1
|
Luschnig C, Friml J. Over 25 years of decrypting PIN-mediated plant development. Nat Commun 2024; 15:9904. [PMID: 39548100 PMCID: PMC11567971 DOI: 10.1038/s41467-024-54240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Identification of PIN exporters for auxin, the major coordinative signal in plants, some 25 years ago, signifies a landmark in our understanding of plant-specific mechanisms underlying development and adaptation. Auxin is directionally transported throughout the plant body; a unique feature already envisioned by Darwin and solidified by PINs' discovery and characterization. The PIN-based auxin distribution network with its complex regulations of PIN expression, localization and activity turned out to underlie a remarkable multitude of developmental processes and represents means to integrate endogenous and environmental signals. Given the recent anniversary, we here summarize past and current developments in this exciting field.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Wien, Austria.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Hua Y, Chen S, Tong T, Li X, Ji R, Xu Q, Zhang Y, Dai X. Elucidating the Molecular Mechanisms and Comprehensive Effects of Sludge-Derived Plant Biostimulants on Crop Growth: Insights from Metabolomic Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404210. [PMID: 39540297 DOI: 10.1002/advs.202404210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/25/2024] [Indexed: 11/16/2024]
Abstract
The utilization of urban waste for land management plays a crucial role in reshaping material flows between human activities and the environment. Sewage sludge alkaline thermal hydrolysis (ATH) produces sludge-derived plant biostimulants (SPB), which have garnered attention due to the presence of indole-3-acetic acid. However, there remains a gap in understanding SPB's molecular-level effects and its comprehensive impact on crops throughout their growth cycle. In this study, non-targeted and targeted metabolomic approaches are employed to analyze 51 plant hormones and 1,177 metabolites, revealing novel insights. The findings demonstrate that low concentrations of SPB exerted multiple beneficial effects on rice roots, leaves, and the root-soil system, facilitating rapid cell division and enhancing antioxidant defense mechanisms. These results provide a vital foundation for understanding ATH metabolic pathways and advocating for widespread SPB application, offering significant implications for sustainable land management.
Collapse
Affiliation(s)
- Yu Hua
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuxian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tong Tong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoou Li
- Nantong Yuezichun Biological Agriculture Technology Co., Ltd, Nantong, 226000, China
| | - Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China
| | - Qiujin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Zhang
- China Civil Engineering Society Water Industry Association, Beijing, 100082, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Zimmerman K, Pegler JL, Oultram JMJ, Collings DA, Wang MB, Grof CPL, Eamens AL. Molecular Manipulation of the miR160/ AUXIN RESPONSE FACTOR Expression Module Impacts Root Development in Arabidopsis thaliana. Genes (Basel) 2024; 15:1042. [PMID: 39202402 PMCID: PMC11353855 DOI: 10.3390/genes15081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
In Arabidopsis thaliana (Arabidopsis), microRNA160 (miR160) regulates the expression of AUXIN RESPONSE FACTOR10 (ARF10), ARF16 and ARF17 throughout development, including the development of the root system. We have previously shown that in addition to DOUBLE-STRANDED RNA BINDING1 (DRB1), DRB2 is also involved in controlling the rate of production of specific miRNA cohorts in the tissues where DRB2 is expressed in wild-type Arabidopsis plants. In this study, a miR160 overexpression transgene (MIR160B) and miR160-resistant transgene versions of ARF10 and ARF16 (mARF10 and mARF16) were introduced into wild-type Arabidopsis plants and the drb1 and drb2 single mutants to determine the degree of requirement of DRB2 to regulate the miR160 expression module as part of root development. Via this molecular modification approach, we show that in addition to DRB1, DRB2 is required to regulate the level of miR160 production from its precursor transcripts in Arabidopsis roots. Furthermore, we go on to correlate the altered abundance of miR160 or its ARF10, ARF16 and ARF17 target genes in the generated series of transformant lines with the enhanced development of the root system displayed by these plant lines. More specifically, promotion of primary root elongation likely stemmed from enhancement of miR160-directed ARF17 expression repression, while the promotion of lateral and adventitious root formation was the result of an elevated degree of miR160-directed regulation of ARF17 expression, and to a lesser degree, ARF10 and ARF16 expression. Taken together, the results presented in this study identify the requirement of the functional interplay between DRB1 and DRB2 to tightly control the rate of miR160 production, to in turn ensure the appropriate degree of miR160-directed ARF10, ARF16 and ARF17 gene expression regulation as part of normal root system development in Arabidopsis.
Collapse
Affiliation(s)
- Kim Zimmerman
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
| | - Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
| | - David A. Collings
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ming-Bo Wang
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle, Callaghan, NSW 2308, Australia; (K.Z.); (J.L.P.); (J.M.J.O.); (D.A.C.); (C.P.L.G.)
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew L. Eamens
- Seaweed Research Group, School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
4
|
Álvarez-Rodríguez S, Araniti F, Teijeira M, Reigosa MJ, Sánchez-Moreiras AM. Azelaic acid can efficiently compete for the auxin binding site TIR1, altering auxin polar transport, gravitropic response, and root growth and architecture in Arabidopsisthaliana roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108592. [PMID: 38569422 DOI: 10.1016/j.plaphy.2024.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, 20133, Milano, Italy.
| | - Marta Teijeira
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310, Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213, Vigo, Spain
| | - Manuel J Reigosa
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo. Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain; Instituto de Agroecoloxía e Alimentación (IAA). Universidade de Vigo - Campus Auga, 32004, Ourense, Spain
| |
Collapse
|
5
|
Du L, Guan Z, Liu Y, Hu D, Gao J, Sun C. Scaffold protein BTB/TAZ domain-containing genes (CmBTs) play a negative role in root development of chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111997. [PMID: 38280641 DOI: 10.1016/j.plantsci.2024.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Scaffold proteins, which are known as hubs controlling information flow in cells, can function in a diverse array of biological processes in plants. The BTB/TAZ domain-containing scaffold proteins are associated with multiple signaling pathways in plants. However, there have been few studies of the roles of BT scaffold proteins in chrysanthemum to date. In this study, four CmBT genes named as CmBT1, CmBT1-LIKE1 (CmBT1L1), CmBT1-LIKE2 (CmBT1L2), and CmBT5 were cloned based our previous RNA-seq database. The four CmBT genes showed distinctive expression patterns both in different tissues and in response to different stimuli, such as light, sugar, nitrate and auxin. Knockdown of the four CmBTs facilitated the development of adventitious roots and root hair in chrysanthemum. Transcriptome sequencing analysis revealed thousands of differentially expressed genes after knockdown of the four CmBT genes. Moreover, functional annotation suggested that CmBTs play a tethering role as scaffold proteins. Our findings reveal that CmBTs can negatively regulate root development of chrysanthemum by mediating nitrate assimilation, amino acid biosynthesis, and auxin and jasmonic acid (JA) signaling pathways. This study provides new insights into the role of CmBTs in root development of chrysanthemum.
Collapse
Affiliation(s)
- Lianda Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zhangji Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yanhong Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Dagang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Cuihui Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
6
|
Roychoudhry S, Sageman-Furnas K, Wolverton C, Grones P, Tan S, Molnár G, De Angelis M, Goodman HL, Capstaff N, Lloyd JPB, Mullen J, Hangarter R, Friml J, Kepinski S. Antigravitropic PIN polarization maintains non-vertical growth in lateral roots. NATURE PLANTS 2023; 9:1500-1513. [PMID: 37666965 PMCID: PMC10505559 DOI: 10.1038/s41477-023-01478-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2023] [Indexed: 09/06/2023]
Abstract
Lateral roots are typically maintained at non-vertical angles with respect to gravity. These gravitropic setpoint angles are intriguing because their maintenance requires that roots are able to effect growth response both with and against the gravity vector, a phenomenon previously attributed to gravitropism acting against an antigravitropic offset mechanism. Here we show how the components mediating gravitropism in the vertical primary root-PINs and phosphatases acting upon them-are reconfigured in their regulation such that lateral root growth at a range of angles can be maintained. We show that the ability of Arabidopsis lateral roots to bend both downward and upward requires the generation of auxin asymmetries and is driven by angle-dependent variation in downward gravitropic auxin flux acting against angle-independent upward, antigravitropic flux. Further, we demonstrate a symmetry in auxin distribution in lateral roots at gravitropic setpoint angle that can be traced back to a net, balanced polarization of PIN3 and PIN7 auxin transporters in the columella. These auxin fluxes are shifted by altering PIN protein phosphoregulation in the columella, either by introducing PIN3 phosphovariant versions or via manipulation of levels of the phosphatase subunit PP2A/RCN1. Finally, we show that auxin, in addition to driving lateral root directional growth, acts within the lateral root columella to induce more vertical growth by increasing RCN1 levels, causing a downward shift in PIN3 localization, thereby diminishing the magnitude of the upward, antigravitropic auxin flux.
Collapse
Affiliation(s)
| | - Katelyn Sageman-Furnas
- School of Biology, University of Leeds, Leeds, UK
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Peter Grones
- Institute of Science and Technology, Vienna, Austria
- Umeå Plant Science Centre, Umeå, Sweden
| | - Shutang Tan
- Institute of Science and Technology, Vienna, Austria
| | - Gergely Molnár
- Institute of Science and Technology, Vienna, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Heather L Goodman
- School of Biology, University of Leeds, Leeds, UK
- Tropic Biosciences Ltd, Norwich Research Park Innovation Centre, Norwich, UK
| | - Nicola Capstaff
- School of Biology, University of Leeds, Leeds, UK
- Department of Science, Innovation and Technology, UK Government, London, UK
| | - James P B Lloyd
- University of Western Australia, Perth, Western Australia, Australia
| | - Jack Mullen
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Roger Hangarter
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Jiří Friml
- Institute of Science and Technology, Vienna, Austria
| | | |
Collapse
|
7
|
Kircher S, Schopfer P. Photosynthetic sucrose drives the lateral root clock in Arabidopsis seedlings. Curr Biol 2023:S0960-9822(23)00543-2. [PMID: 37207646 DOI: 10.1016/j.cub.2023.04.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/20/2022] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
The development of plant roots is subject to control by light. Here, we show that, similar to monotonous root elongation, the periodic induction of lateral roots (LRs) depends on the activation by light of photomorphogenic and photosynthetic photoreceptors in the shoot in a hierarchical order. The prevailing belief is that the plant hormone auxin serves as a mobile signal transmitter, responsible for interorgan communication, including light-controlled shoot-to-root connections. Alternatively, it has been proposed that the transcription factor HY5 assumes the role as a mobile shoot-to-root signal transmitter. Here, we provide evidence that photosynthetic sucrose produced in the shoot acts as the long-distance signal carrier regulating the local, tryptophan-based biosynthesis of auxin in the LR generation zone of the primary root tip, where the LR clock controls the pace of LR initiation in an auxin-tunable manner. Synchronization of LR formation with primary root elongation allows the adjustment of overall root growth to the photosynthetic performance of the shoot and the maintenance of a constant LR density during light-dark changes in a variable light environment.
Collapse
Affiliation(s)
- Stefan Kircher
- Department of Molecular Plant Physiology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Peter Schopfer
- Department of Molecular Plant Physiology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
8
|
Araniti F, Talarico E, Madeo ML, Greco E, Minervino M, Álvarez-Rodríguez S, Muto A, Ferrari M, Chiappetta A, Bruno L. Short-term exposition to acute Cadmium toxicity induces the loss of root gravitropic stimuli perception through PIN2-mediated auxin redistribution in Arabidopsis thaliana (L.) Heynh. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111726. [PMID: 37149227 DOI: 10.1016/j.plantsci.2023.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.) Heynh's root apical meristem (RAM) exposed for short periods (24h and 48h) to acute phytotoxic concentrations (100 and 150µM). The effects were studied through integrated morpho-histological, molecular, pharmacological and metabolomic analyses, highlighting that Cd inhibited primary root elongation by affecting the meristem zone via altering cell expansion. Moreover, Cd altered Auxin accumulation in RAM and affected PINs polar transporters particularly PIN2. In addition, we observed that high Cd concentration induced accumulation of reactive oxygen species (ROS) in roots, which resulted in an altered organization of cortical microtubules and the starch and sucrose metabolism, altering the statolith formation and, consequently, the gravitropic root response. Our results demonstrated that short Cd exposition (24h) affected cell expansion preferentially, altering auxin distribution and inducing ROS accumulation, which resulted in an alteration of gravitropic response and microtubules orientation pattern.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Department of Agricultural and Environmental Sciences, University of Milano, Milan 20133, Italy
| | - Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Marco Minervino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Sara Álvarez-Rodríguez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy.
| |
Collapse
|
9
|
Ai G, Huang R, Zhang D, Li M, Li G, Li W, Ahiakpa JK, Wang Y, Hong Z, Zhang J. SlGH3.15, a member of the GH3 gene family, regulates lateral root development and gravitropism response by modulating auxin homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111638. [PMID: 36796648 DOI: 10.1016/j.plantsci.2023.111638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/26/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Multiple Gretchen Hagen 3 (GH3) genes have been implicated in a range of processes in plant growth and development through their roles in maintaining hormonal homeostasis. However, there has only been limited study on the functions of GH3 genes in tomato (Solanum lycopersicum). In this work, we investigated the important function of SlGH3.15, a member of the GH3 gene family in tomato. Overexpression of SlGH3.15 led to severe dwarfism in both the above- and below-ground sections of the plant, accompanied by a substantial decrease in free IAA content and reduction in the expression of SlGH3.9, a paralog of SlGH3.15. Exogenous supply of IAA negatively affected the elongation of the primary root and partially restored the gravitropism defects in SlGH3.15-overexpression lines. While no phenotypic change was observed in the SlGH3.15 RNAi lines, double knockout lines of SlGH3.15 and SlGH3.9 were less sensitive to treatments with the auxin polar transport inhibitor. Overall, these findings revealed important roles of SlGH3.15 in IAA homeostasis and as a negative regulator of free IAA accumulation and lateral root formation in tomato.
Collapse
Affiliation(s)
- Guo Ai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dedi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miao Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guobin Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wangfang Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - John K Ahiakpa
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, 530007, China
| | - Zonglie Hong
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Junhong Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
11
|
Ni J, Zhang N, Zhan Y, Ding K, Qi P, Wang X, Ding W, Xu M. Transgenic tobacco plant overexpressing ginkgo dihydroflavonol 4-reductase gene GbDFR6 exhibits multiple developmental defects. FRONTIERS IN PLANT SCIENCE 2022; 13:1066736. [PMID: 36589135 PMCID: PMC9794611 DOI: 10.3389/fpls.2022.1066736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Dihydroflavonol Q 4-reductase (DFR), a key enzyme in the flavonoid biosynthetic pathway in plants, significantly influences plant survival. However, the roles of DFR in the regulation of plant development are largely unknown. In the present study, phenotypes of transgenic tobacco plants overexpressing the Ginkgo biloba DFR gene, GbDFR6, were investigated. Transgenic tobacco seedlings exhibited relatively low fresh weights, long primary roots, decreased lateral root numbers, and impaired root gravitropic responses when compared to wild-type tobacco plants. Adult transgenic tobacco plants exhibited a considerably high percentage of wrinkled leaves when compared to the wild-type tobacco plants. In addition to the auxin-related phenotypic changes, transgenic tobacco plants exhibited delayed flowering phenotypes under short-day conditions. Gene expression analysis revealed that the delayed flowering in transgenic tobacco plants was caused by the low expression levels of NtFT4. Finally, variations in anthocyanin and flavonoid contents in transgenic tobacco plants were evaluated. The results revealed that the levels of most anthocyanins identified in transgenic tobacco leaves increased. Specifically, cyanidin-3,5-O-diglucoside content increased by 9.8-fold in transgenic tobacco plants when compared to the wild-type tobacco plants. Pelargonidin-3-O-(coumaryl)-glucoside was only detected in transgenic tobacco plants. Regarding flavonoid compounds, one flavonoid compound (epicatechin gallate) was upregulated, whereas seven flavonoid compounds (Tamarixetin-3-O-rutinoside; Sexangularetin-3-O-glucoside-7-O-rhamnoside; Kaempferol-3-O-neohesperidoside; Engeletin; 2'-Hydoxy,5-methoxyGenistein-O-rhamnosyl-glucoside; Diosmetin; Hispidulin) were downregulated in both transgenic tobacco leaves and roots. The results indicate novel and multiple roles of GbDFR6 in ginkgo and provide a valuable method to produce a late flowering tobacco variety in tobacco industry.
Collapse
Affiliation(s)
- Jun Ni
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Ning Zhang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Yang Zhan
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Kexin Ding
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Peng Qi
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Xuejun Wang
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, China
| | - Maojun Xu
- Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Cisse EHM, Zhang J, Li DD, Miao LF, Yin LY, Yang F. Exogenous ABA and IAA modulate physiological and hormonal adaptation strategies in Cleistocalyx operculatus and Syzygium jambos under long-term waterlogging conditions. BMC PLANT BIOLOGY 2022; 22:523. [PMID: 36357840 PMCID: PMC9648000 DOI: 10.1186/s12870-022-03888-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/19/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The mechanisms of abscisic acid (ABA) and auxin (IAA) in inducing adventitious root (AR) formation, biomass accumulation, and plant development under long-term waterlogging (LT-WL) conditions are largely unexplored. This study aimed to determine the roles of exogenous application of ABA and IAA in two woody plants (Cleistocalyx operculatus and Syzygium jambos) under LT-WL conditions. A pot experiment was conducted using a complete randomized design with two factors: (i) LT-WL and (ii) application of exogenous phytohormones (ABA and IAA) for 120 d. RESULTS Results revealed that exogenous ABA and IAA promoted LT-WL tolerance in both species. In C. operculatus and S. jambos, plant height, the number of blades, leaf area, and fresh shoot weight were increased by exogenous IAA under LT-WL. However, exogenous ABA affected more the adventitious and primary root in C. operculatus compared to S. jambos. LT-WL decreased drastically the photosynthetic activities in both species, but adding moderate amounts of exogenous ABA or IAA protected the photosynthesis apparatus under LT-WL. Exogenous phytohormones at certain levels decreased the superoxide anion level and malondialdehyde accumulation in plants under LT-WL. Also, the increase of the peroxidases and superoxide dismutase activities by exogenous phytohormones was more marked in C. operculatus compared to S. jambos. Meanwhile, the catalase activity was down-regulated in both species by exogenous phytohormones. Exogenous ABA or IAA positively regulated the jasmonic acid content in ARs under LT-WL. Moderate application of exogenous ABA or IAA in plants under LT-WL decreased the ABA content in the leaves. Lower accumulation of IAA and ABA in the leaves of C. operculatus under LT-WL was positively correlated with a decrease in antioxidant activity. CONCLUSIONS Lastly, C. operculatus which has greater morphology indexes was more tolerant to waterlogging than S. jambos. Moreover, the adaptive strategies via exogenous ABA were more built around the below-ground biomass indexes particularly in C. operculatus, while exogenous IAA backed the above-ground biomass in both species. Overall, the exogenous hormones applied (spraying or watering) influenced differentially the plant's responses to LT-WL. The phytohormonal profile of plants exposed to waterlogging stress varied depending on the species' tolerance level.
Collapse
Affiliation(s)
- El-Hadji Malick Cisse
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Juan Zhang
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Da-Dong Li
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
| | - Ling-Feng Miao
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China
- School of Plant Protection, Hainan University, Haikou, 570228, China
| | - Li-Yan Yin
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Fan Yang
- School of Ecological and Environmental Sciences, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environmental Restoration Engineering of Hainan Province, Haikou, 570228, China.
| |
Collapse
|
13
|
Yang Y, Liu F, Liu L, Zhu M, Yuan J, Mai YX, Zou JJ, Le J, Wang Y, Palme K, Li X, Wang Y, Wang L. The unconventional prefoldin RPB5 interactor mediates the gravitropic response by modulating cytoskeleton organization and auxin transport in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1916-1934. [PMID: 35943836 DOI: 10.1111/jipb.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Gravity-induced root curvature involves the asymmetric distribution of the phytohormone auxin. This response depends on the concerted activities of the auxin transporters such as PIN-FORMED (PIN) proteins for auxin efflux and AUXIN RESISTANT 1 (AUX1) for auxin influx. However, how the auxin gradient is established remains elusive. Here we identified a new mutant with a short root, strong auxin distribution in the lateral root cap and an impaired gravitropic response. The causal gene encoded an Arabidopsis homolog of the human unconventional prefoldin RPB5 interactor (URI). AtURI interacted with prefoldin 2 (PFD2) and PFD6, two β-type PFD members that modulate actin and tubulin patterning in roots. The auxin reporter DR5rev :GFP showed that asymmetric auxin redistribution after gravistimulation is disordered in aturi-1 root tips. Treatment with the endomembrane protein trafficking inhibitor brefeldin A indicated that recycling of the auxin transporter PIN2 is disrupted in aturi-1 roots as well as in pfd mutants. We propose that AtURI cooperates with PFDs to recycle PIN2 and modulate auxin distribution.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Fang Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Le Liu
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinfeng Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Jun-Jie Zou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jie Le
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Klaus Palme
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino-German Joint Research Center on Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| |
Collapse
|
14
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Kim H, Jang J, Seomun S, Yoon Y, Jang G. Division of cortical cells is regulated by auxin in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2022; 13:953225. [PMID: 36186058 PMCID: PMC9515965 DOI: 10.3389/fpls.2022.953225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
The root cortex transports water and nutrients absorbed by the root epidermis into the vasculature and stores substances such as starch, resins, and essential oils. The cortical cells are also deeply involved in determining epidermal cell fate. In Arabidopsis thaliana roots, the cortex is composed of a single cell layer generated by a single round of periclinal division of the cortex/endodermis initials. To further explore cortex development, we traced the development of the cortex by counting cortical cells. Unlike vascular cells, whose number increased during the development of root apical meristem (RAM), the number of cortical cells did not change, indicating that cortical cells do not divide during RAM development. However, auxin-induced cortical cell division, and this finding was confirmed by treatment with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) and examining transgenic plants harboring CO2::ΔARF5, in which cortical expression of truncated AUXIN RESPONSE FACTOR5 (ΔARF5) induces auxin responses. NPA-induced cortical auxin accumulation and CO2::ΔARF5-mediated cortical auxin response induced anticlinal and periclinal cell divisions, thus increasing the number of cortical cells. These findings reveal a tight link between auxin and cortical cell division, suggesting that auxin is a key player in determining root cortical cell division.
Collapse
Affiliation(s)
- Huijin Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Subhin Seomun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul, South Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
16
|
Liu W, Chen T, Liu Y, Le QT, Wang R, Lee H, Xiong L. The Plastidial DIG5 Protein Affects Lateral Root Development by Regulating Flavonoid Biosynthesis and Auxin Transport in Arabidopsis. Int J Mol Sci 2022; 23:ijms231810642. [PMID: 36142550 PMCID: PMC9501241 DOI: 10.3390/ijms231810642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
To reveal the mechanisms underlying root adaptation to drought stress, we isolated and characterized an Arabidopsis mutant, dig5 (drought inhibition of lateral root growth 5), which exhibited increased sensitivity to the phytohormone abscisic acid (ABA) for the inhibition of lateral root growth. The dig5 mutant also had fewer lateral roots under normal conditions and the aerial parts were yellowish with a lower level of chlorophylls. The mutant seedlings also displayed phenotypes indicative of impaired auxin transport, such as abnormal root curling, leaf venation defects, absence of apical hook formation, and reduced hypocotyl elongation in darkness. Auxin transport assays with [3H]-labeled indole acetic acid (IAA) confirmed that dig5 roots were impaired in polar auxin transport. Map-based cloning and complementation assays indicated that the DIG5 locus encodes a chloroplast-localized tRNA adenosine deaminase arginine (TADA) that is involved in chloroplast protein translation. The levels of flavonoids, which are naturally occurring auxin transport inhibitors in plants, were significantly higher in dig5 roots than in the wild type roots. Further investigation showed that flavonoid biosynthetic genes were upregulated in dig5. Introduction of the flavonoid biosynthetic mutation transparent testa 4 (tt4) into dig5 restored the lateral root growth of dig5. Our study uncovers an important role of DIG5/TADA in retrogradely controlling flavonoid biosynthesis and lateral root development. We suggest that the DIG5-related signaling pathways, triggered likely by drought-induced chlorophyll breakdown and leaf senescence, may potentially help the plants to adapt to drought stress through optimizing the root system architecture.
Collapse
Affiliation(s)
- Wei Liu
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yajie Liu
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
| | - Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Ruigang Wang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Liming Xiong
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
- State Key Laboratory for Agribiotechnology, Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
17
|
Baba AI, Mir MY, Riyazuddin R, Cséplő Á, Rigó G, Fehér A. Plants in Microgravity: Molecular and Technological Perspectives. Int J Mol Sci 2022; 23:10548. [PMID: 36142459 PMCID: PMC9505700 DOI: 10.3390/ijms231810548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Plants are vital components of our ecosystem for a balanced life here on Earth, as a source of both food and oxygen for survival. Recent space exploration has extended the field of plant biology, allowing for future studies on life support farming on distant planets. This exploration will utilize life support technologies for long-term human space flights and settlements. Such longer space missions will depend on the supply of clean air, food, and proper waste management. The ubiquitous force of gravity is known to impact plant growth and development. Despite this, we still have limited knowledge about how plants can sense and adapt to microgravity in space. Thus, the ability of plants to survive in microgravity in space settings becomes an intriguing topic to be investigated in detail. The new knowledge could be applied to provide food for astronaut missions to space and could also teach us more about how plants can adapt to unique environments. Here, we briefly review and discuss the current knowledge about plant gravity-sensing mechanisms and the experimental possibilities to research microgravity-effects on plants either on the Earth or in orbit.
Collapse
Affiliation(s)
- Abu Imran Baba
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Mohd Yaqub Mir
- Doctoral School of Neuroscience, Semmelweis University, H-1083 Budapest, Hungary
- Theoretical Neuroscience and Complex Systems Group, Department of Computational Sciences, Wigner Research Centre for Physics, H-1121 Budapest, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| | - Attila Fehér
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary
| |
Collapse
|
18
|
Bello Bello E, Rico Cambron TY, Ortiz Ramírez LA, Rellán Álvarez R, Herrera-Estrella L. ROOT PENETRATION INDEX 3, a major quantitative trait locus associated with root system penetrability in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4716-4732. [PMID: 35512438 PMCID: PMC9366324 DOI: 10.1093/jxb/erac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/03/2022] [Indexed: 05/07/2023]
Abstract
Soil mechanical impedance precludes root penetration, confining root system development to shallow soil horizons where mobile nutrients are scarce. Using a two-phase-agar system, we characterized Arabidopsis responses to low and high mechanical impedance at three root penetration stages. We found that seedlings whose roots fail to penetrate agar barriers show a significant reduction in leaf area, root length, and elongation zone and an increment in root diameter, while those capable of penetrating show only minor morphological effects. Analyses using different auxin-responsive reporter lines, exogenous auxins, and inhibitor treatments suggest that auxin responsiveness and PIN-mediated auxin distribution play an important role in regulating root responses to mechanical impedance. The assessment of 21 Arabidopsis accessions revealed that primary root penetrability varies widely among accessions. To search for quantitative trait loci (QTLs) associated to root system penetrability, we evaluated a recombinant inbred population derived from Landsberg erecta (Ler-0, with a high primary root penetrability) and Shahdara (Sha, with a low primary root penetrability) accessions. QTL analysis revealed a major-effect QTL localized in chromosome 3, ROOT PENETRATION INDEX 3 (q-RPI3), which accounted for 29.98% (logarithm of odds=8.82) of the total phenotypic variation. Employing an introgression line (IL-321) with a homozygous q-RPI3 region from Sha in the Ler-0 genetic background, we demonstrated that q-RPI3 plays a crucial role in root penetrability. This multiscale study reveals new insights into root plasticity during the penetration process in hard agar layers, natural variation, and genetic architecture behind primary root penetrability in Arabidopsis.
Collapse
Affiliation(s)
- Elohim Bello Bello
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Thelma Y Rico Cambron
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Lesly Abril Ortiz Ramírez
- Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México
| | - Rubén Rellán Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
19
|
Yang S, de Haan M, Mayer J, Janacek DP, Hammes UZ, Poppenberger B, Sieberer T. A novel chemical inhibitor of polar auxin transport promotes shoot regeneration by local enhancement of HD-ZIP III transcription. THE NEW PHYTOLOGIST 2022; 235:1111-1128. [PMID: 35491431 DOI: 10.1111/nph.18196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
De novo shoot organogenesis is a prerequisite for numerous applications in plant research and breeding but is often a limiting factor, for example, in genome editing approaches. Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors have been characterized as crucial regulators of shoot specification, however up-stream components controlling their activity during shoot regeneration are only partially identified. In a chemical genetic screen, we isolated ZIC2, a novel activator of HD-ZIP III activity. Using molecular, physiological and hormone transport analyses in Arabidopsis and sunflower (Helianthus annuus), we examined the molecular mechanism by which the drug promotes HD-ZIP III expression. ZIC2-dependent upregulation of HD-ZIP III transcription promotes shoot regeneration in Arabidopsis and is accompanied by the induction of shoot specifying factors WUS and RAP2.6L and a subset of cytokinin biosynthesis enzymes. ZIC2's effect on HD-ZIP III expression and regeneration is based on its ability to limit polar auxin transport. We further provide evidence that chemical modulation of auxin efflux can enhance de novo shoot formation in the regeneration recalcitrant species sunflower. Activation of HD-ZIP III transcription during shoot regeneration depends on the local distribution of auxin and chemical modulation of auxin transport can be used to overcome poor shoot organogenesis in tissue culture.
Collapse
Affiliation(s)
- Saiqi Yang
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Marjolein de Haan
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Julius Mayer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Dorina P Janacek
- Plant Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Tobias Sieberer
- Research Unit Plant Growth Regulation, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
20
|
Dhatterwal P, Mehrotra S, Miller AJ, Mehrotra R. Promoter profiling of Arabidopsis amino acid transporters: clues for improving crops. PLANT MOLECULAR BIOLOGY 2021; 107:451-475. [PMID: 34674117 DOI: 10.1007/s11103-021-01193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The review describes the importance of amino acid transporters in plant growth, development, stress tolerance, and productivity. The promoter analysis provides valuable insights into their functionality leading to agricultural benefits. Arabidopsis thaliana genome is speculated to possess more than 100 amino acid transporter genes. This large number suggests the functional significance of amino acid transporters in plant growth and development. The current article summarizes the substrate specificity, cellular localization, tissue-specific expression, and expression of the amino acid transporter genes in response to environmental cues. However, till date functionality of a majority of amino acid transporter genes in plant development and stress tolerance is unexplored. Considering, that gene expression is mainly regulated by the regulatory motifs localized in their promoter regions at the transcriptional levels. The promoter regions ( ~ 1-kbp) of these amino acid transporter genes were analysed for the presence of cis-regulatory motifs responsive to developmental and external cues. This analysis can help predict the functionality of known and unexplored amino acid transporters in different tissues, organs, and various growth and development stages and responses to external stimuli. Furthermore, based on the promoter analysis and utilizing the microarray expression data we have attempted to identify plausible candidates (listed below) that might be targeted for agricultural benefits.
Collapse
Affiliation(s)
- Pinky Dhatterwal
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India.
| |
Collapse
|
21
|
Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. Proc Natl Acad Sci U S A 2021; 118:2004901118. [PMID: 34789571 PMCID: PMC8617494 DOI: 10.1073/pnas.2004901118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/18/2022] Open
Abstract
New species originate as populations become reproductively isolated from one another. Despite recent progress in uncovering the genetic basis of reproductive isolation, it remains unclear whether intrinsic reproductive barriers, such as hybrid sterility, can evolve as a by-product of local adaptation to contrasting environments. Here, we show that differences in a plant’s response to the pull of gravity have repeatedly evolved amongst coastal populations of an Australian wildflower, thus implicating a role of natural selection in their evolution. We found a strong genetic association between variation in this adaptive trait and hybrid sterility, suggesting that intrinsic reproductive barriers contribute to the origin of new species as populations adapt to heterogeneous environments. Natural selection is responsible for much of the diversity we see in nature. Just as it drives the evolution of new traits, it can also lead to new species. However, it is unclear whether natural selection conferring adaptation to local environments can drive speciation through the evolution of hybrid sterility between populations. Here, we show that adaptive divergence in shoot gravitropism, the ability of a plant’s shoot to bend upwards in response to the downward pull of gravity, contributes to the evolution of hybrid sterility in an Australian wildflower, Senecio lautus. We find that shoot gravitropism has evolved multiple times in association with plant height between adjacent populations inhabiting contrasting environments, suggesting that these traits have evolved by natural selection. We directly tested this prediction using a hybrid population subjected to eight rounds of recombination and three rounds of selection in the field. Our experiments revealed that shoot gravitropism responds to natural selection in the expected direction of the locally adapted population. Using the advanced hybrid population, we discovered that individuals with extreme differences in gravitropism had more sterile crosses than individuals with similar gravitropic responses, which were largely fertile, indicating that this adaptive trait is genetically correlated with hybrid sterility. Our results suggest that natural selection can drive the evolution of locally adaptive traits that also create hybrid sterility, thus revealing an evolutionary connection between local adaptation and the origin of new species.
Collapse
|
22
|
Seo DH, Jeong H, Choi YD, Jang G. Auxin controls the division of root endodermal cells. PLANT PHYSIOLOGY 2021; 187:1577-1586. [PMID: 34618030 PMCID: PMC8566267 DOI: 10.1093/plphys/kiab341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/28/2021] [Indexed: 06/02/2023]
Abstract
The root endodermis forms a selective barrier that prevents the free diffusion of solutes into the vasculature; to make this barrier, endodermal cells deposit hydrophobic compounds in their cell walls, forming the Casparian strip. Here, we showed that, in contrast to vascular and epidermal root cells, endodermal root cells do not divide alongside the root apical meristem in Arabidopsis thaliana. Auxin treatment induced division of endodermal cells in wild-type plants, but not in the auxin signaling mutant auxin resistant3-1. Endodermis-specific activation of auxin responses by expression of truncated AUXIN-RESPONSIVE FACTOR5 (ΔARF5) in root endodermal cells under the control of the ENDODERMIS7 promoter (EN7::ΔARF5) also induced endodermal cell division. We used an auxin transport inhibitor to cause accumulation of auxin in endodermal cells, which induced endodermal cell division. In addition, knockout of P-GLYCOPROTEIN1 (PGP1) and PGP19, which mediate centripetal auxin flow, promoted the division of endodermal cells. Together, these findings reveal a tight link between the endodermal auxin response and endodermal cell division, suggesting that auxin is a key regulator controlling the division of root endodermal cells, and that PGP1 and PGP19 are involved in regulating endodermal cell division.
Collapse
Affiliation(s)
- Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Haewon Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yang Do Choi
- The National Academy of Sciences, Seoul 06579, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
23
|
Cséplő Á, Zsigmond L, Andrási N, Baba AI, Labhane NM, Pető A, Kolbert Z, Kovács HE, Steinbach G, Szabados L, Fehér A, Rigó G. The AtCRK5 Protein Kinase Is Required to Maintain the ROS NO Balance Affecting the PIN2-Mediated Root Gravitropic Response in Arabidopsis. Int J Mol Sci 2021; 22:5979. [PMID: 34205973 PMCID: PMC8197844 DOI: 10.3390/ijms22115979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis AtCRK5 protein kinase is involved in the establishment of the proper auxin gradient in many developmental processes. Among others, the Atcrk5-1 mutant was reported to exhibit a delayed gravitropic response via compromised PIN2-mediated auxin transport at the root tip. Here, we report that this phenotype correlates with lower superoxide anion (O2•-) and hydrogen peroxide (H2O2) levels but a higher nitric oxide (NO) content in the mutant root tips in comparison to the wild type (AtCol-0). The oxidative stress inducer paraquat (PQ) triggering formation of O2•- (and consequently, H2O2) was able to rescue the gravitropic response of Atcrk5-1 roots. The direct application of H2O2 had the same effect. Under gravistimulation, correct auxin distribution was restored (at least partially) by PQ or H2O2 treatment in the mutant root tips. In agreement, the redistribution of the PIN2 auxin efflux carrier was similar in the gravistimulated PQ-treated mutant and untreated wild type roots. It was also found that PQ-treatment decreased the endogenous NO level at the root tip to normal levels. Furthermore, the mutant phenotype could be reverted by direct manipulation of the endogenous NO level using an NO scavenger (cPTIO). The potential involvement of AtCRK5 protein kinase in the control of auxin-ROS-NO-PIN2-auxin regulatory loop is discussed.
Collapse
Affiliation(s)
- Ágnes Cséplő
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Laura Zsigmond
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Norbert Andrási
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Abu Imran Baba
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Nitin M. Labhane
- Department of Botany, Bhavan’s College Andheri West, Mumbai 400058, India;
| | - Andrea Pető
- Department of Plant Biology, University of Szeged, 52. Középfasor, H-6726 Szeged, Hungary; (A.P.); (Z.K.)
- Food Chain Safety Center Nonprofit Ltd., H-1024 Budapest, Hungary
| | - Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, 52. Középfasor, H-6726 Szeged, Hungary; (A.P.); (Z.K.)
| | - Hajnalka E. Kovács
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Budapest, Kossuth Lajos Sugárút, 72/D, H-6724 Szeged, Hungary
| | - Gábor Steinbach
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary
| | - László Szabados
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| | - Attila Fehér
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
- Department of Plant Biology, University of Szeged, 52. Középfasor, H-6726 Szeged, Hungary; (A.P.); (Z.K.)
| | - Gábor Rigó
- Biological Research Centre (BRC), Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary; (Á.C.); (L.Z.); (N.A.); (A.I.B.); (H.E.K.); (G.S.); (L.S.); (A.F.)
| |
Collapse
|
24
|
Villacampa A, Sora L, Herranz R, Medina FJ, Ciska M. Analysis of Graviresponse and Biological Effects of Vertical and Horizontal Clinorotation in Arabidopsis thaliana Root Tip. PLANTS (BASEL, SWITZERLAND) 2021; 10:734. [PMID: 33918741 PMCID: PMC8070489 DOI: 10.3390/plants10040734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Clinorotation was the first method designed to simulate microgravity on ground and it remains the most common and accessible simulation procedure. However, different experimental settings, namely angular velocity, sample orientation, and distance to the rotation center produce different responses in seedlings. Here, we compare A. thaliana root responses to the two most commonly used velocities, as examples of slow and fast clinorotation, and to vertical and horizontal clinorotation. We investigate their impact on the three stages of gravitropism: statolith sedimentation, asymmetrical auxin distribution, and differential elongation. We also investigate the statocyte ultrastructure by electron microscopy. Horizontal slow clinorotation induces changes in the statocyte ultrastructure related to a stress response and internalization of the PIN-FORMED 2 (PIN2) auxin transporter in the lower endodermis, probably due to enhanced mechano-stimulation. Additionally, fast clinorotation, as predicted, is only suitable within a very limited radius from the clinorotation center and triggers directional root growth according to the direction of the centrifugal force. Our study provides a full morphological picture of the stages of graviresponse in the root tip, and it is a valuable contribution to the field of microgravity simulation by clarifying the limitations of 2D-clinostats and proposing a proper use.
Collapse
Affiliation(s)
- Alicia Villacampa
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| | - Ludovico Sora
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
- Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Raúl Herranz
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| | - Francisco-Javier Medina
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| | - Malgorzata Ciska
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (A.V.); (L.S.); (R.H.); (F.-J.M.)
| |
Collapse
|
25
|
The Prospect of Physiological Events Associated with the Micropropagation of Eucalyptus sp. FORESTS 2020. [DOI: 10.3390/f11111211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micropropagation is a reliable technique in biotechnology and genetic engineering domain, which has been widely applied for rapid mass propagation of plants in vitro condition. Through micropropagation techniques, reproduction of plants can be attained from different explants using organogenesis and somatic embryogenesis. Over the decades, micropropagation techniques have offered tremendous potential for forest tree improvement. Eucalyptus is a woody plant species recalcitrant to in vitro culture. In general, the micropropagation of Eucalyptus culture processes and the genotype, environment surroundings, and age of explants in culture media is frequently linked with the occurrence of micropropagation variation. In the current review paper, an update of the most important physiological and molecular phenomena aspects of Eucalyptus micropropagation was linked to the most profound information. To achieve the mentioned target, the effect of plant growth regulators (PGRs), nutrients, other adjuvant and environmental features, as well as genetic interaction with morpho- and physiological mechanisms was studied from the induction to plant acclimatisation. On the other hand, important mechanisms behind the organogenesis and somatic embryogenesis of Eucalyptus are discussed. The information of current review paper will help researchers in choosing the optimum condition based on the scenario behind the tissue culture technique of Eucalyptus. However, more studies are required to identify and overcome some of the crucial bottlenecks in this economically important forest species to establish efficient micropropagation protocol at the industrial level.
Collapse
|
26
|
Yue J, Yang H, Yang S, Wang J. TDIF regulates auxin accumulation and modulates auxin sensitivity to enhance both adventitious root and lateral root formation in poplar trees. TREE PHYSIOLOGY 2020; 40:1534-1547. [PMID: 32598454 DOI: 10.1093/treephys/tpaa077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/16/2020] [Indexed: 05/25/2023]
Abstract
Of six TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)-encoding genes in poplar, PtTDIF1 is predominantly expressed in adventitious roots (ARs), and the other five PtTDIFs are preferentially expressed in lateral roots (LRs). Upon auxin application, expression of all PtTDIFs declined in ARs but transiently increased in LRs. Both exogenous TDIF peptides and overexpression of PtTDIFs in poplar positively regulated the initiation and elongation of LRs, and overexpression of PtTDIFs also increased the number of ARs. As visualized by the auxin-responsive marker DR5:GUS, TDIF had differential impacts on the auxin signaling activity in ARs and LRs, which was corroborated by the free indole-3-acetic acid (IAA) measurements in them. Shoot tips of PtTDIF2- and PtTDIFL2-overexpressing (together as PtTDIFsOE) trees revealed an enhanced IAA biosynthetic capacity, and removal of the aerial tissues dramatically diminished the root phenotypes of micro-propagated PtTDIFsOE trees. Furthermore, PtTDIFsOE poplars displayed an increased sensitivity for exogenous IAA, and N-1-naphthylphthalamic acid (NPA) completely blocked the TDIF-induced AR and LR formation. In PtTDIFsOE roots, several auxin-related LR initiation markers such as GATA23, LBD16 and LBD29 were transcriptionally upregulated, further supporting that TDIF regulates LR organogenesis by strengthening the spatiotemporal auxin cues and that dynamic interplays between hormones govern root branching and developmental plasticity in tree species.
Collapse
Affiliation(s)
- Jing Yue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Heyu Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
27
|
Zhang S, Tajima H, Nambara E, Blumwald E, Bassil E. Auxin Homeostasis and Distribution of the Auxin Efflux Carrier PIN2 Require Vacuolar NHX-Type Cation/H + Antiporter Activity. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1311. [PMID: 33023035 PMCID: PMC7601841 DOI: 10.3390/plants9101311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022]
Abstract
The Arabidopsis vacuolar Na+/H+ transporters (NHXs) are important regulators of intracellular pH, Na+ and K+ homeostasis and necessary for normal plant growth, development, and stress acclimation. Arabidopsis contains four vacuolar NHX isoforms known as AtNHX1 to AtNHX4. The quadruple knockout nhx1nhx2nhx3nhx4, lacking any vacuolar NHX-type antiporter activity, displayed auxin-related phenotypes including loss of apical dominance, reduced root growth, impaired gravitropism and less sensitivity to exogenous IAA and NAA, but not to 2,4-D. In nhx1nhx2nhx3nhx4, the abundance of the auxin efflux carrier PIN2, but not PIN1, was drastically reduced at the plasma membrane and was concomitant with an increase in PIN2 labeled intracellular vesicles. Intracellular trafficking to the vacuole was also delayed in the mutant. Measurements of free IAA content and imaging of the auxin sensor DII-Venus, suggest that auxin accumulates in root tips of nhx1nhx2nhx3nhx4. Collectively, our results indicate that vacuolar NHX dependent cation/H+ antiport activity is needed for proper auxin homeostasis, likely by affecting intracellular trafficking and distribution of the PIN2 efflux carrier.
Collapse
Affiliation(s)
- Shiqi Zhang
- Boyce Thompson Institute, Ithaca, NY 14850, USA;
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (H.T.); (E.B.)
| | - Elias Bassil
- Horticultural Sciences Department, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| |
Collapse
|
28
|
Gibson CL, Isley JW, Falbel TG, Mattox CT, Lewis DR, Metcalf KE, Muday GK. A Conditional Mutation in SCD1 Reveals Linkage Between PIN Protein Trafficking, Auxin Transport, Gravitropism, and Lateral Root Initiation. FRONTIERS IN PLANT SCIENCE 2020; 11:910. [PMID: 32733502 PMCID: PMC7358545 DOI: 10.3389/fpls.2020.00910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 06/03/2020] [Indexed: 05/13/2023]
Abstract
Auxin is transported in plants with distinct polarity, defined by transport proteins of the PIN-formed (PIN) family. Components of the complex trafficking machinery responsible for polar PIN protein localization have been identified by genetic approaches, but severe developmental phenotypes of trafficking mutants complicate dissection of this pathway. We utilized a temperature sensitive allele of Arabidopsis thaliana SCD1 (stomatal cytokinesis defective1) that encodes a RAB-guanine nucleotide exchange factor. Auxin transport, lateral root initiation, asymmetric auxin-induced gene expression after gravitropic reorientation, and differential gravitropic growth were reduced in the roots of the scd1-1 mutant relative to wild type at the restrictive temperature of 25°C, but not at the permissive temperature of 18°C. In scd1-1 at 25°C, PIN1- and PIN2-GFP accumulated in endomembrane bodies. Transition of seedlings from 18 to 25°C for as little as 20 min resulted in the accumulation of PIN2-GFP in endomembranes, while gravitropism and root developmental defects were not detected until hours after transition to the non-permissive temperature. The endomembrane compartments that accumulated PIN2-GFP in scd1-1 exhibited FM4-64 signal colocalized with ARA7 and ARA6 fluorescent marker proteins, consistent with PIN2 accumulation in the late or multivesicular endosome. These experiments illustrate the power of using a temperature sensitive mutation in the gene encoding SCD1 to study the trafficking of PIN2 between the endosome and the plasma membrane. Using the conditional feature of this mutation, we show that altered trafficking of PIN2 precedes altered auxin transport and defects in gravitropism and lateral root development in this mutant upon transition to the restrictive temperature.
Collapse
Affiliation(s)
- Carole L. Gibson
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, United States
| | - Jonathan W. Isley
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Tanya G. Falbel
- Department of Bacteriology, University of Wisconsin, Madison, WI, United States
| | - Cassie T. Mattox
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, United States
| | - Daniel R. Lewis
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, United States
| | - Kasee E. Metcalf
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, United States
| | - Gloria K. Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, United States
| |
Collapse
|
29
|
Souza JM, Fazolo BR, Lacerda JWF, Moura MDS, Santos ACR, Vasconcelos LG, Sousa Junior PT, Dall’Oglio EL, Ali A, Sampaio OM, Vieira LCC. Rational Design, Synthesis and Evaluation of Indole Nitrogen Hybrids as Photosystem II Inhibitors. Photochem Photobiol 2020; 96:1233-1242. [DOI: 10.1111/php.13295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/07/2020] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Akbar Ali
- Department of Chemistry University of Malakand Chakdara Pakistan
| | | | | |
Collapse
|
30
|
Ashraf MA, Umetsu K, Ponomarenko O, Saito M, Aslam M, Antipova O, Dolgova N, Kiani CD, Nehzati S, Tanoi K, Minegishi K, Nagatsu K, Kamiya T, Fujiwara T, Luschnig C, Tanino K, Pickering I, George GN, Rahman A. PIN FORMED 2 Modulates the Transport of Arsenite in Arabidopsis thaliana. PLANT COMMUNICATIONS 2020; 1:100009. [PMID: 33404549 PMCID: PMC7747963 DOI: 10.1016/j.xplc.2019.100009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 05/23/2023]
Abstract
Arsenic contamination is a major environmental issue, as it may lead to serious health hazard. The reduced trivalent form of inorganic arsenic, arsenite, is in general more toxic to plants compared with the fully oxidized pentavalent arsenate. The uptake of arsenite in plants has been shown to be mediated through a large subfamily of plant aquaglyceroporins, nodulin 26-like intrinsic proteins (NIPs). However, the efflux mechanisms, as well as the mechanism of arsenite-induced root growth inhibition, remain poorly understood. Using molecular physiology, synchrotron imaging, and root transport assay approaches, we show that the cellular transport of trivalent arsenicals in Arabidopsis thaliana is strongly modulated by PIN FORMED 2 (PIN2) auxin efflux transporter. Root transport assay using radioactive arsenite, X-ray fluorescence imaging (XFI) coupled with X-ray absorption spectroscopy (XAS), and inductively coupled plasma mass spectrometry analysis revealed that pin2 plants accumulate higher concentrations of arsenite in roots compared with the wild-type. At the cellular level, arsenite specifically targets intracellular sorting of PIN2 and thereby alters the cellular auxin homeostasis. Consistently, loss of PIN2 function results in arsenite hypersensitivity in roots. XFI coupled with XAS further revealed that loss of PIN2 function results in specific accumulation of arsenical species, but not the other metals such as iron, zinc, or calcium in the root tip. Collectively, these results suggest that PIN2 likely functions as an arsenite efflux transporter for the distribution of arsenical species in planta.
Collapse
Affiliation(s)
- Mohammad Arif Ashraf
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
| | - Kana Umetsu
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Olena Ponomarenko
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michiko Saito
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Mohammad Aslam
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Olga Antipova
- Argonne National Lab, Advanced Photon Source, XSD-MIC, Lemont, IL, USA
| | - Natalia Dolgova
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cheyenne D. Kiani
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Susan Nehzati
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Keitaro Tanoi
- Isotope Facility for Agricultural Education and Research, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Minegishi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba, Japan
| | - Kotaro Nagatsu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Inage, Chiba, Japan
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1180 Wien, Austria
| | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ingrid Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham N. George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Abidur Rahman
- United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
- Agri-Innovation Center, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
31
|
Waidmann S, Sarkel E, Kleine-Vehn J. Same same, but different: growth responses of primary and lateral roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2397-2411. [PMID: 31956903 PMCID: PMC7178446 DOI: 10.1093/jxb/eraa027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
The root system architecture describes the shape and spatial arrangement of roots within the soil. Its spatial distribution depends on growth and branching rates as well as directional organ growth. The embryonic primary root gives rise to lateral (secondary) roots, and the ratio of both root types changes over the life span of a plant. Most studies have focused on the growth of primary roots and the development of lateral root primordia. Comparably less is known about the growth regulation of secondary root organs. Here, we review similarities and differences between primary and lateral root organ growth, and emphasize particularly how external stimuli and internal signals differentially integrate root system growth.
Collapse
Affiliation(s)
- Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Elizabeth Sarkel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
32
|
Mellor NL, Voß U, Janes G, Bennett MJ, Wells DM, Band LR. Auxin fluxes through plasmodesmata modify root-tip auxin distribution. Development 2020; 147:dev181669. [PMID: 32229613 PMCID: PMC7132777 DOI: 10.1242/dev.181669] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/17/2020] [Indexed: 01/05/2023]
Abstract
Auxin is a key signal regulating plant growth and development. It is well established that auxin dynamics depend on the spatial distribution of efflux and influx carriers on the cell membranes. In this study, we employ a systems approach to characterise an alternative symplastic pathway for auxin mobilisation via plasmodesmata, which function as intercellular pores linking the cytoplasm of adjacent cells. To investigate the role of plasmodesmata in auxin patterning, we developed a multicellular model of the Arabidopsis root tip. We tested the model predictions using the DII-VENUS auxin response reporter, comparing the predicted and observed DII-VENUS distributions using genetic and chemical perturbations designed to affect both carrier-mediated and plasmodesmatal auxin fluxes. The model revealed that carrier-mediated transport alone cannot explain the experimentally determined auxin distribution in the root tip. In contrast, a composite model that incorporates both carrier-mediated and plasmodesmatal auxin fluxes re-capitulates the root-tip auxin distribution. We found that auxin fluxes through plasmodesmata enable auxin reflux and increase total root-tip auxin. We conclude that auxin fluxes through plasmodesmata modify the auxin distribution created by efflux and influx carriers.
Collapse
Affiliation(s)
- Nathan L Mellor
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ute Voß
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - George Janes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Darren M Wells
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Leah R Band
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
33
|
Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1562-1573. [PMID: 31738415 DOI: 10.1093/jxb/erz510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The development of root nodules leads to an increased auxin response in early nodule primordia, which is mediated by changes in acropetal auxin transport in some legumes. Here, we investigated the role of root basipetal auxin transport during nodulation. Rhizobia inoculation significantly increased basipetal auxin transport in both Medicago truncatula and Lotus japonicus. In M. truncatula, this increase was dependent on functional Nod factor signalling through NFP, NIN, and NSP2, as well as ethylene signalling through SKL. To test whether increased basipetal auxin transport is required for nodulation, we examined a loss-of-function mutant of the M. truncatula PIN2 gene. The Mtpin2 mutant exhibited a reduction in basipetal auxin transport and an agravitropic phenotype. Inoculation of Mtpin2 roots with rhizobia still led to a moderate increase in basipetal auxin transport, but the mutant nodulated normally. No clear differences in auxin response were observed during nodule development. Interestingly, inoculation of wild-type roots increased lateral root numbers, whereas inoculation of Mtpin2 mutants resulted in reduced lateral root numbers compared with uninoculated roots. We conclude that the MtPIN2 auxin transporter is involved in basipetal auxin transport, that its function is not essential for nodulation, but that it plays an important role in the control of lateral root development.
Collapse
Affiliation(s)
- Jason L P Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Astrid Welvaert
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
34
|
Li Y, Wang Y, Tan S, Li Z, Yuan Z, Glanc M, Domjan D, Wang K, Xuan W, Guo Y, Gong Z, Friml J, Zhang J. Root Growth Adaptation is Mediated by PYLs ABA Receptor-PP2A Protein Phosphatase Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901455. [PMID: 32042554 PMCID: PMC7001640 DOI: 10.1002/advs.201901455] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Plant root architecture dynamically adapts to various environmental conditions, such as salt-containing soil. The phytohormone abscisic acid (ABA) is involved among others also in these developmental adaptations, but the underlying molecular mechanism remains elusive. Here, a novel branch of the ABA signaling pathway in Arabidopsis involving PYR/PYL/RCAR (abbreviated as PYLs) receptor-protein phosphatase 2A (PP2A) complex that acts in parallel to the canonical PYLs-protein phosphatase 2C (PP2C) mechanism is identified. The PYLs-PP2A signaling modulates root gravitropism and lateral root formation through regulating phytohormone auxin transport. In optimal conditions, PYLs ABA receptor interacts with the catalytic subunits of PP2A, increasing their phosphatase activity and thus counteracting PINOID (PID) kinase-mediated phosphorylation of PIN-FORMED (PIN) auxin transporters. By contrast, in salt and osmotic stress conditions, ABA binds to PYLs, inhibiting the PP2A activity, which leads to increased PIN phosphorylation and consequently modulated directional auxin transport leading to adapted root architecture. This work reveals an adaptive mechanism that may flexibly adjust plant root growth to withstand saline and osmotic stresses. It occurs via the cross-talk between the stress hormone ABA and the versatile developmental regulator auxin.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Yaping Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Shutang Tan
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Zhen Li
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhi Yuan
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Matouš Glanc
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - David Domjan
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Kai Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower‐Middle Reaches of the Yangtze RiverNanjing Agricultural UniversityNanjing210095China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Jiří Friml
- Institute of Science and Technology AustriaAm Campus 13400KlosterneuburgAustria
| | - Jing Zhang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| |
Collapse
|
35
|
Ge L, Chen R. Negative gravitropic response of roots directs auxin flow to control root gravitropism. PLANT, CELL & ENVIRONMENT 2019; 42:2372-2383. [PMID: 30968964 DOI: 10.1111/pce.13559] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/21/2019] [Accepted: 04/05/2019] [Indexed: 05/03/2023]
Abstract
Root tip is capable of sensing and adjusting its growth direction in response to gravity, a phenomenon known as root gravitropism. Previously, we have shown that negative gravitropic response of roots (NGR) is essential for the positive gravitropic response of roots. Here, we show that NGR, a plasma membrane protein specifically expressed in root columella and lateral root cap cells, controls the positive root gravitropic response by regulating auxin efflux carrier localization in columella cells and the direction of lateral auxin flow in response to gravity. Pharmacological and genetic studies show that the negative root gravitropic response of the ngr mutants depends on polar auxin transport in the root elongation zone. Cell biology studies further demonstrate that polar localization of the auxin efflux carrier PIN3 in root columella cells and asymmetric lateral auxin flow in the root tip in response to gravistimulation is reversed in the atngr1;2;3 triple mutant. Furthermore, simultaneous mutations of three PIN genes expressed in root columella cells impaired the negative root gravitropic response of the atngr1;2;3 triple mutant. Our work revealed a critical role of NGR in root gravitropic response and provided an insight of the early events and molecular basis of the positive root gravitropism.
Collapse
Affiliation(s)
- Liangfa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Laboratory of Plant Genetics and Development, Noble Research Institute, Ardmore, 73401, Oklahoma
| |
Collapse
|
36
|
Ajala C, Hasenstein KH. Augmentation of root gravitropism by hypocotyl curvature in Brassica rapa seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:214-223. [PMID: 31203886 DOI: 10.1016/j.plantsci.2019.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Main Conclusion Root gravitropism of primary roots is assisted by curvature of the hypocotyl base. Root gravitropism is typically described as the sequence of signal perception, signal processing, and response that causes differential elongation and the establishment of a new gravitropic set-point angle. We describe two components of the graviresponse of Brassica seedlings that comprise a primary curvature of the root tip and a later onset but stronger curvature that occurs at the base of the hypocotyl. This second curvature is preceded by straightening of the tip region but leads to the completion of the alignment of the root axis. Curvature in both regions require a minimum displacement of 20 deg. The rate of tip curvature is a function of root length. After horizontal reorientation, tip curvature of five mm long roots curved twice as fast as 10 mm long roots (33.6 ± 3.3 vs. 14.3 ± 1.5 deg hr-1). The onset of curvature at the hypocotyl base is correlated with root length, but the rate of this curvature is independent of seedling length. Decapping of roots prevented tip curvature but the curvature at base of hypocotyl was unaffected. Endodermal cells at the root shoot junction show numerous, large and sedimenting amyloplasts, which likely serve as gravity sensors (statoliths). The amyloplasts at the hypocotyl were 3-4 μm in diameter, similar in size to those in the root cap, and twice the size of starch grains in the cortical layers of hypocotyl or elsewhere in the root. These data indicate that the root shoot reorientation of young seedlings is not limited to the root tip but includes more than one gravitropically responsive region.
Collapse
Affiliation(s)
- Chitra Ajala
- Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-43602, United States
| | - Karl H Hasenstein
- Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-43602, United States.
| |
Collapse
|
37
|
Meents AK, Furch ACU, Almeida-Trapp M, Özyürek S, Scholz SS, Kirbis A, Lenser T, Theißen G, Grabe V, Hansson B, Mithöfer A, Oelmüller R. Beneficial and Pathogenic Arabidopsis Root-Interacting Fungi Differently Affect Auxin Levels and Responsive Genes During Early Infection. Front Microbiol 2019; 10:380. [PMID: 30915043 PMCID: PMC6422953 DOI: 10.3389/fmicb.2019.00380] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/13/2019] [Indexed: 01/08/2023] Open
Abstract
Auxin (indole-3-acetic acid, IAA) is an important phytohormone involved in root growth and development. Root-interacting beneficial and pathogenic fungi utilize auxin and its target genes to manipulate the performance of their hosts for their own needs. In order to follow and visualize auxin effects in fungi-colonized Arabidopsis roots, we used the dual auxin reporter construct DR5::EGFP-DR5v2::tdTomato and fluorescence microscopy as well as LC-MS-based phytohormone analyses. We demonstrate that the beneficial endophytic fungi Piriformospora indica and Mortierella hyalina produce and accumulate IAA in their mycelia, in contrast to the phytopathogenic biotrophic fungus Verticillium dahliae and the necrotrophic fungus Alternaria brassicicola. Within 3 h after exposure of Arabidopsis roots to the pathogens, the signals of the auxin-responsive reporter genes disappeared. When exposed to P. indica, significantly higher auxin levels and stimulated expression of auxin-responsive reporter genes were detected both in lateral root primordia and the root elongation zone within 1 day. Elevated auxin levels were also present in the M. hyalina/Arabidopsis root interaction, but no downstream effects on auxin-responsive reporter genes were observed. However, the jasmonate level was strongly increased in the colonized roots. We propose that the lack of stimulated root growth upon infection with M. hyalina is not caused by the absence of auxin, but an inhibitory effect mediated by high jasmonate content.
Collapse
Affiliation(s)
- Anja K Meents
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany.,Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Marília Almeida-Trapp
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sedef Özyürek
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexander Kirbis
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Teresa Lenser
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Veit Grabe
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.,Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
38
|
Méndez-Bravo A, Ruiz-Herrera LF, Cruz-Ramírez A, Guzman P, Martínez-Trujillo M, Ortiz-Castro R, López-Bucio J. CONSTITUTIVE TRIPLE RESPONSE1 and PIN2 act in a coordinate manner to support the indeterminate root growth and meristem cell proliferating activity in Arabidopsis seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:175-186. [PMID: 30823995 DOI: 10.1016/j.plantsci.2018.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 05/26/2023]
Abstract
The plant hormone ethylene induces auxin biosynthesis and transport and modulates root growth and branching. However, its function on root stem cells and the identity of interacting factors for the control of meristem activity remains unclear. Genetic analysis for primary root growth in wild-type (WT) Arabidopsis thaliana seedlings and ethylene-related mutants showed that the loss-of-function of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) inhibits cell division and elongation. This phenotype is associated with an increase in the expression of the auxin transporter PIN2 and a drastic decrease in the expression of key factors for stem cell niche maintenance such as PLETHORA1, SHORT ROOT and SCARECROW. While the root stem cell niche is affected in ctr1 mutants, its maintenance is severely compromised in the ctr1-1eir1-1(pin2) double mutant, in which an evident loss of proliferative capacity of the meristematic cells leads to a fully differentiated root meristem shortly after germination. Root traits affected in ctr1-1 mutants could be restored in ctr1-1ein2-1 double mutants. These results reveal that ethylene perception via CTR1 and EIN2 in the root modulates the proliferative capacity of root stem cells via affecting the expression of genes involved in the two major pathways, AUX-PIN-PLT and SCR-SHR, which are key factors for proper root stem cell niche maintenance.
Collapse
Affiliation(s)
- Alejandro Méndez-Bravo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, Mexico
| | - Plinio Guzman
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, Mexico
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, C. P. 91070, Xalapa, Veracruz, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
39
|
Alarcón MV, Salguero J, Lloret PG. Auxin Modulated Initiation of Lateral Roots Is Linked to Pericycle Cell Length in Maize. FRONTIERS IN PLANT SCIENCE 2019; 10:11. [PMID: 30733725 PMCID: PMC6354204 DOI: 10.3389/fpls.2019.00011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/07/2019] [Indexed: 05/21/2023]
Abstract
Auxin is essential for the regulation of root system architecture by controlling primary root elongation and lateral root (LR) formation. Exogenous auxin has been reported to inhibit primary root elongation and promote the formation of LRs. In this study, LR formation in the Zea mays primary root was quantitatively evaluated after exogenous auxin treatment by comparing the effects of auxin on two selected zones elongated either before or after auxin application. We determined two main variables in both zones: the LR density per unit of root length (LRD), and the mean phloem pericycle cell length. The total number of phloem pericycle cells (PPCs) per unit of root length was then calculated. Considering that each LR primordium is initiated from four founder cells (FCs), the percentage of PPCs (%PPC) that behave as FCs in a specific root zone was estimated by dividing the number of pericycle cells by four times the LRD. This index was utilized to describe LR initiation. Root zones elongated in the presence of a synthetic auxin (1-naphthalene acetic acid, NAA) at low concentrations (0.01 μM) showed reduced cell length and increased LRD. However, a high concentration of NAA (0.1 μM) strongly reduced both cell length and LRD. In contrast, both low and high levels of NAA stimulated LRD in zones elongated before auxin application. Analysis of the percentage of FCs in the phloem pericycle in zones elongated in the presence or absence of NAA showed that low concentrations of NAA increased the %PFC, indicating that LR initiation is promoted at new sites; however, high concentrations of NAA elicited a considerable reduction in this variable in zones developed in the presence of auxin. As these zones are composed of short pericycle cells, we propose that short pericycle cells are incapable to participate in LR primordium initiation and that auxin modulated initiation of LRs is linked to pericycle cell length.
Collapse
Affiliation(s)
- M. Victoria Alarcón
- Departamento de Hortofruticultura, Instituto de Investigaciones Agrarias “La Orden-Valdesequera”, CICYTEX, Junta de Extremadura, Badajoz, Spain
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Julio Salguero
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura, Badajoz, Spain
| | - Pedro G. Lloret
- Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
40
|
Michmizos D, Hilioti Z. A roadmap towards a functional paradigm for learning & memory in plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:209-215. [PMID: 30537608 DOI: 10.1016/j.jplph.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
In plants, the acquisition, processing and storage of empirical information can result in the modification of their behavior according to the nature of the stimulus, and yet this area of research remained relatively understudied until recently. As the body of evidence supporting the inclusion of plants among the higher organisms demonstrating the adaptations to accomplish these tasks keeps increasing, the resistance by traditional botanists and agricultural scientists, who were at first cautious in allowing the application of animal models onto plant physiology and development, subsides. However, the debate retains much of its heat, a good part of it originating from the controversial use of nervous system terms to describe plant processes. By focusing on the latest findings on the cellular and molecular mechanisms underlying the well established processes of Learning and Memory, recognizing what has been accomplished and what remains to be explored, and without seeking to bootstrap neuronal characteristics where none are to be found, a roadmap guiding towards a comprehensive paradigm for Learning and Memory in plants begins to emerge. Meanwhile the applications of the new field of Plant Gnosophysiology look as promising as ever.
Collapse
Affiliation(s)
- Dimitrios Michmizos
- Dept. of Agriculture, Crop Production & Rural Environment, University of Thessaly, Fytokos st, Volos, Magnesia, 384 46, Greece.
| | - Zoe Hilioti
- Institute of Applied Biosciences, Center for Research & Technology (CERTH), Thessaloniki, Greece
| |
Collapse
|
41
|
Chabikwa TG, Brewer PB, Beveridge CA. Initial Bud Outgrowth Occurs Independent of Auxin Flow from Out of Buds. PLANT PHYSIOLOGY 2019; 179:55-65. [PMID: 30404820 PMCID: PMC6324225 DOI: 10.1104/pp.18.00519] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/19/2018] [Indexed: 05/06/2023]
Abstract
Apical dominance is the process whereby the shoot tip inhibits the growth of axillary buds along the stem. It has been proposed that the shoot tip, which is the predominant source of the plant hormone auxin, prevents bud outgrowth by suppressing auxin canalization and export from axillary buds into the main stem. In this theory, auxin flow out of axillary buds is a prerequisite for bud outgrowth, and buds are triggered to grow by an enhanced proportional flow of auxin from the buds. A major challenge of directly testing this model is in being able to create a bud- or stem-specific change in auxin transport. Here we evaluate the relationship between specific changes in auxin efflux from axillary buds and bud outgrowth after shoot tip removal (decapitation) in the pea (Pisum sativum). The auxin transport inhibitor 1-N-naphthylphthalamic acid (NPA) and to a lesser extent, the auxin perception inhibitor p-chlorophenoxyisobutyric acid (PCIB), effectively blocked auxin efflux from axillary buds of intact and decapitated plants without affecting auxin flow in the main stem. Gene expression analyses indicate that NPA and PCIB regulate auxin-inducible, and biosynthesis and transport genes, in axillary buds within 3 h after application. These inhibitors had no effect on initial bud outgrowth after decapitation or cytokinin (benzyladenine; BA) treatment. Inhibitory effects of PCIB and NPA on axillary bud outgrowth only became apparent from 48 h after treatment. These findings demonstrate that the initiation of decapitation- and cytokinin-induced axillary bud outgrowth is independent of auxin canalization and export from the bud.
Collapse
Affiliation(s)
- Tinashe G Chabikwa
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Philip B Brewer
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Christine A Beveridge
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
42
|
Sun CH, Yu JQ, Duan X, Wang JH, Zhang QY, Gu KD, Hu DG, Zheng CS. The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. HORTICULTURE RESEARCH 2018; 5:52. [PMID: 30302256 PMCID: PMC6165851 DOI: 10.1038/s41438-018-0061-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 05/20/2023]
Abstract
Plant root systems are essential for many physiological processes, including water and nutrient absorption. MADS-box transcription factor (TF) genes have been characterized as the important regulators of root development in plants; however, the underlying mechanism is largely unknown, including chrysanthemum. Here, it was found that the overexpression of CmANR1, a chrysanthemum MADS-box TF gene, promoted both adventitious root (AR) and lateral root (LR) development in chrysanthemum. Whole transcriptome sequencing analysis revealed a series of differentially expressed unigenes (DEGs) in the roots of CmANR1-transgenic chrysanthemum plants compared to wild-type plants. Functional annotation of these DEGs by alignment with Gene Ontology (GO) terms and biochemical pathway Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that CmANR1 TF exhibited "DNA binding" and "catalytic" activity, as well as participated in "phytohormone signal transduction". Both chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) and gel electrophoresis mobility shift assays (EMSA) indicated the direct binding of CmPIN2 to the recognition site CArG-box motif by CmANR1. Finally, a firefly luciferase imaging assay demonstrated the transcriptional activation of CmPIN2 by CmANR1 in vivo. Overall, our results provide novel insights into the mechanisms of MADS-box TF CmANR1 modulation of both AR and LR development, which occurs by directly regulating auxin transport gene CmPIN2 in chrysanthemum.
Collapse
Affiliation(s)
- Cui-Hui Sun
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Jian-Qiang Yu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Xi Duan
- Shandong Agricultural and Engineering University, Ji-Nan, Shandong China
| | - Jia-Hui Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Quan-Yan Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Cheng-Shu Zheng
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| |
Collapse
|
43
|
Ishimaru Y, Hayashi K, Suzuki T, Fukaki H, Prusinska J, Meester C, Quareshy M, Egoshi S, Matsuura H, Takahashi K, Kato N, Kombrink E, Napier RM, Hayashi KI, Ueda M. Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor. PLANT PHYSIOLOGY 2018; 177:1704-1716. [PMID: 29934297 PMCID: PMC6084677 DOI: 10.1104/pp.18.00357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 05/23/2023]
Abstract
Plant root systems are indispensable for water uptake, nutrient acquisition, and anchoring plants in the soil. Previous studies using auxin inhibitors definitively established that auxin plays a central role regulating root growth and development. Most auxin inhibitors affect all auxin signaling at the same time, which obscures an understanding of individual events. Here, we report that jasmonic acid (JA) functions as a lateral root (LR)-preferential auxin inhibitor in Arabidopsis (Arabidopsis thaliana) in a manner that is independent of the JA receptor, CORONATINE INSENSITIVE1 (COI1). Treatment of wild-type Arabidopsis with either (-)-JA or (+)-JA reduced primary root length and LR number; the reduction of LR number was also observed in coi1 mutants. Treatment of seedlings with (-)-JA or (+)-JA suppressed auxin-inducible genes related to LR formation, diminished accumulation of the auxin reporter DR5::GUS, and inhibited auxin-dependent DII-VENUS degradation. A structural mimic of (-)-JA and (+)-coronafacic acid also inhibited LR formation and stabilized DII-VENUS protein. COI1-independent activity was retained in the double mutant of transport inhibitor response1 and auxin signaling f-box protein2 (tir1 afb2) but reduced in the afb5 single mutant. These results reveal JAs and (+)-coronafacic acid to be selective counter-auxins, a finding that could lead to new approaches for studying the mechanisms of LR formation.
Collapse
Affiliation(s)
- Yasuhiro Ishimaru
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kengo Hayashi
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeshi Suzuki
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hidehiro Fukaki
- Department of Biology, Kobe University, Kobe 657-8501, Japan
| | - Justyna Prusinska
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Christian Meester
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Syusuke Egoshi
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kosaku Takahashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Nobuki Kato
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Richard M Napier
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Minoru Ueda
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
44
|
Singh B, Khurana P, Khurana JP, Singh P. Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress. Cell Stress Chaperones 2018; 23:411-428. [PMID: 29116579 PMCID: PMC5904086 DOI: 10.1007/s12192-017-0854-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Abiotic stresses like drought, salinity, high and low temperature, and submergence are major factors that limit the crop productivity. Hence, identification of genes associated with stress response in crops is a prerequisite for improving their tolerance to adverse environmental conditions. In an earlier study, we had identified a drought-inducible gene, vesicle-associated membrane protein-associated protein (TaVAP), in developing grains of wheat. In this study, we demonstrate that TaVAP is able to complement yeast and Arabidopsis mutants, which are impaired in their respective orthologs, signifying functional conservation. Constitutive expression of TaVAP in Arabidopsis imparted tolerance to water stress conditions without any apparent yield penalty. Enhanced tolerance to water stress was associated with maintenance of higher relative water content, photosynthetic efficiency, and antioxidant activities. Compared to wild type, the TaVAP-overexpressing plants showed enhanced lateral root proliferation that was attributed to higher endogenous levels of IAA. These studies are the first to demonstrate that TaVAP plays a critical role in growth and development in plants, and is a potential candidate for improving the abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Brinderjit Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
45
|
Kimura T, Haga K, Shimizu-Mitao Y, Takebayashi Y, Kasahara H, Hayashi KI, Kakimoto T, Sakai T. Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:823-835. [PMID: 29401292 DOI: 10.1093/pcp/pcy018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/25/2018] [Indexed: 05/11/2023]
Abstract
An asymmetric auxin distribution pattern is assumed to underlie the tropic responses of seed plants. It is unclear, however, whether this pattern is required for root negative phototropism. We here demonstrate that asymmetric auxin distribution is not required to establish root phototropism in Arabidopsis. Our detailed analyses of auxin reporter genes indicate that auxin accumulates on the irradiated side of roots in response to an incidental gravitropic stimulus caused by phototropic bending. Further, an agravitropic mutant showed a suppression of this accumulation with an enhancement of the phototropic response. In this context, our pharmacological and genetic analyses revealed that both polar auxin transport and auxin biosynthesis are critical for the establishment of root gravitropism, but not for root phototropism, and that defects in these processes actually enhance phototropic responses in roots. The auxin response factor double mutant arf7 arf19 and the auxin receptor mutant tir1 showed a slight reduction in phototropic curvatures in roots, suggesting that the transcriptional regulation by some specific ARF proteins and their regulators is at least partly involved in root phototropism. However, the auxin antagonist PEO-IAA [α-(phenylethyl-2-one)-indole-3-acetic acid] suppressed root gravitropism and enhanced root phototropism, suggesting that the TIR1/AFB auxin receptors and ARF transcriptional factors play minor roles in root phototropism. Taken together, we conclude from our current data that the phototropic response in Arabidopsis roots is induced by an unknown mechanism that does not require asymmetric auxin distribution and that the Cholodny-Went hypothesis probably does not apply to root phototropism.
Collapse
Affiliation(s)
- Taro Kimura
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083 Japan
| | - Ken Haga
- Department of Human Science and Common Education, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-cho, Minamisaitama-gun, Saitama, 345-8501 Japan
| | - Yasushi Shimizu-Mitao
- Department of Biological Science, Graduate School of Science, Osaka University, 1-4 Machikaneyama-cho, Toyonaka, Osaka, 560-0043 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo, 183-8538 Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005 Japan
| | - Tatsuo Kakimoto
- Department of Biological Science, Graduate School of Science, Osaka University, 1-4 Machikaneyama-cho, Toyonaka, Osaka, 560-0043 Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| |
Collapse
|
46
|
Wang C, Fu D. Virus-Induced Gene Silencing of the Eggplant Chalcone Synthase Gene during Fruit Ripening Modifies Epidermal Cells and Gravitropism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2623-2629. [PMID: 29494770 DOI: 10.1021/acs.jafc.7b05617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eggplant ( Solanum melongena L.) fruits accumulate flavonoids in their cuticle and epidermal cells during ripening. Although many mutants available in model plant species, such as Arabidopsis thaliana and Medicago truncatula, are enabling the intricacies of flavonoid-related physiology to be deduced, the mechanisms whereby flavonoids influence eggplant fruit physiology are unknown. Virus-induced gene silencing (VIGS) is a reliable tool for the study of flavonoid function in fruit, and in this study, we successfully applied this technique to downregulate S. melongena chalcone synthase gene ( SmCHS) expression during eggplant fruit ripening. In addition to the expected change in fruit color attributable to a lack of anthocyanins, several other modifications, including differences in epidermal cell size and shape, were observed in the different sectors. We also found that silencing of CHS gene expression was associated with a negative gravitropic response in eggplant fruits. These observations indicate that epidermal cell expansion during ripening is dependent upon CHS expression and that there may be a relationship between CHS expression and gravitropism during eggplant fruit ripening.
Collapse
Affiliation(s)
- Cuicui Wang
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| | - Daqi Fu
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , People's Republic of China
| |
Collapse
|
47
|
de Abreu E Lima F, Li K, Wen W, Yan J, Nikoloski Z, Willmitzer L, Brotman Y. Unraveling lipid metabolism in maize with time-resolved multi-omics data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1102-1115. [PMID: 29385634 DOI: 10.1111/tpj.13833] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 05/19/2023]
Abstract
Maize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improving the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets from leaves of B73 and the high-oil line By804 in two distinct time-series experiments. The integrative analysis based on high-dimensional regularized regression yielded lipid-transcript associations indirectly validated by Gene Ontology and promoter motif enrichment analyses. The co-localization of lipid-transcript associations using the genetic mapping of lipid traits in leaves and seedlings of a B73 × By804 recombinant inbred line population uncovered 323 genes involved in the metabolism of phospholipids, galactolipids, sulfolipids and glycerolipids. The resulting association network further supported the involvement of 50 gene candidates in modulating levels of representatives from multiple acyl-lipid classes. Therefore, the proposed approach provides high-confidence candidates for experimental testing in maize and model plant species.
Collapse
Affiliation(s)
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Weiwei Wen
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Shizishan Lu 1, 430070, Hongshan, Wuhan, China
| | - Zoran Nikoloski
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Lothar Willmitzer
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
48
|
Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK. Traversing the Links between Heavy Metal Stress and Plant Signaling. FRONTIERS IN PLANT SCIENCE 2018; 9:12. [PMID: 29459874 PMCID: PMC5807407 DOI: 10.3389/fpls.2018.00012] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 01/03/2018] [Indexed: 05/17/2023]
Abstract
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alok K. Sinha
- Plant Signaling, National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
49
|
Abstract
The typical parameter used to evaluate the root growth response to gravity is the degree of root bending in time. This employs the quantification of the root tip angle toward gravity and, hence, does not directly assess the actual differential growth process. Here, we describe the cortical cell length as a parameter to quantify cell elongation during the gravitropic response, using median longitudinal confocal sections. This analysis depicts that root organ bending is a consequence of differential cellular elongation on the upper versus lower side of the gravistimulated root. Moreover, we introduce here a simple mounting setup that is suitable to gravistimulate and subsequently image seedlings on upright microscopes.
Collapse
|
50
|
Chen B, Luo S, Wu Y, Ye J, Wang Q, Xu X, Pan F, Khan KY, Feng Y, Yang X. The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance. Front Microbiol 2017; 8:2538. [PMID: 29312228 PMCID: PMC5742199 DOI: 10.3389/fmicb.2017.02538] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/06/2017] [Indexed: 01/27/2023] Open
Abstract
Endophytic bacteria have received attention for their ability to promote plant growth and enhance phytoremediation, which may be attributed to their ability to produce indole-3-acetic acid (IAA). As a signal molecular, IAA plays a key role on the interaction of plant and its endomicrobes. However, the different effects that endophytic bacteria and IAA may have on plant growth and heavy metal uptake is not clear. In this study, the endophytic bacterium Pseudomonas fluorescens Sasm05 was isolated from the stem of the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum alfredii Hance. The effects of Sasm05 and exogenous IAA on plant growth, leaf chlorophyll concentration, leaf Mg2+-ATPase and Ca2+-ATPase activity, cadmium (Cd) uptake and accumulation as well as the expression of metal transporter genes were compared in a hydroponic experiment with 10 μM Cd. The results showed that after treatment with 1 μM IAA, the shoot biomass and chlorophyll concentration increased significantly, but the Cd uptake and accumulation by the plant was not obviously affected. Sasm05 inoculation dramatically increased plant biomass, Cd concentration, shoot chlorophyll concentration and enzyme activities, largely improved the relative expression of the three metal transporter families ZRT/IRT-like protein (ZIP), natural resistance associated macrophage protein (NRAMP) and heavy metal ATPase (HMA). Sasm05 stimulated the expression of the SaHMAs (SaHMA2, SaHMA3, and SaHMA4), which enhanced Cd root to shoot translocation, and upregulated SaZIP, especially SaIRT1, expression to increase Cd uptake. These results showed that although both exogenous IAA and Sasm05 inoculation can improve plant growth and photosynthesis, Sasm05 inoculation has a greater effect on Cd uptake and translocation, indicating that this endophytic bacterium might not only produce IAA to promote plant growth under Cd stress but also directly regulate the expression of putative key Cd uptake and transport genes to enhance Cd accumulation of plant.
Collapse
Affiliation(s)
- Bao Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Bestwa EnviTech Co., Ltd., Post-Doctoral Research Center, Hangzhou, China
| | - Sha Luo
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yingjie Wu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiayuan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Qiong Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Fengshan Pan
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Kiran Y Khan
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|