1
|
Li T, Zhou X, Wang Y, Liu X, Fan Y, Li R, Zhang H, Xu Y. AtCIPK20 regulates microtubule stability to mediate stomatal closure under drought stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:5297-5314. [PMID: 39189953 DOI: 10.1111/pce.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Drought stress is a common abiotic challenge that profoundly impacts plant growth and development. As sessile organisms, plants rely on various physiological and morphological adaptations to cope with drought conditions. The CIPK (calcineurin B-like protein-interacting protein kinase) family proteins play a pivotal role in mediating plant responses to abiotic stress through modulation of cellular membrane events via the CBL-CIPK complex. However, reports documenting the CIPKs' regulation of non-membrane events are scant. In this study, we discovered a novel subcellular localisation pattern of the AtCIPK20 protein of Arabidopsis, specifically to cortical microtubules (cMT), which is distinct from previously reported localisation patterns of plant CIPKs. AtCIPK20 regulates ABA-induced loss of cMT organisation in guard cells, thereby facilitating stomatal closure, mitigating leaf water loss, and protecting plants from drought stress in Arabidopsis. The C-terminal regulatory domain of AtCIPK20 governs its cMT targeting, whereas the interaction of AtCIPK20 with its CBL partners disrupts this localisation. Notably, the cMT targeting characteristic of AtCIPK20 is not exclusive, as several other CIPK members in Arabidopsis, maize, and rice exhibit similar localisation patterns. These findings broaden our current understanding of the role of plant CIPK members in abiotic stress resistance and suggest that future exploration of CIPK molecular functions should adopt a more comprehensive perspective.
Collapse
Affiliation(s)
- Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xuna Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yixiao Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xueqin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yudong Fan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Ruiqi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Huiyong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yufang Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Voothuluru P, Wu Y, Sharp RE. Not so hidden anymore: Advances and challenges in understanding root growth under water deficits. THE PLANT CELL 2024; 36:1377-1409. [PMID: 38382086 PMCID: PMC11062450 DOI: 10.1093/plcell/koae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Petrova A, Ageeva M, Kozlova L. Root growth of monocotyledons and dicotyledons is limited by different tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1462-1476. [PMID: 37646760 DOI: 10.1111/tpj.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Plant growth and morphogenesis are determined by the mechanical properties of its cell walls. Using atomic force microscopy, we have characterized the dynamics of cell wall elasticity in different tissues in developing roots of several plant species. The elongation growth zone of roots of all species studied was distinguished by a reduced modulus of elasticity of most cell walls compared to the meristem or late elongation zone. Within the individual developmental zones of roots, there were also significant differences in the elasticity of the cell walls of the different tissues, thus identifying the tissues that limit root growth in the different species. In cereals, this is mainly the inner cortex, whereas in dicotyledons this function is performed by the outer tissues-rhizodermis and cortex. These differences result in a different behaviour of the roots of these species during longitudinal dissection. Modelling of longitudinal root dissection using measured properties confirmed the difference shown. Thus, the morphogenesis of monocotyledonous and dicotyledonous roots relies on different tissues as growth limiting, which should be taken into account when analyzing the localization of associated molecular events. At the same time, no matrix polysaccharide was found whose immunolabelling in type I or type II cell walls would predict their mechanical properties. However, assessment of the degree of anisotropy of cortical microtubules showed a striking correlation with the elasticity of the corresponding cell walls in all species studied.
Collapse
Affiliation(s)
- Anna Petrova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Marina Ageeva
- Microscopy Cabinet, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
| | - Liudmila Kozlova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111, Kazan, Russia
- Mechanics and Civil Engineering Laboratory, University of Montpellier, 860 Rue de St - Priest, 34090, Montpellier, France
| |
Collapse
|
4
|
Feng X, Pan S, Tu H, Huang J, Xiao C, Shen X, You L, Zhao X, Chen Y, Xu D, Qu X, Hu H. IQ67 DOMAIN protein 21 is critical for indentation formation in pavement cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:721-738. [PMID: 36263896 DOI: 10.1111/jipb.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/15/2022] [Indexed: 05/26/2023]
Abstract
In plants, cortical microtubules anchor to the plasma membrane in arrays and play important roles in cell shape. However, the molecular mechanism of microtubule binding proteins, which connect the plasma membrane and cortical microtubules in cell morphology remains largely unknown. Here, we report that a plasma membrane and microtubule dual-localized IQ67 domain protein, IQD21, is critical for cotyledon pavement cell (PC) morphogenesis in Arabidopsis. iqd21 mutation caused increased indentation width, decreased lobe length, and similar lobe number of PCs, whereas IQD21 overexpression had a different effect on cotyledon PC shape. Weak overexpression led to increased lobe number, decreased indentation width, and similar lobe length, while moderate or great overexpression resulted in decreased lobe number, indentation width, and lobe length of PCs. Live-cell observations revealed that IQD21 accumulation at indentation regions correlates with lobe initiation and outgrowth during PC development. Cell biological and genetic approaches revealed that IQD21 promotes transfacial microtubules anchoring to the plasma membrane via its polybasic sites and bundling at the indentation regions in both periclinal and anticlinal walls. IQD21 controls cortical microtubule organization mainly through promoting Katanin 1-mediated microtubule severing during PC interdigitation. These findings provide the genetic evidence that transfacial microtubule arrays play a determinant role in lobe formation, and the insight into the molecular mechanism of IQD21 in transfacial microtubule organization at indentations and puzzle-shaped PC development.
Collapse
Affiliation(s)
- Xinhua Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shujuan Pan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junjie Huang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430070, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyan Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolu Qu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Methods to Visualize and Quantify Cortical Microtubule Arrays in Arabidopsis Conical Cells. Methods Mol Biol 2023; 2604:317-325. [PMID: 36773246 DOI: 10.1007/978-1-0716-2867-6_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many studies from different model organisms have demonstrated that microtubules are essential for various cellular processes, including cell division, cell morphogenesis, and intracellular trafficking. In interphase plant cells, oriented cortical microtubule arrays are highly characteristic in cells that display various morphologies, such as elongated hypocotyl cells and root cells, jigsaw-puzzled leaf pavement cells, and petal epidermal conical cells. Conical cells represent a specialized epidermal cell type found in the petal epidermis of many flowering plants. It has been suggested that in the model plant Arabidopsis thaliana, the petal adaxial epidermal cells develop from a roughly hemispherical morphology to a conical shape, correlating with the reorientation of cortical microtubules from random to well-ordered circumferential arrays. This chapter presents an overview of the methods available to visualize the microtubule cytoskeleton in living conical cells via confocal microscopy.
Collapse
|
6
|
Chen B, Dang X, Bai W, Liu M, Li Y, Zhu L, Yang Y, Yu P, Ren H, Huang D, Pan X, Wang H, Qin Y, Feng S, Wang Q, Lin D. The IPGA1-ANGUSTIFOLIA module regulates microtubule organisation and pavement cell shape in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:1310-1325. [PMID: 35975703 DOI: 10.1111/nph.18433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Plant cells continuously experience mechanical stress resulting from the cell wall that bears internal turgor pressure. Cortical microtubules align with the predicted maximal tensile stress direction to guide cellulose biosynthesis and therefore results in cell wall reinforcement. We have previously identified Increased Petal Growth Anisotropy (IPGA1) as a putative microtubule-associated protein in Arabidopsis, but the function of IPGA1 remains unclear. Here, using the Arabidopsis cotyledon pavement cell as a model, we demonstrated that IPGA1 forms protein granules and interacts with ANGUSTIFOLIA (AN) to cooperatively regulate microtubule organisation in response to stress. Application of mechanical perturbations, such as cell ablation, led to microtubule reorganisation into aligned arrays in wild-type cells. This microtubule response to stress was enhanced in the IPGA1 loss-of-function mutant. Mechanical perturbations promoted the formation of IPGA1 granules on microtubules. We further showed that IPGA1 physically interacted with AN both in vitro and on microtubules. The ipga1 mutant alleles exhibited reduced interdigitated growth of pavement cells, with smooth shape. IPGA1 and AN had a genetic interaction in regulating pavement cell shape. Furthermore, IPGA1 genetically and physically interacted with the microtubule-severing enzyme KATANIN. We propose that the IPGA1-AN module regulates microtubule organisation and pavement cell shape.
Collapse
Affiliation(s)
- Binqing Chen
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Xie Dang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenting Bai
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Liu
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Li
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lilan Zhu
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanqiu Yang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Peihang Yu
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huibo Ren
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingquan Huang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xue Pan
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Haifeng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiliang Feng
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, 315211, China
| | - Qin Wang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deshu Lin
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
7
|
Gu Y, Rasmussen CG. Cell biology of primary cell wall synthesis in plants. THE PLANT CELL 2022; 34:103-128. [PMID: 34613413 PMCID: PMC8774047 DOI: 10.1093/plcell/koab249] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/01/2021] [Indexed: 05/07/2023]
Abstract
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.
Collapse
Affiliation(s)
- Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| |
Collapse
|
8
|
Differential Polarization Imaging of Plant Cells. Mapping the Anisotropy of Cell Walls and Chloroplasts. Int J Mol Sci 2021; 22:ijms22147661. [PMID: 34299279 PMCID: PMC8306740 DOI: 10.3390/ijms22147661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Modern light microscopy imaging techniques have substantially advanced our knowledge about the ultrastructure of plant cells and their organelles. Laser-scanning microscopy and digital light microscopy imaging techniques, in general—in addition to their high sensitivity, fast data acquisition, and great versatility of 2D–4D image analyses—also opened the technical possibilities to combine microscopy imaging with spectroscopic measurements. In this review, we focus our attention on differential polarization (DP) imaging techniques and on their applications on plant cell walls and chloroplasts, and show how these techniques provided unique and quantitative information on the anisotropic molecular organization of plant cell constituents: (i) We briefly describe how laser-scanning microscopes (LSMs) and the enhanced-resolution Re-scan Confocal Microscope (RCM of Confocal.nl Ltd. Amsterdam, Netherlands) can be equipped with DP attachments—making them capable of measuring different polarization spectroscopy parameters, parallel with the ‘conventional’ intensity imaging. (ii) We show examples of different faces of the strong anisotropic molecular organization of chloroplast thylakoid membranes. (iii) We illustrate the use of DP imaging of cell walls from a variety of wood samples and demonstrate the use of quantitative analysis. (iv) Finally, we outline the perspectives of further technical developments of micro-spectropolarimetry imaging and its use in plant cell studies.
Collapse
|
9
|
Petrova A, Gorshkova T, Kozlova L. Gradients of cell wall nano-mechanical properties along and across elongating primary roots of maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1764-1781. [PMID: 33247728 DOI: 10.1093/jxb/eraa561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To test the hypothesis that particular tissues can control root growth, we analysed the mechanical properties of cell walls belonging to different tissues of the apical part of the maize root using atomic force microscopy. The dynamics of properties during elongation growth were characterized in four consecutive zones of the root. Extensive immunochemical characterization and quantification were used to establish the polysaccharide motif(s) related to changes in cell wall mechanics. Cell transition from division to elongation was coupled to the decrease in the elastic modulus in all root tissues. Low values of moduli were retained in the elongation zone and increased in the late elongation zone. No relationship between the immunolabelling pattern and mechanical properties of the cell walls was revealed. When measured values of elastic moduli and turgor pressure were used in the computational simulation, this resulted in an elastic response of the modelled root and the distribution of stress and strain similar to those observed in vivo. In all analysed root zones, cell walls of the inner cortex displayed moduli of elasticity that were maximal or comparable with the maximal values among all tissues. Thus, we propose that the inner cortex serves as a growth-limiting tissue in maize roots.
Collapse
Affiliation(s)
- Anna Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Liudmila Kozlova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
10
|
Ma D, Han R. Microtubule organization defects in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:971-980. [PMID: 32215997 DOI: 10.1111/plb.13114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 05/15/2023]
Abstract
Microtubules (MT) are critical cytoskeletal filaments that have several functions in cell morphogenesis, cell division, vesicle transport and cytoplasmic separation in the spatiotemporal regulation of eukaryotic cells. Formation of MT requires the co-interaction of MT nucleation and α-β-tubulins, as well as MT-associated proteins (MAP). Many key MAP contributing to MT nucleation and elongation are essential for MT nucleation and regulation of MT dynamics, and are conserved in the plant kingdom. Therefore, the deletion or decrease of γ-tubulin ring complex (γTuRC) components and related MAP, such as the augmin complex, NEDD1, MZT1, EB1, MAP65, etc., in Arabidopsis thaliana results in MT organizational defects in the spindle and phragmoplast MT, as well as in chromosome defects. In addition, similar defects in MT organization and chromosome structure have been observed in plants under abiotic stress conditions, such as under high UV-B radiation. The MT can sense the signal from UV-B radiation, resulting in abnormal MT arrangement. Further studies are required to determine whether the abnormal chromosomes induced by UV-B radiation can be attributed to the involvement of abnormal MT arrays in chromosome migration after DNA damage.
Collapse
Affiliation(s)
- D Ma
- College of Life Science, Shanxi Normal University, Linfen, China
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, China
| | - R Han
- College of Life Science, Shanxi Normal University, Linfen, China
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, China
| |
Collapse
|
11
|
Hsiao AS, Wang K, Ho THD. An Intrinsically Disordered Protein Interacts with the Cytoskeleton for Adaptive Root Growth under Stress. PLANT PHYSIOLOGY 2020; 183:570-587. [PMID: 32238442 PMCID: PMC7271773 DOI: 10.1104/pp.19.01372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/13/2020] [Indexed: 05/27/2023]
Abstract
Intrinsically disordered proteins function as flexible stress modulators in vivo through largely unknown mechanisms. Here, we elucidated the mechanistic role of an intrinsically disordered protein, REPETITIVE PRO-RICH PROTEIN (RePRP), in regulating rice (Oryza sativa) root growth under water deficit. With nearly 40% Pro, RePRP is induced by water deficit and abscisic acid (ABA) in the root elongation zone. RePRP is sufficient and necessary for repression of root development by water deficit or ABA. We showed that RePRP interacts with the highly ordered cytoskeleton components actin and tubulin both in vivo and in vitro. Binding of RePRP reduces the abundance of actin filaments, thus diminishing noncellulosic polysaccharide transport to the cell wall and increasing the enzyme activity of Suc synthase. RePRP also reorients the microtubule network, which leads to disordered cellulose microfibril organization in the cell wall. The cell wall modification suppresses root cell elongation, thereby generating short roots, whereas increased Suc synthase activity triggers starch accumulation in "heavy" roots. Intrinsically disordered proteins control cell elongation and carbon reserves via an order-by-disorder mechanism, regulating the highly ordered cytoskeleton for development of "short-but-heavy" roots as an adaptive response to water deficit in rice.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tuan-Hua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Falcioni R, Moriwaki T, Perez-Llorca M, Munné-Bosch S, Gibin MS, Sato F, Pelozo A, Pattaro MC, Giacomelli ME, Rüggeberg M, Antunes WC. Cell wall structure and composition is affected by light quality in tomato seedlings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111745. [PMID: 31931381 DOI: 10.1016/j.jphotobiol.2019.111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022]
Abstract
Light affects many aspects of cell development. Tomato seedlings growing at different light qualities (white, blue, green, red, far-red) and in the dark displayed alterations in cell wall structure and composition. A strong and negative correlation was found between cell wall thickness and hypocotyl growth. Cell walls was thicker under blue and white lights and thinner under far-red light and in the dark, while intermediate values was observed for red or green lights. Additionally, the inside layer surface of cell wall presented random deposited microfibrillae angles under far-red light and in the dark. However, longitudinal transmission electron microscopy indicates a high frequency of microfibrils close to parallels related to the elongation axis in the outer layer. This was confirmed by ultra-high resolution small angle X-ray scattering. These data suggest that cellulose microfibrils would be passively reoriented in the longitudinal direction. As the cell expands, the most recently deposited layers (inside) behave differentially oriented compared to older (outer) layers in the dark or under FR lights, agreeing with the multinet growth hypothesis. High Ca and pectin levels were found in the cell wall of seedlings growing under blue and white light, also contributing to the low extensibility of the cell wall. Low Ca and pectin contents were found in the dark and under far-red light. Auxins marginally stimulated growth in thin cell wall circumstances. Hypocotyl growth was stimulated by gibberellins under blue light.
Collapse
Affiliation(s)
- Renan Falcioni
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Biochemistry Laboratory, Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Thaise Moriwaki
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Perez-Llorca
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Mariana Sversut Gibin
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francielle Sato
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Andressa Pelozo
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Anatomy Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mariana Carmona Pattaro
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Ellen Giacomelli
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Markus Rüggeberg
- Wood Material Science, Institute for Building Materials, Swiss Federal Institute of Technology Zurich (ETH Zurich), Schafmattstrasse 6, CH-8093 Zurich, Switzerland
| | - Werner Camargos Antunes
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
13
|
Yang Y, Chen B, Dang X, Zhu L, Rao J, Ren H, Lin C, Qin Y, Lin D. Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5231-5243. [PMID: 31198941 PMCID: PMC6793458 DOI: 10.1093/jxb/erz284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 05/23/2023]
Abstract
Unlike animal cells, plant cells do not possess centrosomes that serve as microtubule organizing centers; how microtubule arrays are organized throughout plant morphogenesis remains poorly understood. We report here that Arabidopsis INCREASED PETAL GROWTH ANISOTROPY 1 (IPGA1), a previously uncharacterized microtubule-associated protein, regulates petal growth and shape by affecting cortical microtubule organization. Through a genetic screen, we showed that IPGA1 loss-of-function mutants displayed a phenotype of longer and narrower petals, as well as increased anisotropic cell expansion of the petal epidermis in the late phases of flower development. Map-based cloning studies revealed that IPGA1 encodes a previously uncharacterized protein that colocalizes with and directly binds to microtubules. IPGA1 plays a negative role in the organization of cortical microtubules into parallel arrays oriented perpendicular to the axis of cell elongation, with the ipga1-1 mutant displaying increased microtubule ordering in petal abaxial epidermal cells. The IPGA1 family is conserved among land plants and its homologs may have evolved to regulate microtubule organization. Taken together, our findings identify IPGA1 as a novel microtubule-associated protein and provide significant insights into IPGA1-mediated microtubule organization and petal growth anisotropy.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binqinq Chen
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xie Dang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Lilan Zhu
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinqiu Rao
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huibo Ren
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deshu Lin
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
- Correspondence:
| |
Collapse
|
14
|
Kirchhelle C, Garcia-Gonzalez D, Irani NG, Jérusalem A, Moore I. Two mechanisms regulate directional cell growth in Arabidopsis lateral roots. eLife 2019; 8:e47988. [PMID: 31355749 PMCID: PMC6748828 DOI: 10.7554/elife.47988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis in plants depends critically on directional (anisotropic) growth. This occurs principally perpendicular to the net orientation of cellulose microfibrils (CMFs), which is in turn controlled by cortical microtubules (CMTs). In young lateral roots of Arabidopsis thaliana, growth anisotropy also depends on RAB-A5c, a plant-specific small GTPase that specifies a membrane trafficking pathway to the geometric edges of cells. Here we investigate the functional relationship between structural anisotropy at faces and RAB-A5c activity at edges during lateral root development. We show that surprisingly, inhibition of RAB-A5c function is associated with increased CMT/CMF anisotropy. We present genetic, pharmacological, and modelling evidence that this increase in CMT/CMF anisotropy partially compensates for loss of an independent RAB-A5c-mediated mechanism that maintains anisotropic growth in meristematic cells. We show that RAB-A5c associates with CMTs at cell edges, indicating that CMTs act as an integration point for both mechanisms controlling cellular growth anisotropy in lateral roots.
Collapse
Affiliation(s)
| | - Daniel Garcia-Gonzalez
- Department of Engineering ScienceUniversity of OxfordOxfordUnited Kingdom
- Department of Continuum Mechanics and Structural AnalysisUniversity Carlos III of MadridMadridSpain
| | - Niloufer G Irani
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Antoine Jérusalem
- Department of Engineering ScienceUniversity of OxfordOxfordUnited Kingdom
| | - Ian Moore
- Department of Plant SciencesUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
15
|
Landrein B, Ingram G. Connected through the force: mechanical signals in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3507-3519. [PMID: 30821332 DOI: 10.1093/jxb/erz103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/12/2019] [Indexed: 05/12/2023]
Abstract
As multicellular organisms, plants acquire characteristic shapes through a complex set of biological processes known as morphogenesis. Biochemical signalling underlies much of development, as it allows cells to acquire specific identities based on their position within tissues and organs. However, as growing physical structures, plants, and their constituent cells, also experience internal and external physical forces that can be perceived and can influence key processes such as growth, polarity, and gene expression. This process, which adds another layer of control to growth and development, has important implications for plant morphogenesis. This review provides an overview of recent research into the role of mechanical signals in plant development and aims to show how mechanical signalling can be used, in concert with biochemical signals, as a cue allowing cells and tissues to coordinate their behaviour and to add robustness to developmental processes.
Collapse
Affiliation(s)
- Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, UCB Lyon 1, CNRS, INRA, Lyon Cedex, France
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, Ecole Normale Supérieure de Lyon, UCB Lyon 1, CNRS, INRA, Lyon Cedex, France
| |
Collapse
|
16
|
Vilches Barro A, Stöckle D, Thellmann M, Ruiz-Duarte P, Bald L, Louveaux M, von Born P, Denninger P, Goh T, Fukaki H, Vermeer JEM, Maizel A. Cytoskeleton Dynamics Are Necessary for Early Events of Lateral Root Initiation in Arabidopsis. Curr Biol 2019; 29:2443-2454.e5. [PMID: 31327713 DOI: 10.1016/j.cub.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
How plant cells re-establish differential growth to initiate organs is poorly understood. Morphogenesis of lateral roots relies on the asymmetric cell division of initially symmetric founder cells. This division is preceded by the tightly controlled asymmetric radial expansion of these cells. The cellular mechanisms that license and ensure the coordination of these events are unknown. Here, we quantitatively analyze microtubule and F-actin dynamics during lateral root initiation. Using mutants and pharmacological and tissue-specific genetic perturbations, we show that dynamic reorganization of both microtubule and F-actin networks is necessary for the asymmetric expansion of the founder cells. This cytoskeleton remodeling intertwines with auxin signaling in the pericycle and endodermis in order for founder cells to acquire a basic polarity required for initiating lateral root development. Our results reveal the conservation of cell remodeling and polarization strategies between the Arabidopsis zygote and lateral root founder cells. We propose that coordinated, auxin-driven reorganization of the cytoskeleton licenses asymmetric cell growth and divisions during embryonic and post-embryonic organogenesis.
Collapse
Affiliation(s)
- Amaya Vilches Barro
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Dorothee Stöckle
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Paola Ruiz-Duarte
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Lotte Bald
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Marion Louveaux
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Patrick von Born
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Philipp Denninger
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Joop E M Vermeer
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland.
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Ma H, Liu M. The microtubule cytoskeleton acts as a sensor for stress response signaling in plants. Mol Biol Rep 2019; 46:5603-5608. [PMID: 31098806 DOI: 10.1007/s11033-019-04872-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/13/2019] [Indexed: 01/17/2023]
Abstract
Stress tolerance pathways are protective mechanisms that have evolved to protect plant growth and increase production under various environmental stress conditions. Enhancing stress tolerance in crop plants has become an area of intense study with aims of increasing crop production and enhancing economic benefits. A growing number of studies suggest that in addition to playing vital roles in mechanical architecture and cell division, microtubules are also involved the adaptation to severe environmental conditions in plants. However, the mechanisms that integrate microtubule regulation, cellular metabolism and cell signaling in plant stress responses remain unclear. Recent studies suggest that microtubules act as sensors for different abiotic stresses and maintain mechanical stability by forming bundles. Characterizing the diverse roles of plant microtubules is vital to furthering our understanding of stress tolerance in plants.
Collapse
Affiliation(s)
- Huixian Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
18
|
Huang S, Makarem M, Kiemle SN, Zheng Y, He X, Ye D, Gomez EW, Gomez ED, Cosgrove DJ, Kim SH. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydr Polym 2018; 197:337-348. [DOI: 10.1016/j.carbpol.2018.05.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 01/08/2023]
|
19
|
Bou Daher F, Chen Y, Bozorg B, Clough J, Jönsson H, Braybrook SA. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. eLife 2018; 7:e38161. [PMID: 30226465 PMCID: PMC6143341 DOI: 10.7554/elife.38161] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/28/2018] [Indexed: 11/13/2022] Open
Abstract
Fast directional growth is a necessity for the young seedling; after germination, it needs to quickly penetrate the soil to begin its autotrophic life. In most dicot plants, this rapid escape is due to the anisotropic elongation of the hypocotyl, the columnar organ between the root and the shoot meristems. Anisotropic growth is common in plant organs and is canonically attributed to cell wall anisotropy produced by oriented cellulose fibers. Recently, a mechanism based on asymmetric pectin-based cell wall elasticity has been proposed. Here we present a harmonizing model for anisotropic growth control in the dark-grown Arabidopsis thaliana hypocotyl: basic anisotropic information is provided by cellulose orientation) and additive anisotropic information is provided by pectin-based elastic asymmetry in the epidermis. We quantitatively show that hypocotyl elongation is anisotropic starting at germination. We present experimental evidence for pectin biochemical differences and wall mechanics providing important growth regulation in the hypocotyl. Lastly, our in silico modelling experiments indicate an additive collaboration between pectin biochemistry and cellulose orientation in promoting anisotropic growth.
Collapse
Affiliation(s)
- Firas Bou Daher
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesUnited States
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Yuanjie Chen
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Behruz Bozorg
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Computational Biology and Biological Physics GroupLund UniversityLundSweden
| | - Jack Clough
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
| | - Henrik Jönsson
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Computational Biology and Biological Physics GroupLund UniversityLundSweden
- Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUnited Kingdom
| | - Siobhan A Braybrook
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesUnited States
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUnited Kingdom
- Molecular Biology InstituteUniversity of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
20
|
The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues. PLoS Comput Biol 2018; 14:e1006011. [PMID: 29462151 PMCID: PMC5834207 DOI: 10.1371/journal.pcbi.1006011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/02/2018] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Many cell functions rely on the ability of microtubules to self-organize as complex networks. In plants, cortical microtubules are essential to determine cell shape as they guide the deposition of cellulose microfibrils, and thus control mechanical anisotropy of the cell wall. Here we analyze how, in turn, cell shape may influence microtubule behavior. Building upon previous models that confined microtubules to the cell surface, we introduce an agent model of microtubules enclosed in a three-dimensional volume. We show that the microtubule network has spontaneous aligned configurations that could explain many experimental observations without resorting to specific regulation. In particular, we find that the preferred cortical localization of microtubules emerges from directional persistence of the microtubules, and their interactions with each other and with the stiff wall. We also identify microtubule parameters that seem relatively insensitive to cell shape, such as length or number. In contrast, microtubule array anisotropy depends on local curvature of the cell surface and global orientation follows robustly the longest axis of the cell. Lastly, we find that geometric cues may be overcome, as the network is capable of reorienting toward weak external directional cues. Altogether our simulations show that the microtubule network is a good transducer of weak external polarity, while at the same time, easily reaching stable global configurations. Plants exhibit an astonishing diversity in architecture and morphology. A key to such diversity is the ability of their cells to coordinate and grow to reach a broad spectrum of sizes and shapes. Cell growth in plants is guided by the microtubule cytoskeleton. Here, we seek to understand how microtubules self-organize close to the cell surface. We build upon previous two-dimensional models and we consider microtubules as lines growing in three dimensions, accounting for interactions between microtubules or between microtubules and the cell surface. We show that microtubule arrays are able to adapt to various cell shapes and to reorient in response to external signals. Altogether, our results help to understand how the microtubule cytoskeleton contributes to the diversity of plant shapes and to how these shapes adapt to environment.
Collapse
|
21
|
|
22
|
Moreno-Ortega B, Fort G, Muller B, Guédon Y. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models. FRONTIERS IN PLANT SCIENCE 2017; 8:1750. [PMID: 29123533 PMCID: PMC5662930 DOI: 10.3389/fpls.2017.01750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 05/04/2023]
Abstract
The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes.
Collapse
Affiliation(s)
- Beatriz Moreno-Ortega
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Guillaume Fort
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Bertrand Muller
- LEPSE, INRA, Montpellier SupAgro, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yann Guédon
- CIRAD, UMR AGAP, Montpellier, France
- Inria, Virtual Plants, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
23
|
Perea-Resa C, Rodríguez-Milla MA, Iniesto E, Rubio V, Salinas J. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. MOLECULAR PLANT 2017; 10:791-804. [PMID: 28412546 DOI: 10.1016/j.molp.2017.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 05/25/2023]
Abstract
The process of cold acclimation is an important adaptive response whereby many plants from temperate regions increase their freezing tolerance after being exposed to low non-freezing temperatures. The correct development of this response relies on proper accumulation of a number of transcription factors that regulate expression patterns of cold-responsive genes. Multiple studies have revealed a variety of molecular mechanisms involved in promoting the accumulation of these transcription factors. Interestingly, however, the mechanisms implicated in controlling such accumulation to ensure their adequate levels remain largely unknown. In this work, we demonstrate that prefoldins (PFDs) control the levels of HY5, an Arabidopsis transcription factor with a key role in cold acclimation by activating anthocyanin biosynthesis, in response to low temperature. Our results show that, under cold conditions, PFDs accumulate into the nucleus through a DELLA-dependent mechanism, where they interact with HY5, triggering its ubiquitination and subsequent degradation. The degradation of HY5 would result, in turn, in anthocyanin biosynthesis attenuation, ensuring the accurate development of cold acclimation. These findings uncover an unanticipated nuclear function for PFDs in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Miguel A Rodríguez-Milla
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Elisa Iniesto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Vicente Rubio
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
| |
Collapse
|
24
|
Elagamey E, Narula K, Sinha A, Aggarwal PR, Ghosh S, Chakraborty N, Chakraborty S. Extracellular Matrix Proteome and Phosphoproteome of Potato Reveals Functionally Distinct and Diverse Canonical and Non-Canonical Proteoforms. Proteomes 2016; 4:E20. [PMID: 28248230 PMCID: PMC5217357 DOI: 10.3390/proteomes4030020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) has a molecular machinery composed of diverse proteins and proteoforms that combine properties of tensile strength with extensibility exhibiting growth-regulatory functions and self- and non-self-recognition. The identification of ECM proteoforms is the prerequisite towards a comprehensive understanding of biological functions accomplished by the outermost layer of the cell. Regulatory mechanisms of protein functions rely on post-translational modifications, phosphorylation in particular, affecting enzymatic activity, interaction, localization and stability. To investigate the ECM proteoforms, we have isolated the cell wall proteome and phosphoproteome of a tuberous crop, potato (Solanum tuberosum). LC-MS/MS analysis led to the identification of 38 proteins and 35 phosphoproteins of known and unknown functions. The findings may provide a better understanding of biochemical machinery and the integrated protein and phosphoprotein network of ECM for future functional studies of different developmental pathways and guidance cues in mechanosensing and integrity signaling.
Collapse
Affiliation(s)
- Eman Elagamey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Arunima Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pooja Rani Aggarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Sudip Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
25
|
Armour WJ, Barton DA, Law AMK, Overall RL. Differential Growth in Periclinal and Anticlinal Walls during Lobe Formation in Arabidopsis Cotyledon Pavement Cells. THE PLANT CELL 2015; 27:2484-500. [PMID: 26296967 PMCID: PMC4815096 DOI: 10.1105/tpc.114.126664] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/16/2015] [Accepted: 07/31/2015] [Indexed: 05/03/2023]
Abstract
Lobe development in the epidermal pavement cells of Arabidopsis thaliana cotyledons and leaves is thought to take place via tip-like growth on the concave side of lobes driven by localized concentrations of actin filaments and associated proteins, with a predicted role for cortical microtubules in establishing the direction of restricted growth at the convex side. We used homologous landmarks fixed to the outer walls of pavement cells and thin-plate spline analysis to demonstrate that lobes form by differential growth of both the anticlinal and periclinal walls. Most lobes formed within the first 24 h of the cotyledons unfurling, during the period of rapid cell expansion. Cortical microtubules adjacent to the periclinal wall were persistently enriched at the convex side of lobes during development where growth was anisotropic and were less concentrated or absent at the concave side where growth was promoted. Alternating microtubule-enriched and microtubule-free zones at the periclinal wall in neighboring cells predicted sites of new lobes. There was no particular arrangement of cortical actin filaments that could predict where lobes would form. However, drug studies demonstrate that both filamentous actin and microtubules are required for lobe formation.
Collapse
Affiliation(s)
- William J Armour
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Deborah A Barton
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Andrew M K Law
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| | - Robyn L Overall
- School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
A comparative mechanical analysis of plant and animal cells reveals convergence across kingdoms. Biophys J 2015; 107:2237-44. [PMID: 25418292 DOI: 10.1016/j.bpj.2014.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022] Open
Abstract
Plant and animals have evolved different strategies for their development. Whether this is linked to major differences in their cell mechanics remains unclear, mainly because measurements on plant and animal cells relied on independent experiments and setups, thus hindering any direct comparison. In this study we used the same micro-rheometer to compare animal and plant single cell rheology. We found that wall-less plant cells exhibit the same weak power law rheology as animal cells, with comparable values of elastic and loss moduli. Remarkably, microtubules primarily contributed to the rheological behavior of wall-less plant cells whereas rheology of animal cells was mainly dependent on the actin network. Thus, plant and animal cells evolved different molecular strategies to reach a comparable cytoplasmic mechanical core, suggesting that evolutionary convergence could include the internal biophysical properties of cells.
Collapse
|
27
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
28
|
Abstract
Plant cells in tissues experience mechanical stress not only as a result of high turgor, but also through interaction with their neighbors. Cells can expand at different rates and in different directions from neighbors with which they share a cell wall. This in connection with specific tissue shapes and properties of the cell wall material can lead to intricate stress patterns throughout the tissue. Two cellular responses to mechanical stress are a microtubule cytoskeletal response that directs new wall synthesis so as to resist stress, and a hormone transporter response that regulates transport of the hormone auxin, a regulator of cell expansion. Shape changes in plant tissues affect the pattern of stresses in the tissues, and at the same time, via the cellular stress responses, the pattern of stresses controls cell growth, which in turn changes tissue shape, and stress pattern. This feedback loop controls plant morphogenesis, and explains several previously mysterious aspects of plant growth.
Collapse
|
29
|
Kalve S, Fotschki J, Beeckman T, Vissenberg K, Beemster GTS. Three-dimensional patterns of cell division and expansion throughout the development of Arabidopsis thaliana leaves. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6385-97. [PMID: 25205574 DOI: 10.1093/jxb/eru358] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Variations in size and shape of multicellular organs depend on spatio-temporal regulation of cell division and expansion. Here, cell division and expansion rates were quantified relative to the three spatial axes in the first leaf pair of Arabidopsis thaliana. The results show striking differences in expansion rates: the expansion rate in the petiole is higher than in the leaf blade; expansion rates in the lateral direction are higher than longitudinal rates between 5 and 10 days after stratification, but become equal at later stages of leaf blade development; and anticlinal expansion co-occurs with, but is an order of magnitude slower than periclinal expansion. Anticlinal expansion rates also differed greatly between tissues: the highest rates occurred in the spongy mesophyll and the lowest in the epidermis. Cell division rates were higher and continued for longer in the epidermis compared with the palisade mesophyll, causing a larger increase of palisade than epidermal cell area over the course of leaf development. The cellular dynamics underlying the effect of shading on petiole length and leaf thickness were then investigated. Low light reduced leaf expansion rates, which was partly compensated by increased duration of the growth phase. Inversely, shading enhanced expansion rates in the petiole, so that the blade to petiole ratio was reduced by 50%. Low light reduced leaf thickness by inhibiting anticlinal cell expansion rates. This effect on cell expansion was preceded by an effect on cell division, leading to one less layer of palisade cells. The two effects could be uncoupled by shifting plants to contrasting light conditions immediately after germination. This extended kinematic analysis maps the spatial and temporal heterogeneity of cell division and expansion, providing a framework for further research to understand the molecular regulatory mechanisms involved.
Collapse
Affiliation(s)
- Shweta Kalve
- Department of Biology, University of Antwerp, Belgium
| | - Joanna Fotschki
- Department of Food Sciences, IAR & FR, Polish Academy of Sciences, Olsztyn, Poland
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
30
|
Sarkar P, Bosneaga E, Yap EG, Das J, Tsai WT, Cabal A, Neuhaus E, Maji D, Kumar S, Joo M, Yakovlev S, Csencsits R, Yu Z, Bajaj C, Downing KH, Auer M. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ. PLoS One 2014; 9:e106928. [PMID: 25207917 PMCID: PMC4160213 DOI: 10.1371/journal.pone.0106928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/01/2014] [Indexed: 11/18/2022] Open
Abstract
Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the primary cell walls of a mutant (cob-6) and wild type Arabidopsis hypocotyl parenchyma cells by RT-tomography of HPF-FS-resin sections, and detected a small but significant difference in spatial organization of cellulose microfibrils in the mutant walls.
Collapse
Affiliation(s)
- Purbasha Sarkar
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Elena Bosneaga
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Edgar G. Yap
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jyotirmoy Das
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Wen-Ting Tsai
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Angelo Cabal
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Erica Neuhaus
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Dolonchampa Maji
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Shailabh Kumar
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
| | - Michael Joo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sergey Yakovlev
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Roseann Csencsits
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Zeyun Yu
- Department of Computer Science, University of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Chandrajit Bajaj
- Department of Computer Sciences & The Institute of Computational Engineering and Sciences, University of Texas, Austin, Texas, United States of America
| | - Kenneth H. Downing
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Manfred Auer
- Energy Biosciences Institute, University of California, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Fujita M, Wasteneys GO. A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana. PROTOPLASMA 2014; 251:687-98. [PMID: 24169947 DOI: 10.1007/s00709-013-0571-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/14/2013] [Indexed: 05/02/2023]
Abstract
Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.
Collapse
Affiliation(s)
- Miki Fujita
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, B.C., V6T 1Z4, Canada
| | | |
Collapse
|
32
|
Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jönsson H, Meyerowitz EM. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 2014; 3:e01967. [PMID: 24740969 PMCID: PMC3985187 DOI: 10.7554/elife.01967] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI:http://dx.doi.org/10.7554/eLife.01967.001 The surfaces of plants are covered in epithelial cells that come in many different shapes, suggesting that individual cells must have some control over their own shape. An unusually shaped epithelial cell is the pavement cell, which looks like a jigsaw puzzle piece and is found in the leaves of many flowering plants. Relatively little was known about the exact contribution of mechanical properties of the wall to this shape. Furthermore, although it was known that parts of pavement cells are rich in microtubules—tubes of protein that act as a scaffold inside the cell— the possibility that shape impacts the behavior of microtubules was not fully addressed. Now, using a combination of computer modelling and experiments, Sampathkumar et al. reveal that the shape of the pavement cells relies in part on the response of the microtubules to stress. In an individual cell, microtubules align along the direction of the largest stress, with a protein severing those microtubules that are not aligned in this direction. As the stress inside a cell is determined in part by the cell’s shape, this sets up a feedback loop: the stress resulting from the cell shape aligns the microtubules that reinforce the cell wall, thus maintaining the shape of the cell. An external stress applied to the epithelium can override this internal stress. Because all of the plant cells are under turgor pressure from the inside, pressure from the outside, like squeezing a balloon, changes the stress pattern, causing the realignment of the microtubules so as to resist the new stress. This shows that the microtubules respond to local stresses within a cell, and are continually responsive to stress changes. DOI:http://dx.doi.org/10.7554/eLife.01967.002
Collapse
Affiliation(s)
- Arun Sampathkumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
34
|
Nakielski J, Lipowczan M. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study. PLoS One 2013; 8:e84337. [PMID: 24367654 PMCID: PMC3867472 DOI: 10.1371/journal.pone.0084337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.
Collapse
Affiliation(s)
- Jerzy Nakielski
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Katowice, Poland
- * E-mail:
| | - Marcin Lipowczan
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Katowice, Poland
| |
Collapse
|
35
|
Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D. A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5753-67. [PMID: 24153420 PMCID: PMC3871827 DOI: 10.1093/jxb/ert352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cortical microtubules (CMTs) are often aligned in a particular direction in individual cells or even in groups of cells and play a central role in the definition of growth anisotropy. How the CMTs themselves are aligned is not well known, but two hypotheses have been proposed. According to the first hypothesis, CMTs align perpendicular to the maximal growth direction, and, according to the second, CMTs align parallel to the maximal stress direction. Since both hypotheses were formulated on the basis of mainly qualitative assessments, the link between CMT organization, organ geometry, and cell growth is revisited using a quantitative approach. For this purpose, CMT orientation, local curvature, and growth parameters for each cell were measured in the growing shoot apical meristem (SAM) of Arabidopsis thaliana. Using this approach, it has been shown that stable CMTs tend to be perpendicular to the direction of maximal growth in cells at the SAM periphery, but parallel in the cells at the boundary domain. When examining the local curvature of the SAM surface, no strict correlation between curvature and CMT arrangement was found, which implies that SAM geometry, and presumed geometry-derived stress distribution, is not sufficient to prescribe the CMT orientation. However, a better match between stress and CMTs was found when mechanical stress derived from differential growth was also considered.
Collapse
Affiliation(s)
- Agata Burian
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Michał Ludynia
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Magalie Uyttewaal
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
| | - Jan Traas
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
- Laboratoire Joliot Curie, CNRS, ENS Lyon, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, France
- Laboratoire Joliot Curie, CNRS, ENS Lyon, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Dorota Kwiatkowska
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
36
|
Ivakov A, Persson S. Plant cell shape: modulators and measurements. FRONTIERS IN PLANT SCIENCE 2013; 4:439. [PMID: 24312104 PMCID: PMC3832843 DOI: 10.3389/fpls.2013.00439] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 05/19/2023]
Abstract
Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation.
Collapse
Affiliation(s)
- Alexander Ivakov
- *Correspondence: Alexander Ivakov and Staffan Persson, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany e-mail: ;
| | - Staffan Persson
- *Correspondence: Alexander Ivakov and Staffan Persson, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany e-mail: ;
| |
Collapse
|
37
|
Landrein B, Hamant O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:324-38. [PMID: 23551516 DOI: 10.1111/tpj.12188] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 05/19/2023]
Abstract
Microtubules have a key role in plant morphogenesis, as they control the oriented deposition of cellulose in the cell wall, and thus growth anisotropy. The idea that mechanical stress could be one of the main determinants behind the orientation of microtubules in plant cells emerged very soon after their discovery. The cause of mechanical stress in plant cells is turgor pressure, which can build up to 1 MPa and is restrained by cell wall stiffness. On the tissue scale, this can lead to regional patterns of tension, in particular in the epidermis of aerial organs, which resist the stress generated by cells in internal tissues. Here we summarize more than 50 years of work on the contribution of mechanical stress in guiding microtubule behavior, and the resulting impact on growth anisotropy and growth heterogeneity. We propose a conceptual model on microtubule dynamics and their ability to self-organize in bundles parallel to the direction of maximal stress, as well as a synthetic representation of the putative mechanotransducers at play.
Collapse
Affiliation(s)
- Benoît Landrein
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, UCB Lyon 1, 46 Allee d'Italie, Lyon, Cedex 07 69364, France
| | | |
Collapse
|
38
|
Sauret-Güeto S, Calder G, Harberd NP. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:628-39. [PMID: 21985616 DOI: 10.1111/j.1365-313x.2011.04817.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The phytohormone gibberellin (GA) promotes plant growth by stimulating cellular expansion. Whilst it is known that GA acts by opposing the growth-repressing effects of DELLA proteins, it is not known how these events promote cellular expansion. Here we present a time-lapse analysis of the effects of a single pulse of GA on the growth of Arabidopsis hypocotyls. Our analyses permit kinetic resolution of the transient growth effects of GA on expanding cells. We show that pulsed application of GA to the relatively slowly growing cells of the unexpanded light-grown Arabidopsis hypocotyl results in a transient burst of anisotropic cellular growth. This burst, and the subsequent restoration of initial cellular elongation rates, occurred respectively following the degradation and subsequent reappearance of a GFP-tagged DELLA (GFP-RGA). In addition, we used a GFP-tagged α-tubulin 6 (GFP-TUA6) to visualise the behaviour of microtubules (MTs) on the outer tangential wall (OTW) of epidermal cells. In contrast to some current hypotheses concerning the effect of GA on MTs, we show that the GA-induced boost of hypocotyl cell elongation rate is not dependent upon the maintenance of transverse orientation of the OTW MTs. This confirms that transverse alignment of outer face MTs is not necessary to maintain rapid elongation rates of light-grown hypocotyls. Together with future studies on MT dynamics in other faces of epidermal cells and in cells deeper within the hypocotyl, our observations advance understanding of the mechanisms by which GA promotes plant cell and organ growth.
Collapse
|
39
|
CHAN J. Microtubule and cellulose microfibril orientation during plant cell and organ growth. J Microsc 2011; 247:23-32. [DOI: 10.1111/j.1365-2818.2011.03585.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernández MG. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics 2011; 12:363. [PMID: 21752295 PMCID: PMC3146458 DOI: 10.1186/1471-2164-12-363] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. RESULTS A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). CONCLUSIONS This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture.
Collapse
Affiliation(s)
- John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Hamlet Avilés-Arnaut
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Kena Casarrubias-Castillo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Gabriela Casique-Arroyo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Paula A Castrillón-Arbeláez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Génomica para la Biodiversidad, Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Julio Massange-Sánchez
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Norma A Martínez-Gallardo
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Fannie I Parra-Cota
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - Erandi Vargas-Ortiz
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
| | - María G Estrada-Hernández
- Unidad de Biotecnología e Ingeniería Genética de Plantas, (Cinvestav-Unidad Irapuato) Km 9.6 del Libramiento Norte Carretera Irapuato-León. Apartado Postal 629, C.P. 36821, Irapuato, Gto., México
- Department of Entomology, College of Agricultural Sciences. Penn State University, University Park, PA 16802, USA
| |
Collapse
|
41
|
Crowell EF, Timpano H, Desprez T, Franssen-Verheijen T, Emons AM, Höfte H, Vernhettes S. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. THE PLANT CELL 2011; 23:2592-605. [PMID: 21742992 PMCID: PMC3226210 DOI: 10.1105/tpc.111.087338] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/10/2011] [Accepted: 06/20/2011] [Indexed: 05/18/2023]
Abstract
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.
Collapse
Affiliation(s)
- Elizabeth Faris Crowell
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78000 Versailles, France
- Membrane Traffic and Cell Division Laboratory, Institut Pasteur, 75015 Paris, France
| | - Hélène Timpano
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78000 Versailles, France
| | - Thierry Desprez
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78000 Versailles, France
| | - Tiny Franssen-Verheijen
- Laboratory of Plant Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Anne-Mie Emons
- Laboratory of Plant Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78000 Versailles, France
| | - Samantha Vernhettes
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, INRA-AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles-Grignon, 78000 Versailles, France
| |
Collapse
|
42
|
Wang C, Zhang L, Chen W. Plant cortical microtubules are putative sensors under abiotic stresses. BIOCHEMISTRY (MOSCOW) 2011; 76:320-6. [DOI: 10.1134/s0006297911030047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Lloyd C. Dynamic Microtubules and the Texture of Plant Cell Walls. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:287-329. [DOI: 10.1016/b978-0-12-386043-9.00007-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Geitmann A. Mechanical modeling and structural analysis of the primary plant cell wall. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:693-9. [PMID: 20971032 DOI: 10.1016/j.pbi.2010.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 05/03/2023]
Abstract
Plant cell growth is a fundamental process during plant development whose spatial and temporal dynamics are controlled by the cell wall. Modeling mechanical aspects of cell growth therefore requires the integration of structural cell wall details with quantitative biophysical parameters. Recent advances in microscopic techniques and mechanical modeling have made significant contributions to the field of cell wall biomechanics. Live observation of cellulose microfibrils at high z-resolution now enables determining the dynamic orientation of these polymers in the different wall layers of growing cells. Mechanical modeling approaches have been developed to operate at the scale of individual molecules and will thus be able to exploit the availability of the high-resolution structural data. The combination of these techniques has the potential to make a significant and quantitative contribution to our understanding of plant growth and development.
Collapse
Affiliation(s)
- Anja Geitmann
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Rue Sherbrooke est, Montréal, Québec H1X 2B2, Canada.
| |
Collapse
|
45
|
Chan J, Crowell E, Eder M, Calder G, Bunnewell S, Findlay K, Vernhettes S, Höfte H, Lloyd C. The rotation of cellulose synthase trajectories is microtubule dependent and influences the texture of epidermal cell walls in Arabidopsis hypocotyls. J Cell Sci 2010; 123:3490-5. [PMID: 20876662 DOI: 10.1242/jcs.074641] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant shoots have thick, polylamellate outer epidermal walls based on crossed layers of cellulose microfibrils, but the involvement of microtubules in such wall lamellation is unclear. Recently, using a long-term movie system in which Arabidopsis seedlings were grown in a biochamber, the tracks along which cortical microtubules move were shown to undergo slow rotary movements over the outer surface of hypocotyl epidermal cells. Because microtubules are known to guide cellulose synthases over the short term, we hypothesised that this previously unsuspected microtubule rotation could, over the longer term, help explain the cross-ply structure of the outer epidermal wall. Here, we test that hypothesis using Arabidopsis plants expressing the cellulose synthase GFP-CESA3 and show that cellulose synthase trajectories do rotate over several hours. Neither microtubule-stabilising taxol nor microtubule-depolymerising oryzalin affected the linear rate of GFP-CESA3 movement, but both stopped the rotation of cellulose synthase tracks. Transmission electron microscopy revealed that drug-induced suppression of rotation alters the lamellation pattern, resulting in a thick monotonous wall layer. We conclude that microtubule rotation, rather than any hypothetical mechanism for wall self-assembly, has an essential role in developing cross-ply wall texture.
Collapse
Affiliation(s)
- Jordi Chan
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Elizabeth Crowell
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles CedexFrance
| | - Magdalena Eder
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Grant Calder
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Susan Bunnewell
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Kim Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| | - Samantha Vernhettes
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles CedexFrance
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles CedexFrance
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Colney, Norwich, NR4 7UH, UK
| |
Collapse
|
46
|
Eder M, Lütz-Meindl U, Weiss IM. Non-invasive LC-PolScope imaging of biominerals and cell wall anisotropy changes. PROTOPLASMA 2010; 246:49-64. [PMID: 20232089 DOI: 10.1007/s00709-010-0124-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/17/2010] [Indexed: 05/28/2023]
Abstract
The formation of defined shapes by cells is one of the challenging questions in biology. Due to the anisotropy of cell walls and of certain biominerals, the LC-PolScope represents a promising tool for tracking dynamic structural changes in vivo non-invasively and, to some extent, quantitatively. A complex three-dimensional biogenic system, the in vitro precipitation of calcium oxalate induced by cellulose stalks produced by Dictyostelium discoideum, was analyzed. Although the retardance values and orientation of the crystals with respect to the stalk were quickly and easily detected, this study raised a number of issues that were addressed in this work. The effect of the refractive index of the embedding medium was examined by taking advantage of the homogeneous size and shape distribution of kiwifruit raphides, a biologically controlled calcium oxalate biomineral and of cotton (Gossypium) seed fibers. The retardance remained consistent when embedding these samples in media with increasing refractive indices from 1.33 to 1.42 or 1.47 for sucrose or glycerol gradients, respectively. The general applicability of LC-PolScope image processing for biominerals and cell wall formation during development in vivo was demonstrated in a particular group of green algae, the Desmidiaceae. Various organization levels of the cell wall were identified, thus confirming earlier findings based on electron microscopy and immunostaining investigations. It can be concluded that LC-PolScope microscopy is an attractive tool for studying dynamic ordering of biomolecules, such as plant cell walls, when additional parameters regarding the structure, composition, and refractive indices of the specimen are available.
Collapse
Affiliation(s)
- Magdalena Eder
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123, Saarbrücken, Germany.
| | | | | |
Collapse
|
47
|
Burian A, Hejnowicz Z. Strain rate does not affect cortical microtubule orientation in the isolated epidermis of sunflower hypocotyls. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:459-468. [PMID: 20522182 DOI: 10.1111/j.1438-8677.2009.00228.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A hypothesis exists that external and internal factors affect the orientation of cortical microtubules in as much as these lead to changes in cell elongation rate. Factors that stimulate elongation are proposed to lead to transverse microtubule orientation, whereas factors that inhibit elongation lead to longitudinal orientation. The elongation rate is equal to the rate of longitudinal irreversible strain in cell walls. Incubated epidermis peeled from sunflower hypocotyls does not extend unless it is stretched by loading and the pH of the incubation medium is appropriately low. Thus, peels provide a convenient model to investigate the relationship between longitudinal strain rate and cortical microtubule orientation. In the present study, it was found that peeling affects microtubule orientation. Peels were incubated for several hours in Murashige & Skoog medium (both unbuffered and buffered) to attain a steady state of microtubule orientation before loading. The effects of loading and pH on strain rate and orientation of microtubules under the outer epidermal walls were examined in three portions of peels positioned with respect to the cotyledonary node. Appropriate loading caused longitudinal strain of peels at pH 4.5 but not at pH 6.5. However, no clear effect of strain rate on microtubule orientation in the peels was observed. Independent of applied load and pH of the incubation medium, the microtubule orientation remained unchanged, i.e. orientation was mainly oblique. Our results show that strain rate does not affect cortical microtubule orientation in isolated epidermis of the sunflower hypocotyl model system, although orientation could be changed by white light.
Collapse
Affiliation(s)
- A Burian
- Department of Biophysics and Morphogenesis of Plants, University of Silesia, Katowice, Poland.
| | | |
Collapse
|
48
|
Anderson CT, Carroll A, Akhmetova L, Somerville C. Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. PLANT PHYSIOLOGY 2010; 152:787-96. [PMID: 19965966 PMCID: PMC2815888 DOI: 10.1104/pp.109.150128] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/01/2009] [Indexed: 05/17/2023]
Abstract
Cellulose forms the major load-bearing network of the plant cell wall, which simultaneously protects the cell and directs its growth. Although the process of cellulose synthesis has been observed, little is known about the behavior of cellulose in the wall after synthesis. Using Pontamine Fast Scarlet 4B, a dye that fluoresces preferentially in the presence of cellulose and has excitation and emission wavelengths suitable for confocal microscopy, we imaged the architecture and dynamics of cellulose in the cell walls of expanding root cells. We found that cellulose exists in Arabidopsis (Arabidopsis thaliana) cell walls in large fibrillar bundles that vary in orientation. During anisotropic wall expansion in wild-type plants, we observed that these cellulose bundles rotate in a transverse to longitudinal direction. We also found that cellulose organization is significantly altered in mutants lacking either a cellulose synthase subunit or two xyloglucan xylosyltransferase isoforms. Our results support a model in which cellulose is deposited transversely to accommodate longitudinal cell expansion and reoriented during expansion to generate a cell wall that is fortified against strain from any direction.
Collapse
|
49
|
Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes. ACTA ACUST UNITED AC 2009; 23:15-27. [DOI: 10.1007/s00497-009-0110-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
|
50
|
Rodríguez-Milla MA, Salinas J. Prefoldins 3 and 5 play an essential role in Arabidopsis tolerance to salt stress. MOLECULAR PLANT 2009; 2:526-34. [PMID: 19825635 DOI: 10.1093/mp/ssp016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
During the last years, our understanding of the mechanisms that control plant response to salt stress has been steadily progressing. Pharmacological studies have allowed the suggestion that the cytoskeleton may be involved in regulating such a response. Nevertheless, genetic evidence establishing that the cytoskeleton has a role in plant tolerance to salt stress has not been reported yet. Here, we have characterized Arabidopsis T-DNA mutants for genes encoding proteins orthologous to prefoldin (PFD) subunits 3 and 5 from yeast and mammals. In these organisms, PFD subunits, also known as Genes Involved in Microtubule biogenesis (GIM), form a heterohexameric PFD complex implicated in tubulin and actin folding. We show that, indeed, PFD3 and PFD5 can substitute for the loss of their yeast orthologs, as they are able to complement yeast gim2Delta and gim5Delta mutants, respectively. Our results indicate that pfd3 and pfd5 mutants have reduced levels of alpha- and beta-tubulin compared to the wild-type plants when growing under both control and salt-stress conditions. In addition, pfd3 and pfd5 mutants display alterations in their developmental patterns and microtubule organization, and, more importantly, are hypersensitive to high concentrations of NaCl but not of LiCl or mannitol. These results demonstrate that the cytoskeleton plays an essential role in plant tolerance to salt stress.
Collapse
Affiliation(s)
- Miguel A Rodríguez-Milla
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | |
Collapse
|