1
|
Sanchez ER, Price RJ, Marangelli F, McLeary K, Harrison RJ, Kundu A. Overexpression of Vitis GRF4-GIF1 improves regeneration efficiency in diploid Fragaria vesca Hawaii 4. PLANT METHODS 2024; 20:160. [PMID: 39420380 PMCID: PMC11488064 DOI: 10.1186/s13007-024-01270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Plant breeding played a very important role in transforming strawberries from being a niche crop with a small geographical footprint into an economically important crop grown across the planet. But even modern marker assisted breeding takes a considerable amount of time, over multiple plant generations, to produce a plant with desirable traits. As a quicker alternative, plants with desirable traits can be raised through tissue culture by doing precise genetic manipulations. Overexpression of morphogenic regulators previously known for meristem development, the transcription factors Growth-Regulating Factors (GRFs) and the GRF-Interacting Factors (GIFs), provided an efficient strategy for easier regeneration and transformation in multiple crops. RESULTS We present here a comprehensive protocol for the diploid strawberry Fragaria vesca Hawaii 4 (strawberry) regeneration and transformation under control condition as compared to ectopic expression of different GRF4-GIF1 chimeras from different plant species. We report that ectopic expression of Vitis vinifera VvGRF4-GIF1 provides significantly higher regeneration efficiency during re-transformation over wild-type plants. On the other hand, deregulated expression of miRNA resistant version of VvGRF4-GIF1 or Triticum aestivum (wheat) TaGRF4-GIF1 resulted in abnormalities. Transcriptomic analysis between the different chimeric GRF4-GIF1 lines indicate that differential expression of FvExpansin might be responsible for the observed pleiotropic effects. Similarly, cytokinin dehydrogenase/oxygenase and cytokinin responsive response regulators also showed differential expression indicating GRF4-GIF1 pathway playing important role in controlling cytokinin homeostasis. CONCLUSION Our data indicate that ectopic expression of Vitis vinifera VvGRF4-GIF1 chimera can provide significant advantage over wild-type plants during strawberry regeneration without producing any pleiotropic effects seen for the miRNA resistant VvGRF4-GIF1 or TaGRF4-GIF1.
Collapse
Affiliation(s)
- Esther Rosales Sanchez
- Crop Science Centre, University of Cambridge, Cambridge, CB3 0LE, UK
- NIAB, Cambridge, CB3 0LE, UK
- Centre for Trophoblast Research, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | | | - Federico Marangelli
- Crop Science Centre, University of Cambridge, Cambridge, CB3 0LE, UK
- NIAB, Cambridge, CB3 0LE, UK
| | | | - Richard J Harrison
- NIAB, Cambridge, CB3 0LE, UK.
- Wageningen University and Research, Wageningen, 6708 PB, Netherlands.
| | | |
Collapse
|
2
|
Nogueira RM, Freitas MDSC, Picoli EADT, Isaias RMDS. Implications of cell wall immunocytochemical profiles on the structural and functional traits of root and stem galls induced by Eriosoma lanigerum on Malus domestica. PROTOPLASMA 2024; 261:911-926. [PMID: 38499789 DOI: 10.1007/s00709-024-01939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
Alterations in cell wall composition imply in new structural and functional traits in gall developmental sites, even when the inducer is a sucking exophytophagous insect with strict feeding sites as the aphid associated to Malus domestica Borkh. This host plant is an economically important, fruit-bearing species, susceptible to gall induction by the sucking aphid Eriosoma lanigerum Hausmann, 1802. Herein, the immunocytochemical detection of arabinogalactan-proteins (AGPs), pectins, and hemicelluloses using monoclonal antibodies was performed in samples of non-galled roots and stems, and of root and stem galls on M. domestica. The dynamics of these cell wall components was discussed under the structural and functional traits of the galls proximal, median, and distal regions, according to the proximity of E. lanigerum colony feeding site. In the proximal region, the epitopes of AGPs and homogalacturonans (HGs) are related to cell growth and divisions, which result in the overproduction of parenchyma cells both in root and stem galls. In the proximal and median regions, the co-occurrence of HGs and arabinans in the cell walls of parenchyma and secondary tissues favors the nutrient flow and water-holding capacity, while the xylogalacturonans and hemicelluloses may function as additional carbohydrate resources to E. lanigerum. The immunocytochemical profile of the cell walls support the feeding activity of E. lanigerum mainly in the gall proximal region. The similarity of the cell wall components of the gall distal region and the non-galled portions, both in roots and stems, relates to the decrease of the cecidogenetic field the more distant the E. lanigerum colony is.
Collapse
|
3
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
4
|
Encina CL, Hamdi A, Rodríguez-Arcos R, Jiménez-Araujo A, Regalado JJ, Guillén-Bejarano R. Effect of Arabinogalactans on Induction of White-Opaque Somatic Embryos of Avocado ( Persea americana Mill.) cv. Duke-7. PLANTS (BASEL, SWITZERLAND) 2023; 13:37. [PMID: 38202345 PMCID: PMC10780364 DOI: 10.3390/plants13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
The development of somatic embryogenesis in avocado (Persea americana Mill.) has been hampered by different chronic problems. One such problem is the low level of induction of white-opaque somatic embryos (WOSEs) during the process of obtaining full avocado plants. We detected the induction of multiple WOSEs promoted after the placement of three or four small WOSEs over the embryogenic callus of Duke-7. Among the other possible chemical inductors of the Arabinogalactans (AGPs), we identified a family of extracellular plant proteoglycans implicated in many aspects of the in vitro induction of somatic embryos (SE). We extracted AGPs directly from embryogenic cultures of avocado. When the induction/proliferation medium of embryogenic avocado calli (MS-0.1 mg L-1 Picloram) was supplemented with 1-2 mg L-1 AGP, the induction rate of good-quality WOSEs from the embryogenic callus increased significantly (more than ten times that of the control without AGP) and this effect persisted for at least five subcultures after the initial treatment with AGP. AGP also modified the texture and quality of the callus. The effect of AGP extends to other cultivars and proliferation media. Our objectives were to improve the induction of WOSEs and study the effect of AGP in the somatic embryogenesis of avocado.
Collapse
Affiliation(s)
- C. L. Encina
- Laboratorio de Cultivo de Tejidos y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, CSIC-UMA, Algarrobo-Costa, 29750 Málaga, Spain
| | - A. Hamdi
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| | - R. Rodríguez-Arcos
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| | - A. Jiménez-Araujo
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| | - J. J. Regalado
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almeria, 04120 Almeria, Spain;
| | - R. Guillén-Bejarano
- Grupo de Fitoquímicos y Calidad de Alimentos, Departmento Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Edificio 46 Ctra. de Utrera, km. 1, 41013 Sevilla, Spain; (A.H.); (R.R.-A.); (A.J.-A.); (R.G.-B.)
| |
Collapse
|
5
|
Joshi S, Hill K, Chakrabarti M, Perry SE. Regulatory mechanisms of the LBD40 transcription factor in Arabidopsis thaliana somatic embryogenesis. PLANT DIRECT 2023; 7:e547. [PMID: 38075399 PMCID: PMC10699890 DOI: 10.1002/pld3.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 10/16/2024]
Abstract
Somatic embryogenesis (SE) is a process by which an embryo is derived from somatic tissue. Transcription factors (TFs) have been identified that control this process. One such TF that promotes SE is AGAMOUS-like 15 (AGL15). Prior work has shown that AGL15 can both induce and repress gene expression. One way this type of dual function TF works is via protein interactions, so a yeast 2-hybrid (Y2H) screen was undertaken. One intriguing protein with which AGL15 interacted in Y2H was LBD40. LBD40 encodes a LATERAL ORGAN BOUNDARIES (LOB)-domain TF that is unique to plants and is primarily expressed during seed development. Here, we confirm the AGL15-LBD40 interaction by quantitative assays and in planta co-immunoprecipation. We also document a role for LBD40, and the closely related protein LBD41, in supporting SE. To determine downstream genes potentially controlled by LBD40, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) was used. More than 400 binding regions for LBD40 were consistently found genome-wide. To determine genes responsive to LBD40/41 accumulation, RNA-seq analysis of transcriptomes of wild-type control and loss-of-function lbd40/lbd41 was performed. Combining these datasets provides insight into genes directly and indirectly controlled by these LOB domain TFs. The gene ontology (GO) enrichment analysis of these regulated genes showed an overrepresentation of biological processes that are associated with SE, further indicating the importance of LBD40 in SE. This work provides insight into SE, a poorly understood, but essential process to generate transgenic plants to meet agricultural demands or test gene function. This manuscript reports on experiments to understand the role that LDB40, a TF, plays in support of SE by investigating genes directly and indirectly controlled by LBD40 and examining physical and genetic interactions with other TFs active in SE. We uncover targets of LBD40 and an interacting TF of the MADS family and investigate targets involvement in SE.
Collapse
Affiliation(s)
- Sanjay Joshi
- Kentucky Tobacco Research and Development Center, 1401 University Dr.University of KentuckyLexingtonKYUSA
| | - Kristine Hill
- Sociology, Philosophy and Anthropology DepartmentUniversity of ExeterExeterUK
| | - Manohar Chakrabarti
- School for Integrative Biological and Chemical SciencesUniversity of Texas Rio Grande ValleyEdinburgTXUSA
| | - Sharyn E. Perry
- Dept. of Plant and Soil Sciences, 1405 Veterans Dr., Plant Science BuildingUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
6
|
Watanabe Y, Nobe Y, Taoka M, Okamoto T. The Feeder Effects of Cultured Rice Cells on the Early Development of Rice Zygotes. Int J Mol Sci 2023; 24:16541. [PMID: 38003730 PMCID: PMC10672051 DOI: 10.3390/ijms242216541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Feeder cells and the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in a culture medium promote mitosis and cell division in cultured cells. These are also added to nutrient medium for the cultivation of highly active in mitosis and dividing zygotes, produced in vitro or isolated from pollinated ovaries. In the study, an in vitro fertilization (IVF) system was used to study the precise effects of feeder cells and 2,4-D on the growth and development of rice (Oryza sativa L.) zygote. The elimination of 2,4-D from the culture medium did not affect the early developmental profiles of the zygotes, but decreased the division rates of multicellular embryos. The omission of feeder cells resulted in defective karyogamy, fusion between male and female nuclei, and the subsequent first division of the cultured zygotes. The culture of zygotes in a conditioned medium corrected developmental disorders. Proteome analyses of the conditioned medium revealed the presence of abundant hydrolases possibly released from the feeder cells. Exogenously applied α-amylase ameliorated karyogamy and promoted zygote development. It is suggested that hydrolytic enzymes, including α-amylase, released from feeder cells may be involved in the progression of zygotic development.
Collapse
Affiliation(s)
- Yoriko Watanabe
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan;
| | - Yuko Nobe
- Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan; (Y.N.); (M.T.)
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan; (Y.N.); (M.T.)
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji 192-0397, Tokyo, Japan;
| |
Collapse
|
7
|
Xu Z, Dai J, Liang L, Zhang Y, He Y, Xing L, Ma J, Zhang D, Zhao C. Chitinase-Like Protein PpCTL1 Contributes to Maintaining Fruit Firmness by Affecting Cellulose Biosynthesis during Peach Development. Foods 2023; 12:2503. [PMID: 37444241 DOI: 10.3390/foods12132503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The firmness of the flesh fruit is a very important feature in the eating process. Peach fruit is very hard during development, but its firmness slightly decreases in the later stages of development. While there has been extensive research on changes in cell wall polysaccharides during fruit ripening, little is known about the changes that occur during growth and development. In this study, we investigated the modifications in cell wall components throughout the development and ripening of peach fruit, as well as its impact on firmness. Our findings revealed a significant positive correlation between fruit firmness and cellulose content at development stage. However, the correlation was lost during the softening process, suggesting that cellulose might be responsible for the fruit firmness during development. Members of the chitinase-like protein (CTL) group are of interest because of their possible role in plant cell wall biosynthesis. Here, two CTL homologous genes, PpCTL1 and PpCTL2, were identified in peach. Spatial and temporal expression patterns of PpCTLs revealed that PpCTL1 exhibited high expression abundance in the fruit and followed a similar trend to cellulose during fruit growth. Furthermore, silencing PpCTL1 expression resulted in reduced cellulose content at 5 DAI (days after injection), this change that would have a negative effect on fruit firmness. Our results indicate that PpCTL1 plays an important role in cellulose biosynthesis and the maintenance of peach firmness during development.
Collapse
Affiliation(s)
- Ze Xu
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Jieyu Dai
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Liping Liang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yonglan Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Yaojun He
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| |
Collapse
|
8
|
Godel-Jędrychowska K, Milewska-Hendel A, Sala K, Barański R, Kurczyńska E. The Impact of Gold Nanoparticles on Somatic Embryogenesis Using the Example of Arabidopsis thaliana. Int J Mol Sci 2023; 24:10356. [PMID: 37373504 DOI: 10.3390/ijms241210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Although the influence of nanoparticles (NPs) on developmental processes is better understood, little is known about their impact on somatic embryogenesis (SE). This process involves changes in the direction of cell differentiation. Thus, studying the effect of NPs on SE is essential to reveal their impact on cell fate. This study aimed to examine the influence of gold nanoparticles (Au NPs) with different surface charges on the SE of 35S:BBM Arabidopsis thaliana, with particular emphasis on the spatiotemporal localization of pectic arabinogalactan proteins (AGPs) and extensin epitopes in cells changing the direction of their differentiation. The results show that under the influence of nanoparticles, the explant cells of 35S:BBM Arabidopsis thaliana seedling origin did not enter the path of SE. Bulges and the formation of organ-like structures were observed in these explants, in contrast to the control, where somatic embryos developed. Additionally, spatiotemporal changes in the chemical composition of the cell walls during the culture were observed. Under the influence of Au NPs, the following effects were observed: (1) explant cells did not enter the SE pathway, (2) the impacts of Au NPs with different surface charges on the explants were variable, and (3) the compositions of the analyzed pectic AGPs and extensin epitopes were diverse in the cells with different developmental programs: SE (control) and non-SE (treated with Au NPs).
Collapse
Affiliation(s)
- Kamila Godel-Jędrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Katarzyna Sala
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Rafał Barański
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-130 Kraków, Poland
| | - Ewa Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
9
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
10
|
Ben-Amar A, Allel D, Mliki A. Up-regulation of a stress-responsive endochitinase VvChit-IV in grapevine cell cultures improves in vitro stress tolerance. PROTOPLASMA 2022; 259:1189-1203. [PMID: 34984633 DOI: 10.1007/s00709-021-01733-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Chitinases are pathogenesis-related proteins, which play an important role in plant growth regulation, defense mechanism, and stress tolerance. Embryogenic cultures from Vitis vinifera cv. Tempranillo exposed to in vitro stress exhibited the expression of an extracellular class IV endochitinase VvChit-IV. Phylogenetic and conserved motif analyses provided insights into the evolutionary relationships of chitinases. A computation-based investigation showed conserved domains and illustrated a chitin-binding site for chitin cleavage with a catalytic domain of glycoside hydrolase. Interestingly, gene expression pattern showed a differential expression of VvChit-IV associated with embryonic stress response to in vitro conditions. In response to in vitro stress, transcript level of VvChit-IV increased in embryogenic calli and cell suspensions and peaked at 1.5 and 3 folds, respectively, when compared to an internal reference gene. Evidence of tissue culture stress-induced endochitinase was reported here for the first time indicating that in vitro stress could mitigate elicitor application to induce chitinase expression and can stimulate an immune response against abiotic constraints. Data showed that up-regulation of VvChit-IV was associated with a substantial increase of H2O2 and proline without significant change in malondialdehyde content suggesting that the H2O2 signaling network might trigger a priming effect to boost the defense response against environmental stress. Endochitinase activation in plant stress mitigation was thus highlighted to improve tolerance through attenuation of oxidative stress. This study revealed that the grapevine endochitinase is promising for enhancing coping-oriented adaptation and abiotic stress tolerance, which gives new insights into its feasibility for use in cross-tolerance and crop improvement.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia.
| | - Dorsaf Allel
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
11
|
Borges Araujo AJ, Cerruti GV, Zuccarelli R, Rodriguez Ruiz M, Freschi L, Singh R, Moerschbacher BM, Floh EIS, Wendt dos Santos AL. Proteomic Analysis of S-Nitrosation Sites During Somatic Embryogenesis in Brazilian Pine, Araucaria angustifolia (Bertol.) Kuntze. FRONTIERS IN PLANT SCIENCE 2022; 13:902068. [PMID: 35845673 PMCID: PMC9280032 DOI: 10.3389/fpls.2022.902068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.
Collapse
Affiliation(s)
| | | | - Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Rodriguez Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ratna Singh
- Department of Plant Biology and Biotechnology, WWU Münster, Münster, Germany
| | | | - Eny Iochevet Segal Floh
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
12
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|
13
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
14
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
15
|
Yao H, Scornet D, Jam M, Hervé C, Potin P, Oliveira Correia L, Coelho SM, Cock JM. Biochemical characteristics of a diffusible factor that induces gametophyte to sporophyte switching in the brown alga Ectocarpus. JOURNAL OF PHYCOLOGY 2021; 57:742-753. [PMID: 33432598 DOI: 10.1111/jpy.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The haploid-diploid life cycle of the filamentous brown alga Ectocarpus involves alternation between two independent and morphologically distinct multicellular generations, the sporophyte and the gametophyte. Deployment of the sporophyte developmental program requires two TALE homeodomain transcription factors OUROBOROS and SAMSARA. In addition, the sporophyte generation has been shown to secrete a diffusible factor that can induce uni-spores to switch from the gametophyte to the sporophyte developmental program. Here, we determine optimal conditions for production, storage, and detection of this diffusible factor and show that it is a heat-resistant, high molecular weight molecule. Based on a combined approach involving proteomic analysis of sporophyte-conditioned medium and the use of biochemical tools to characterize arabinogalactan proteins, we present evidence that sporophyte-conditioned medium contains AGP epitopes and suggest that the diffusible factor may belong to this family of glycoproteins.
Collapse
Affiliation(s)
- Haiqin Yao
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Delphine Scornet
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Murielle Jam
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Cécile Hervé
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Philippe Potin
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Algal Biology and Environmental Interactions, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Lydie Oliveira Correia
- PAPPSO, INRA, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Susana M Coelho
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
16
|
Rafińska K, Niedojadło K, Świdziński M, Niedojadło J, Bednarska-Kozakiewicz E. Spatial and Temporal Distribution of Arabinogalactan Proteins during Larix decidua Mill. Male Gametophyte and Ovule Interaction. Int J Mol Sci 2021; 22:ijms22094298. [PMID: 33919026 PMCID: PMC8122408 DOI: 10.3390/ijms22094298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of ArabinoGalactan Proteins (AGPs) in the sexual reproduction of gymnosperms is not as well documented as that of angiosperms. In earlier studies, we demonstrated that AGPs play important roles during ovule differentiation in Larix decidua Mill. The presented results encouraged us to carry out further studies focused on the functions of these unique glycoproteins during pollen/pollen tube and ovule interactions in Larix. We identified and analyzed the localization of AGPs epitopes by JIM4, JIM8, JIM13 and LM2 antibodies (Abs) in male gametophytes and ovule tissue during pollination, the progamic phase, and after fertilization and in vitro growing pollen tubes. Our results indicated that (1) AGPs recognized by JIM4 Abs play an essential role in the interaction of male gametophytes and ovules because their appearance in ovule cells is induced by physical contact between reproductive partners; (2) after pollination, AGPs are secreted from the pollen cytoplasm into the pollen wall and contact the extracellular matrix of stigmatic tip cells followed by micropylar canal cells; (3) AGPs synthesized in nucellus cells before pollen grain germination are secreted during pollen tube growth into the extracellular matrix, where they can directly interact with male gametophytes; (4) in vitro cultured pollen tube AGPs labeled with LM2 Abs participate in the germination of pollen grain, while AGPs recognized by JIM8 Abs are essential for pollen tube tip growth.
Collapse
Affiliation(s)
- Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland;
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
- Correspondence:
| | - Michał Świdziński
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.Ś.); (J.N.); (E.B.-K.)
| |
Collapse
|
17
|
Zieliński K, Dubas E, Gerši Z, Krzewska M, Janas A, Nowicka A, Matušíková I, Żur I, Sakuda S, Moravčíková J. β-1,3-Glucanases and chitinases participate in the stress-related defence mechanisms that are possibly connected with modulation of arabinogalactan proteins (AGP) required for the androgenesis initiation in rye (Secale cereale L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110700. [PMID: 33288013 DOI: 10.1016/j.plantsci.2020.110700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/12/2020] [Accepted: 09/27/2020] [Indexed: 05/18/2023]
Abstract
This work presents the biochemical, cytochemical and molecular studies on two groups of PR proteins, β-1,3-glucanases and chitinases, and the arabinogalactan proteins (AGP) during the early stages of androgenesis induction in two breeding lines of rye (Secale cereale L.) with different androgenic potential. The process of androgenesis was initiated by tillers pre-treatments with low temperature, mannitol and/or reduced glutathione and resulted in microspores reprogramming and formation of androgenic structures what was associated with high activity of β-1,3-glucanases and chitinases. Some isoforms of β-1,3-glucanases, namely several acidic isoforms of about 26 kDa; appeared to be anther specific. Chitinases were well represented but were less variable. RT-qPCR revealed that the cold-responsive chitinase genes Chit1 and Chit2 were expressed at a lower level in the microspores and whole anthers while the cold-responsive Glu2 and Glu3 were not active. The stress pre-treatments modifications promoted the AGP accumulation. An apparent dominance of some AGP epitopes (LM2, JIM4 and JIM14) was detected in the androgenesis-responsive rye line. An abundant JIM13 epitopes in the vesicles and inner cell walls of the microspores and in the cell walls of the anther cell layers appeared to be the most specific for embryogenesis.
Collapse
Affiliation(s)
- Kamil Zieliński
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Ewa Dubas
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Zuzana Gerši
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic.
| | - Monika Krzewska
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Agnieszka Janas
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Anna Nowicka
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland; Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, 783 71, Olomouc, Czech Republic.
| | - Ildikó Matušíková
- Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic.
| | - Iwona Żur
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Shohei Sakuda
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551, Japan.
| | - Jana Moravčíková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Nám. J. Herdu 2, 917 01, Slovak Republic; Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P.O.B. 39A, 95 007, Nitra, Slovak Republic.
| |
Collapse
|
18
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
19
|
Hale B, Phipps C, Rao N, Wijeratne A, Phillips GC. Differential Expression Profiling Reveals Stress-Induced Cell Fate Divergence in Soybean Microspores. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1510. [PMID: 33171842 PMCID: PMC7695151 DOI: 10.3390/plants9111510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023]
Abstract
Stress-induced microspore embryogenesis is a widely employed method to achieve homozygosity in plant breeding programs. However, the molecular mechanisms that govern gametophyte de- and redifferentiation are understood poorly. In this study, RNA-Seq was used to evaluate global changes across the microspore transcriptome of soybean (Glycine max [L.] Merrill) as a consequence of pretreatment low-temperature stress. Expression analysis revealed more than 20,000 differentially expressed genes between treated and control microspore populations. Functional enrichment illustrated that many of these genes (e.g., those encoding heat shock proteins and cytochrome P450s) were upregulated to maintain cellular homeostasis through the mitigation of oxidative damage. Moreover, transcripts corresponding to saccharide metabolism, vacuolar transport, and other pollen-related developmental processes were drastically downregulated among treated microspores. Temperature stress also triggered cell wall modification and cell proliferation-characteristics that implied putative commitment to an embryonic pathway. These findings collectively demonstrate that pretreatment cold stress induces soybean microspore reprogramming through suppression of the gametophytic program while concomitantly driving sporophytic development.
Collapse
Affiliation(s)
- Brett Hale
- College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467-1080, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Callie Phipps
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Naina Rao
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Asela Wijeratne
- College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467-1080, USA;
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
| | - Gregory C. Phillips
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72467-0639, USA; (C.P.); (N.R.); (G.C.P.)
- College of Agriculture, Arkansas State University, Jonesboro, AR 72467-1080, USA
- Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Jonesboro, AR 72467-2340, USA
| |
Collapse
|
20
|
Liu X, Yu Y, Liu Q, Deng S, Jin X, Yin Y, Guo J, Li N, Liu Y, Han S, Wang C, Hao D. A Na 2CO 3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:504. [PMID: 32411170 PMCID: PMC7198794 DOI: 10.3389/fpls.2020.00504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from Leymus chinensis, which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.
Collapse
Affiliation(s)
- Xiangguo Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qing Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Suren Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Jin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Siping Han
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Dongyun Hao
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
21
|
Liu X, Yu Y, Liu Q, Deng S, Jin X, Yin Y, Guo J, Li N, Liu Y, Han S, Wang C, Hao D. A Na 2CO 3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:504. [PMID: 32411170 DOI: 10.1101/707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/03/2020] [Indexed: 05/24/2023]
Abstract
Salinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from Leymus chinensis, which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.
Collapse
Affiliation(s)
- Xiangguo Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qing Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Suren Deng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Xuebo Jin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jia Guo
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Nan Li
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yang Liu
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Siping Han
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Chuang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture (MOA), Huazhong Agricultural University, Wuhan, China
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
| | - Dongyun Hao
- Instutute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
22
|
Durechova D, Jopcik M, Rajninec M, Moravcikova J, Libantova J. Expression of Drosera rotundifolia Chitinase in Transgenic Tobacco Plants Enhanced Their Antifungal Potential. Mol Biotechnol 2019; 61:916-928. [PMID: 31555964 DOI: 10.1007/s12033-019-00214-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a chitinase gene (DrChit) that plays a role in the carnivorous processes of Drosera rotundifolia L. was isolated from genomic DNA, linked to a double CaMV35S promoter and nos terminator in a pBinPlus plant binary vector, and used for Agrobacterium-mediated transformation of tobacco. RT-qPCR revealed that within 14 transgenic lines analysed in detail, 57% had DrChit transcript abundance comparable to or lower than level of a reference actin gene transcript. In contrast, the transgenic lines 9 and 14 exhibited 72 and 152 times higher expression level than actin. The protein extracts of these two lines exhibited five and eight times higher chitinolytic activity than non-transgenic controls when measured in a fluorimetric assay with FITC-chitin. Finally, the growth of Trichoderma viride was obviously suppressed when the pathogen was exposed to 100 μg of crude protein extract isolated from line 9 and line 14, with the area of mycelium growth reaching only 56.4% and 45.2%, of non-transgenic control, respectively. This is the first time a chitinase from a carnivorous plant with substrate specificity for long chitin polymers was tested in a transgenic plant with the aim of exploring its antifungal potential.
Collapse
Affiliation(s)
- Dominika Durechova
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Martin Jopcik
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Miroslav Rajninec
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Moravcikova
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Libantova
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.
| |
Collapse
|
23
|
Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey JL, Pujade-Villar J, Huguet E, Drezen JM, Shorthouse JD, Stone GN. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 2019; 15:e1008398. [PMID: 31682601 PMCID: PMC6855507 DOI: 10.1371/journal.pgen.1008398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction. Plant galls are induced by organisms that manipulate host plant development to produce novel structures. The organisms involved range from mutualistic (such as nitrogen fixing bacteria) to parasitic. In the case of parasites, the gall benefits only the gall-inducing partner. A wide range of organisms can induce galls, but the processes involved are understood only for some bacterial and fungal galls. Cynipid gall wasps induce diverse and structurally complex galls, particularly on oaks (Quercus). We used transcriptome and genome sequencing for one gall wasp and its host oak to identify genes active in gall development. On the plant side, when compared to normally developing bud tissues, young gall tissues showed elevated expression of loci similar to those found in nitrogen-fixing root nodules of leguminous plants. On the wasp side, we found no evidence for involvement of viruses or microorganisms carried by the insects in gall induction or delivery of inducing stimuli. We found that gall wasps express many genes whose products may be secreted to the host, including enzymes that degrade plant cell walls. Genome comparisons between galling and non-galling relatives showed cell wall-degrading enzymes are restricted to gall inducers, and hence potentially key components of a gall inducing lifestyle.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | | | - José-Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | | | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| |
Collapse
|
24
|
Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2965-2978. [PMID: 30753698 DOI: 10.1093/jxb/ery464] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.
Collapse
Affiliation(s)
- Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|
25
|
Pérez-Pérez Y, Carneros E, Berenguer E, Solís MT, Bárány I, Pintos B, Gómez-Garay A, Risueño MC, Testillano PS. Pectin De-methylesterification and AGP Increase Promote Cell Wall Remodeling and Are Required During Somatic Embryogenesis of Quercus suber. FRONTIERS IN PLANT SCIENCE 2019; 9:1915. [PMID: 30671070 PMCID: PMC6331538 DOI: 10.3389/fpls.2018.01915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 05/18/2023]
Abstract
Somatic embryogenesis is a reliable system for in vitro plant regeneration, with biotechnological applications in trees, but the regulating mechanisms are largely unknown. Changes in cell wall mechanics controlled by methylesterification of pectins, mediated by pectin methylesterases (PMEs) and pectin methyl esterase inhibitors (PMEIs) underlie many developmental processes. Arabinogalactan proteins (AGPs) are highly glycosylated proteins located at the surface of plasma membranes, in cell walls, and in extracellular secretions, with key roles in a range of different processes. In this study, we have investigated changes in two cell wall components, pectins and AGPs, during somatic embryogenesis in Quercus suber, a forest tree of high economic and ecologic value. At early embryogenesis stages, cells of proembryogenic masses showed high levels of esterified pectins and expression of QsPME and QsPMEI genes encoding a PME and a putative PMEI, respectively. At advanced stages, differentiating cells of heart, torpedo and cotyledonary embryos exhibited walls rich in de-esterified pectins, while QsPME gene expression and PME activity progressively increased. AGPs were detected in cell walls of proembryogenic masses and somatic embryos. QsLys-rich-AGP18, QsLys-rich-AGP17, and QsAGP16L1 gene expression increased with embryogenesis progression, as did the level of total AGPs, detected by dot blot with β-glucosyl Yariv reagent. Immuno dot blot, immunofluorescence assays and confocal analysis using monoclonal antibodies to high- (JIM7, LM20) and low- (JIM5, LM19) methylesterified pectins, and to certain AGP epitopes (LM6, LM2) showed changes in the amount and distribution pattern of esterified/de-esterified pectins and AGP epitopes, that were associated with proliferation and differentiation and correlated with expression of the PME and AGP genes analyzed. Pharmacological treatments with catechin, an inhibitor of PME activity, and Yariv reagent, which blocks AGPs, impaired the progression of embryogenesis, with pectin de-esterification and an increase in AGP levels being necessary for embryo development. Findings indicate a role for pectins and AGPs during somatic embryogenesis of cork oak, promoting the cell wall remodeling during the process. They also provide new insights into the regulating mechanisms of somatic embryogenesis in woody species, for which information is still scarce, opening up new possibilities to improve in vitro embryo production in tree breeding.
Collapse
Affiliation(s)
- Yolanda Pérez-Pérez
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Eduardo Berenguer
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - María-Teresa Solís
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - Ivett Bárány
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Beatriz Pintos
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - Aránzazu Gómez-Garay
- Department of Genetics, Microbiology and Physiology, Complutense University of Madrid, Madrid, Spain
| | - María C. Risueño
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center – Spanish National Research Council, Madrid, Spain
| |
Collapse
|
26
|
Pais MS. Somatic Embryogenesis Induction in Woody Species: The Future After OMICs Data Assessment. FRONTIERS IN PLANT SCIENCE 2019; 10:240. [PMID: 30984207 PMCID: PMC6447717 DOI: 10.3389/fpls.2019.00240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/12/2019] [Indexed: 05/15/2023]
Abstract
Very early somatic embryogenesis has been recognized as a powerful method to propagate plants in vitro. For some woody species and in particular for some coniferous trees, somatic embryogenesis induction has become a routine procedure. For the majority, the application of this technology presents yet many limitations especially due to the genotype, the induction conditions, the number of embryos produced, maturation, and conversion, among other factors that compromise the systematic use of somatic embryogenesis for commercial purposes especially of woody species and forest trees in particular. The advancements obtained on somatic embryogenesis in Arabidopsis and the development of OMIC technologies allowed the characterization of genes and the corresponding proteins that are conserved in woody species. This knowledge will help in understanding the molecular mechanisms underlying the complex regulatory networks that control somatic embryogenesis in woody plants. In this revision, we report on developments of OMICs (genomics, transcriptomics, metabolomics, and proteomics) applied to somatic embryogenesis induction and its contribution for understanding the change of fate giving rise to the expression of somatic embryogenesis competence.
Collapse
|
27
|
Abstract
The arabinogalactan proteins (AGPs) are highly glycosylated proteins, ubiquitous in plants that have been linked to numerous aspects of sexual reproduction in several plant species, including the monoecious tree species Quercus suber. AGPs are found in cell membranes and cell walls of all types of tissues, including reproductive cells and organs. Pectins are cell wall components that also have been shown to change in composition and quantity during the maturations of the male and female gametophyte in cork oak. These findings were only possible to reveal, due to the histological study of AGP and pectins epitopes by immunolabeling. The immunofluorescence microscopy technique uses antibodies linked to fluorophores and relies on the specificity of the antibody binding to its antigen, labeling the epitope with a fluorescent dye.In the method presented here, we explore the immunolocalization technique performed in male and female flowers of Quercus suber, using London Resin (LR-White) as the embedding medium, after vacuum fixation with formaldehyde/glutaraldehyde. An extensive description of all the aspects of this technique is provided, from the plant material developmental stages selection to the critical analysis of results performed, continuously supported by troubleshooting recommendations.
Collapse
|
28
|
Song YS, Lee SH, Cho JA, Moon C, Seo DJ, Jung WJ. Expression and degradation patterns of chitinase purified from Xuehuali (Pyrus bretschneiderilia) pollen. Int J Biol Macromol 2017; 107:446-452. [PMID: 28893686 DOI: 10.1016/j.ijbiomac.2017.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
The present study investigated the expression pattern of chitinase in Xuehuali (Pyrus bretschneiderilia) pollen, as well as its subsequent degradation. The chitinase was purified and collected using chitin affinity column chromatography with regenerated chitin. After purification, four additional chitinase isozymes (chiA, chiB, chiC, and chiD) and chitinase (Chi II) were clearly expressed on SDS-PAGE gels that contained 0.01% glycol chitin. The chitinase reaction products were examined using GlcNAc, (GlcNAc)2, (GlcNAc)3, (GlcNAc)4, (GlcNAc)5, and (GlcNAc)6 as substrates at 2 and 24h after reaction via TLC and HPLC. The (GlcNAc)4 oligosaccharide was slightly degraded to (GlcNAc)2 after 24h of reaction with Xuehuali pollen chitinase on TLC. Meanwhile, (GlcNAc)5 was degraded to (GlcNAc)2-4, and 2300ppm (GlcNAc)6 was degraded to 246ppm (GlcNAc)2, 208ppm (GlcNAc)3, 572ppm (GlcNAc)4, and 336ppm (GlcNAc)5 on HPLC. With regard to temperature, the strongest Xuehuali pollen chitinase activity (0.69 unit/mL) was observed at 37°C after 3h of incubation, and with regard to pH, the strongest activity (0.72unit/mL) was observed at pH 3 after 3h of incubation. The main chitin oligomers degraded from (GlcNAc)6 were (GlcNAc)2 and (GlcNAc)4.
Collapse
Affiliation(s)
- Yong-Su Song
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Hyun Lee
- Department of Horticulture, Korea Pear Research Organization, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-An Cho
- Department of Horticulture, Korea Pear Research Organization, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chaeyeong Moon
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Jun Seo
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woo-Jin Jung
- Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
29
|
Arabinogalactan-proteins stimulate somatic embryogenesis and plant propagation of Pelargonium sidoides. Carbohydr Polym 2016; 152:149-155. [PMID: 27516259 DOI: 10.1016/j.carbpol.2016.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 11/22/2022]
Abstract
Root extracts of the medicinal plant Pelargonium sidoides, native to South Africa, are used globally for the treatment of common cold and cough. Due to an increasing economic commercialization of P. sidoides remedies, wild collections of root material should be accompanied by effective methods for plant propagation like somatic embryogenesis. Based on this, the influence of arabinogalactan-proteins (AGPs) on somatic embryogenesis and plant propagation of P. sidoides has been investigated. High-molecular weight AGPs have been isolated from dried roots as well as from cell cultures of P. sidoides with yields between 0.1% and 0.9%, respectively. AGPs are characterized by a 1,3-linked Galp backbone, branched at C6 to 1,6-linked Galp side chains terminated by Araf and to a minor extent by GlcpA, Galp or Rhap. Treatment of explants of P. sidoides with AGPs from roots or suspension culture over 5.5 weeks resulted in effective stimulation of somatic embryo development and plant regeneration.
Collapse
|
30
|
Lopes AL, Costa ML, Sobral R, Costa MM, Amorim MI, Coimbra S. Arabinogalactan proteins and pectin distribution during female gametogenesis in Quercus suber L. ANNALS OF BOTANY 2016; 117:949-61. [PMID: 26994101 PMCID: PMC4866308 DOI: 10.1093/aob/mcw019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Quercus suber L. (cork oak) is one of the most important monoecious tree species in semi-arid regions of Southern Europe, with a high ecological value and economic potential. However, as a result of its long reproductive cycle, complex reproductive biology and recalcitrant seeds, conventional breeding is demanding. In its complex reproductive biology, little is known about the most important changes that occur during female gametogenesis. Arabinogalactan proteins (AGPs) and pectins are the main components of plant cell walls and have been reported to perform common functions in cell differentiation and organogenesis of reproductive plant structures. AGPs have been shown to serve as important molecules in several steps of the reproductive process in plants, working as signalling molecules, associated with the sporophyte-gametophyte transition, and pectins have been implicated in pollen-pistil interactions before double fertilization. In this study, the distribution of AGP and pectin epitopes was assessed during female gametogenesis. METHODS Immunofluorescence labelling of female flower cells was performed with a set of monoclonal antibodies (mAbs) directed to the carbohydrate moiety of AGPs (JIM8 and JIM13) and pectic homogalacturonans (HGs) (mAbs JIM5 and JIM7). KEY RESULTS The selective labelling obtained with AGP and pectin mAbs JIM8, JIM13, JIM5 and JIM7 during Q. suber female gametogenesis shows that AGPs and pectic HG can work as markers for mapping gametophytic cell differentiation in this species. Pectic HG showed different distribution patterns, depending on their levels of methyl esterification. Methyl-esterified HGs showed a uniform distribution in the overall female flower cells before fertilization and a more specific pattern after fertilization. A low methyl-ester pectin distribution pattern during the different developmental stages appears to be related to the pathway that pollen tubes follow to reach the embryo sac. AGPs showed a more sparse distribution in early stages of development, but specific labelling is shown in the synergids and their filiform apparatus. CONCLUSIONS The labelling obtained with anti-AGP and anti-pectin mAbs in Q. suber female flower cells showed a dynamic distribution of AGPs and pectic HGs, which may render these molecules useful molecular markers during female gametogenesis. Changes occurring during development will be determined in order to help describe cork oak ovule structural properties before and after fertilization, providing new insight to better understand Q. suber female gametogenesis.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Mário Luís Costa
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, University of Porto, Rua do Campo Alegre, Porto, Portugal and
| | - Rómulo Sobral
- University of Porto, Rua do Campo Alegre, Porto, Portugal and Plant Functional Biology Centre, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Maria Manuela Costa
- University of Porto, Rua do Campo Alegre, Porto, Portugal and Plant Functional Biology Centre, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Maria Isabel Amorim
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, University of Porto, Rua do Campo Alegre, Porto, Portugal and
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal, University of Porto, Rua do Campo Alegre, Porto, Portugal and
| |
Collapse
|
31
|
Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, Okuda S, Sankaranarayanan S, Sato Y, Maruyama D, Iwai H, Garénaux E, Sato C, Kitajima K, Tsumuraya Y, Mori H, Yamaguchi J, Itami K, Sasaki N, Higashiyama T. The AMOR Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance. Curr Biol 2016; 26:1091-7. [PMID: 27068416 DOI: 10.1016/j.cub.2016.02.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/24/2016] [Accepted: 02/12/2016] [Indexed: 01/26/2023]
Abstract
Precise directional control of pollen-tube growth by pistil tissue is critical for successful fertilization of flowering plants [1-3]. Ovular attractant peptides, which are secreted from two synergid cells on the side of the egg cell, have been identified [4-6]. Emerging evidence suggests that the ovular directional cue is not sufficient for successful guidance but that competency control by the pistil is critical for the response of pollen tubes to the attraction signal [1, 3, 7]. However, the female molecule for this competency induction has not been reported. Here we report that ovular methyl-glucuronosyl arabinogalactan (AMOR) induces competency of the pollen tube to respond to ovular attractant LURE peptides in Torenia fournieri. We developed a method for assaying the response capability of a pollen tube by micromanipulating an ovule. Using this method, we showed that pollen tubes growing through a cut style acquired a response capability in the medium by receiving a sufficient amount of a factor derived from mature ovules of Torenia. This factor, named AMOR, was identified as an arabinogalactan polysaccharide, the terminal 4-O-methyl-glucuronosyl residue of which was necessary for its activity. Moreover, a chemically synthesized disaccharide, the β isomer of methyl-glucuronosyl galactose (4-Me-GlcA-β-(1→6)-Gal), showed AMOR activity. No specific sugar-chain structure of plant extracellular matrix has been identified as a bioactive molecule involved in intercellular communication. We suggest that the AMOR sugar chain in the ovary renders the pollen tube competent to the chemotropic response prior to final guidance by LURE peptides.
Collapse
Affiliation(s)
- Akane G Mizukami
- JST ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Rie Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jiao Jiao
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kento Ootani
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satohiro Okuda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Subramanian Sankaranarayanan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Maruyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Estelle Garénaux
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yoichi Tsumuraya
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Junichiro Yamaguchi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Narie Sasaki
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- JST ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
32
|
Pereira AM, Nobre MS, Pinto SC, Lopes AL, Costa ML, Masiero S, Coimbra S. "Love Is Strong, and You're so Sweet": JAGGER Is Essential for Persistent Synergid Degeneration and Polytubey Block in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:601-14. [PMID: 26774620 DOI: 10.1016/j.molp.2016.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 05/05/2023]
Abstract
Successful double fertilization and subsequent seed development in flowering plants requires the delivery of two sperm cells, transported by a pollen tube, into the embryo sac of an ovule. The embryo sac cells tightly control synergid cell death, and as a result the polyspermy block. Arabinogalactan proteins are highly glycosylated proteins thought to be involved in several steps of the reproductive process. We show that JAGGER, Arabinogalactan Protein 4, is an important molecule necessary to prevent the growth of multiple pollen tubes into one embryo sac in Arabidopsis thaliana. In jagger, an AGP4 knockout mutant, the pistils show impaired pollen tube blockage as a consequence of the survival of the persistent synergid. JAGGER seems to be involved in the signaling pathway that leads to a blockage of pollen tube attraction. Our results shed light on the mechanism responsible for preventing polyspermy in Arabidopsis and for safeguarding successful fertilization of all ovules in one pistil, ensuring seed set and the next generation.
Collapse
Affiliation(s)
- Ana Marta Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute (BioISI), 4169-007 Porto, Portugal
| | - Margarida Sofia Nobre
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute (BioISI), 4169-007 Porto, Portugal
| | - Sara Cristina Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute (BioISI), 4169-007 Porto, Portugal
| | - Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute (BioISI), 4169-007 Porto, Portugal
| | - Mário Luís Costa
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute (BioISI), 4169-007 Porto, Portugal
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Plant Functional Genomics Group, Biosystems and Integrative Sciences Institute (BioISI), 4169-007 Porto, Portugal.
| |
Collapse
|
33
|
Hervé C, Siméon A, Jam M, Cassin A, Johnson KL, Salmeán AA, Willats WGT, Doblin MS, Bacic A, Kloareg B. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development. THE NEW PHYTOLOGIST 2016; 209:1428-41. [PMID: 26667994 DOI: 10.1111/nph.13786] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/27/2015] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes.
Collapse
Affiliation(s)
- Cécile Hervé
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Amandine Siméon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Murielle Jam
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Andrew Cassin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Kim L Johnson
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Armando A Salmeán
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Melbourne, Vic, Australia
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Station Biologique de Roscoff, Integrative Biology of Marine Models, CS 90074, F-29688 Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| |
Collapse
|
34
|
dos Santos ALW, Elbl P, Navarro BV, de Oliveira LF, Salvato F, Balbuena TS, Floh EIS. Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential. J Proteomics 2016; 130:180-9. [DOI: 10.1016/j.jprot.2015.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/26/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022]
|
35
|
Winkelmann T, Ratjens S, Bartsch M, Rode C, Niehaus K, Bednarz H. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa. FRONTIERS IN PLANT SCIENCE 2015; 6:597. [PMID: 26300898 PMCID: PMC4523879 DOI: 10.3389/fpls.2015.00597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/20/2015] [Indexed: 05/29/2023]
Abstract
Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos.
Collapse
Affiliation(s)
- Traud Winkelmann
- Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Svenja Ratjens
- Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Melanie Bartsch
- Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Christina Rode
- Institute of Horticultural Production Systems, Leibniz Universität HannoverHannover, Germany
| | - Karsten Niehaus
- Faculty of Biology, Bio 27, Proteome and Metabolome Research, Bielefeld UniversityBielefeld, Germany
| | - Hanna Bednarz
- Faculty of Biology, Bio 27, Proteome and Metabolome Research, Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
36
|
Negri AS, Prinsi B, Failla O, Scienza A, Espen L. Proteomic and metabolic traits of grape exocarp to explain different anthocyanin concentrations of the cultivars. FRONTIERS IN PLANT SCIENCE 2015; 6:603. [PMID: 26300900 PMCID: PMC4523781 DOI: 10.3389/fpls.2015.00603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 05/28/2023]
Abstract
The role of grape berry skin as a protective barrier against damage by physical injuries and pathogen attacks requires a metabolism able to sustain biosynthetic activities such as those relating to secondary compounds (i.e., flavonoids). In order to draw the attention on these biochemical processes, a proteomic and metabolomic comparative analysis was performed among Riesling Italico, Pinot Gris, Pinot Noir, and Croatina cultivars, which are known to accumulate anthocyanins to a different extent. The application of multivariate statistics on the dataset pointed out that the cultivars were distinguishable from each other and the order in which they were grouped mainly reflected their relative anthocyanin contents. Sorting the spots according to their significance 100 proteins were characterized by LC-ESI-MS/MS. Through GC-MS, performed in Selected Ion Monitoring (SIM) mode, 57 primary metabolites were analyzed and the differences in abundance of 16 of them resulted statistically significant to ANOVA test. Considering the functional distribution, the identified proteins were involved in many physiological processes such as stress, defense, carbon metabolism, energy conversion and secondary metabolism. The trends of some metabolites were related to those of the protein data. Taken together, the results permitted to highlight the relationships between the secondary compound pathways and the main metabolism (e.g., glycolysis and TCA cycle). Moreover, the trend of accumulation of many proteins involved in stress responses, reinforced the idea that they could play a role in the cultivar specific developmental plan.
Collapse
Affiliation(s)
| | | | | | | | - Luca Espen
- *Correspondence: Luca Espen, Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia, Università degli Studi di Milano, via Celoria n.2, Milano 20133, Italy
| |
Collapse
|
37
|
Lippmann R, Friedel S, Mock HP, Kumlehn J. The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis. FRONTIERS IN PLANT SCIENCE 2015; 6:498. [PMID: 26217352 PMCID: PMC4493395 DOI: 10.3389/fpls.2015.00498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/22/2015] [Indexed: 05/05/2023]
Abstract
Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.
Collapse
Affiliation(s)
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| |
Collapse
|
38
|
Proteomic Analysis of Immature Fraxinus mandshurica Cotyledon Tissues during Somatic Embryogenesis: Effects of Explant Browning on Somatic Embryogenesis. Int J Mol Sci 2015; 16:13692-713. [PMID: 26084048 PMCID: PMC4490518 DOI: 10.3390/ijms160613692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022] Open
Abstract
Manchurian ash (Fraxinus mandshurica Rupr.) is a valuable hardwood species in Northeast China. In cultures of F. mandshurica, somatic embryos were produced mainly on browned explants. Therefore, we studied the mechanism of explant browning and its relationship with somatic embryogenesis (SE). We used explants derived from F. mandshurica immature zygotic embryo cotyledons as materials. Proteins were extracted from browned embryogenic explants, browned non-embryogenic explants, and non-brown explants, and then separated by 2-dimensional electrophoresis. Differentially and specifically expressed proteins were analyzed by mass spectrometry to identify proteins involved in the browning of explants and SE. Some stress response and defense proteins such as chitinases, peroxidases, aspartic proteinases, and an osmotin-like protein played important roles during SE of F. mandshurica. Our results indicated that explant browning might not be caused by the accumulation and oxidation of polyphenols only, but also by some stress-related processes, which were involved in programmed cell death (PCD), and then induced SE.
Collapse
|
39
|
Pereira AM, Pereira LG, Coimbra S. Arabinogalactan proteins: rising attention from plant biologists. PLANT REPRODUCTION 2015; 28:1-15. [PMID: 25656950 DOI: 10.1007/s00497-015-0254-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/09/2015] [Indexed: 05/21/2023]
Abstract
Key message: AGP update: plant reproduction. Arabinogalactan proteins (AGPs) are a large family of hydroxyproline-rich proteins, heavily glycosylated, ubiquitous in land plants, including basal angiosperms and also in many algae. They have been shown to serve as important molecules in several steps of the reproductive process in plants. Due to their special characteristics, such as high sugar content and their means of association with the membrane, they are often perceived as likely candidates for many different aspects of the reproductive process such as signalling molecules, cell identity determinants, morphogens, nutrient sources and support for pollen tube growth, among others. Nevertheless, the study of these proteins pose many difficulties when it comes to studying them individually. Most of the work done involved the use of the β-glucosyl Yariv reagent and antibodies that recognize the carbohydrate epitopes only. Recently, new approaches have been used to study AGPs largely based in the remarkable growing volume of microarray data made available. Either using older techniques or the most recent ones, a clearer picture is emerging for the functions and mode of action of these molecules in the plant reproductive processes. Here, we present an overview about the most important studies made in this area, focusing on the latest advances and the possibilities for future studies in the field.
Collapse
Affiliation(s)
- Ana Marta Pereira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | | | | |
Collapse
|
40
|
Hijazi M, Roujol D, Nguyen-Kim H, Del Rocio Cisneros Castillo L, Saland E, Jamet E, Albenne C. Arabinogalactan protein 31 (AGP31), a putative network-forming protein in Arabidopsis thaliana cell walls? ANNALS OF BOTANY 2014; 114:1087-97. [PMID: 24685714 PMCID: PMC4195544 DOI: 10.1093/aob/mcu038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Arabinogalactan protein 31 (AGP31) is a remarkable plant cell-wall protein displaying a multi-domain organization unique in Arabidopsis thaliana: it comprises a predicted signal peptide (SP), a short AGP domain of seven amino acids, a His-stretch, a Pro-rich domain and a PAC (PRP-AGP containing Cys) domain. AGP31 displays different O-glycosylation patterns with arabinogalactans on the AGP domain and Hyp-O-Gal/Ara-rich motifs on the Pro-rich domain. AGP31 has been identified as an abundant protein in cell walls of etiolated hypocotyls, but its function has not been investigated thus far. Literature data suggest that AGP31 may interact with cell-wall components. The purpose of the present study was to identify AGP31 partners to gain new insight into its function in cell walls. METHODS Nitrocellulose membranes were prepared by spotting different polysaccharides, which were either obtained commercially or extracted from cell walls of Arabidopsis thaliana and Brachypodium distachyon. After validation of the arrays, in vitro interaction assays were carried out by probing the membranes with purified native AGP31 or recombinant PAC-V5-6xHis. In addition, dynamic light scattering (DLS) analyses were carried out on an AGP31 purified fraction. KEY RESULTS It was demonstrated that AGP31 interacts through its PAC domain with galactans that are branches of rhamnogalacturonan I. This is the first experimental evidence that a PAC domain, also found as an entire protein or a domain of AGP31 homologues, can bind carbohydrates. AGP31 was also found to bind methylesterified polygalacturonic acid, possibly through its His-stretch. Finally, AGP31 was able to interact with itself in vitro through its PAC domain. DLS data showed that AGP31 forms aggregates in solution, corroborating the hypothesis of an auto-assembly. CONCLUSIONS These results allow the proposal of a model of interactions of AGP31 with different cell-wall components, in which AGP31 participates in complex supra-molecular scaffolds. Such scaffolds could contribute to the strengthening of cell walls of quickly growing organs such as etiolated hypocotyls.
Collapse
Affiliation(s)
- May Hijazi
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - David Roujol
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Huan Nguyen-Kim
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | | | - Estelle Saland
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Elisabeth Jamet
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| | - Cécile Albenne
- Université de Toulouse; UPS; UMR 5546, Laboratoire de Recherche en Sciences Végétales; BP 42617 Auzeville, F-31326 Castanet-Tolosan, France CNRS; UMR 5546; BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
41
|
Pereira AM, Masiero S, Nobre MS, Costa ML, Solís MT, Testillano PS, Sprunck S, Coimbra S. Differential expression patterns of arabinogalactan proteins in Arabidopsis thaliana reproductive tissues. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5459-71. [PMID: 25053647 PMCID: PMC4400541 DOI: 10.1093/jxb/eru300] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 05/05/2023]
Abstract
Arabinogalactan proteins (AGPs) are heavily glycosylated proteins existing in all members of the plant kingdom and are differentially distributed through distinctive developmental stages. Here, we showed the individual distributions of specific Arabidopsis AGPs: AGP1, AGP9, AGP12, AGP15, and AGP23, throughout reproductive tissues and indicated their possible roles in several reproductive processes. AGP genes specifically expressed in female tissues were identified using available microarray data. This selection was confirmed by promoter analysis using multiple green fluorescent protein fusions to a nuclear localization signal, β-glucuronidase fusions, and in situ hybridization as approaches to confirm the expression patterns of the AGPs. Promoter analysis allowed the detection of a specific and differential presence of these proteins along the pathway followed by the pollen tube during its journey to reach the egg and the central cell inside the embryo sac. AGP1 was expressed in the stigma, style, transmitting tract, and the chalazal and funiculus tissues of the ovules. AGP9 was present along the vasculature of the reproductive tissues and AGP12 was expressed in the stigmatic cells, chalazal and funiculus cells of the ovules, and in the septum. AGP15 was expressed in all pistil tissues, except in the transmitting tract, while AGP23 was specific to the pollen grain and pollen tube. The expression pattern of these AGPs provides new evidence for the detection of a subset of specific AGPs involved in plant reproductive processes, being of significance for this field of study. AGPs are prominent candidates for male-female communication during reproduction.
Collapse
Affiliation(s)
- Ana Marta Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal Center for Biodiversity, Functional & Integrative Genomics (BioFIG), Porto, Portugal Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Simona Masiero
- Dipartimento di BioScienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Margarida Sofia Nobre
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Mário Luís Costa
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal Center for Biodiversity, Functional & Integrative Genomics (BioFIG), Porto, Portugal
| | - María-Teresa Solís
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas (CIB) CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal Center for Biodiversity, Functional & Integrative Genomics (BioFIG), Porto, Portugal
| |
Collapse
|
42
|
Rodríguez-Sanz H, Manzanera JA, Solís MT, Gómez-Garay A, Pintos B, Risueño MC, Testillano PS. Early markers are present in both embryogenesis pathways from microspores and immature zygotic embryos in cork oak, Quercus suber L. BMC PLANT BIOLOGY 2014; 14:224. [PMID: 25162300 PMCID: PMC4147960 DOI: 10.1186/s12870-014-0224-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/11/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND In Quercus suber, cork oak, a Mediterranean forest tree of economic and social interest, rapid production of isogenic lines and clonal propagation of elite genotypes have been achieved by developing in vitro embryogenesis from microspores and zygotic embryos respectively. Despite its high potential in tree breeding strategies, due to their recalcitrancy, the efficiency of embryogenesis in vitro systems in many woody species is still very low since factors responsible for embryogenesis initiation and embryo development are still largely unknown. The search for molecular and cellular markers during early stages of in vitro embryogenesis constitutes an important goal to distinguish, after induction, responsive from non-responsive cells, and to elucidate the mechanisms involved in embryogenesis initiation for their efficient manipulation. In this work, we have performed a comparative analysis of two embryogenesis pathways derived from microspores and immature zygotic embryos in cork oak in order to characterize early markers of reprogrammed cells in both pathways. Rearrangements of the cell structural organization, changes in epigenetic marks, cell wall polymers modifications and endogenous auxin changes were analyzed at early embryogenesis stages of the two in vitro systems by a multidisciplinary approach. RESULTS Results showed that early embryo cells exhibited defined changes of cell components which were similar in both embryogenesis in vitro systems, cellular features that were not found in non-embryogenic cells. DNA methylation level and nuclear pattern, proportion of esterified pectins in cell walls, and endogenous auxin levels were different in embryo cells in comparison with microspores and immature zygotic embryo cells from which embryos originated, constituting early embryogenesis markers. CONCLUSIONS These findings suggest that DNA hypomethylation, cell wall remodeling by pectin esterification and auxin increase are involved in early in vitro embryogenesis in woody species, providing new evidences of the developmental pattern similarity between both embryogenesis pathways, from microspores and immature zygotic embryos, in woody species.
Collapse
Affiliation(s)
- Héctor Rodríguez-Sanz
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José-Antonio Manzanera
- />ETSI Montes, Technical University of Madrid, UPM, Ciudad Universitaria, 28040 Madrid, Spain
| | - María-Teresa Solís
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Aránzazu Gómez-Garay
- />Department of Plant Physiology, Faculty of Biology, Complutense University of Madrid, UCM, Ciudad Universitaria, 28040 Madrid, Spain
| | - Beatriz Pintos
- />Department of Plant Physiology, Faculty of Biology, Complutense University of Madrid, UCM, Ciudad Universitaria, 28040 Madrid, Spain
| | - María C Risueño
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pilar S Testillano
- />Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
43
|
Casarrubias-Castillo K, Martínez-Gallardo NA, Délano-Frier JP. Treatment of Amaranthus cruentus with chemical and biological inducers of resistance has contrasting effects on fitness and protection against compatible Gram positive and Gram negative bacterial pathogens. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:927-39. [PMID: 24913050 DOI: 10.1016/j.jplph.2014.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/14/2014] [Accepted: 02/16/2014] [Indexed: 05/19/2023]
Abstract
Amaranthus cruentus (Ac) plants were treated with the synthetic systemic acquired resistance (SAR) inducer benzothiadiazole (BTH), methyl jasmonate (MeJA) and the incompatible pathogen, Pseudomonas syringae pv. syringae (Pss), under greenhouse conditions. The treatments induced a set of marker genes in the absence of pathogen infection: BTH and Pss similarly induced genes coding for pathogenesis-related and antioxidant proteins, whereas MeJA induced the arginase, LOX2 and amarandin 1 genes. BTH and Pss were effective when tested against the Gram negative pathogen Ps pv. tabaci (Pst), which was found to have a compatible interaction with grain amaranth. The resistance response appeared to be salicylic acid-independent. However, resistance against Clavibacter michiganensis subsp. michiganensis (Cmm), a Gram positive tomato pathogen also found to infect Ac, was only conferred by Pss, while BTH increased susceptibility. Conversely, MeJA was ineffective against both pathogens. Induced resistance against Pst correlated with the rapid and sustained stimulation of the above genes, including the AhPAL2 gene, which were expressed both locally and distally. The lack of protection against Cmm provided by BTH, coincided with a generalized down-regulation of defense gene expression and chitinase activity. On the other hand, Pss-treated Ac plants showed augmented expression levels of an anti-microbial peptide gene and, surprisingly, of AhACCO, an ethylene biosynthetic gene associated with susceptibility to Cmm in tomato, its main host. Pss treatment had no effect on productivity, but compromised growth, whereas MeJA reduced yield and harvest index. Conversely, BTH treatments led to smaller plants, but produced significantly increased yields. These results suggest essential differences in the mechanisms employed by biological and chemical agents to induce SAR in Ac against bacterial pathogens having different infection strategies. This may determine the outcome of a particular plant-pathogen interaction, leading to resistance or susceptibility, as in Cmm-challenged Ac plants previously induced with Pss or BTH, respectively.
Collapse
Affiliation(s)
| | | | - John P Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas, Cinvestav-Unidad Irapuato, México, Mexico.
| |
Collapse
|
44
|
Mokshina N, Gorshkova T, Deyholos MK. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers. PLoS One 2014; 9:e97949. [PMID: 24918577 PMCID: PMC4053336 DOI: 10.1371/journal.pone.0097949] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/26/2014] [Indexed: 11/19/2022] Open
Abstract
Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.
Collapse
Affiliation(s)
- Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
45
|
Saito F, Suyama A, Oka T, Yoko-O T, Matsuoka K, Jigami Y, Shimma YI. Identification of Novel Peptidyl Serine α-Galactosyltransferase Gene Family in Plants. J Biol Chem 2014; 289:20405-20420. [PMID: 24914209 DOI: 10.1074/jbc.m114.553933] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In plants, serine residues in extensin, a cell wall protein, are glycosylated with O-linked galactose. However, the enzyme that is involved in the galactosylation of serine had not yet been identified. To identify the peptidyl serine O-α-galactosyltransferase (SGT), we chose Chlamydomonas reinhardtii as a model. We established an assay system for SGT activity using C. reinhardtii and Arabidopsis thaliana cell extracts. SGT protein was partially purified from cell extracts of C. reinhardtii and analyzed by tandem mass spectrometry to determine its amino acid sequence. The sequence matched the open reading frame XP_001696927 in the C. reinhardtii proteome database, and a corresponding DNA fragment encoding 748 amino acids (BAL63043) was cloned from a C. reinhardtii cDNA library. The 748-amino acid protein (CrSGT1) was produced using a yeast expression system, and the SGT activity was examined. Hydroxylation of proline residues adjacent to a serine in acceptor peptides was required for SGT activity. Genes for proteins containing conserved domains were found in various plant genomes, including A. thaliana and Nicotiana tabacum. The AtSGT1 and NtSGT1 proteins also showed SGT activity when expressed in yeast. In addition, knock-out lines of AtSGT1 and knockdown lines of NtSGT1 showed no or reduced SGT activity. The SGT1 sequence, which contains a conserved DXD motif and a C-terminal membrane spanning region, is the first example of a glycosyltransferase with type I membrane protein topology, and it showed no homology with known glycosyltransferases, indicating that SGT1 belongs to a novel glycosyltransferase gene family existing only in the plant kingdom.
Collapse
Affiliation(s)
- Fumie Saito
- From the Research Center for Medical Glycoscience and Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566
| | - Akiko Suyama
- the Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581
| | - Takuji Oka
- the Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, and
| | - Takehiko Yoko-O
- From the Research Center for Medical Glycoscience and Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566
| | - Ken Matsuoka
- the Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, the Biotron Application Center and Organelle Homeostasis Research Center, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
46
|
Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 2014; 9:e97878. [PMID: 24837971 PMCID: PMC4023963 DOI: 10.1371/journal.pone.0097878] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. METHODOLOGY/PRINCIPAL FINDINGS We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. CONCLUSIONS/SIGNIFICANCE The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.
Collapse
|
47
|
Paparella C, Savatin DV, Marti L, De Lorenzo G, Ferrari S. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. PLANT PHYSIOLOGY 2014; 165:262-76. [PMID: 24639336 PMCID: PMC4012585 DOI: 10.1104/pp.113.233759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Transmembrane receptor-like kinases characterized by the presence of one or more lysin motif (LysM) domains in the extracytoplasmic portion (LysM-containing receptor-like kinases [LYKs]) mediate recognition of symbiotic and pathogenic microorganisms in plants. The Arabidopsis (Arabidopsis thaliana) genome encodes five putative LYKs; among them, AtLYK1/CHITIN ELICITOR RECEPTOR KINASE1 is required for response to chitin and peptidoglycan, and AtLYK4 contributes to chitin perception. More recently, AtLYK3 has been shown to be required for full repression, mediated by Nod factors, of Arabidopsis innate immune responses. In this work, we show that AtLYK3 also negatively regulates basal expression of defense genes and resistance to Botrytis cinerea and Pectobacterium carotovorum infection. Enhanced resistance of atlyk3 mutants requires PHYTOALEXIN-DEFICIENT3, which is crucial for camalexin biosynthesis. The expression of AtLYK3 is strongly repressed by elicitors and fungal infection and is induced by the hormone abscisic acid (ABA), which has a negative impact on resistance against B. cinerea and P. carotovorum. Plants lacking a functional AtLYK3 also show reduced physiological responses to ABA and are partially resistant to ABA-induced inhibition of PHYTOALEXIN-DEFICIENT3 expression. These results indicate that AtLYK3 is important for the cross talk between signaling pathways activated by ABA and pathogens.
Collapse
|
48
|
Zagorchev L, Odjakova M. Hydroxyproline Rich Proteins in Salt Adapted Embryogenic Suspension Cultures ofDactylis GlomerataL. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Zheng Q, Perry SE. Alterations in the transcriptome of soybean in response to enhanced somatic embryogenesis promoted by orthologs of Agamous-like15 and Agamous-like18. PLANT PHYSIOLOGY 2014; 164:1365-77. [PMID: 24481137 PMCID: PMC3938626 DOI: 10.1104/pp.113.234062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/29/2014] [Indexed: 05/08/2023]
Abstract
Somatic embryogenesis (SE) is a poorly understood process during which competent cells respond to inducing conditions, allowing the development of somatic embryos. It is important for the regeneration of transgenic plants, including for soybean (Glycine max). We report here that constitutive expression of soybean orthologs of the Arabidopsis (Arabidopsis thaliana) MADS box genes Agamous-like15 (GmAGL15) and GmAGL18 increased embryogenic competence of explants from these transgenic soybean plants. To understand how GmAGL15 promotes SE, expression studies were performed. Particular genes of interest involved in embryogenesis (abscisic acid-insensitive3 and FUSCA3) were found to be directly up-regulated by GmAGL15 by using a combination of quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation. To look more broadly at changes in gene expression in response to GmAGL15, we assessed the transcriptome using the Affymetrix Soybean Genome Array. Interestingly, the gene expression profile of 35Spro:GmAGL15 explants (0 d in culture) was found to resemble nontransgenic tissue that had been induced for SE by being placed on induction medium for 3 d, possibly explaining the more rapid SE development observed on 35Spro:GmAGL15 tissue. In particular, transcripts from genes related to the stress response showed increased transcript accumulation in explants from 35Spro:GmAGL15 tissue. These same genes also showed increased transcript accumulation in response to culturing nontransgenic soybean explants on the medium used to induce SE. Overexpression of GmAGL15 may enhance SE by making the tissue more competent to respond to 2,4-dichlorophenoxyacetic acid induction by differential regulation of genes such as those involved in the stress response, resulting in more rapid and prolific SE.
Collapse
Affiliation(s)
- Qiaolin Zheng
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546–0312
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546–0312
| |
Collapse
|
50
|
Rejón JD, Delalande F, Schaeffer-Reiss C, Carapito C, Zienkiewicz K, Alché JDD, Rodríguez-García MI, Van Dorsselaer A, Castro AJ. The plant stigma exudate: a biochemically active extracellular environment for pollen germination? PLANT SIGNALING & BEHAVIOR 2014; 9:e28274. [PMID: 24589550 PMCID: PMC4091586 DOI: 10.4161/psb.28274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During sexual reproduction, pollen performance is greatly influenced by the female tissues. The stigma exudate, i.e., the extracellular secretion that covers the stigma outermost surface, has been usually regarded as a reservoir of water, secondary metabolites, cell wall precursors and compounds that serve as energy supply for rapid pollen tube growth. In an attempt to identify the proteins present in the stigma secretome, we performed a large-scale analysis in two species (Lilium longiflorum and Olea europaea) following a proteomic-based approach. The resulting data strongly suggest that the stigma exudate is not a mere storage site but also a biochemically active environment with a markedly catabolic nature. Thus, this secretion may modulate early pollen tube growth and contribute to the senescence of stigma after pollination. In addition, a putative cross-talk between genetic programs that regulate stress/defense and pollination responses in the stigma is also suggested. The stigma exudate might also functionally diverge between species on the basis on their ecology and the biochemical, morphological and anatomical features of their stigmas. Unexpectedly, we identified in both exudates some intracellular proteins, suggesting that a mechanism other than the canonical ER-Golgi exocytic pathway may exist in the stigma and contribute to exudate secretion.
Collapse
Affiliation(s)
- Juan David Rejón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique; IPHC-DSA; Université de Strasbourg-CNRS UMR 7178; Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse Bio-Organique; IPHC-DSA; Université de Strasbourg-CNRS UMR 7178; Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique; IPHC-DSA; Université de Strasbourg-CNRS UMR 7178; Strasbourg, France
| | - Krzysztof Zienkiewicz
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
- Department of Cell Biology; Institute of General and Molecular Biology; Nicolaus Copernicus University; Toruń, Poland
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - María Isabel Rodríguez-García
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse Bio-Organique; IPHC-DSA; Université de Strasbourg-CNRS UMR 7178; Strasbourg, France
| | - Antonio J Castro
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas; Estación Experimental del Zaidín; Consejo Superior de Investigaciones Científicas; Granada, Spain
| |
Collapse
|