1
|
Wang B, Wang H, Liu M, He G, Ming F. The vacuole pH-related gene RcNHX2 affects flower color shift and Na+ homeostasis in roses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 357:112476. [PMID: 40113046 DOI: 10.1016/j.plantsci.2025.112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Rose (Rosa spp.) is one of the most famous ornamental plants in the world, and its commodity value largely depends on its flower color. The color of roses mainly depends on the composition and state of anthocyanins, and the vacuolar pH value is an important factor affecting the stability and state of anthocyanins. The vacuolar sodium/proton antiporters (NHXs) play important roles in the maintenance of cellular ion homeostasis and petal vacuolar pH. However, the NHX functions related to rose flower coloration remain relatively uncharacterized. In this study, we cloned and characterized the vacuolar pH-related gene RcNHX2, which encoded a vesicular cation/H+ antiporter protein. Phylogenetic sequence analysis revealed that RcNHX2 belongs to the vesicular NHX family of proteins. It is localized in the vesicular membrane, where it exerts its function. RcNHX2 was significantly differentially expressed in different color-presenting types of petals of roses, and it was particularly highly expressed in the blue-purple petals. The overexpression of RcNHX2 in Rosa hybrida 'Florentina' caused the pH to increase and the petal color to change from red to blue-purple. On the basis of virus-induced gene silencing, we determined that decreased RcNHX2 expression significantly reduces R. hybrida 'Blue For You' petal coloration. We indicated that RcNHX2 might be involved in the color shift to blue in roses. Moreover, it was observed that in the cells of the rose plants in which RcNHX2 was silenced, the Na+ homeostasis was affected. The results suggest that the vesicular Na+/H+ transporter, RcNHX2 gene, likely plays a crucial role in the blue color change and the maintenance of cellular Na+ homeostasis in roses. These findings offer valuable insights for the cultivation of blue rose.
Collapse
Affiliation(s)
- Bingshuang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huanhuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Minghui Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Guoren He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
2
|
Ahmad MZ, Chen S, Qi X, Feng J, Chen H, Liu X, Deng Y. Identification of Nramp gene family in Hydrangea macrophylla and characterization of HmNramp5 under aluminum stress condition. Int J Biol Macromol 2025:144796. [PMID: 40449784 DOI: 10.1016/j.ijbiomac.2025.144796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/20/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
Aluminum toxicity severely limits plant growth in acidic soil. The Nramps play crucial role in transporting mineral elements in plants, but their role in hydrangea remains unexplored. The six HmNramp genes identified from hydrangea genome were found to be preferentially expressed in roots and flowers under aluminum stress, implying their crucial roles in aluminum tolerance and transport. Under aluminum stress, the HmNramp5 expression levels were 0.43, 0.19 and 0.73-fold higher than control in flower, leaf and roots, respectively. The overexpression (OE) of HmNramp5 showed higher resistance to aluminum and manganese but increased sensitivity to cadmium in yeast. Furthermore, the lower death rate (42 %) of leaf discs infiltrated with HmNramp5-OE under aluminum stress was observed as compared to empty vector. Aluminum stress significantly increased the contents of hydrogen peroxide, superoxide anion radical, and malonaldehyde in control samples, which elevated the harmful oxidation effect on plant cells. However, these contents were significantly reduced by HmNramp5-OE. Additionally, the levels of superoxide dismutase and peroxidase were significantly higher in HmNramp5-OE samples compared to the empty vector, indicating that HmNramp5 gene may stimulate their activities. These findings provide valuable insights into the functions of HmNramps in aluminum tolerance and transport in hydrangea.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xintong Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Nakombo-Gbassault P, Arenas S, Affortit P, Faye A, Flis P, Sine B, Moukouanga D, Gantet P, Komba EK, Kane N, Bennett M, Wells D, Cubry P, Bailey E, Grondin A, Vigouroux Y, Laplaze L. Genetic control of the leaf ionome in pearl millet and correlation with root and agromorphological traits. PLoS One 2025; 20:e0319140. [PMID: 40388386 PMCID: PMC12088009 DOI: 10.1371/journal.pone.0319140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/22/2025] [Indexed: 05/21/2025] Open
Abstract
Pearl millet (Pennisetum glaucum) thrives in arid and nutrient-poor environments, establishing its role as a crucial cereal crop for food security in sub-Saharan Africa. Despite its remarkable adaptability, its yields remain below genetic potential, primarily due to limited water and nutrient availability. In this study, we conducted ionomic profiling and genome-wide association studies (GWAS) in field conditions across two growing seasons to unravel the genetic basis of nutrient acquisition in pearl millet. Soil ion content analyses revealed significant differences in nutrient distribution between field sites, while certain ions, such as phosphorus (P) and zinc (Zn), consistently displayed stratified accumulation patterns across years, suggesting stable depth-dependent trends. Evaluation of a genetically diverse panel of inbred lines revealed substantial variation in leaf ion concentrations, with high heritability estimates. Correlations between leaf ion content and root anatomical or agromorphological traits highlighted the intricate interplay between genetic and environmental factors shaping leaf ion accumulation. These analyses also uncovered potential trade-offs in nutrient acquisition strategies. GWAS identified genomic regions associated with leaf ion concentrations, and the integration of genetic and gene expression data facilitated the identification of candidate genes implicated in ion transport and homeostasis. Our findings provide valuable insights into the genetic regulation of nutrient acquisition in pearl millet, offering potential targets for breeding nutrient-efficient and climate-resilient varieties. This study underscores the importance of integrating genetic, physiological, and root architectural traits to enhance agricultural productivity and sustainability in resource-constrained environments.
Collapse
Affiliation(s)
- Princia Nakombo-Gbassault
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier France
- JEAI AgrobiodiveRCA, Université de Bangui, Bangui, Central African Republic
| | - Sebastian Arenas
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier France
| | - Pablo Affortit
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier France
| | - Awa Faye
- CERAAS, Institut Sénégalais des Recherches Agricoles (ISRA), Thiès, Senegal
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Bassirou Sine
- CERAAS, Institut Sénégalais des Recherches Agricoles (ISRA), Thiès, Senegal
| | | | - Pascal Gantet
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier France
| | - Ephrem Kosh Komba
- JEAI AgrobiodiveRCA, Université de Bangui, Bangui, Central African Republic
| | - Ndjido Kane
- CERAAS, Institut Sénégalais des Recherches Agricoles (ISRA), Thiès, Senegal
| | - Malcolm Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Darren Wells
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Philippe Cubry
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier France
| | - Elizabeth Bailey
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | | | - Yves Vigouroux
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, IRD, CIRAD, Montpellier France
| |
Collapse
|
4
|
Guo M, Chen X, Li S, Tian J, Huang W, Shu Y. Identification of the Plant Defensin (MsPDF) Gene Family in Medicago sativa and Analysis of Expression Patterns Under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1312. [PMID: 40364341 PMCID: PMC12073698 DOI: 10.3390/plants14091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Medicago sativa L. (alfalfa) is a major forage crop due to its high yield and stress resilience. However, its growth and productivity are often compromised by abiotic stresses, including cold, drought, and salinity. The plant defensin (PDF) gene family plays a crucial role in resistance to abiotic stress. In this study, a total of 11 MsPDF gene family members were identified in the alfalfa genome and classified into three groups. Phylogenetic and conserved motif analyses revealed that the MsPDF genes are highly conserved. Promoter analysis, gene regulatory network analysis (GRN), and gene ontology (GO)-enrichment analyses were used to infer the potential functions of MsPDF genes. The results showed that the gene actively responds to abiotic stress, participates in phytohormonal responses, and regulates plant growth and development through gene interactions. Transcriptome and qRT-PCR analyses showed that most of the MsPDF genes were significantly up-regulated under cold, drought, and salinity stresses. Among them, the MsPDF03 exhibited superior performance under cold stress. The MsPDF04, MsPDF08, and MsPDF09 genes were able to respond positively to drought and salt stresses. Finally, the monomeric, dimeric, and tetrameric structures of the proteins encoded by the MsPDF genes were predicted using AlphaFold 2 software. This study lays the foundation for the identification and evolutionary relationship analysis of the MsPDF gene family, and provides a new reference for subsequent research on abiotic stress resistance.
Collapse
Affiliation(s)
- Meiyan Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China or (M.G.); (S.L.)
| | - Xiuhua Chen
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (X.C.); (J.T.)
| | - Shuaixian Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China or (M.G.); (S.L.)
| | - Jiang Tian
- International Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; (X.C.); (J.T.)
| | - Wangqi Huang
- National Engineering Research Center for Ornamental Horticulture, Yunnan Flower Breeding Key Laboratory, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China or (M.G.); (S.L.)
| |
Collapse
|
5
|
Tran STH, Katsuhara M, Mito Y, Onishi A, Higa A, Ono S, Paul NC, Horie R, Harada Y, Horie T. OsPIP2;4 aquaporin water channel primarily expressed in roots of rice mediates both water and nonselective Na + and K + conductance. Sci Rep 2025; 15:12857. [PMID: 40229437 PMCID: PMC11997034 DOI: 10.1038/s41598-025-96259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/27/2025] [Indexed: 04/16/2025] Open
Abstract
Aquaporin (AQP)-dependent water transport across membranes is indispensable in plants. Recent evidence shows that several AQPs, including plasma membrane intrinsic proteins (PIPs), facilitate the electrogenic transport of ions as well as water transport and are referred to as ion-conducting aquaporins (icAQPs). The present study attempted to identify icAQPs that exhibit cation transport activity among PIPs from rice. Electrophysiological experiments on 11 OsPIPs using Xenopus laevis oocytes revealed that OsPIP2;4 mediated the electrogenic transport of alkali monovalent cations with the selectivity sequence of Na+ ≈ K+ > Rb+ > Cs+ > Li+, suggesting non-selective cation conductance for Na+ and K+. Transcripts of OsPIP2;4 were abundant in the elongation and mature zones of roots with similar expression levels between the root stelar and remaining outer parts in the cultivar Nipponbare. Immunostaining using sections of the crown roots of Nipponbare plants revealed the expression of OsPIP2;4 in the exodermis and sclerenchyma of the surface region and in the endodermis and pericycle of the stelar region. The present results provide novel insights into OsPIP2;4-dependent non-selective Na+ and K+ transport and its physiological roles in rice.
Collapse
Affiliation(s)
- Sen Thi Huong Tran
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- Department of High-Tech agriculture, Faculty of Agronomy, University of Agriculture and Forestry, Hue University, Hue, 530000, Vietnam
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Yunosuke Mito
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3- 15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Aya Onishi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Ayaka Higa
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3- 15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Shuntaro Ono
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Newton Chandra Paul
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Rie Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3- 15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Yoshihiko Harada
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3- 15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3- 15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
6
|
Liu T, Zhang Y, Xie Y, Yang R, Yuan M, Li Y, Xu H, Zhu X, Song T, Cheng X. Impact of the potassium transporter TaHAK18 on wheat growth and potassium uptake under stressful K + conditions. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154459. [PMID: 40020273 DOI: 10.1016/j.jplph.2025.154459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025]
Abstract
Potassium (K), an indispensable nutrient for plant growth and development, plays a crucial role in plant stress resistance. Within the K+ regulatory network in plants, the HAK/KUP/KT gene family comprises a dominant group of K+ transport proteins responsible for K+ uptake and transport. This study functionally characterized the wheat gene TaHAK18, which encodes a putative K+ transporter. Plasma membrane-localized TaHAK18 was significantly upregulated under low-K+ conditions and showed tissue-specific expression, being most abundant in leaves. A functional analysis in yeast demonstrated that TaHAK18 complements K+-uptake deficiencies, confirming its role in K+ transport. Arabidopsis plants overexpressing TaHAK18 experienced enhanced growth under both low- and normal-K+ conditions, with greater fresh weight, lateral root formation, and primary root length. Barley stripe mosaic virus-mediated gene silencing in wheat revealed that TaHAK18 is instrumental for K+ accumulation and plant growth under low-K+ stress. TaHAK18 has the capacity to enhance the growth and the accumulation of K+ in transgenic rice plants. These results indicated that TaHAK18 is a key regulator of K+ uptake and homeostasis in wheat, with potential implications for improving plant tolerance to low-K+ stress.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yumin Xie
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruipeng Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengying Yuan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanke Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haixia Xu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450002, China
| | - Xinli Zhu
- Shangqiu Rural Industrial Development Center, Shangqiu, 476000, China
| | - Tengzhao Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China; The Shennong Laboratory, Zhengzhou, 450002, China.
| | - Xiyong Cheng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Muhammad N, Hameed A, Shamsi IH, Attia KA, Mohammad AA, Kimiko I, Shah TA, Zhang G. Biochemical mechanism regulating antagonistic interactions between aluminum and manganese combine applications in two barley genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109586. [PMID: 39946908 DOI: 10.1016/j.plaphy.2025.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 03/11/2025]
Abstract
About 30-40% of the world land is acidic in nature, aluminum (Al) and manganese (Mn) toxicity co-existed in acidic soils that pose a potential threat in crop production. Antagonistic relationship between Al and Mn was previously described in our study. In the present work, we determined the biochemical mechanism which regulate antagonistic interaction between Al or Mnco-application. The experiment consisted of 9 treatments including co-application of Al and Mn. Overall, we conclude that increasing exogenous Al or Mn concentration negatively affected phenol and flavonoid contents, increased lignin and callose content, disturbed cell ultra-structure in barley genotypes, with sensitive genotype ZU9 being more affected than XZ16. Mn did not influence organic acids secretion and down regulated Mn tolerance genes and organic acid exudation linked genes while Al addition induced the expression of OAs linked genes, OAs secretion were activated and upregulated Mn tolerance genes. Furthermore, co treatments of Al and Mn restored the abnormalities induced by sole Al or Mn application.
Collapse
Affiliation(s)
- Noor Muhammad
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China; Central Cotton Research Institute, Multan Punjab, Pakistan.
| | - Asifa Hameed
- Mango Research Institute, Multan Punjab, Pakistan.
| | - Imran Haider Shamsi
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| | - Kotb A Attia
- Department of Biochemistry College of Science King Saud University, P.O. Box 245, Riyadh, 14451, Saudi Arabia.
| | - Arif Ahmad Mohammad
- Department of Biochemistry College of Science King Saud University, P.O. Box 245, Riyadh, 14451, Saudi Arabia.
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, IKARASHI-2 NISKO, Niigata, 950-2181, Japan.
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zimbo, China.
| | - Gouping Zhang
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Richard PI, Baltosser WH, Williams PH, He Q. Phylogenetic analysis of microbial CP-lyase cluster genes for bioremediation of phosphonate. AMB Express 2025; 15:42. [PMID: 40064825 PMCID: PMC11893972 DOI: 10.1186/s13568-025-01856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The ever-increasing use of phosphonates and their derivatives has resulted in the discharge of large quantities of these materials into the ecosystem, causing pollution and harmful shifts in microbiome composition. We conducted an extensive phylogenetic analysis to address this mounting problem and to help determine suitable microbes for bioremediation in specific environments. The 84 microorganisms included in our study span the gamut of species and occupied habitats. They degrade phosphonates by expressing an enzyme complex; CP-Lyase transcribed from 14 cistrons. Of the organisms studied, 12, 39, and 25 are singularly suitable for mostly freshwater, marine, or terrestrial habitats, respectively. Others adapted to multihabitats include Calothrix sp. PCC 7507 (both freshwater and marine habitats), Escherichia coli, Kaistia soli, Limoniibacter endophyticus, Marivita sp. and Virgibacillus dokdonensis (both marine and terrestrial habitats), Acidithiobacillus ferrooxidans (both freshwater and terrestrial habitats), with Paenibacillus contaminans suitable for freshwater, marine, and terrestrial habitats. All organisms were statistically rooted to glutathione peroxidase for phylogenetic perspective with tree topology dependent upon 50% or greater support. Clustered genes have been shown to have co-evolved based on striking nucleotide similarity and clade groupings within the tree topologies generated.
Collapse
Affiliation(s)
- Precious I Richard
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - William H Baltosser
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Philip H Williams
- MidSouth Bioinformatics Center, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Qingfang He
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA.
| |
Collapse
|
9
|
Amar SB, Brini F, Masmoudi K. Heterologous expression of the durum wheat TdHKT1;4-1 partially complements the mutant athkt1 in Arabidopsis thaliana under severe salt stress. PROTOPLASMA 2025; 262:397-413. [PMID: 39499307 DOI: 10.1007/s00709-024-02006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
High-affinity K+ (HKT) transporters which mediate Na+-specific transport or Na+-K+ co-transport play a key role in plant salt tolerance. In our previous functional study in Xenopus oocytes, we demonstrated that the durum wheat TdHKT1;4-1 acts as a Na+-selective transporter. Here, we investigated the function of TdHKT1;4-1 and its contribution in salt stress tolerance in the Arabidopsis athkt1 mutant background. Our results revealed that TdHKT1;4-1 partially complements the salt sensitivity phenotype of the athkt1 transgenic lines. Comparative physiological analyses and oxidative stress status under moderate salt stress (50 mM NaCl) showed that both transgenic lines SH3 and SH5 restored the salt stress tolerance comparable to the level observed in Wt plants. Whereas, under severe salt stress treatment (100 mM NaCl), the athkt1 transgenic lines exhibited an intermediate salt stress tolerance between Wt and athkt1 mutant. Moreover, TdHKT1;4-1 was highly expressed in leaves under moderate and severe salt stress, while in roots, it was largely expressed only under severe salt stress. In addition, antioxidant enzymes such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were significantly expressed in SH3 and SH5 lines compared to athkt1 and Wt under moderate stress. Therefore, TdHKT1;4-1 seems to differ from its Arabidopsis homologous counterpart, as it contributes to salt stress tolerance up to a specific threshold, above which the TdHKT1;4-1 expression may lead to higher root Na+ influx, hence increasing its toxicity during salt stress.
Collapse
Affiliation(s)
- Siwar Ben Amar
- Centre of Biotechnology of Sfax (CBS), Laboratory of Biotechnology and Plant Improvement, B.P "1177" 3018, Sfax, Tunisia
| | - Faiçal Brini
- Centre of Biotechnology of Sfax (CBS), Laboratory of Biotechnology and Plant Improvement, B.P "1177" 3018, Sfax, Tunisia.
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Brownlee C, Wheeler GL. Cellular calcium homeostasis and regulation of its dynamic perturbation. QUANTITATIVE PLANT BIOLOGY 2025; 6:e5. [PMID: 40070722 PMCID: PMC11894410 DOI: 10.1017/qpb.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
Calcium ions (Ca2+) play pivotal roles in a host of cellular signalling processes. The requirement to maintain resting cytosolic Ca2+ levels in the 100-200 nM range provides a baseline for dynamic excursions from resting levels that determine the nature of many physiological responses to external stimuli and developmental processes. This review provides an overview of the key components of the Ca2+ homeostatic machinery, including known channel-mediated Ca2+ entry pathways along with transporters that act to shape the cytosolic Ca2+ signature. The relative roles of the vacuole and endoplasmic reticulum as sources or sinks for cytosolic Ca2+ are considered, highlighting significant gaps in our understanding. The components contributing to mitochondrial, chloroplast and nuclear Ca2+ homeostasis and organellar Ca2+ signals are also considered. Taken together, a complex picture of the cellular Ca2+ homeostatic machinery emerges with some clear differences from mechanisms operating in many animal cells.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Glen L. Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
11
|
Ochoa Tufiño V, Almira Casellas M, van Duynhoven A, Flis P, Salt DE, Schat H, Aarts MGM. Arabidopsis thaliana Zn transporter genes ZIP3 and ZIP5 provide the main Zn uptake route and act redundantly to face Zn deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17251. [PMID: 39930616 PMCID: PMC11811486 DOI: 10.1111/tpj.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 02/14/2025]
Abstract
In response to Zn deficiency, plants are thought to adjust Zn homeostasis through the coordinated expression of Zn transporters. Zn transporters are identified in the ZIP, HMA and CDF families of cation transporters, although only few are characterized. We determined gene expression over time, root-specific location of expression and phenotypes of single and double loss-of-function mutants of several Arabidopsis thaliana transporters, known to be induced by Zn deficiency. Transcription of Zn transporter genes is induced in the first 6 h of exposure to Zn deficiency. ZIP1 is predominantly expressed in the endodermis and stele, ZIP3 and ZIP5 in the epidermis and cortex, IRT3 from epidermis to stele and HMA2 in xylem parenchyma. ZIP3 and ZIP5 act redundantly, with the double-mutant zip3zip5 showing high sensitivity to Zn deficiency with low biomass production, expression of other transporter genes, low Zn uptake and increased metal translocation. The root expression map and timing indicate that Zn transporters act complementary in a concerted action to control Zn homeostasis. The lack of strong Zn-deficient phenotypes in single mutants suggests a high level of functional redundancy, best illustrated for ZIP3 and ZIP5.
Collapse
Affiliation(s)
- Valeria Ochoa Tufiño
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
- Present address:
Departmento de Ciencias de la VidaUniversidad de las Fuerzas Armadas – ESPESangolquíEcuador
| | - Maria Almira Casellas
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
- Present address:
Universitat Autònoma de Barcelona08193BellaterraSpain
| | - Aron van Duynhoven
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
| | - Paulina Flis
- Future Food Beacon of Excellence & School of BiosciencesUniversity of NottinghamLE12 5RDSutton BoningtonUK
| | - David E. Salt
- Future Food Beacon of Excellence & School of BiosciencesUniversity of NottinghamLE12 5RDSutton BoningtonUK
| | - Henk Schat
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University6700 AAWageningenThe Netherlands
| |
Collapse
|
12
|
Mei Q, Li M, Chen J, Yang J, Duan D, Yang J, Ma F, Mao K. Genome-wide analyses of Ariadne family genes reveal their involvement in abiotic stress responses in apple. Gene 2025; 935:149076. [PMID: 39505090 DOI: 10.1016/j.gene.2024.149076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
E3 ligases are essential for ubiquitination and play a role in regulating various aspects of eukaryotic life. Ariadne (ARI) proteins, a subfamily of RBR (RING-between-RING) proteins, have been recognized as a new class of RING-finger E3 ligases. Recent research has shed light on their potential involvement in plants' responses to abiotic stress. However, comprehensive studies on ARI genes in apple (Malus domestica) are still lacking. This study identified ten MdARI genes in the apple genome, and examined intraspecific and interspecific collinearity to explore the evolutionary relationships of ARI family members. Phylogenetic analyses classified MdARIs into two subfamilies (A and B), and by integrating gene structure, conserved motifs, and sequence comparison results, subfamily B was further divided into two subgroups (I and II). Tissue expression analyses revealed varied expression patterns of MdARI genes in different tissues, and subcellular localization showed that MdARI1-1, MdARI1-2, and MdARI9-1 were located in the nucleus, while the other seven MdARIs were distributed throughout the cell. Analyses of promoter cis-elements and expression patterns under cold, salt, and drought treatments indicated the involvement of MdARIs in abiotic stress responses. Several proteins crucial to the plant stress response were predicted to be potential MdARIs-interacting proteins based on the protein interaction network. Additionally, the interaction between UBC11 (E2) and MdARI7-2 was confirmed by a yeast two-hybrid (Y2H) experiment, suggesting that MdARI7-2 may function as an E3. These findings will greatly benefit future research on the role and mechanisms of ARI proteins in apple stress response.
Collapse
Affiliation(s)
- Quanlin Mei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ming Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaxin Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dingyue Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Islam MSU, Akter N, Zohra FT, Rashid SB, Hasan N, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of cation-proton antiporter (CPA) gene family in rice (Oryza sativa L.) and their expression profiles in response to phytohormones. PLoS One 2025; 20:e0317008. [PMID: 39854520 PMCID: PMC11761165 DOI: 10.1371/journal.pone.0317008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated. In this study, we use rice public data and information techniques, 29 OsCPA candidate genes were identified in the rice japonica variety (referred to as OsCPA) and phylogenetically categorized into K+ efflux antiporter (KEA), Na+/H+ exchanger (NHX), and cation/H+ exchanger (CHX) groups containing 4, 7, and 18 OsCPA genes. The OsCPA proteins were predominantly localized in the plasma membrane and unevenly scattered on 11 chromosomes. The structural analysis of OsCPA proteins revealed higher similarities within groups. Prediction of selection pressure, collinearity, and synteny analysis indicated that all duplicated OsCPA genes had undergone strong purifying selection throughout their evolution. The cis-acting regulatory elements (CAREs) analysis identified 56 CARE motifs responsive to light, tissue, hormones, and stresses. Additionally, 124 miRNA families were identified in the gene promoters, and OsNHX7 was targeted by the highest number of miRNAs (43 miRNAs). Gene Ontology analysis demonstrated the numerous functions of OsCPA genes associated with biological processes (57.14%), cellular components (7.94%), and molecular functions (34.92%). A total of 12 transcription factor families (TFFs), including 40 TFs were identified in gene promoters, with the highest numbers of TFFs (5TFFs) linked to OsCHX13, and OsCHX15. Protein-protein interaction analysis suggested maximum functional similarities between rice and Arabidopsis CPA proteins. Based on expression analysis, OsKEA1, OsKEA2, OsNHX3, and OsNHX7 were frequently expressed in rice tissues. Furthermore, OsNHX3, OsNHX4, OsNHX6, OsNHX7, OsCHX8, and OsCHX17 in abscisic acid, OsKEA1, OsNHX3, and OsCHX8 in gibberellic acid, OsKEA1, OsKEA3, OsNHX1, and OsNHX3 in indole-3-acetic acid treatment were demonstrated as potential candidates in response to hormone. These findings highlight potential candidates for further characterization of OsCPA genes, which may aid in the development of rice varieties.
Collapse
Affiliation(s)
- Md. Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nasrin Akter
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Naimul Hasan
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
14
|
Anil Kumar S, Kaniganti S, Hima Kumari P, Sudhakar Reddy P, Suravajhala P, P S, Kishor PBK. Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnol Genet Eng Rev 2024; 40:3527-3570. [PMID: 36469501 DOI: 10.1080/02648725.2022.2143317] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022]
Abstract
Potassium (K+) is indispensable for the regulation of a plethora of functions like plant metabolism, growth, development, and abiotic stress responses. K+ is associated with protein synthesis and entangled in the activation of scores of enzymes, stomatal regulation, and photosynthesis. It has multiple transporters and channels that assist in the uptake, efflux, transport within the cell as well as from soil to different tissues, and the grain filling sites. While it is implicated in ion homeostasis during salt stress, it acts as a modulator of stomatal movements during water deficit conditions. K+ is reported to abate the effects of chilling and photooxidative stresses. K+ has been found to ameliorate effectively the co-occurrence of drought and high-temperature stresses. Nutrient deficiency of K+ makes leaves necrotic, leads to diminished photosynthesis, and decreased assimilate utilization highlighting the role it plays in photosynthesis. Notably, K+ is associated with the detoxification of reactive oxygen species (ROS) when plants are exposed to diverse abiotic stress conditions. It is irrefutable now that K+ reduces the activity of NADPH oxidases and at the same time maintains electron transport activity, which helps in mitigating the oxidative stress. K+ as a macronutrient in plant growth, the role of K+ during abiotic stress and the protein phosphatases involved in K+ transport have been reviewed. This review presents a holistic view of the biological functions of K+, its uptake, translocation, signaling, and the critical roles it plays under abiotic stress conditions, plant growth, and development that are being unraveled in recent times.
Collapse
Affiliation(s)
- S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| | - Sirisha Kaniganti
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - P Sudhakar Reddy
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - Suprasanna P
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
- Amity Institute of Biotechnology, Amity University Mumbai, Bhatan, Mumbai, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| |
Collapse
|
15
|
Ployet R, Feng K, Zhang J, Baxter I, Glasgow DC, Andrews HB, Rodriguez M, Chen JG, Tuskan GA, Tschaplinski TJ, Weston DJ, Martin MZ, Muchero W. Elemental profiling and genome-wide association studies reveal genomic variants modulating ionomic composition in Populus trichocarpa leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1450646. [PMID: 39670268 PMCID: PMC11634625 DOI: 10.3389/fpls.2024.1450646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
The ionome represents elemental composition in plant tissues and can be an indicator of nutrient status as well as overall plant performance. Thus, identifying genetic determinants governing elemental uptake and storage is an important goal for breeding and engineering biomass feedstocks with improved performance. In this study, we coupled high-throughput ionome characterization of leaf tissues with high-resolution genome-wide association studies (GWAS) to uncover genetic loci that modulate ionomic composition in leaves of poplar (Populus trichocarpa). Significant agreement was observed across the three ionomic profiling platforms tested: inductively coupled plasma-mass spectrometry (ICP-MS), neutron activation analysis (NAA) and laser-induced breakdown spectroscopy (LIBS). Relative quantification of 20 elements using ICP-MS across a population of 584 genotypes, revealed larger variation in micro-nutrients and trace elements content than for macro-nutrients across genotypes. The GWAS performed using a set of high-density (>8.2 million) single nucleotide polymorphisms, identified over 600 loci significantly associated with variations in these mineral elements, pointing to numerous uncharacterized candidate genes. A significant enrichment for genes related to ion homeostasis and transport was observed, including several members of the cation-proton antiporters (CPA) family and MATE efflux transporters, previously reported to be critical for plant growth and fitness in other species. Our results also included a polymorphic copy of the high-affinity molybdenum transporter MOT1 found directly associated to molybdenum content. For the first time in a perennial plant, our results provide evidence of genetic control of mineral content in a model tree species.
Collapse
Affiliation(s)
- Raphael Ployet
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Kai Feng
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - David C. Glasgow
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Hunter B. Andrews
- Radioisotopes Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Madhavi Z. Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
16
|
Wang Y, Chi Q, Jia W, Zheng T, Li B, Li L, Li T, Gao R, Liu W, Ye S, Xu R, Zhang H. Genome Analysis of BnCNGC Gene Family and Function Exploration of BnCNGC57 in Brassica napus L. Int J Mol Sci 2024; 25:11359. [PMID: 39518912 PMCID: PMC11545589 DOI: 10.3390/ijms252111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The cyclic nucleotide-gated ion channel (CNGC), as a non-selective cation channel, plays a pivotal role in plant growth and stress response. A systematic analysis and identification of the BnCNGC gene family in Brassica napus is crucial for uncovering its biological functions and potential applications in plant science. In this study, we identified 61 BnCNGC members in the B. napus genome, which are phylogenetically similar to Arabidopsis and can be classified into Groups I-IV (with Group IV further subdivided into IV-a and IV-b). Collinearity analysis with other species provided insights into the evolution of BnCNGC. By homology modeling, we predicted the three-dimensional structure of BnCNGC proteins and analyzed cis-acting elements in their promoters, revealing diverse roles in hormone regulation, growth, and stress response. Notably, overexpression of BnCNGC57 (BnaC09g42460D) significantly increased seed size, possibly through regulating cell proliferation via the MAPK signaling pathway. Our findings contribute to a better understanding of the BnCNGC gene family and highlight the potential regulatory role of BnCNGC57 in the seed development of B. napus.
Collapse
Affiliation(s)
- Yue Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Qing Chi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Jia
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Tiantian Zheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Binghua Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Lin Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Ting Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Rui Gao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenzhe Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
- Henan Key Laboratory of Ion-Beam Green Agriculture Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shenglin Ye
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Ruqiang Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| | - Hanfeng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (Y.W.); (Q.C.); (W.J.); (T.Z.); (B.L.); (L.L.); (T.L.); (R.G.); (W.L.); (S.Y.); (R.X.)
| |
Collapse
|
17
|
Ahmad Z, Tian D, Li Y, Aminu IM, Tabusam J, Zhang Y, Zhu S. Characterization, Evolution, Expression and Functional Divergence of the DMP Gene Family in Plants. Int J Mol Sci 2024; 25:10435. [PMID: 39408767 PMCID: PMC11477165 DOI: 10.3390/ijms251910435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The DMP (DOMAIN OF UNKNOWN FUNCTION 679 membrane protein) domain, containing a family of membrane proteins specific to green plants, is involved in numerous biological functions including physiological processes, reproductive development and senescence in Arabidopsis, but their evolutionary relationship and biological function in most crops remains unknown. In this study, we scrutinized phylogenetic relationships, gene structure, conserved domains and motifs, promoter regions, gene loss/duplication events and expression patterns. Overall, 240 DMPs were identified and analyzed in 24 plant species selected from lower plants to angiosperms. Comprehensive evolutionary analysis revealed that these DMPs underwent purifying selection and could be divided into five groups (I-V). DMP gene structure showed that it may have undergone an intron loss event during evolution. The five DMP groups had the same domains, which were distinct from each other in terms of the number of DMPs; group III was the largest, closely followed by group V. The DMP promotor region with various cis-regulatory elements was predicted to have a potential role in development, hormone induction and abiotic stresses. Based on transcriptomic data, expression profiling revealed that DMPs were primarily expressed in reproductive organs and were moderately expressed in other tissues. Evolutionary analysis suggested that gene loss events occurred more frequently than gene duplication events among all groups. Overall, this genome-wide study elucidates the potential function of the DMP gene family in selected plant species, but further research is needed in many crops to validate their biological roles.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.A.); (D.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dingyan Tian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.A.); (D.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yan Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.A.); (D.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Isah Mansur Aminu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.A.); (D.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Javaria Tabusam
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.A.); (D.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yongshan Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.A.); (D.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Shouhong Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.A.); (D.T.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
18
|
Li ST, Kong WY, Chen JB, Hao DL, Guo HL. Genome-Wide Identification and Expression Analysis of the Cyclic Nucleotide-Gated Channel Gene Family in Zoysia japonica under Salt Stress. Int J Mol Sci 2024; 25:10114. [PMID: 39337599 PMCID: PMC11432434 DOI: 10.3390/ijms251810114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Salt stress severely inhibits plant growth. Understanding the mechanism of plant salt tolerance is highly important to improving plant salt tolerance. Previous studies have shown that nonselective cyclic nucleotide-gated ion channels (CNGCs) play an important role in plant salt tolerance. However, current research on CNGCs mainly focuses on CNGCs in glycophytic plants, and research on CNGCs in halophytes that exhibit special salt tolerance strategies is still scarce. This study used the halophilic plant Zoysia japonica, an excellent warm-season turfgrass, as the experimental material. Through bioinformatics analysis, 18 members of the CNGC family were identified in Zoysia japonica; they were designated ZjCNGC1 through ZjCNGC18 according to their scaffold-level chromosomal positions. ZjCNGCs are divided into four groups (I-IV), with the same groups having differentiated protein-conserved domains and gene structures. ZjCNGCs are unevenly distributed on 16 scaffold-level chromosomes. Compared with other species, the ZjCNGCs in Group III exhibit obvious gene expansion, mainly due to duplication of gene segments. The collinearity between ZjCNGCs, OsCNGCs, and SjCNGCs suggests that CNGCs are evolutionarily conserved among gramineous plants. However, the Group III ZjCNGCs are only partially collinear with OsCNGCs and SjCNGCs, implying that the expansion of Group III ZjCNGC genes may have been an independent event occurring in Zoysia japonica. Protein interaction prediction revealed that ZjCNGCs, calcium-dependent protein kinase, H+-ATPase, outwardly rectifying potassium channel protein, and polyubiquitin 3 interact with ZjCNGCs. Multiple stress response regulatory elements, including those involved in salt stress, are present on the ZjCNGC promoter. The qPCR results revealed differences in the expression patterns of ZjCNGCs in different parts of the plant. Under salt stress conditions, the expression of ZjCNGCs was significantly upregulated in roots and leaves, with ZjCNGC8 and ZjCNGC13 showing the greatest increase in expression in the roots. These results collectively suggest that ZjCNGCs play an important role in salt tolerance and that their expansion into Group III may be a special mechanism underlying the salt tolerance of Zoysia japonica.
Collapse
Affiliation(s)
- Shu-Tong Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Wei-Yi Kong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jing-Bo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
19
|
Cheng R, Zhao Z, Tang Y, Gu Y, Chen G, Sun Y, Wang X. Genome-wide survey of KT/HAK/KUP genes in the genus Citrullus and analysis of their involvement in K +-deficiency and drought stress responses in between C. lanatus and C. amarus. BMC Genomics 2024; 25:836. [PMID: 39237905 PMCID: PMC11378637 DOI: 10.1186/s12864-024-10712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The KT/HAK/KUP is the largest K+ transporter family in plants, playing crucial roles in K+ absorption, transport, and defense against environmental stress. Sweet watermelon is an economically significant horticultural crop belonging to the genus Citrullus, with a high demand for K+ during its growth process. However, a comprehensive analysis of the KT/HAK/KUP gene family in watermelon has not been reported. RESULTS 14 KT/HAK/KUP genes were identified in the genomes of each of seven Citrullus species. These KT/HAK/KUPs in watermelon were unevenly distributed across seven chromosomes. Segmental duplication is the primary driving force behind the expansion of the KT/HAK/KUP family, subjected to purifying selection during domestication (Ka/Ks < 1), and all KT/HAK/KUPs exhibit conserved motifs and could be phylogenetically classified into four groups. The promoters of KT/HAK/KUPs contain numerous cis-regulatory elements related to plant growth and development, phytohormone response, and stress response. Under K+ deficiency, the growth of watermelon seedlings was significantly inhibited, with cultivated watermelon experiencing greater impacts (canopy width, redox enzyme activity) compared to the wild type. All KT/HAK/KUPs in C. lanatus and C. amarus exhibit specific expression responses to K+-deficiency and drought stress by qRT-PCR. Notably, ClG42_07g0120700/CaPI482276_07g014010 were predominantly expressed in roots and were further induced by K+-deficiency and drought stress. Additionally, the K+ transport capacity of ClG42_07g0120700 under low K+ stress was confirmed by yeast functional complementation assay. CONCLUSIONS KT/HAK/KUP genes in watermelon were systematically identified and analyzed at the pangenome level and provide a foundation for understanding the classification and functions of the KT/HAK/KUPs in watermelon plants.
Collapse
Affiliation(s)
- Rui Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China
| | - Zhengxiang Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China
| | - Yan Tang
- Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Yan Gu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China
| | - Guodong Chen
- Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Yudong Sun
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China.
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China.
| |
Collapse
|
20
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
21
|
Zhao C, Cui X, Yu X, Ning X, Yu H, Li J, Yang B, Pan Y, Jiang L. Molecular evolution and functional diversification of metal tolerance protein families in cereals plants and function of maize MTP protein. Int J Biol Macromol 2024; 274:133071. [PMID: 38871096 DOI: 10.1016/j.ijbiomac.2024.133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Plants employ metal tolerance proteins (MTPs) to confer tolerance by sequestering excess ions into vacuoles. MTPs belong to the cation diffusion facilitator (CDF) family, which facilitates the transport of divalent transition metal cations. In this study, we conducted a comprehensive analysis of the MTP gene families across 21 plant species, including maize (Zea mays). A total of 247 MTP genes were identified within these plant genomes and categorized into distinct subgroups, namely Zn-CDF, Mn-CDF, and Fe/Zn-CDF, based on phylogenetic analyses. This investigation encompassed the characterization of genomic distribution, gene structures, cis-regulatory elements, collinearity relationships, and gene ontology functions associated with MTPs. Transcriptomic analyses unveiled stress-specific expression patterns of MTP genes under various abiotic stresses. Moreover, quantitative RT-PCR assays were employed to assess maize MTP gene responses to diverse heavy metal stress conditions. Functional validation of metal tolerance roles was achieved through heterologous expression in yeast. This integrated evolutionary scrutiny of MTP families in cereals furnishes a valuable framework for the elucidation of MTP functions in subsequent studies. Notably, the prioritized MTP gene ZmMTP6 emerged as a positive regulator of plant Cd tolerance, thereby offering a pivotal genetic asset for the development of Cd-tolerant crops, particularly maize cultivars.
Collapse
Affiliation(s)
- Chao Zhao
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China; Beidahuang Kenfeng Seed Co., Ltd, Harbin 150000, Heilongjiang Province, PR China.
| | - Xueyu Cui
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, Guangxi Zhuang Autonomous Region Province, PR China
| | - Xiaoming Yu
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| | - Xilin Ning
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China
| | - Haiyan Yu
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China
| | - Jianming Li
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China
| | - Baiming Yang
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| | - Yexing Pan
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| | - Long Jiang
- College of Agronomy, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, PR China.
| |
Collapse
|
22
|
Liu J, Bao X, Qiu G, Li H, Wang Y, Chen X, Fu Q, Guo B. Genome-Wide Identification and Expression Analysis of SlNRAMP Genes in Tomato under Nutrient Deficiency and Cadmium Stress during Arbuscular Mycorrhizal Symbiosis. Int J Mol Sci 2024; 25:8269. [PMID: 39125839 PMCID: PMC11311520 DOI: 10.3390/ijms25158269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are well known for enhancing phosphorus uptake in plants; however, their regulating roles in cation transporting gene family, such as natural resistance-associated macrophage protein (NRAMP), are still limited. Here, we performed bioinformatics analysis and quantitative expression assays of tomato SlNRAMP 1 to 5 genes under nutrient deficiency and cadmium (Cd) stress in response to AM symbiosis. These five SlNRAMP members are mainly located in the plasma or vacuolar membrane and can be divided into two subfamilies. Cis-element analysis revealed several motifs involved in phytohormonal and abiotic regulation in their promoters. SlNRAMP2 was downregulated by iron deficiency, while SlNRAMP1, SlNRAMP3, SlNRAMP4, and SlNRAMP5 responded positively to copper-, zinc-, and manganese-deficient conditions. AM colonization reduced Cd accumulation and expression of SlNRAMP3 but enhanced SlNRAMP1, SlNRAMP2, and SlNRMAP4 in plants under Cd stress. These findings provide valuable genetic information for improving tomato resilience to nutrient deficiency and heavy metal stress by developing AM symbiosis.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaoqi Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Gaoyang Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Hua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Yuan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Xiaodong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Qinglin Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| | - Bin Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.L.); (X.B.); (G.Q.); (H.L.); (Y.W.); (X.C.); (Q.F.)
| |
Collapse
|
23
|
Yoshida K. Chemical and biological study of flavonoid-related plant pigment: current findings and beyond. Biosci Biotechnol Biochem 2024; 88:705-718. [PMID: 38632052 DOI: 10.1093/bbb/zbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Flavonoids are polyphenolic plant constituents. Anthocyanins are flavonoid pigments found in higher plants that show a wide variety of colors ranging from red through purple to blue. The blue color of the flowers is mostly attributed to anthocyanins. However, only a few types of anthocyanidin, chromophore of anthocyanin, exist in nature, and the extracted pigments are unstable with the color fading away. Therefore, the wide range and stable nature of colors in flowers have remained a mystery for more than a century. The mechanism underlying anthocyanin-induced flower coloration was studied using an interdisciplinary method involving chemistry and biology. Furthermore, the chemical studies on flavonoid pigments in various edible plants, synthetic and biosynthetic studies on anthocyanins were conducted. The results of these studies have been outlined in this review.
Collapse
Affiliation(s)
- Kumi Yoshida
- Emeritus professor, Nagoya University, Chikusa, Nagoya, Japan
- Faculty of Food and Health Sciences, Aichi Shukutoku University, Katahira, Nagakute, Japan
- Faculty of Engineering, Aichi Institute of Technology, Yachigusa, Yakusa, Toyota, Japan
| |
Collapse
|
24
|
Liu S, An Z, Li Y, Yang R, Lai Z. Genome-Wide Identification of the Cation/Proton Antiporter (CPA) Gene Family and Functional Analysis of AtrNHX8 under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1701. [PMID: 38931134 PMCID: PMC11207833 DOI: 10.3390/plants13121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Amaranthus tricolor is an important vegetable, and its quality is affected by salt stress. Cation/proton antiporters (CPA) contribute to plant development and tolerance to salt stress. In this study, 35 CPA genes were identified from a genome database for A. tricolor, including 9 NHX, 5 KEA, and 21 CPA2 genes. Furthermore, in A. tricolor, the expression levels of most AtrNHX genes were higher at a low salinity level (50 or 100 mM NaCl) than in the control or 200 mM NaCl treatment. Levels of most AtrNHX genes were elevated in the stem. Moreover, AtrNHX8 was homologous to AtNHX4, which is involved in the regulation of sodium homeostasis and salt stress response. After AtrNHX8 overexpression in Arabidopsis thaliana, seed germination was better, and the flowering time was earlier than that of wild-type plants. Additionally, the overexpression of AtrNHX8 in A. thaliana improved salt tolerance. These results reveal the roles of AtrNHX genes under salt stress and provide valuable information on this gene family in amaranth.
Collapse
Affiliation(s)
- Shengcai Liu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixian An
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Yixuan Li
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Rongzhi Yang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.A.); (Y.L.)
| |
Collapse
|
25
|
Zeng X, Yang S, Li F, Yao Y, Wu Z, Xue Y, Liu Y. Genome-Wide Identification of OsZIPs in Rice and Gene Expression Analysis under Manganese and Selenium Stress. Genes (Basel) 2024; 15:696. [PMID: 38927632 PMCID: PMC11202597 DOI: 10.3390/genes15060696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Zinc (Zn)- and iron (Fe)-regulating transport-like proteins (ZIPs) are a class of proteins crucial for metal uptake and transport in plants, particularly for Zn and Fe absorption and distribution. These proteins ensure the balance of trace elements essential for plant growth, development, and metabolic activities. However, the role of the rice (Oryza sativa) OsZIP gene family in manganese (Mn) and selenium (Se) transport remains underexplored. This research conducted an all-sided analysis of the rice OsZIPs and identified 16 OsZIP sequences. Phylogenetic analysis categorized the OsZIPs predominantly within the three subfamilies. The expression levels of OsZIPs in rice root and leaf subjected to Mn and Se toxicity stress were examined through quantitative real-time PCR (qRT-PCR). The findings revealed significant differential expression of many OsZIPs under these conditions, indicating a potential regulating effect in the response of rice to Mn and Se toxicity. This work lays a foundation for further functional studies of OsZIPs, enhancing our understanding of the response mechanisms of rice to Mn and Se toxicity and their roles in growth, development, and environmental adaptation.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shaoxia Yang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Feng Li
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yushuang Yao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhengwei Wu
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
26
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
27
|
Zhao Y, Xie Q, Yang Q, Cui J, Tan W, Zhang D, Xiang J, Deng L, Guo Y, Li M, Liu L, Yan M. Genome-wide identification and evolutionary analysis of the NRAMP gene family in the AC genomes of Brassica species. BMC PLANT BIOLOGY 2024; 24:311. [PMID: 38649805 PMCID: PMC11036763 DOI: 10.1186/s12870-024-04981-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Brassica napus, a hybrid resulting from the crossing of Brassica rapa and Brassica oleracea, is one of the most important oil crops. Despite its significance, B. napus productivity faces substantial challenges due to heavy metal stress, especially in response to cadmium (Cd), which poses a significant threat among heavy metals. Natural resistance-associated macrophage proteins (NRAMPs) play pivotal roles in Cd uptake and transport within plants. However, our understanding of the role of BnNRAMPs in B. napus is limited. Thus, this study aimed to conduct genome-wide identification and bioinformatics analysis of three Brassica species: B. napus, B. rapa, and B. oleracea. RESULTS A total of 37 NRAMPs were identified across the three Brassica species and classified into two distinct subfamilies based on evolutionary relationships. Conservative motif analysis revealed that motif 6 and motif 8 might significantly contribute to the differentiation between subfamily I and subfamily II within Brassica species. Evolutionary analyses and chromosome mapping revealed a reduction in the NRAMP gene family during B. napus evolutionary history, resulting in the loss of an orthologous gene derived from BoNRAMP3.2. Cis-acting element analysis suggested potential regulation of the NRAMP gene family by specific plant hormones, such as abscisic acid (ABA) and methyl jasmonate (MeJA). However, gene expression pattern analyses under hormonal or stress treatments indicated limited responsiveness of the NRAMP gene family to these treatments, warranting further experimental validation. Under Cd stress in B. napus, expression pattern analysis of the NRAMP gene family revealed a decrease in the expression levels of most BnNRAMP genes with increasing Cd concentrations. Notably, BnNRAMP5.1/5.2 exhibited a unique response pattern, being stimulated at low Cd concentrations and inhibited at high Cd concentrations, suggesting potential response mechanisms distinct from those of other NRAMP genes. CONCLUSIONS In summary, this study indicates complex molecular dynamics within the NRAMP gene family under Cd stress, suggesting potential applications in enhancing plant resilience, particularly against Cd. The findings also offer valuable insights for further understanding the functionality and regulatory mechanisms of the NRAMP gene family.
Collapse
Affiliation(s)
- Yuquan Zhao
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Qijun Xie
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Qian Yang
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jiamin Cui
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Wenqing Tan
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Jianhua Xiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
| | - Lichao Deng
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yiming Guo
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Mei Li
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Lili Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China.
| | - Mingli Yan
- Yuelushan Laboratory, Hongqi Road, Changsha, 410125, China.
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
28
|
Guo H, Tan J, Jiao Y, Huang B, Ma R, Ramakrishnan M, Qi G, Zhang Z. Genome-wide identification and expression analysis of the HAK/KUP/KT gene family in Moso bamboo. FRONTIERS IN PLANT SCIENCE 2024; 15:1331710. [PMID: 38595761 PMCID: PMC11002169 DOI: 10.3389/fpls.2024.1331710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
The K+ uptake permease/high-affinity K+/K+ transporter (KUP/HAK/KT) family is the most prominent group of potassium (K+) transporters, playing a key role in K+ uptake, transport, plant growth and development, and stress tolerance. However, the presence and functions of the KUP/HAK/KT family in Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau), the fastest-growing plant, have not been studied. In this study, we identified 41 KUP/HAK/KT genes (PeHAKs) distributed across 18 chromosomal scaffolds of the Moso bamboo genome. PeHAK is a typical membrane protein with a conserved structural domain and motifs. Phylogenetic tree analysis classified PeHAKs into four distinct clusters, while collinearity analysis revealed gene duplications resulting from purifying selection, including both tandem and segmental duplications. Enrichment analysis of promoter cis-acting elements suggested their plausible role in abiotic stress response and hormone induction. Transcriptomic data and STEM analyses indicated that PeHAKs were involved in tissue and organ development, rapid growth, and responded to different abiotic stress conditions. Subcellular localization analysis demonstrated that PeHAKs are predominantly expressed at the cell membrane. In-situ PCR experiments confirmed that PeHAK was mainly expressed in the lateral root primordia. Furthermore, the involvement of PeHAKs in potassium ion transport was confirmed by studying the potassium ion transport properties of a yeast mutant. Additionally, through homology modeling, we revealed the structural properties of HAK as a transmembrane protein associated with potassium ion transport. This research provides a solid basis for understanding the classification, characterization, and functional analysis of the PeHAK family in Moso bamboo.
Collapse
Affiliation(s)
- Hui Guo
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jiaqi Tan
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yang Jiao
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bing Huang
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Ruifang Ma
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Guoning Qi
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zhijun Zhang
- Bamboo Industry Institute, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Luo M, Chu J, Wang Y, Chang J, Zhou Y, Jiang X. Positive Regulatory Roles of Manihot esculenta HAK5 under K + Deficiency or High Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:849. [PMID: 38592853 PMCID: PMC10974855 DOI: 10.3390/plants13060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
HAK/KUP/KT family members have been identified as playing key roles in K+ uptake and salt tolerance in numerous higher plants. However, their functions in cassava (Manihot esculenta Cantz) remain unknown. In this study, a gene encoding for a high-affinity potassium transporter (MeHAK5) was isolated from cassava and its function was investigated. Subcellular localization analysis showed that MeHAK5 is a plasma membrane-localized transporter. RT-PCR and RT-qPCR indicated that MeHAK5 is predominantly expressed in cassava roots, where it is upregulated by low potassium or high salt; in particular, its highest expression levels separately increased by 2.2 and 2.9 times after 50 µM KCl and 150 mM NaCl treatments. When heterologously expressed in yeast, MeHAK5 mediated K+ uptake within the cells of the yeast strain CY162 and rescued the salt-sensitive phenotype of AXT3K yeast. MeHAK5 overexpression in transgenic Arabidopsis plants exhibited improved growth and increased shoot K+ content under low potassium conditions. Under salt stress, MeHAK5 transgenic Arabidopsis plants accumulated more K+ in the shoots and roots and had reduced Na+ content in the shoots. As a result, MeHAK5 transgenic Arabidopsis demonstrated a more salt-tolerant phenotype. These results suggest that MeHAK5 functions as a high-affinity K+ transporter under K+ starvation conditions, improving K+/Na+ homeostasis and thereby functioning as a positive regulator of salt stress tolerance in transgenic Arabidopsis. Therefore, MeHAK5 may be a suitable candidate gene for improving K+ utilization efficiency and salt tolerance.
Collapse
Affiliation(s)
- Minghua Luo
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
| | - Jing Chu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yu Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Jingyan Chang
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
| | - Xingyu Jiang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
30
|
Cao S, Wang M, Pan J, Luo D, Mubeen S, Wang C, Yue J, Wu X, Wu Q, Zhang H, Chen C, Rehman M, Xie S, Li R, Chen P. Physiological, transcriptome and gene functional analysis provide novel sights into cadmium accumulation and tolerance mechanisms in kenaf. J Environ Sci (China) 2024; 137:500-514. [PMID: 37980034 DOI: 10.1016/j.jes.2023.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 11/20/2023]
Abstract
Kenaf is considered to have great potential for remediation of heavy metals in ecosystems. However, studies on molecular mechanisms of root Cd accumulation and tolerance are still inadequate. In this study, two differently tolerant kenaf cultivars were selected as materials and the physiological and transcriptomic effects were evaluated under Cd stress. This study showed that 200 µmol/L CdCl2 treatment triggered the reactive oxygen species (ROS) explosion and membrane lipid peroxidation. Compared with the Cd-sensitive cultivar 'Z', the Cd-tolerant cultivar 'F' was able to resist oxidative stress in cells by producing higher antioxidant enzyme activities and increasing the contents of ascorbic acid (AsA) and glutathione (GSH). The root cell wall of 'F' exhibited higher polysaccharide contents under Cd treatment, providing more Cd-binding sites. There were 3,439 differentially expressed genes (DEGs) that were co-regulated by Cd treatment in two cultivars. Phenylpropanoid biosynthesis and plant hormone signal transduction pathways were significantly enriched by functional annotation analysis. DEGs associated with pectin, cellulose, and hemi-cellulose metabolism were involved in Cd chelation of root cell wall; V-ATPases, ABCC3 and Narmp3 could participated in vacuolar compartmentalization of Cd; PDR1 was responsible for Cd efflux; the organic acid transporters contributed to the absorption of Cd in soil. These genes might have played key roles in kenaf Cd tolerance and Cd accumulation. Moreover, HcZIP2 was identified to be involved in Cd uptake and transport in kenaf. Our findings provide a deeper understanding of the molecular pathways underlying Cd accumulation and detoxification mechanisms in kenaf.
Collapse
Affiliation(s)
- Shan Cao
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meng Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Caijin Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Yue
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qijing Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hui Zhang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Canni Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Sichen Xie
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
31
|
Lu J, Xing G, Zhang Y, Zhang H, Wu T, Tian Z, Qu L. Genome-wide identification, expression and function analysis of the MTP gene family in tulip ( Tulipa gesneriana). FRONTIERS IN PLANT SCIENCE 2024; 15:1346255. [PMID: 38439986 PMCID: PMC10910078 DOI: 10.3389/fpls.2024.1346255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
Currently, soil heavy metal contamination is a severe issue, particularly with Cd pollution. The metal tolerance protein (MTP) proteins, as plant divalent cation transporters, play a crucial role in the transport and tolerance of heavy metals in plants. This study conducted comprehensive identification and characterization of the MTP gene family in the tulip. A total of 11 TgMTP genes were identified and phylogenetically classified into three subfamilies. Conserved motif and gene structure analyses unveiled commonalities and variations among subfamily members. Expression profiling demonstrated several TgMTPs were markedly upregulated under Cd exposure, including the TgMTP7.1. Heterologous expression in yeast validated that TgMTP7.1 could ameliorate Cd sensitivity and enhance its tolerance. These results provide primary insights into the MTP gene family in tulip. Phylogenetic relationships and functional analyses establish a framework for elucidating the transporters and molecular mechanisms governing Cd accumulation and distribution in tulip. Key TgMTPs identified, exemplified by TgMTP7.1, may illuminate molecular breeding efforts aimed at developing Cd-tolerant cultivars for the remediation of soil Cd contamination.
Collapse
Affiliation(s)
- Jiaojiao Lu
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Floriculture, Shenyang, Liaoning, China
| | - Guimei Xing
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Floriculture, Shenyang, Liaoning, China
| | - Yanqiu Zhang
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Huihua Zhang
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Tianyu Wu
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Zengzhi Tian
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
| | - Lianwei Qu
- Institute of Floriculture, Liaoning Academy of Agriculture Sciences, Shenyang, Liaoning, China
- Liaoning Provincial Key Laboratory of Floriculture, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Rasheed A, Al-Huqail AA, Ali B, Alghanem SMS, Shah AA, Azeem F, Rizwan M, Al-Qthanin RN, Soudy FA. Molecular characterization of genes involved in tolerance of cadmium in Triticum aestivum (L.) under Cd stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132955. [PMID: 37976857 DOI: 10.1016/j.jhazmat.2023.132955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/21/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The NRAMPs (natural resistance-associated macrophage proteins) are major transporters for the absorption and transport of metals like Pb, Zn, Mn, Fe, and Cd in plants. While NRAMP gene family members have been extensively studied as metal transporters in model and other plants, little information has been reported on their role in Triticum aestivum, particularly in response to Cd stress. Current study reported 13 NRAMP candidates in the genome of T. aestivum. Phylogenetic analysis divided these into three clades. Motif and gene structure study showed that members in the same clades shared the same location and pattern, which further supported the phylogenetic analysis. The analysis of cis-acting elements in promoter sequences of NRAMP genes in wheat identified stress-responsive transcription factor binding sites. Multiple sequence alignment identified the conservation of important residues. Based on RNA-seq and qRT-PCR analysis, Cd stress-responsive variations of TaNRAMP gene expression were reported. This study provides comprehensive data to understand the TaNRAMP gene family, its features, and its expression, which will be a helpful framework for functional research.
Collapse
Affiliation(s)
- Asima Rasheed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Rahmah N Al-Qthanin
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdelaziz for Environmental Research and Natural Resources Sustainability Center, King Khalid University, Abha 61421, Saudi Arabia
| | - Fathia A Soudy
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
33
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
34
|
Kang X, Zhao L, Liu X. Calcium Signaling and the Response to Heat Shock in Crop Plants. Int J Mol Sci 2023; 25:324. [PMID: 38203495 PMCID: PMC10778685 DOI: 10.3390/ijms25010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Climate change and the increasing frequency of high temperature (HT) events are significant threats to global crop yields. To address this, a comprehensive understanding of how plants respond to heat shock (HS) is essential. Signaling pathways involving calcium (Ca2+), a versatile second messenger in plants, encode information through temporal and spatial variations in ion concentration. Ca2+ is detected by Ca2+-sensing effectors, including channels and binding proteins, which trigger specific cellular responses. At elevated temperatures, the cytosolic concentration of Ca2+ in plant cells increases rapidly, making Ca2+ signals the earliest response to HS. In this review, we discuss the crucial role of Ca2+ signaling in raising plant thermotolerance, and we explore its multifaceted contributions to various aspects of the plant HS response (HSR).
Collapse
Affiliation(s)
| | - Liqun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| |
Collapse
|
35
|
Hu Y, Dai Z, Huang J, Han M, Wang Z, Jiao W, Gao Z, Liu X, Liu L, Ma Z. Genome-wide identification and expression analysis of the glutamate receptor gene family in sweet potato and its two diploid relatives. FRONTIERS IN PLANT SCIENCE 2023; 14:1255805. [PMID: 38179475 PMCID: PMC10764598 DOI: 10.3389/fpls.2023.1255805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Plant glutamate receptor (GLR) homologs are crucial calcium channels that play an important role in plant development, signal transduction, and response to biotic and abiotic stresses. However, the GLR gene family has not yet been thoroughly and systematically studied in sweet potato. In this study, a total of 37 GLR genes were identified in the cultivated hexaploid sweet potato (Ipomoea batatas), and 32 GLR genes were discovered in each of the two diploid relatives (Ipomoea trifida and Ipomoea triloba) for the first time. Based on their evolutionary relationships to those of Arabidopsis, these GLRs were split into five subgroups. We then conducted comprehensive analysis to explore their physiological properties, protein interaction networks, promoter cis-elements, chromosomal placement, gene structure, and expression patterns. The results indicate that the homologous GLRs of the cultivated hexaploid sweet potato and its two relatives are different. These variations are reflected in their functions related to plant growth, hormonal crosstalk, development of tuberous roots, resistance to root rot, and responses to abiotic stress factors, all of which are governed by specific individual GLR genes. This study offers a comprehensive analysis of GLR genes in sweet potato and its two diploid relatives. It also provides a theoretical basis for future research into their regulatory mechanisms, significantly influencing the field of molecular breeding in sweet potatoes.
Collapse
Affiliation(s)
- Yaya Hu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jinan Huang
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Meikun Han
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiwei Wang
- Department of Agriculture Forestry and Biological Engineering, Baoding Vocational and Technical College, Baoding, Hebei, China
| | - Weijing Jiao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiyuan Gao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinliang Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lanfu Liu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhimin Ma
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
36
|
Xu F, Yu F. Sensing and regulation of plant extracellular pH. TRENDS IN PLANT SCIENCE 2023; 28:1422-1437. [PMID: 37596188 DOI: 10.1016/j.tplants.2023.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2023]
Abstract
In plants, pH determines nutrient acquisition and sensing, and triggers responses to osmotic stress, whereas pH homeostasis protects the cellular machinery. Extracellular pH (pHe) controls the chemistry and rheology of the cell wall to adjust its elasticity and regulate cell expansion in space and time. Plasma membrane (PM)-localized proton pumps, cell-wall components, and cell wall-remodeling enzymes jointly maintain pHe homeostasis. To adapt to their environment and modulate growth and development, plant cells must sense subtle changes in pHe caused by the environment or neighboring cells. Accumulating evidence indicates that PM-localized cell-surface peptide-receptor pairs sense pHe. We highlight recent advances in understanding how plants perceive and maintain pHe, and discuss future perspectives.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
37
|
Jia Q, Song J, Zheng C, Fu J, Qin B, Zhang Y, Liu Z, Jia K, Liang K, Lin W, Fan K. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean ( Glycine max) and Functional Analysis of GmCHX20a on Salt Response. Int J Mol Sci 2023; 24:16560. [PMID: 38068884 PMCID: PMC10705888 DOI: 10.3390/ijms242316560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Monovalent cation proton antiporters (CPAs) play crucial roles in ion and pH homeostasis, which is essential for plant development and environmental adaptation, including salt tolerance. Here, 68 CPA genes were identified in soybean, phylogenetically dividing into 11 Na+/H+ exchangers (NHXs), 12 K+ efflux antiporters (KEAs), and 45 cation/H+ exchangers (CHXs). The GmCPA genes are unevenly distributed across the 20 chromosomes and might expand largely due to segmental duplication in soybean. The GmCPA family underwent purifying selection rather than neutral or positive selections. The cis-element analysis and the publicly available transcriptome data indicated that GmCPAs are involved in development and various environmental adaptations, especially for salt tolerance. Based on the RNA-seq data, twelve of the chosen GmCPA genes were confirmed for their differentially expression under salt or osmotic stresses using qRT-PCR. Among them, GmCHX20a was selected due to its high induction under salt stress for the exploration of its biological function on salt responses by ectopic expressing in Arabidopsis. The results suggest that the overexpression of GmCHX20a increases the sensitivity to salt stress by altering the redox system. Overall, this study provides comprehensive insights into the CPA family in soybean and has the potential to supply new candidate genes to develop salt-tolerant soybean varieties.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Chengwen Zheng
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Jiahui Fu
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Bin Qin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kunzhi Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Wenxiong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kai Fan
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| |
Collapse
|
38
|
Yang X, Hu R, Sun F, Shen S, Zhang M, Liu Y, Zhang Y, Du H, Lu K, Qu C, Yin N. Identification of the High-Affinity Potassium Transporter Gene Family (HKT) in Brassica U-Triangle Species and Its Potential Roles in Abiotic Stress in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3768. [PMID: 37960124 PMCID: PMC10649870 DOI: 10.3390/plants12213768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Members of the high-affinity potassium transporter (HKT) protein family regulate the uptake and homeostasis of sodium and potassium ions, but little research describes their roles in response to abiotic stresses in rapeseed (Brassica napus L.). In this study, we identified and characterized a total of 36 HKT genes from the species comprising the triangle of U model (U-triangle species): B. rapa, B. nigra, B. oleracea, B. juncea, B. napus, and B. carinata. We analyzed the phylogenetic relationships, gene structures, motif compositions, and chromosomal distributions of the HKT family members of rapeseed. Based on their phylogenetic relationships and assemblage of functional domains, we classified the HKT members into four subgroups, HKT1;1 to HKT1;4. Analysis of the nonsynonymous substitutions (Ka), synonymous substitutions (Ks), and the Ka/Ks ratios of HKT gene pairs suggested that these genes have experienced strong purifying selective pressure after duplication, with their evolutionary relationships supporting the U-triangle theory. Furthermore, the expression profiles of BnaHKT genes varies among potassium, phytohormone and heavy-metal treatment. Their repression provides resistance to heavy-metal stress, possibly by limiting uptake. Our results systematically reveal the characteristics of HKT family proteins and their encoding genes in six Brassica species and lay a foundation for further exploration of the role of HKT family genes in heavy-metal tolerance.
Collapse
Affiliation(s)
- Xiaoran Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ran Hu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yiwei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (X.Y.); (R.H.); (F.S.); (S.S.); (M.Z.); (Y.L.); (Y.Z.); (H.D.); (K.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
39
|
Chen Y, Lin Y, Zhang S, Lin Z, Chen S, Wang Z. Genome-Wide Identification and Characterization of the HAK Gene Family in Quinoa ( Chenopodium quinoa Willd.) and Their Expression Profiles under Saline and Alkaline Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3747. [PMID: 37960103 PMCID: PMC10650088 DOI: 10.3390/plants12213747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
The high-affinity K+ transporter (HAK) family, the most prominent potassium transporter family in plants, which involves K+ transport, plays crucial roles in plant responses to abiotic stresses. However, the HAK gene family remains to be characterized in quinoa (Chenopodium quinoa Willd.). We explored HAKs in quinoa, identifying 30 members (CqHAK1-CqHAK30) in four clusters phylogenetically. Uneven distribution was observed across 18 chromosomes. Furthermore, we investigated the proteins' evolutionary relationships, physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of the CqHAKs family members. Transcription data analysis showed that CqHAKs have diverse expression patterns among different tissues and in response to abiotic stresses, including drought, heat, low phosphorus, and salt. The expressional changes of CqHAKs in roots were more sensitive in response to abiotic stress than that in shoot apices. Quantitative RT-PCR analysis revealed that under high saline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves; under alkaline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves, and CqHAK6, CqHAK9, CqHAK13, CqHAK23, and CqHAK29 were significantly induced in roots. Our results establish a foundation for further investigation of the functions of HAKs in quinoa. It is the first study to identify the HAK gene family in quinoa, which provides potential targets for further functional study and contributes to improving the salt and alkali tolerance in quinoa.
Collapse
Affiliation(s)
- Yanqiong Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yingfeng Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China (S.Z.)
| | - Zhongyuan Lin
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Songbiao Chen
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Zonghua Wang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian University Engineering Research Center of Marine Biology and Drugs, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
40
|
Dong Y, Wang Y, Tang M, Chen W, Chai Y, Wang W. Bioinformatic analysis of wheat defensin gene family and function verification of candidate genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1279502. [PMID: 37941661 PMCID: PMC10628452 DOI: 10.3389/fpls.2023.1279502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Plant defensins are widely distributed in the leaves, fruits, roots, stems, seeds, and tubers. Research shows that defensin in plants play a significant role in physiological metabolism, growth and development. Plant defensins can kill and suppress a variety of pathogenic bacteria. In this study, we understand the phylogenetic relationships, protein characterization, chromosomal localization, promoter and gene structural features of the TaPDFs family through sequence alignment and conserved protein structural domain analysis. A total of 73 PDF gene members in wheat, 15 PDF genes in maize, and 11 PDF genes in rice were identified. A total of 35, 65, and 34 PDF gene members were identified in the genomes of Ae. tauschii, T. urartu, and T. dicoccoides, respectively. TaPDF4.9 and TaPDF2.15 were constructed into pART27 vector with YFP by homologous recombination for subcellular localization analysis. Subcellular localization results showed that TaPDF4.9 and TaPDF2.15 were basically located in the cell membrane and cytoplasm, and TaPDF4.9 was also located in the nucleus. TaPDF4.9 and TaPDF2.15 could inhibit the infection of Phytophthora infestans strain '88069'. The results suggest that TaPDFs may be able to improve disease resistance. The study of wheat defensins will be beneficial for improving wheat yield and provides a theoretical basis for research on resistance to wheat diseases.
Collapse
Affiliation(s)
- Ye Dong
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Youning Wang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, Hubei, China
| | - Mingshuang Tang
- Nanchong Academy of Agriculture Sciences, Nanchong, Sichuan, China
| | - Wang Chen
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Yi Chai
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenli Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
41
|
Kanno S, Martin L, Vallier N, Chiarenza S, Nobori T, Furukawa J, Nussaume L, Vavasseur A, Leonhardt N. Xylem K + loading modulates K + and Cs + absorption and distribution in Arabidopsis under K +-limited conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1040118. [PMID: 37810384 PMCID: PMC10557132 DOI: 10.3389/fpls.2023.1040118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/28/2023] [Indexed: 10/10/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth. The transcriptional regulation of K+ transporter genes is one of the key mechanisms by which plants respond to K+ deficiency. Among the HAK/KUP/KT transporter family, HAK5, a high-affinity K+ transporter, is essential for root K+ uptake under low external K+ conditions. HAK5 expression in the root is highly induced by low external K+ concentration. While the molecular mechanisms of HAK5 regulation have been extensively studied, it remains unclear how plants sense and coordinates K+ uptake and translocation in response to changing environmental conditions. Using skor mutants, which have a defect in root-to-shoot K+ translocation, we have been able to determine how the internal K+ status affects the expression of HAK5. In skor mutant roots, under K+ deficiency, HAK5 expression was lower than in wild-type although the K+ concentration in roots was not significantly different. These results reveal that HAK5 is not only regulated by external K+ conditions but it is also regulated by internal K+ levels, which is in agreement with recent findings. Additionally, HAK5 plays a major role in the uptake of Cs+ in roots. Therefore, studying Cs+ in roots and having more detailed information about its uptake and translocation in the plant would be valuable. Radioactive tracing experiments revealed not only a reduction in the uptake of 137Cs+ and 42K+in skor mutants compared to wild-type but also a different distribution of 137Cs+ and 42K+ in tissues. In order to gain insight into the translocation, accumulation, and repartitioning of both K+ and Cs+ in plants, long-term treatment and split root experiments were conducted with the stable isotopes 133Cs+ and 85Rb+. Finally, our findings show that the K+ distribution in plant tissues regulates root uptake of K+ and Cs+ similarly, depending on HAK5; however, the translocation and accumulation of the two elements are different.
Collapse
Affiliation(s)
- Satomi Kanno
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
- Faculty of Life and Environmental Sciences University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Ludovic Martin
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
| | - Natacha Vallier
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
| | - Serge Chiarenza
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
| | - Tatsuya Nobori
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
| | - Jun Furukawa
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Laurent Nussaume
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
| | - Alain Vavasseur
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
| | - Nathalie Leonhardt
- AixMarseille University, French Alternative Energies and Atomic Energy Commission (CEA), National Center for Scientific Research (CNRS), Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Saint-Paul Lez Durance, France
| |
Collapse
|
42
|
Mohammed KFA, Kaul T, Agrawal PK, Thangaraj A, Kaul R, Sopory SK. Function identification and characterization of Oryza sativa ZRT and IRT-like proteins computationally for nutrition and biofortification in rice. J Biomol Struct Dyn 2023; 41:7490-7510. [PMID: 36111599 DOI: 10.1080/07391102.2022.2118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Zinc plays a very critical role and function in all organisms. Its deficiency can cause a serious issue. In Oryza sativa, the ZRT/IRT transporter-like proteins play a role in the zinc metal uptake and transport. Few OsZIPs genes have been validated and characterized for their biological functions and most of OsZIPs are not well physiologically, biochemically and phenotypically characterized. In the current study, they analyzed for their function through subcellular localization, phylogenetic analysis, homology modeling, expression analysis, protein-protein interaction (PPI) network prediction, and prediction of their binding sites. Hierarchical clustering of OsZIP genes based on different anatomical parts and developmental stages also orthologs prediction was identified. The presence of SNPs, SSRs, ESTs, FSTs, MPSS, and SAGE tags were analyzed for useful development of markers. SNPs were identified in all OsZIPs genes and each gene was further classified based on their number and position in the 3'UTR and 5'UTR regions of the gene-specific sequences. Binding clusters and their location on the protein sequences were predicted. We found Changing in residues number and position which were due to partial overlapping and sequence alignment, but they share the same mechanism of binding and transporting Zinc. A wide range of CRISPR Cas9 gRNAs was designed based on single nucleotide polymorphism (SNP) for each OsZIP transporter gene for well-function identification and characterization with genome-wide association studies. Hence this study would provide useful information, understanding, and predicting molecular insights for the future studies that will help for improvement of nutritional quality of rice varieties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khaled Fathy Abdelmotelb Mohammed
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tanushri Kaul
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pawan Kumar Agrawal
- Plant Breeding, Main Building, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Arulprakash Thangaraj
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rashmi Kaul
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
43
|
Zhang X, Wang L, Pan T, Wu X, Shen J, Jiang L, Tajima H, Blumwald E, Qiu QS. Plastid KEA-type cation/H + antiporters are required for vacuolar protein trafficking in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2157-2174. [PMID: 37252889 DOI: 10.1111/jipb.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/28/2023] [Indexed: 06/01/2023]
Abstract
Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR-cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.
Collapse
Affiliation(s)
- Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Ting Pan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Xuexia Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, 810000, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
44
|
Jiang Z, Du L, Shen L, He J, Xia X, Zhang L, Yang X. Genome-Wide Exploration and Expression Analysis of the CNGC Gene Family in Eggplant ( Solanum melongena L.) under Cold Stress, with Functional Characterization of SmCNGC1a. Int J Mol Sci 2023; 24:13049. [PMID: 37685854 PMCID: PMC10487859 DOI: 10.3390/ijms241713049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Eggplant (Solanum melongena L.) is an important economic crop, and to date, there has been no genome-wide identification and analysis of the cyclic nucleotide-gated channel (CNGC) gene family in eggplant. In this study, we identified the CNGC gene family in eggplant, and the results showed that 29 SmCNGC genes were classified into five groups, unevenly distributed across the 12 chromosomes of eggplant. The gene structure and motif analysis indicated that the SmCNGC family proteins may exhibit apparent preferences during evolution. Furthermore, our study revealed the presence of numerous light-responsive elements, hormone-responsive elements, and transcription factor binding sites in the promoter regions of SmCNGC genes, suggesting their significant role in environmental adaptability regulation. Finally, we analyzed the expression patterns of all SmCNGC genes under cold stress and found that SmCNGC1a was significantly upregulated under cold stress. Subcellular localization experiments indicated that this gene is located on the plasma membrane. Subsequently, its importance in the low-temperature response of eggplant was validated through virus-induced gene silencing (VIGS), and its protein interactome was predicted. In summary, our study provides a comprehensive understanding of the function and regulatory mechanisms of the CNGC gene family in eggplant, laying an important foundation for further research on cold adaptation in eggplant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
45
|
Fu Y, Mason AS, Song M, Ni X, Liu L, Shi J, Wang T, Xiao M, Zhang Y, Fu D, Yu H. Multi-omics strategies uncover the molecular mechanisms of nitrogen, phosphorus and potassium deficiency responses in Brassica napus. Cell Mol Biol Lett 2023; 28:63. [PMID: 37543634 PMCID: PMC10404376 DOI: 10.1186/s11658-023-00479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND Nitrogen (N), phosphorus (P) and potassium (K) are critical macronutrients in crops, such that deficiency in any of N, P or K has substantial effects on crop growth. However, the specific commonalities of plant responses to different macronutrient deficiencies remain largely unknown. METHODS Here, we assessed the phenotypic and physiological performances along with whole transcriptome and metabolomic profiles of rapeseed seedlings exposed to N, P and K deficiency stresses. RESULTS Quantities of reactive oxygen species were significantly increased by all macronutrient deficiencies. N and K deficiencies resulted in more severe root development responses than P deficiency, as well as greater chlorophyll content reduction in leaves (associated with disrupted chloroplast structure). Transcriptome and metabolome analyses validated the macronutrient-specific responses, with more pronounced effects of N and P deficiencies on mRNAs, microRNAs (miRNAs), circular RNAs (circRNAs) and metabolites relative to K deficiency. Tissue-specific responses also occurred, with greater effects of macronutrient deficiencies on roots compared with shoots. We further uncovered a set of common responders with simultaneous roles in all three macronutrient deficiencies, including 112 mRNAs and 10 miRNAs involved in hormonal signaling, ion transport and oxidative stress in the root, and 33 mRNAs and 6 miRNAs with roles in abiotic stress response and photosynthesis in the shoot. 27 and seven common miRNA-mRNA pairs with role in miRNA-mediated regulation of oxidoreduction processes and ion transmembrane transport were identified in all three macronutrient deficiencies. No circRNA was responsive to three macronutrient deficiency stresses, but two common circRNAs were identified for two macronutrient deficiencies. Combined analysis of circRNAs, miRNAs and mRNAs suggested that two circRNAs act as decoys for miR156 and participate in oxidoreduction processes and transmembrane transport in both N- and P-deprived roots. Simultaneously, dramatic alterations of metabolites also occurred. Associations of RNAs with metabolites were observed, and suggested potential positive regulatory roles for tricarboxylic acids, azoles, carbohydrates, sterols and auxins, and negative regulatory roles for aromatic and aspartate amino acids, glucosamine-containing compounds, cinnamic acid, and nicotianamine in plant adaptation to macronutrient deficiency. CONCLUSIONS Our findings revealed strategies to rescue rapeseed from macronutrient deficiency stress, including reducing the expression of non-essential genes and activating or enhancing the expression of anti-stress genes, aided by plant hormones, ion transporters and stress responders. The common responders to different macronutrient deficiencies identified could be targeted to enhance nutrient use efficiency in rapeseed.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Annaliese S Mason
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Maolin Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Xiyuan Ni
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lei Liu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianghua Shi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tanliu Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
46
|
Kageyama H, Waditee-Sirisattha R. Halotolerance mechanisms in salt‑tolerant cyanobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:55-117. [PMID: 37597948 DOI: 10.1016/bs.aambs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cyanobacteria are ubiquitously distributed in nature and are the most abundant photoautotrophs on Earth. Their long evolutionary history reveals that cyanobacteria have a remarkable capacity and strong adaptive tendencies to thrive in a variety of conditions. Thus, they can survive successfully, especially in harsh environmental conditions such as salty environments, high radiation, or extreme temperatures. Among others, salt stress because of excessive salt accumulation in salty environments, is the most common abiotic stress in nature and hampers agricultural growth and productivity worldwide. These detrimental effects point to the importance of understanding the molecular mechanisms underlying the salt stress response. While it is generally accepted that the stress response mechanism is a complex network, fewer efforts have been made to represent it as a network. Substantial evidence revealed that salt-tolerant cyanobacteria have evolved genomic specific mechanisms and high adaptability in response to environmental changes. For example, extended gene families and/or clusters of genes encoding proteins involved in the adaptation to high salinity have been collectively reported. This chapter focuses on recent advances and provides an overview of the molecular basis of halotolerance mechanisms in salt‑tolerant cyanobacteria as well as multiple regulatory pathways. We elaborate on the major protective mechanisms, molecular mechanisms associated with halotolerance, and the global transcriptional landscape to provide a gateway to uncover gene regulation principles. Both knowledge and omics approaches are utilized in this chapter to decipher the mechanistic insights into halotolerance. Collectively, this chapter would have a profound impact on providing a comprehensive understanding of halotolerance in salt‑tolerant cyanobacteria.
Collapse
Affiliation(s)
- Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Japan; Department of Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Japan.
| | | |
Collapse
|
47
|
Ibrahim S, Ahmad N, Kuang L, Li K, Tian Z, Sadau SB, Tajo SM, Wang X, Wang H, Dun X. Transcriptome analysis reveals key regulatory genes for root growth related to potassium utilization efficiency in rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1194914. [PMID: 37546248 PMCID: PMC10400329 DOI: 10.3389/fpls.2023.1194914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.
Collapse
Affiliation(s)
- Sani Ibrahim
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Plant Biology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Nazir Ahmad
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lieqiong Kuang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Keqi Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ze Tian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Salisu Bello Sadau
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Sani Muhammad Tajo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (Institute of Cotton Research (ICR), CAAS), Anyang, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
48
|
Noor I, Sohail H, Zhang D, Zhu K, Shen W, Pan J, Hasanuzzaman M, Li G, Liu J. Silencing of PpNRAMP5 improves manganese toxicity tolerance in peach (Prunus persica) seedlings. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131442. [PMID: 37121032 DOI: 10.1016/j.jhazmat.2023.131442] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
The natural resistance-associated macrophage protein (NRAMP) gene family assists in the transport of metal ions in plants. However, the role and underlying physiological mechanism of NRAMP genes under heavy metal toxicity in perennial trees remain to be elucidated. In Prunus persica, five NRAMP family genes were identified and named according to their predicted phylogenetic relationships. The expression profiling analysis indicated that PpNRAMPs were significantly induced by excess manganese (Mn), iron, zinc, and cadmium treatments, suggesting their potential role in heavy metal uptake and transportation. Notably, the expression of PpNRAMP5 was tremendously increased under Mn toxicity stress. Heterologous expression of PpNRAMP5 in yeast cells also confirmed Mn transport. Suppression of PpNRAMP5 through virus-induced gene silencing enhanced Mn tolerance, which was compromised when PpNRAMP5 was overexpressed in peach. The silencing of PpNRAMP5 mitigated Mn toxicity by dramatically reducing Mn contents in roots, and effectively reduced the chlorophyll degradation and improved the photosynthetic apparatus under Mn toxicity stress. Therefore, PpNRAMP5-silenced plants were less damaged by oxidative stress, as signified by lowered H2O2 contents and O2•- staining intensity, also altered the reactive oxygen species (ROS) homeostasis by activating enzymatic antioxidants. Consistently, these physiological changes showed an opposite trend in the PpNRAMP5-overexpressed peach plants. Altogether, our findings suggest that downregulation of PpNRAMP5 markedly reduces the uptake and transportation of Mn, thus activating enzymatic antioxidants to strengthen ROS scavenging capacity and photosynthesis activity, thereby mitigating Mn toxicity in peach plants.
Collapse
Affiliation(s)
- Iqra Noor
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Hamza Sohail
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Dongmei Zhang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Kaijie Zhu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Wanqi Shen
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Jiajia Pan
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Guohuai Li
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China.
| |
Collapse
|
49
|
Popova LG, Khramov DE, Nedelyaeva OI, Volkov VS. Yeast Heterologous Expression Systems for the Study of Plant Membrane Proteins. Int J Mol Sci 2023; 24:10768. [PMID: 37445944 DOI: 10.3390/ijms241310768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Researchers are often interested in proteins that are present in cells in small ratios compared to the total amount of proteins. These proteins include transcription factors, hormones and specific membrane proteins. However, sufficient amounts of well-purified protein preparations are required for functional and structural studies of these proteins, including the creation of artificial proteoliposomes and the growth of protein 2D and 3D crystals. This aim can be achieved by the expression of the target protein in a heterologous system. This review describes the applications of yeast heterologous expression systems in studies of plant membrane proteins. An initial brief description introduces the widely used heterologous expression systems of the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. S. cerevisiae is further considered a convenient model system for functional studies of heterologously expressed proteins, while P. pastoris has the advantage of using these yeast cells as factories for producing large quantities of proteins of interest. The application of both expression systems is described for functional and structural studies of membrane proteins from plants, namely, K+- and Na+-transporters, various ATPases and anion transporters, and other transport proteins.
Collapse
Affiliation(s)
- Larissa G Popova
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Dmitrii E Khramov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Olga I Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Vadim S Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
50
|
Zhu H, Guo J, Ma T, Liu S, Zhou Y, Yang X, Li Q, Yu K, Wang T, He S, Zhao C, Wang J, Sui J. The Sweet Potato K + Transporter IbHAK11 Regulates K + Deficiency and High Salinity Stress Tolerance by Maintaining Positive Ion Homeostasis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2422. [PMID: 37446983 DOI: 10.3390/plants12132422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023]
Abstract
The K+ transporter KT/HAK/KUP (K+ transporter/high-affinity K+/K+ uptake) family has a critical effect on K+ uptake and translocation in plants under different environmental conditions. However, the functional analysis of KT/HAK/KUP members in sweet potatoes is still limited. The present work reported the physiological activity of a new gene, IbHAK11, in the KT/HAK/KUP family in sweet potatoes. IbHAK11 expression increased significantly in the low K+-tolerant line compared with the low K+-sensitive line following treatment with low K+ concentrations. IbHAK11 upregulation promoted root growth in Arabidopsis under low K+ conditions. Under high saline stress, transgenic lines had superior growth and photosynthetic characteristics compared with the wild-type (WT). As for IbHAK11-overexpressing plants, activation of both the non-enzymatic and enzymatic reactive oxygen species (ROS) scavenging systems was observed. Therefore, IbHAK11-overexpressing plants had lower malondialdehyde (MDA) and ROS levels (including H2O2 and O2-) compared with WT under salt-induced stress. We also found that under both low K+ and high salinity conditions, overexpression of IbHAK11 enhanced K+ translocation from the root to the shoot and decreased Na+ absorption in Arabidopsis. Consequently, IbHAK11 positively regulated K+ deficiency and high salinity stresses by regulating K+ translocation and Na+ uptake, thus maintaining K+/Na+ homeostasis in plants.
Collapse
Affiliation(s)
- Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257091, China
| | - Jiayu Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Tao Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuyan Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanyuan Zhou
- Crop research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xue Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiyan Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Kaiyue Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Tongshuai Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Sixiang He
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Chunmei Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingshan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiongming Sui
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Crop research Institute, Shandong Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Tuber and Root Crops in Huang-Huai-Hai Region, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|