin-insensitive pyr1/pyl1/pyl2/pyl4 quadruple mutant. One difficulty is that flux through plasma membrane Ca(2+) channels and Ca(2+) release from endomembrane stores coordinately elevate cytosolic free Ca(2+) concentration ([Ca(2+)]i) in guard cells, and both processes are facilitated by ABA. Here, we describe a method for recording Ca(2+) channels at the plasma membrane of intact guard cells of Arabidopsis (Arabidopsis thaliana). We have used this method to resolve the loss of ABA-evoked Ca(2+) channel activity at the plasma membrane in the pyr1/pyl1/pyl2/pyl4 mutant and show the consequent suppression of [Ca(2+)]i increases in vivo. The basal activity of Ca(2+) channels was not affected in the mutant; raising the concentration of Ca(2+) outside was sufficient to promote Ca(2+) entry, to inactivate current carried by inward-rectifying K(+) channels and to activate current carried by the anion channels, both of which are sensitive to [Ca(2+)]i elevations. However, the ABA-dependent increase in reactive oxygen species (ROS) was impaired. Adding the ROS hydrogen peroxide was sufficient to activate the Ca(2+) channels and trigger stomatal closure in the mutant. These results offer direct evidence of PYR/PYL/RCAR receptor coupling to the activation by ABA of plasma membrane Ca(2+) channels through ROS, thus affecting [Ca(2+)]i and its regulation of stomatal closure.
Collapse
Affiliation(s)
| | | | - Ben Zhang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (Y.W., Z.-H.C., B.Z., A.H., M.R.B.); and
- School of Natural Sciences, University of Western Sydney, Hawkesbury Campus, Richmond, New South Wales 2753, Australia (Z.-H.C.)
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (Y.W., Z.-H.C., B.Z., A.H., M.R.B.); and
- School of Natural Sciences, University of Western Sydney, Hawkesbury Campus, Richmond, New South Wales 2753, Australia (Z.-H.C.)
| | | |
Collapse
|
43
|
Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I, Schroeder JI. Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. PLANT PHYSIOLOGY 2013; 163:578-90. [PMID: 24019428 PMCID: PMC3793039 DOI: 10.1104/pp.113.225045] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/28/2013] [Indexed: 05/08/2023]
Abstract
Cytosolic Ca(2+) in guard cells plays an important role in stomatal movement responses to environmental stimuli. These cytosolic Ca(2+) increases result from Ca(2+) influx through Ca(2+)-permeable channels in the plasma membrane and Ca(2+) release from intracellular organelles in guard cells. However, the genes encoding defined plasma membrane Ca(2+)-permeable channel activity remain unknown in guard cells and, with some exceptions, largely unknown in higher plant cells. Here, we report the identification of two Arabidopsis (Arabidopsis thaliana) cation channel genes, CNGC5 and CNGC6, that are highly expressed in guard cells. Cytosolic application of cyclic GMP (cGMP) and extracellularly applied membrane-permeable 8-Bromoguanosine 3',5'-cyclic monophosphate-cGMP both activated hyperpolarization-induced inward-conducting currents in wild-type guard cells using Mg(2+) as the main charge carrier. The cGMP-activated currents were strongly blocked by lanthanum and gadolinium and also conducted Ba(2+), Ca(2+), and Na(+) ions. cngc5 cngc6 double mutant guard cells exhibited dramatically impaired cGMP-activated currents. In contrast, mutations in CNGC1, CNGC2, and CNGC20 did not disrupt these cGMP-activated currents. The yellow fluorescent protein-CNGC5 and yellow fluorescent protein-CNGC6 proteins localize in the cell periphery. Cyclic AMP activated modest inward currents in both wild-type and cngc5cngc6 mutant guard cells. Moreover, cngc5 cngc6 double mutant guard cells exhibited functional abscisic acid (ABA)-activated hyperpolarization-dependent Ca(2+)-permeable cation channel currents, intact ABA-induced stomatal closing responses, and whole-plant stomatal conductance responses to darkness and changes in CO2 concentration. Furthermore, cGMP-activated currents remained intact in the growth controlled by abscisic acid2 and abscisic acid insensitive1 mutants. This research demonstrates that the CNGC5 and CNGC6 genes encode unique cGMP-activated nonselective Ca(2+)-permeable cation channels in the plasma membrane of Arabidopsis guard cells.
Collapse
Affiliation(s)
| | - Shintaro Munemasa
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | | | - Hui-Min Ren
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Nadia Robert
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Michelle Han
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Irina Puzõrjova
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Hannes Kollist
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Stephen Lee
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | - Izumi Mori
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (Y.-F.W., H.-M.R.)
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (Y.-F.W., S.M., N.N., N.R., M.H., S.L., I.M., J.I.S.)
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia (I.P., H.K.); and
- Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.)
| | | |
Collapse
|
44
|
Yin Y, Adachi Y, Ye W, Hayashi M, Nakamura Y, Kinoshita T, Mori IC, Murata Y. Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. PLANT PHYSIOLOGY 2013; 163:600-10. [PMID: 23946352 PMCID: PMC3793041 DOI: 10.1104/pp.113.223826] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 08/12/2013] [Indexed: 05/19/2023]
Abstract
Abscisic acid (ABA) induces stomatal closure and inhibits light-induced stomatal opening. The mechanisms in these two processes are not necessarily the same. It has been postulated that the ABA receptors involved in opening inhibition are different from those involved in closure induction. Here, we provide evidence that four recently identified ABA receptors (PYRABACTIN RESISTANCE1 [PYR1], PYRABACTIN RESISTANCE-LIKE1 [PYL1], PYL2, and PYL4) are not sufficient for opening inhibition in Arabidopsis (Arabidopsis thaliana). ABA-induced stomatal closure was impaired in the pyr1/pyl1/pyl2/pyl4 quadruple ABA receptor mutant. ABA inhibition of the opening of the mutant's stomata remained intact. ABA did not induce either the production of reactive oxygen species and nitric oxide or the alkalization of the cytosol in the quadruple mutant, in accordance with the closure phenotype. Whole cell patch-clamp analysis of inward-rectifying K(+) current in guard cells showed a partial inhibition by ABA, indicating that the ABA sensitivity of the mutant was not fully impaired. ABA substantially inhibited blue light-induced phosphorylation of H(+)-ATPase in guard cells in both the mutant and the wild type. On the other hand, in a knockout mutant of the SNF1-related protein kinase, srk2e, stomatal opening and closure, reactive oxygen species and nitric oxide production, cytosolic alkalization, inward-rectifying K(+) current inactivation, and H(+)-ATPase phosphorylation were not sensitive to ABA.
Collapse
|
45
|
Ye W, Muroyama D, Munemasa S, Nakamura Y, Mori IC, Murata Y. Calcium-dependent protein kinase CPK6 positively functions in induction by yeast elicitor of stomatal closure and inhibition by yeast elicitor of light-induced stomatal opening in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:591-9. [PMID: 23922271 PMCID: PMC3793040 DOI: 10.1104/pp.113.224055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/02/2013] [Indexed: 05/18/2023]
Abstract
Yeast elicitor (YEL) induces stomatal closure that is mediated by a Ca(2+)-dependent signaling pathway. A Ca(2+)-dependent protein kinase, CPK6, positively regulates activation of ion channels in abscisic acid and methyl jasmonate signaling, leading to stomatal closure in Arabidopsis (Arabidopsis thaliana). YEL also inhibits light-induced stomatal opening. However, it remains unknown whether CPK6 is involved in induction by YEL of stomatal closure or in inhibition by YEL of light-induced stomatal opening. In this study, we investigated the roles of CPK6 in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis. Disruption of CPK6 gene impaired induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening. Activation by YEL of nonselective Ca(2+)-permeable cation channels was impaired in cpk6-2 guard cells, and transient elevations elicited by YEL in cytosolic-free Ca(2+) concentration were suppressed in cpk6-2 and cpk6-1 guard cells. YEL activated slow anion channels in wild-type guard cells but not in cpk6-2 or cpk6-1 and inhibited inward-rectifying K(+) channels in wild-type guard cells but not in cpk6-2 or cpk6-1. The cpk6-2 and cpk6-1 mutations inhibited YEL-induced hydrogen peroxide accumulation in guard cells and apoplast of rosette leaves but did not affect YEL-induced hydrogen peroxide production in the apoplast of rosette leaves. These results suggest that CPK6 positively functions in induction by YEL of stomatal closure and inhibition by YEL of light-induced stomatal opening in Arabidopsis and is a convergent point of signaling pathways for stomatal closure in response to abiotic and biotic stress.
Collapse
|
46
|
Zhao X, Li YY, Xiao HL, Xu CS, Zhang X. Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:527-36. [PMID: 23384172 DOI: 10.1111/jipb.12038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/27/2013] [Indexed: 05/18/2023]
Abstract
Ca(2+) plays a pivotal role in nitric oxide (NO)-promoted stomatal closure. However, the function of Ca(2+) in NO inhibition of blue light (BL)-induced stomatal opening remains largely unknown. Here, we analyzed the role of Ca(2+) in the crosstalk between BL and NO signaling in Vicia faba L. guard cells. Extracellular Ca(2+) modulated the BL-induced stomatal opening in a dose-dependent manner, and an application of 5 μM Ca(2+) in the pipette solution significantly inhibited BL-activated K(+) influx. Sodium nitroprusside (SNP), a NO donor, showed little effect on BL-induced K(+) influx and stomatal opening response in the absence of extracellular Ca(2+), but K(+) influx and stomatal opening were inhibited by SNP when Ca(2+) was added to the bath solution. Interestingly, although both SNP and BL could activate the plasma membrane Ca(2+) channels and induce the rise of cytosolic Ca(2+), the change in levels of Ca(2+) channel activity and cytosolic Ca(2+) concentration were different between SNP and BL treatments. SNP at 100 μM obviously activated the plasma membrane Ca(2+) channels and induced cytosolic Ca(2+) rise by 102.4%. In contrast, a BL pulse (100 μmol/m(2) per s for 30 s) slightly activated the Ca(2+) channels and resulted in a Ca(2+) rise of only 20.8%. Consistently, cytosolic Ca(2+) promoted K(+) influx at 0.5 μM or below, and significantly inhibited K(+) influx at 5 μM or above. Taken together, our findings indicate that Ca(2+) plays dual and distinctive roles in the crosstalk between BL and NO signaling in guard cells, mediating both the BL-induced K(+) influx as an activator at a lower concentration and the NO-blocked K(+) influx as an inhibitor at a higher concentration.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | | | | | | | | |
Collapse
|
47
|
Daszkowska-Golec A, Szarejko I. Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. FRONTIERS IN PLANT SCIENCE 2013; 4:138. [PMID: 23717320 PMCID: PMC3652521 DOI: 10.3389/fpls.2013.00138] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
Two highly specialized cells, the guard cells that surround the stomatal pore, are able to integrate environmental and endogenous signals in order to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of stomata is regulated by the integration of environmental signals and endogenous hormonal stimuli. The various different factors to which the guard cells respond translates into the complexity of the network of signaling pathways that control stomatal movements. The perception of an abiotic stress triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA), is the best-known stress hormone that closes the stomata, although other phytohormones, such as jasmonic acid, brassinosteroids, cytokinins, or ethylene are also involved in the stomatal response to stresses. As a part of the drought response, ABA may interact with jasmonic acid and nitric oxide in order to stimulate stomatal closure. In addition, the regulation of gene expression in response to ABA involves genes that are related to ethylene, cytokinins, and auxin signaling. In this paper, recent findings on phytohormone crosstalk, changes in signaling pathways including the expression of specific genes and their impact on modulating stress response through the closing or opening of stomata, together with the highlights of gaps that need to be elucidated in the signaling network of stomatal regulation, are reviewed.
Collapse
Affiliation(s)
- Agata Daszkowska-Golec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| |
Collapse
|
48
|
Laanemets K, Wang YF, Lindgren O, Wu J, Nishimura N, Lee S, Caddell D, Merilo E, Brosche M, Kilk K, Soomets U, Kangasjärvi J, Schroeder JI, Kollist H. Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic [Ca2+] and increased Ca2+ sensitivity of K+ uptake channels. THE NEW PHYTOLOGIST 2013; 197:88-98. [PMID: 23126621 PMCID: PMC3508330 DOI: 10.1111/nph.12008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/17/2012] [Indexed: 05/19/2023]
Abstract
The Arabidopsis guard cell anion channel SLAC1 is essential for stomatal closure in response to various endogenous and environmental stimuli. Interestingly, here we reveal an unexpected impairment of slac1 alleles on stomatal opening. We report that mutations in SLAC1 unexpectedly slow stomatal opening induced by light, low CO(2) and elevated air humidity in intact plants and that this is caused by the severely reduced activity of inward K(+) (K(+)(in)) channels in slac1 guard cells. Expression of channels and transporters involved in stomatal opening showed small but significant reductions in transcript levels in slac1 guard cells; however, this was deemed insufficient to explain the severely impaired K(+)(in) channel activity in slac1. We further examined resting cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) and K(+)(in) channel sensitivity to [Ca(2+)](cyt) in slac1. These experiments showed higher resting [Ca(2+)](cyt) in slac1 guard cells and that reducing [Ca(2+)](cyt) to < 10 nM rapidly restored the activity of K(+)(in) channels in slac1 closer to wild-type levels. These findings demonstrate an unanticipated compensatory feedback control in plant stomatal regulation, which counteracts the impaired stomatal closing response of slac1, by down-regulating stomatal opening mechanisms and implicates enhanced [Ca(2+)](cyt) sensitivity priming as a mechanistic basis for the down-regulated K(+)(in) channel activity.
Collapse
Affiliation(s)
| | - Yong-Fei Wang
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla CA 92093-0116, USA
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Ove Lindgren
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Juyou Wu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla CA 92093-0116, USA
| | - Noriyuki Nishimura
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla CA 92093-0116, USA
| | - Stephen Lee
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla CA 92093-0116, USA
| | - Daniel Caddell
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla CA 92093-0116, USA
| | - Ebe Merilo
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mikael Brosche
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
- Division of Plant Biology, Department of Biosciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Kalle Kilk
- Department of Biochemistry, University of Tartu, 50411, Tartu, Estonia
| | - Ursel Soomets
- Department of Biochemistry, University of Tartu, 50411, Tartu, Estonia
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, PO Box 65, FI-00014 Helsinki, Finland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla CA 92093-0116, USA
| | - Hannes Kollist
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
49
|
Wang Y, Papanatsiou M, Eisenach C, Karnik R, Williams M, Hills A, Lew VL, Blatt MR. Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration. PLANT PHYSIOLOGY 2012; 160:1956-67. [PMID: 23090586 PMCID: PMC3510123 DOI: 10.1104/pp.112.207704] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/20/2012] [Indexed: 05/18/2023]
Abstract
Stomata account for much of the 70% of global water usage associated with agriculture and have a profound impact on the water and carbon cycles of the world. Stomata have long been modeled mathematically, but until now, no systems analysis of a plant cell has yielded detail sufficient to guide phenotypic and mutational analysis. Here, we demonstrate the predictive power of a systems dynamic model in Arabidopsis (Arabidopsis thaliana) to explain the paradoxical suppression of channels that facilitate K(+) uptake, slowing stomatal opening, by mutation of the SLAC1 anion channel, which mediates solute loss for closure. The model showed how anion accumulation in the mutant suppressed the H(+) load on the cytosol and promoted Ca(2+) influx to elevate cytosolic pH (pH(i)) and free cytosolic Ca(2+) concentration ([Ca(2+)](i)), in turn regulating the K(+) channels. We have confirmed these predictions, measuring pH(i) and [Ca(2+)](i) in vivo, and report that experimental manipulation of pH(i) and [Ca(2+)](i) is sufficient to recover K(+) channel activities and accelerate stomatal opening in the slac1 mutant. Thus, we uncover a previously unrecognized signaling network that ameliorates the effects of the slac1 mutant on transpiration by regulating the K(+) channels. Additionally, these findings underscore the importance of H(+)-coupled anion transport for pH(i) homeostasis.
Collapse
|
50
|
Hills A, Chen ZH, Amtmann A, Blatt MR, Lew VL. OnGuard, a computational platform for quantitative kinetic modeling of guard cell physiology. PLANT PHYSIOLOGY 2012; 159:1026-42. [PMID: 22635116 PMCID: PMC3387691 DOI: 10.1104/pp.112.197244] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/20/2012] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells play a key role in gas exchange for photosynthesis while minimizing transpirational water loss from plants by opening and closing the stomatal pore. Foliar gas exchange has long been incorporated into mathematical models, several of which are robust enough to recapitulate transpirational characteristics at the whole-plant and community levels. Few models of stomata have been developed from the bottom up, however, and none are sufficiently generalized to be widely applicable in predicting stomatal behavior at a cellular level. We describe here the construction of computational models for the guard cell, building on the wealth of biophysical and kinetic knowledge available for guard cell transport, signaling, and homeostasis. The OnGuard software was constructed with the HoTSig library to incorporate explicitly all of the fundamental properties for transporters at the plasma membrane and tonoplast, the salient features of osmolite metabolism, and the major controls of cytosolic-free Ca²⁺ concentration and pH. The library engenders a structured approach to tier and interrelate computational elements, and the OnGuard software allows ready access to parameters and equations 'on the fly' while enabling the network of components within each model to interact computationally. We show that an OnGuard model readily achieves stability in a set of physiologically sensible baseline or Reference States; we also show the robustness of these Reference States in adjusting to changes in environmental parameters and the activities of major groups of transporters both at the tonoplast and plasma membrane. The following article addresses the predictive power of the OnGuard model to generate unexpected and counterintuitive outputs.
Collapse
Affiliation(s)
| | | | - Anna Amtmann
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom (A.H., Z.-H.C., A.A., M.R.B.); and Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, United Kingdom (V.L.L.)
| | | | | |
Collapse
|