1
|
Goldfarb M, Boesel J, Wilczewski‐Shirai K, Reinhart P, Scherger T, Webb C, Newlun M, Rouhier K. Synthesis of β-Alanine From Isoleucine and Propionate Catabolism via Aminotransferases. PLANT DIRECT 2024; 8:e70030. [PMID: 39703930 PMCID: PMC11655180 DOI: 10.1002/pld3.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024]
Abstract
In plants, the nonproteinogenic amino acid β-alanine plays a role in response to hypoxia, flooding, drought, heat, and heavy metal stress conditions. It is also a key intermediate in the synthesis of essential molecules including vitamin B5 and coenzyme A (CoA) through the condensation reaction with pantoate. While the syntheses of pantoate, vitamin B5, and CoA appear to be conserved across plants and bacteria, the synthesis of β-alanine is not. Bacteria and fungi use aspartate, whereas plants can use uracil, spermidine, or propionate to synthesize β-alanine. Given that these three precursors can be formed from the metabolism of glutamine, arginine, isoleucine, and valine, the synthesis of β-alanine could be linked to numerous pathways. Studies of valine catabolism in Arabidopsis suggested that some branched-chain amino acids could in fact serve as precursors for the synthesis of β-alanine. Using GC-MS and isotopically labeled isoleucine and propionate, we linked their metabolism to the synthesis of β-alanine via a proposed transamination of malonate semialdehyde. We then identified three aminotransferases that each catalyzed this final reversible transamination reaction. These results affirm our hypothesis that isoleucine metabolism is also linked to the synthesis of β-alanine via the transamination of metabolic intermediates.
Collapse
Affiliation(s)
| | | | | | | | | | - Chloe Webb
- Department of ChemistryKenyon CollegeGambierOhioUSA
| | | | | |
Collapse
|
2
|
Osorio-Guarin JA, Higgins J, Toloza-Moreno DL, Di Palma F, Enriquez Valencia AL, Riveros Munévar F, De Vega JJ, Yockteng R. Genome-wide association analyses using multilocus models on bananas (Musa spp.) reveal candidate genes related to morphology, fruit quality, and yield. G3 (BETHESDA, MD.) 2024; 14:jkae108. [PMID: 38775627 PMCID: PMC11304972 DOI: 10.1093/g3journal/jkae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 08/09/2024]
Abstract
Bananas (Musa spp.) are an essential fruit worldwide and rank as the fourth most significant food crop for addressing malnutrition due to their rich nutrients and starch content. The potential of their genetic diversity remains untapped due to limited molecular breeding tools. Our study examined a phenotypically diverse group of 124 accessions from the Colombian Musaceae Collection conserved in AGROSAVIA. We assessed 12 traits categorized into morphology, fruit quality, and yield, alongside sequence data. Our sequencing efforts provided valuable insights, with an average depth of about 7× per accession, resulting in 187,133 single-nucleotide polymorphisms (SNPs) against Musa acuminata (A genome) and 220,451 against Musa balbisiana (B genome). Population structure analysis grouped samples into four and five clusters based on the reference genome. By using different association models, we identified marker-trait associations (MTAs). The mixed linear model revealed four MTAs, while the Bayesian-information and linkage-disequilibrium iteratively nested keyway and fixed and random model for circulating probability unification models identified 82 and 70 MTAs, respectively. We identified 38 and 40 candidate genes in linkage proximity to significant MTAs for the A genome and B genome, respectively. Our findings provide insights into the genetic underpinnings of morphology, fruit quality, and yield. Once validated, the SNP markers and candidate genes can potentially drive advancements in genomic-guided breeding strategies to enhance banana crop improvement.
Collapse
Affiliation(s)
- Jaime Andrés Osorio-Guarin
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 vía Mosquera, Cundinamarca 250047, Colombia
| | - Janet Higgins
- Earlham Institute, Norwich Research Park, NR4 7UZ Norwich, UK
| | - Deisy Lisseth Toloza-Moreno
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 vía Mosquera, Cundinamarca 250047, Colombia
| | | | - Ayda Lilia Enriquez Valencia
- Centro de Investigación Palmira, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Palmira, Valle del Cauca 763533, Colombia
| | - Fernando Riveros Munévar
- Facultad de Psicología y Ciencias del Comportamiento, Universidad de La Sabana, Chía, Cundinamarca 250001, Colombia
| | - José J De Vega
- Earlham Institute, Norwich Research Park, NR4 7UZ Norwich, UK
| | - Roxana Yockteng
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 vía Mosquera, Cundinamarca 250047, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, Muséum National d´Histoire Naturelle, Paris, Ile 75005, France
| |
Collapse
|
3
|
Sainz MM, Filippi CV, Eastman G, Sotelo-Silveira M, Zardo S, Martínez-Moré M, Sotelo-Silveira J, Borsani O. Water deficit response in nodulated soybean roots: a comprehensive transcriptome and translatome network analysis. BMC PLANT BIOLOGY 2024; 24:585. [PMID: 38902623 PMCID: PMC11191192 DOI: 10.1186/s12870-024-05280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Soybean establishes a mutualistic interaction with nitrogen-fixing rhizobacteria, acquiring most of its nitrogen requirements through symbiotic nitrogen fixation. This crop is susceptible to water deficit; evidence suggests that its nodulation status-whether it is nodulated or not-can influence how it responds to water deficit. The translational control step of gene expression has proven relevant in plants subjected to water deficit. RESULTS Here, we analyzed soybean roots' differential responses to water deficit at transcriptional, translational, and mixed (transcriptional + translational) levels. Thus, the transcriptome and translatome of four combined-treated soybean roots were analyzed. We found hormone metabolism-related genes among the differentially expressed genes (DEGs) at the translatome level in nodulated and water-restricted plants. Also, weighted gene co-expression network analysis followed by differential expression analysis identified gene modules associated with nodulation and water deficit conditions. Protein-protein interaction network analysis was performed for subsets of mixed DEGs of the modules associated with the plant responses to nodulation, water deficit, or their combination. CONCLUSIONS Our research reveals that the stand-out processes and pathways in the before-mentioned plant responses partially differ; terms related to glutathione metabolism and hormone signal transduction (2 C protein phosphatases) were associated with the response to water deficit, terms related to transmembrane transport, response to abscisic acid, pigment metabolic process were associated with the response to nodulation plus water deficit. Still, two processes were common: galactose metabolism and branched-chain amino acid catabolism. A comprehensive analysis of these processes could lead to identifying new sources of tolerance to drought in soybean.
Collapse
Affiliation(s)
- María Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay.
| | - Carla V Filippi
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
- Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Mariana Sotelo-Silveira
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - Sofía Zardo
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - Mauro Martínez-Moré
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay.
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay.
| | - Omar Borsani
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Avenida Garzón 780, Montevideo, CP 12900, Uruguay.
| |
Collapse
|
4
|
Tang X, Song G, Zou J, Ren J, Feng H. BrBCAT1 mutation resulted in deficiency of epicuticular wax crystal in Chinese cabbage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:123. [PMID: 38722407 DOI: 10.1007/s00122-024-04632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/20/2024] [Indexed: 06/09/2024]
Abstract
KEY MESSAGE BrBCAT1 encoding a branched-chain amino acid aminotransferase was responsible for the glossy trait, which was verified by allelic mutants in Chinese cabbage. The glossy characteristic, thanks to the epicuticular wax crystal deficiency, is an excellent commodity character for leafy vegetables. Herein, two allelic glossy green mutants, wdm11 and wdm12, were isolated from an ethyl methane sulfonate (EMS)-mutagenized population of Chinese cabbage, and the mutant phenotype was recessive inherited. Cryo-SEM detected that epicuticular wax crystal in the mutant leaves was virtually absent. MutMap and Kompetitive allele-specific PCR analyses demonstrated that BraA06g006950.3C (BrBCAT1), homologous to AtBCAT1, encoding a branched-chain amino acid aminotransferase was the candidate gene. A SNP (G to A) on the fourth exon of BrBCAT1 in wdm11 caused the 233rd amino acid to change from glycine (G) to aspartic acid (D). A SNP (G to A) on the second exon of BrBCAT1 in wdm12 led to the 112th amino acid change from glycine (G) to arginine (R). Both of the allelic mutants had genetic structural variation in the candidate gene, which indicated that the mutant phenotype was triggered by the BrBCAT1 mutation. The expression levels of BrBCAT1 and genes related to fatty acid chain extension were decreased significantly in the mutant compared to the wild-type, which might result in epicuticular wax crystal deficiency in the mutants. Our findings proved that the mutation of BrBCAT1 induced the glossy phenotype and provided a valuable gene resource for commodity character improvement in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Gengxing Song
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jiaqi Zou
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Jie Ren
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
5
|
García Méndez MDC, Encarnación-Guevara S, Martínez Batallar ÁG, Gómez-Caudillo L, Bru-Martínez R, Martínez Márquez A, Selles Marchart S, Tovar-Sánchez E, Álvarez-Berber L, Marquina Bahena S, Perea-Arango I, Arellano-García JDJ. High variability of perezone content in rhizomes of Acourtia cordata wild plants, environmental factors related, and proteomic analysis. PeerJ 2023; 11:e16136. [PMID: 38025722 PMCID: PMC10656900 DOI: 10.7717/peerj.16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2023] [Indexed: 12/01/2023] Open
Abstract
With the aim of exploring the source of the high variability observed in the production of perezone, in Acourtia cordata wild plants, we analyze the influence of soil parameters and phenotypic characteristics on its perezone content. Perezone is a sesquiterpene quinone responsible for several pharmacological effects and the A. cordata plants are the natural source of this metabolite. The chemistry of perezone has been widely studied, however, no studies exist related to its production under natural conditions, nor to its biosynthesis and the environmental factors that affect the yield of this compound in wild plants. We also used a proteomic approach to detect differentially expressed proteins in wild plant rhizomes and compare the profiles of high vs. low perezone-producing plants. Our results show that in perezone-producing rhizomes, the presence of high concentrations of this compound could result from a positive response to the effects of some edaphic factors, such as total phosphorus (Pt), total nitrogen (Nt), ammonium (NH4), and organic matter (O. M.), but could also be due to a negative response to the soil pH value. Additionally, we identified 616 differentially expressed proteins between high and low perezone producers. According to the functional annotation of this comparison, the upregulated proteins were grouped in valine biosynthesis, breakdown of leucine and isoleucine, and secondary metabolism such as terpenoid biosynthesis. Downregulated proteins were grouped in basal metabolism processes, such as pyruvate and purine metabolism and glycolysis/gluconeogenesis. Our results suggest that soil parameters can impact the content of perezone in wild plants. Furthermore, we used proteomic resources to obtain data on the pathways expressed when A. cordata plants produce high and low concentrations of perezone. These data may be useful to further explore the possible relationship between perezone production and abiotic or biotic factors and the molecular mechanisms related to high and low perezone production.
Collapse
Affiliation(s)
- Ma del Carmen García Méndez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | - Leopoldo Gómez-Caudillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Roque Bru-Martínez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain
| | - Ascensión Martínez Márquez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Susana Selles Marchart
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Laura Álvarez-Berber
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Silvia Marquina Bahena
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irene Perea-Arango
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | |
Collapse
|
6
|
Shim JS, Jeong HI, Bang SW, Jung SE, Kim G, Kim YS, Redillas MCFR, Oh SJ, Seo JS, Kim JK. DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE enhances drought tolerance in rice. PLANT PHYSIOLOGY 2023; 191:1435-1447. [PMID: 36493384 PMCID: PMC9922417 DOI: 10.1093/plphys/kiac560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Plants accumulate several metabolites in response to drought stress, including branched-chain amino acids (BCAAs). However, the roles of BCAAs in plant drought responses and the underlying molecular mechanisms for BCAA accumulation remain elusive. Here, we demonstrate that rice (Oryza sativa) DROUGHT-INDUCED BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (OsDIAT) mediates the accumulation of BCAAs in rice in response to drought stress. An in vitro enzyme activity assay indicated that OsDIAT is a branched-chain amino acid aminotransferase, and subcellular localization analysis revealed that OsDIAT localizes to the cytoplasm. The expression of OsDIAT was induced in plants upon exposure to abiotic stress. OsDIAT-overexpressing (OsDIATOX) plants were more tolerant to drought stress, whereas osdiat plants were more susceptible to drought stress compared with nontransgenic (NT) plants. Amino acid analysis revealed that BCAA levels were higher in OsDIATOX but lower in osdiat compared with in NT plants. Finally, the exogenous application of BCAAs improved plant tolerance to osmotic stress compared with that in control plants. Collectively, these findings suggest that OsDIAT mediates drought tolerance by promoting the accumulation of BCAAs.
Collapse
Affiliation(s)
| | | | - Seung Woon Bang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se Eun Jung
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Goeun Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Mark Christian Felipe R Redillas
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- Department of Biology, De La Salle University, Manila 1004, Philippines
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Jun Sung Seo
- Author for correspondence: (J. S. S.); (J.-K. K.)
| | - Ju-Kon Kim
- Author for correspondence: (J. S. S.); (J.-K. K.)
| |
Collapse
|
7
|
Yamamoto Y, Tabata K. Enhancement of Arabidopsis growth by non-24 hour day-night cycles. PLANT DIRECT 2022; 6:e391. [PMID: 35355885 PMCID: PMC8958050 DOI: 10.1002/pld3.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Plant yield can be increased by matching the internal circadian rhythms with the external light and dark cycle (circadian resonance). The circadian resonance reported in the past was analyzed under light-dark cycles with 20-, 24-, or 28-hr periods; however, the mechanism for circadian resonance is still debatable due to the experimental time schedules in previous studies being few in number and widely separated. By analyzing the yield of Arabidopsis thaliana grown under eight different external light and dark periods, we found that the yield increased when the external cycle was 22 and 26 hr instead of 24 hr. Time course RNA-seq analysis determined that seedling circadian clock genes had a free-running period of 22 ± 1 hr. Furthermore, a group of genes with 25- to 26-hr period rhythms were also observed in the seedlings with a 22- ± 1-hr period as their circadian clock. We propose that resonance that occurred by matching the expression time of a group of genes with the 25- to 26-hr cycle and providing an external day-night cycle of 25 to 26 hr was one factor that caused the yield increase.
Collapse
Affiliation(s)
- Yuko Yamamoto
- New Field Pioneering DivisionToyota Boshoku CorporationKariyaJapan
- Toyota Boshoku Europe N.V.ZaventemBelgium
| | - Kazufumi Tabata
- New Field Pioneering DivisionToyota Boshoku CorporationKariyaJapan
| |
Collapse
|
8
|
Bizzio LN, Tieman D, Munoz PR. Branched-Chain Volatiles in Fruit: A Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2022; 12:814138. [PMID: 35154212 PMCID: PMC8829073 DOI: 10.3389/fpls.2021.814138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 05/03/2023]
Abstract
Branched-chain volatiles (BCVs) constitute an important family of fruit volatile metabolites essential to the characteristic flavor and aroma profiles of many edible fruits. Yet in contrast to other groups of volatile organic compounds important to fruit flavor such as terpenoids, phenylpropanoids, and oxylipins, the molecular biology underlying BCV biosynthesis remains poorly understood. This lack of knowledge is a barrier to efforts aimed at obtaining a more comprehensive understanding of fruit flavor and aroma and the biology underlying these complex phenomena. In this review, we discuss the current state of knowledge regarding fruit BCV biosynthesis from the perspective of molecular biology. We survey the diversity of BCV compounds identified in edible fruits as well as explore various hypotheses concerning their biosynthesis. Insights from branched-chain precursor compound metabolism obtained from non-plant organisms and how they may apply to fruit BCV production are also considered, along with potential avenues for future research that might clarify unresolved questions regarding BCV metabolism in fruits.
Collapse
Affiliation(s)
- Lorenzo N. Bizzio
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Denise Tieman
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Patricio R. Munoz
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Zhu F, Alseekh S, Koper K, Tong H, Nikoloski Z, Naake T, Liu H, Yan J, Brotman Y, Wen W, Maeda H, Cheng Y, Fernie AR. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. THE PLANT CELL 2022; 34:557-578. [PMID: 34623442 PMCID: PMC8774053 DOI: 10.1093/plcell/koab251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/05/2021] [Indexed: 05/31/2023]
Abstract
Dark-induced senescence provokes profound metabolic shifts to recycle nutrients and to guarantee plant survival. To date, research on these processes has largely focused on characterizing mutants deficient in individual pathways. Here, we adopted a time-resolved genome-wide association-based approach to characterize dark-induced senescence by evaluating the photochemical efficiency and content of primary and lipid metabolites at the beginning, or after 3 or 6 days in darkness. We discovered six patterns of metabolic shifts and identified 215 associations with 81 candidate genes being involved in this process. Among these associations, we validated the roles of four genes associated with glycine, galactinol, threonine, and ornithine levels. We also demonstrated the function of threonine and galactinol catabolism during dark-induced senescence. Intriguingly, we determined that the association between tyrosine contents and TYROSINE AMINOTRANSFERASE 1 influences enzyme activity of the encoded protein and transcriptional activity of the gene under normal and dark conditions, respectively. Moreover, the single-nucleotide polymorphisms affecting the expression of THREONINE ALDOLASE 1 and the amino acid transporter gene AVT1B, respectively, only underlie the variation in threonine and glycine levels in the dark. Taken together, these results allow us to present a very detailed model of the metabolic aspects of dark-induced senescence, as well as the process itself.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Kaan Koper
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Hao Tong
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Thomas Naake
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna 1030, Austria
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yariv Brotman
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hiroshi Maeda
- Department of Botany, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
10
|
Calderan-Rodrigues MJ, Luzarowski M, Monte-Bello CC, Minen RI, Zühlke BM, Nikoloski Z, Skirycz A, Caldana C. Proteogenic Dipeptides Are Characterized by Diel Fluctuations and Target of Rapamycin Complex-Signaling Dependency in the Model Plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:758933. [PMID: 35003157 PMCID: PMC8727597 DOI: 10.3389/fpls.2021.758933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.
Collapse
Affiliation(s)
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | - Boris M. Zühlke
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Boyce Thompson Institute, Ithaca, NY, United States
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
11
|
Ben-Sheleg A, Khozin-Godberg I, Yaakov B, Vonshak A. Characterization of Nannochloropsis oceanica Rose Bengal Mutants Sheds Light on Acclimation Mechanisms to High Light When Grown in Low Temperature. PLANT & CELL PHYSIOLOGY 2021; 62:1478-1493. [PMID: 34180533 PMCID: PMC8600018 DOI: 10.1093/pcp/pcab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
A barrier to realizing Nannochloropsis oceanica's potential for omega-3 eicosapentaenoic acid (EPA) production is the disparity between conditions that are optimal for growth and those that are optimal for EPA biomass content. A case in point is temperature: higher content of polyunsaturated fatty acid, and especially EPA, is observed in low-temperature (LT) environments, where growth rates are often inhibited. We hypothesized that mutant strains of N. oceanica resistant to the singlet-oxygen photosensitizer Rose Bengal (RB) would withstand the oxidative stress conditions that prevail in the combined stressful environment of high light (HL; 250 μmol photons m-2 s-1) and LT (18°C). This growth environment caused the wild-type (WT) strain to experience a spike in lipid peroxidation and an inability to proliferate, whereas growth and homeostatic reactive oxygen species levels were observed in the mutant strains. We suggest that the mutant strains' success in this environment can be attributed to their truncated photosystem II antennas and their increased ability to diffuse energy in those antennas as heat (non-photosynthetic quenching). As a result, the mutant strains produced upward of four times more EPA than the WT strain in this HL-LT environment. The major plastidial lipid monogalactosyldiacylglycerol was a likely target for oxidative damage, contributing to the photosynthetic inhibition of the WT strain. A mutation in the NO10G01010.1 gene, causing a subunit of the 2-oxoisovalerate dehydrogenase E1 protein to become non-functional, was determined to be the likely source of tolerance in the RB113 mutant strain.
Collapse
Affiliation(s)
- Avraham Ben-Sheleg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Inna Khozin-Godberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Beery Yaakov
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Avigad Vonshak
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
12
|
Moseler A, Kruse I, Maclean AE, Pedroletti L, Franceschetti M, Wagner S, Wehler R, Fischer-Schrader K, Poschet G, Wirtz M, Dörmann P, Hildebrandt TM, Hell R, Schwarzländer M, Balk J, Meyer AJ. The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria. PLANT PHYSIOLOGY 2021; 186:1507-1525. [PMID: 33856472 PMCID: PMC8260144 DOI: 10.1093/plphys/kiab172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 05/02/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.
Collapse
Affiliation(s)
- Anna Moseler
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Université de Lorraine, INRAE, IAM, Nancy 54000, France
| | - Inga Kruse
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Andrew E Maclean
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Present address: Wellcome Trust Centre for Integrative Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Luca Pedroletti
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | | | - Stephan Wagner
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
| | - Regina Wehler
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | - Katrin Fischer-Schrader
- Department of Chemistry, Institute for Biochemistry, University of Cologne, 50674 Cologne, Germany
| | - Gernot Poschet
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany
| | | | - Rüdiger Hell
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP)—Plant Energy Biology, University of Münster, 48143 Münster, Germany
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES)—Chemical Signalling, University of Bonn, 53113 Bonn, Germany
- Bioeconomy Science Center, c/o Forschungszentrum Jülich, 52425 Jülich, Germany
- Author for communication:
| |
Collapse
|
13
|
Integration of Ultrasound into the Development of Plant-Based Protein Hydrolysate and Its Bio-Stimulatory Effect for Growth of Wheat Grain Seedlings In Vivo. PLANTS 2021; 10:plants10071319. [PMID: 34203559 PMCID: PMC8309200 DOI: 10.3390/plants10071319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
This study was dedicated to increasing the efficiency of producing plant-based protein hydrolysate using traditional and non-traditional treatments. Low- and high frequency ultrasound (US) at different intensities were applied to corn steep liquor (CSL) at 50 °C for 30 min, and enzymatic hydrolysis was performed using industrially produced alkaline protease. The efficiency of US and enzymatic treatments was characterized by protein solubility (soluble protein (SP) content, hydrolyzed protein (HP) concentration, and free amino acid (FAA) profile) and kinetic parameters: Michaelis–Menten constant (KM) and apparent breakdown rate constant (kA). A significant effect of 37 kHz US pre-treatment for CSL enzymatic hydrolysis was found and resulted in the highest HP concentration (17.5 g/L) using the lowest enzyme concentration (2.1 g/L) and the shortest hydrolysis time (60 min). By using US pre-treatment, on average, a 2.2 times higher FAA content could be achieved compared to traditional hydrolysis. Additionally, results for the kinetic parameters kM and kA confirmed the potential of applying US treatment before hydrolysis. The effect of CSL protein hydrolysate on plant growth was tested in vivo on wheat grain seed germination and resulted in the significant increase in germination parameters compared to the control treatment. These findings indicate that by-products of starch industry could be a promising source for the production of low-cost sustainable biostimulants.
Collapse
|
14
|
Dell’Aversana E, Cirillo V, Van Oosten MJ, Di Stasio E, Saiano K, Woodrow P, Ciarmiello LF, Maggio A, Carillo P. Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism. PLANTS 2021; 10:plants10061044. [PMID: 34064272 PMCID: PMC8224312 DOI: 10.3390/plants10061044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress.
Collapse
Affiliation(s)
- Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Michael James Van Oosten
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Katya Saiano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Loredana Filomena Ciarmiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy; (V.C.); (M.J.V.O.); (E.D.S.); (A.M.)
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (E.D.); (K.S.); (P.W.); (L.F.C.)
- Correspondence: ; Tel.: +39-0823-274562
| |
Collapse
|
15
|
Cervela-Cardona L, Alary B, Mas P. The Arabidopsis Circadian Clock and Metabolic Energy: A Question of Time. FRONTIERS IN PLANT SCIENCE 2021; 12:804468. [PMID: 34956299 PMCID: PMC8695440 DOI: 10.3389/fpls.2021.804468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
A fundamental principle shared by all organisms is the metabolic conversion of nutrients into energy for cellular processes and structural building blocks. A highly precise spatiotemporal programming is required to couple metabolic capacity with energy allocation. Cellular metabolism is also able to adapt to the external time, and the mechanisms governing such an adaptation rely on the circadian clock. Virtually all photosensitive organisms have evolved a self-sustained timekeeping mechanism or circadian clock that anticipates and responds to the 24-h environmental changes that occur during the day and night cycle. This endogenous timing mechanism works in resonance with the environment to control growth, development, responses to stress, and also metabolism. Here, we briefly describe the prevalent role for the circadian clock controlling the timing of mitochondrial activity and cellular energy in Arabidopsis thaliana. Evidence that metabolic signals can in turn feedback to the clock place the spotlight onto the molecular mechanisms and components linking the circadian function with metabolic homeostasis and energy.
Collapse
Affiliation(s)
- Luis Cervela-Cardona
- Centre for Research in Agricultural Genomics, CSIC-IRTA-Universidad Autónoma de Barcelona (UAB)-UB, Barcelona, Spain
| | - Benjamin Alary
- Centre for Research in Agricultural Genomics, CSIC-IRTA-Universidad Autónoma de Barcelona (UAB)-UB, Barcelona, Spain
| | - Paloma Mas
- Centre for Research in Agricultural Genomics, CSIC-IRTA-Universidad Autónoma de Barcelona (UAB)-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- *Correspondence: Paloma Mas,
| |
Collapse
|
16
|
Submergence response of pyruvate decarboxylase family genes in adzuki bean. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00421-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Schenck CA, Westphal J, Jayaraman D, Garcia K, Wen J, Mysore KS, Ané J, Sumner LW, Maeda HA. Role of cytosolic, tyrosine-insensitive prephenate dehydrogenase in Medicago truncatula. PLANT DIRECT 2020; 4:e00218. [PMID: 32368714 PMCID: PMC7196213 DOI: 10.1002/pld3.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 05/26/2023]
Abstract
l-Tyrosine (Tyr) is an aromatic amino acid synthesized de novo in plants and microbes downstream of the shikimate pathway. In plants, Tyr and a Tyr pathway intermediate, 4-hydroxyphenylpyruvate (HPP), are precursors to numerous specialized metabolites, which are crucial for plant and human health. Tyr is synthesized in the plastids by a TyrA family enzyme, arogenate dehydrogenase (ADH/TyrAa), which is feedback inhibited by Tyr. Additionally, many legumes possess prephenate dehydrogenases (PDH/TyrAp), which are insensitive to Tyr and localized to the cytosol. Yet the role of PDH enzymes in legumes is currently unknown. This study isolated and characterized Tnt1-transposon mutants of MtPDH1 (pdh1) in Medicago truncatula to investigate PDH function. The pdh1 mutants lacked PDH transcript and PDH activity, and displayed little aberrant morphological phenotypes under standard growth conditions, providing genetic evidence that MtPDH1 is responsible for the PDH activity detected in M. truncatula. Though plant PDH enzymes and activity have been specifically found in legumes, nodule number and nitrogenase activity of pdh1 mutants were not significantly reduced compared with wild-type (Wt) during symbiosis with nitrogen-fixing bacteria. Although Tyr levels were not significantly different between Wt and mutants under standard conditions, when carbon flux was increased by shikimate precursor feeding, mutants accumulated significantly less Tyr than Wt. These data suggest that MtPDH1 is involved in Tyr biosynthesis when the shikimate pathway is stimulated and possibly linked to unidentified legume-specific specialized metabolism.
Collapse
Affiliation(s)
- Craig A. Schenck
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Josh Westphal
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - Kevin Garcia
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | | - Jean‐Michel Ané
- Department of BacteriologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Lloyd W. Sumner
- Department of BiochemistryUniversity of MissouriColumbiaMOUSA
- Metabolomics and Bond Life Sciences CentersUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
18
|
Sadeghnezhad E, Sharifi M, Zare-Maivan H, Ahmadian Chashmi N. Time-dependent behavior of phenylpropanoid pathway in response to methyl jasmonate in Scrophularia striata cell cultures. PLANT CELL REPORTS 2020; 39:227-243. [PMID: 31707473 DOI: 10.1007/s00299-019-02486-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/02/2019] [Indexed: 05/13/2023]
Abstract
MeJA triggers a time-dependent behavior of the phenylpropanoid compounds. Plant cells produce a large number of metabolites in response to environmental factors. The cellular responses to environmental changes are orchestrated by signaling molecules, such as methyl jasmonate (MeJA). To understand how the MeJA changes the behavior of amino acids, carbohydrates, and phenylpropanoid compounds such as phenolic acids, phenylethanoid-glycosides, and flavonoids in Scrophularia striata cells; we monitored the metabolic responses for different times of exposure. In this study, we performed a time course analysis of metabolites and enzymes in S. striata cells exposed to MeJA (100 µM) and evaluated the metabolic flux towards carbon-rich secondary metabolites production. Moreover, we calculated the biosynthetic energy cost for free amino acids. Our results indicated that MeJA accelerates the sucrose degradation and directs the metabolic fluxes towards a pool of flavonoids and phenylethanoid glycosides through a change in enzyme behavior in the entry point and center of the phenylpropanoid pathway. MeJA also decreased and then raised the amino acid biosynthesis cost in S. striata cells in a time-dependent manner, indicating the cells evolve to utilize amino acids more economically by reducing cell growth. Finally, we classified the marked changes in the metabolites level and enzyme activities into three groups including early-, late-, and oscillatory-response groups to MeJA and summarized our findings as a model depicting pathway interactions during MeJA elicitation. Determination of metabolic levels in response to MeJA suggests that the changes in metabolic responses are time-dependent.
Collapse
Affiliation(s)
- Ehsan Sadeghnezhad
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hassan Zare-Maivan
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
19
|
Kimani W, Zhang LM, Wu XY, Hao HQ, Jing HC. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). BMC Genomics 2020; 21:112. [PMID: 32005168 PMCID: PMC6995107 DOI: 10.1186/s12864-020-6538-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In sorghum (Sorghum bicolor), one paramount breeding objective is to increase grain quality. The nutritional quality and end use value of sorghum grains are primarily influenced by the proportions of tannins, starch and proteins, but the genetic basis of these grain quality traits remains largely unknown. This study aimed to dissect the natural variation of sorghum grain quality traits and identify the underpinning genetic loci by genome-wide association study. RESULTS Levels of starch, tannins and 17 amino acids were quantified in 196 diverse sorghum inbred lines, and 44 traits based on known metabolic pathways and biochemical interactions amongst the 17 amino acids calculated. A Genome-wide association study (GWAS) with 3,512,517 SNPs from re-sequencing data identified 14, 15 and 711 significant SNPs which represented 14, 14, 492 genetic loci associated with levels of tannins, starch and amino acids in sorghum grains, respectively. Amongst these significant SNPs, two SNPs were associated with tannin content on chromosome 4 and colocalized with three previously identified loci for Tannin1, and orthologs of Zm1 and TT16 genes. One SNP associated with starch content colocalized with sucrose phosphate synthase gene. Furthermore, homologues of opaque1 and opaque2 genes associated with amino acid content were identified. Using the KEGG pathway database, six and three candidate genes of tannins and starch were mapped into 12 and 3 metabolism pathways, respectively. Thirty-four candidate genes were mapped into 16 biosynthetic and catabolic pathways of amino acids. We finally reconstructed the biosynthetic pathways for aspartate and branched-chain amino acids based on 15 candidate genes identified in this study. CONCLUSION Promising candidate genes associated with grain quality traits have been identified in the present study. Some of them colocalized with previously identified genetic regions, but novel candidate genes involved in various metabolic pathways which influence grain quality traits have been dissected. Our study acts as an entry point for further validation studies to elucidate the complex mechanisms controlling grain quality traits such as tannins, starch and amino acids in sorghum.
Collapse
Affiliation(s)
- Wilson Kimani
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Xiao-Yuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China
| | - Huai-Qing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing, 100093, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
20
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
21
|
Yang Q, Zhao D, Liu Q. Connections Between Amino Acid Metabolisms in Plants: Lysine as an Example. FRONTIERS IN PLANT SCIENCE 2020; 11:928. [PMID: 32636870 PMCID: PMC7317030 DOI: 10.3389/fpls.2020.00928] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Extensive efforts have been made to fortify essential amino acids and boost nutrition in plants, but unintended effects on growth and physiology are also observed. Understanding how different amino acid metabolisms are connected with other biological pathways is therefore important. In addition to protein synthesis, amino acid metabolism is also tightly linked to energy and carbohydrate metabolism, the carbon-nitrogen budget, hormone and secondary metabolism, stress responses, and so on. Here, we update the currently available information on the connections between amino acid metabolisms, which tend to be overlooked in higher plants. Particular emphasis was placed on the connections between lysine metabolism and other pathways, such as tryptophan metabolism, the tricarboxylic acid cycle, abiotic and biotic stress responses, starch metabolism, and the unfolded protein response. Interestingly, regulation of lysine metabolism was found to differ between plant species, as is the case between dicots and monocots. Determining the metabolic connection between amino acid metabolisms will help improve our understanding of the metabolic flux, supporting studies on crop nutrition.
Collapse
Affiliation(s)
- Qingqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Dongsheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- *Correspondence: Qiaoquan Liu,
| |
Collapse
|
22
|
Abrahams RS, Pires JC, Schranz ME. Genomic Origin and Diversification of the Glucosinolate MAM Locus. FRONTIERS IN PLANT SCIENCE 2020; 11:711. [PMID: 32582245 PMCID: PMC7289053 DOI: 10.3389/fpls.2020.00711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/05/2020] [Indexed: 05/06/2023]
Abstract
Glucosinolates are a diverse group of plant metabolites that characterize the order Brassicales. The MAM locus is one of the most significant QTLs for glucosinolate diversity. However, most of what we understand about evolution at the locus is focused on only a few species and not within a phylogenetic context. In this study, we utilize a micro-synteny network and phylogenetic inference to investigate the origin and diversification of the MAM/IPMS gene family. We uncover unique MAM-like genes found at the orthologous locus in the Cleomaceae that shed light on the transition from IPMS to MAM. In the Brassicaceae, we identify six distinct MAM clades across Lineages I, II, and III. We characterize the evolutionary impact and consequences of local duplications, transpositions, whole genome duplications, and gene fusion events, generating several new hypothesizes on the function and diversity of the MAM locus.
Collapse
Affiliation(s)
- R. Shawn Abrahams
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - J. Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
- *Correspondence: M. Eric Schranz,
| |
Collapse
|
23
|
Cao P, Kim SJ, Xing A, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 2019; 8:e50747. [PMID: 31808741 PMCID: PMC6937141 DOI: 10.7554/elife.50747] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/05/2019] [Indexed: 01/11/2023] Open
Abstract
The target of rapamycin (TOR) kinase is an evolutionarily conserved hub of nutrient sensing and metabolic signaling. In plants, a functional connection of TOR activation with glucose availability was demonstrated, while it is yet unclear whether branched-chain amino acids (BCAAs) are a primary input of TOR signaling as they are in yeast and mammalian cells. Here, we report on the characterization of an Arabidopsis mutant over-accumulating BCAAs. Through chemical interventions targeting TOR and by examining mutants of BCAA biosynthesis and TOR signaling, we found that BCAA over-accumulation leads to up-regulation of TOR activity, which causes reorganization of the actin cytoskeleton and actin-associated endomembranes. Finally, we show that activation of TOR is concomitant with alteration of cell expansion, proliferation and specialized metabolism, leading to pleiotropic effects on plant growth and development. These results demonstrate that BCAAs contribute to plant TOR activation and reveal previously uncharted downstream subcellular processes of TOR signaling.
Collapse
Affiliation(s)
- Pengfei Cao
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| | - Anqi Xing
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Craig A Schenck
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Lu Liu
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
| | - Nan Jiang
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Jie Wang
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
| | - Robert L Last
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Federica Brandizzi
- MSU-DOE Plant Research LabMichigan State UniversityEast LansingUnited States
- Department of Plant BiologyMichigan State UniversityEast LansingUnited States
- Great Lakes Bioenergy Research Center, Michigan State UniversityEast LansingUnited States
| |
Collapse
|
24
|
Garg A, Kirchler T, Fillinger S, Wanke F, Stadelhofer B, Stahl M, Chaban C. Targeted manipulation of bZIP53 DNA-binding properties influences Arabidopsis metabolism and growth. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5659-5671. [PMID: 31257431 PMCID: PMC6812703 DOI: 10.1093/jxb/erz309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 05/21/2023]
Abstract
bZIP transcription factors regulate diverse processes in eukaryotic cells. Arabidopsis bZIP members of the C and S1 groups form heterodimers and synergistically control metabolic reprogramming during stress responses. However, their functional characterization is complicated due to an overlapping heterodimerization network and high redundancy. In this study, we develop a simple but powerful approach for generating dominant negative mutants of bZIP factors with high specificity. By applying in vitro DNA-binding, reporter gene and protoplast two-hybrid assays, and plant mutant analysis, we show that phosphorylation-mimicking substitution of conserved serines in the DNA-binding domain of bZIP monomeric subunits suffices for the disruption of the interaction of both bZIP homo- and heterodimers with cognate DNA. This results in the transcriptional inactivation of target genes. The dominant-negative effect is achieved by the unaltered function of the intrinsic nuclear localization signal and dimerization properties of the mutated bZIP protein. Our findings not only reveal an additional regulatory mechanism of bZIP10 intracellular localization, but also provide evidence of the involvement of bZIP53 in the diurnal adjustments of amino acid metabolism. Our data demonstrate the advantages and the suitability of this new approach for the artificial inactivation of bZIP transcription factors in plants, and it may also be of use for other organisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark Stahl
- ZMBP, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
25
|
Maeda HA. Harnessing evolutionary diversification of primary metabolism for plant synthetic biology. J Biol Chem 2019; 294:16549-16566. [PMID: 31558606 DOI: 10.1074/jbc.rev119.006132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants produce numerous natural products that are essential to both plant and human physiology. Recent identification of genes and enzymes involved in their biosynthesis now provides exciting opportunities to reconstruct plant natural product pathways in heterologous systems through synthetic biology. The use of plant chassis, although still in infancy, can take advantage of plant cells' inherent capacity to synthesize and store various phytochemicals. Also, large-scale plant biomass production systems, driven by photosynthetic energy production and carbon fixation, could be harnessed for industrial-scale production of natural products. However, little is known about which plants could serve as ideal hosts and how to optimize plant primary metabolism to efficiently provide precursors for the synthesis of desirable downstream natural products or specialized (secondary) metabolites. Although primary metabolism is generally assumed to be conserved, unlike the highly-diversified specialized metabolism, primary metabolic pathways and enzymes can differ between microbes and plants and also among different plants, especially at the interface between primary and specialized metabolisms. This review highlights examples of the diversity in plant primary metabolism and discusses how we can utilize these variations in plant synthetic biology. I propose that understanding the evolutionary, biochemical, genetic, and molecular bases of primary metabolic diversity could provide rational strategies for identifying suitable plant hosts and for further optimizing primary metabolism for sizable production of natural and bio-based products in plants.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
26
|
Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z. Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4721-4736. [PMID: 31106831 PMCID: PMC6760319 DOI: 10.1093/jxb/erz239] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/11/2019] [Indexed: 05/20/2023]
Abstract
Plants undergo a phase transition from vegetative to reproductive development that triggers floral induction. Genes containing an AAI (α-amylase inhibitor) domain form a large gene family, but there have been no comprehensive analyses of this gene family in any plant species. Here, we identified 336 AAI genes from nine plant species including122 AAI genes in cotton (Gossypium hirsutum). The AAI gene family has evolutionarily conserved amino acid residues throughout the plant kingdom. Phylogenetic analysis classified AAI genes into five major clades with significant polyploidization and showing effects of genome duplication. Our study identified 42 paralogous and 216 orthologous gene pairs resulting from segmental and whole-genome duplication, respectively, demonstrating significant contributions of gene duplication to expansion of the cotton AAI gene family. Further, GhAAI66 was preferentially expressed in flower tissue and as responses to phytohormone treatments. Ectopic expression of GhAAI66 in Arabidopsis and silencing in cotton revealed that GhAAI66 triggers a phase transition to induce early flowering. Further, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of RNA sequencing data and qRT-PCR (quantitative reverse transcription-PCR) analysis indicated that GhAAI66 integrates multiple flower signaling pathways including gibberellin, jasmonic acid, and floral integrators to trigger an early flowering cascade in Arabidopsis. Therefore, characterization of the AAI family provides invaluable insights for improving cotton breeding.
Collapse
Affiliation(s)
- Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kehai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan, China
- Correspondence: or
| |
Collapse
|
27
|
Hemmerlin A, Huchelmann A, Tritsch D, Schaller H, Bach TJ. The specific molecular architecture of plant 3-hydroxy-3-methylglutaryl-CoA lyase. J Biol Chem 2019; 294:16186-16197. [PMID: 31515272 DOI: 10.1074/jbc.ra119.008839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/20/2019] [Indexed: 11/06/2022] Open
Abstract
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase (HMGL) is involved in branched-chain amino acid catabolism leading to acetyl-CoA production. Here, using bioinformatics analyses and protein sequence alignments, we found that in Arabidopsis thaliana a single gene encodes two HMGL isoforms differing in size (51 kDa, HMGL51 and 46 kDa, HMGL46). Similar to animal HMGLs, both isoforms comprised a C-terminal type 1 peroxisomal retention motif, and HMGL51 contained a mitochondrial leader peptide. We observed that only a shortened HMGL (35 kDa, HMGL35) is conserved across all kingdoms of life. Most notably, all plant HMGLs also contained a specific N-terminal extension (P100) that is located between the N-terminal mitochondrial targeting sequence TP35 and HMGL35 and is absent in bacteria and other eukaryotes. Interestingly, using HMGL enzyme assays, we found that rather than HMGL46, homodimeric recombinant HMGL35 is the active enzyme catalyzing acetyl-CoA and acetoacetate synthesis when incubated with (S)-HMG-CoA. This suggested that the plant-specific P100 peptide may inactivate HMGL according to specific physiological requirements. Therefore, we investigated whether the P100 peptide in HMGL46 alters its activity, possibly by modifying the HMGL46 structure. We found that induced expression of a cytosolic HMGL35 version in A. thaliana delays germination and leads to rapid wilting and chlorosis in mature plants. Our results suggest that in plants, P100-mediated HMGL inactivation outside of peroxisomes or mitochondria is crucial, protecting against potentially cytotoxic effects of HMGL activity while it transits to these organelles.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Alexandre Huchelmann
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Denis Tritsch
- Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg, France
| | - Hubert Schaller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Thomas J Bach
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
28
|
A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat Commun 2019; 10:4061. [PMID: 31492891 PMCID: PMC6731263 DOI: 10.1038/s41467-019-12014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Tiny marine green algae issued from two deep branches of the Chlorophyta, the Mamiellophyceae and Chloropicophyceae, dominate different regions of the oceans and play key roles in planktonic communities. Considering that the Mamiellophyceae is the sole lineage of prasinophyte algae that has been intensively investigated, the extent to which these two algal groups differ in their metabolic capacities and cellular processes is currently unknown. To address this gap of knowledge, we investigate here the nuclear genome sequence of a member of the Chloropicophyceae, Chloropicon primus. Among the main biological insights that emerge from this 17.4 Mb genome, we find an unexpected diploid structure for most chromosomes and a propionate detoxification pathway in green algae. Our results support the notion that separate events of genome minimization, which entailed differential losses of genes/pathways, have occurred in the Chloropicophyceae and Mamiellophyceae, suggesting different strategies of adaptation to oceanic environments.
Collapse
|
29
|
Liang Y, Kong F, Torres-Romero I, Burlacot A, Cuine S, Légeret B, Billon E, Brotman Y, Alseekh S, Fernie AR, Beisson F, Peltier G, Li-Beisson Y. Branched-Chain Amino Acid Catabolism Impacts Triacylglycerol Homeostasis in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2019; 179:1502-1514. [PMID: 30728273 PMCID: PMC6446750 DOI: 10.1104/pp.18.01584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) starvation-induced triacylglycerol (TAG) synthesis, and its complex relationship with starch metabolism in algal cells, has been intensively studied; however, few studies have examined the interaction between amino acid metabolism and TAG biosynthesis. Here, via a forward genetic screen for TAG homeostasis, we isolated a Chlamydomonas (Chlamydomonas reinhardtii) mutant (bkdE1α) that is deficient in the E1α subunit of the branched-chain ketoacid dehydrogenase (BCKDH) complex. Metabolomics analysis revealed a defect in the catabolism of branched-chain amino acids in bkdE1α Furthermore, this mutant accumulated 30% less TAG than the parental strain during N starvation and was compromised in TAG remobilization upon N resupply. Intriguingly, the rate of mitochondrial respiration was 20% to 35% lower in bkdE1α compared with the parental strains. Three additional knockout mutants of the other components of the BCKDH complex exhibited phenotypes similar to that of bkdE1α Transcriptional responses of BCKDH to different N status were consistent with its role in TAG homeostasis. Collectively, these results indicate that branched-chain amino acid catabolism contributes to TAG metabolism by providing carbon precursors and ATP, thus highlighting the complex interplay between distinct subcellular metabolisms for oil storage in green microalgae.
Collapse
Affiliation(s)
- Yuanxue Liang
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Fantao Kong
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Ismael Torres-Romero
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Adrien Burlacot
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Stéphan Cuine
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Bertrand Légeret
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Emmanuelle Billon
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Fred Beisson
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Gilles Peltier
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Yonghua Li-Beisson
- Aix-Marseille University, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Commissariat à l'Energie Atomique Cadarache, Saint-Paul-lez Durance F-13108, France
| |
Collapse
|
30
|
Izumi M, Nakamura S, Li N. Autophagic Turnover of Chloroplasts: Its Roles and Regulatory Mechanisms in Response to Sugar Starvation. FRONTIERS IN PLANT SCIENCE 2019; 10:280. [PMID: 30967883 PMCID: PMC6439420 DOI: 10.3389/fpls.2019.00280] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/20/2019] [Indexed: 05/29/2023]
Abstract
Photosynthetic reactions in chloroplasts convert atmospheric carbon dioxide into starch and soluble sugars during the day. Starch, a transient storage form of sugar, is broken down into sugars as a source for respiratory energy production at night. Chloroplasts thus serve as the main sites of sugar production for photoautotrophic plant growth. Autophagy is an evolutionarily conserved intracellular process in eukaryotes that degrades organelles and proteins. Numerous studies have shown that autophagy is actively induced in sugar-starved plants. When photosynthetic sugar production is inhibited by environmental cues, chloroplasts themselves may become an attractive alternative energy source to sugars via their degradation. Here, we summarize the process of autophagic turnover of chloroplasts and its roles in plants in response to sugar starvation. We hypothesize that piecemeal-type chloroplast autophagy is specifically activated in plants in response to sugar starvation.
Collapse
Affiliation(s)
- Masanori Izumi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Sakuya Nakamura
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Nan Li
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
31
|
Wang M, Toda K, Block A, Maeda HA. TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in Arabidopsis thaliana. J Biol Chem 2019; 294:3563-3576. [PMID: 30630953 PMCID: PMC6416433 DOI: 10.1074/jbc.ra118.006539] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Indexed: 12/18/2022] Open
Abstract
Plants produce various l-tyrosine (Tyr)-derived compounds that are critical for plant adaptation and have pharmaceutical or nutritional importance for human health. Tyrosine aminotransferases (TATs) catalyze the reversible reaction between Tyr and 4-hydroxyphenylpyruvate (HPP), representing the entry point in plants for both biosynthesis of various natural products and Tyr degradation in the recycling of energy and nutrients. To better understand the roles of TATs and how Tyr is metabolized in planta, here we characterized single and double loss-of-function mutants of TAT1 (At5g53970) and TAT2 (At5g36160) in the model plant Arabidopsis thaliana As reported previously, tat1 mutants exhibited elevated and decreased levels of Tyr and tocopherols, respectively. The tat2 mutation alone had no impact on Tyr and tocopherol levels, but a tat1 tat2 double mutant had increased Tyr accumulation and decreased tocopherol levels under high-light stress compared with the tat1 mutant. Relative to WT and the tat2 mutant, the tat1 mutant displayed increased vulnerability to continuous dark treatment, associated with an early drop in respiratory activity and sucrose depletion. During isotope-labeled Tyr feeding in the dark, we observed that the tat1 mutant exhibits much slower 13C incorporation into tocopherols, fumarate, and other tricarboxylic acid (TCA) cycle intermediates than WT and the tat2 mutant. These results indicate that TAT1 and TAT2 function together in tocopherol biosynthesis, with TAT2 having a lesser role, and that TAT1 plays the major role in Tyr degradation in planta Our study also highlights the importance of Tyr degradation under carbon starvation conditions during dark-induced senescence in plants.
Collapse
Affiliation(s)
- Minmin Wang
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Kyoko Toda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
- the Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Anna Block
- the Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, Florida 32608, and
| | - Hiroshi A Maeda
- From the Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
32
|
Izumi M, Ishida H. An additional role for chloroplast proteins-an amino acid reservoir for energy production during sugar starvation. PLANT SIGNALING & BEHAVIOR 2018; 14:1552057. [PMID: 30507341 PMCID: PMC6351091 DOI: 10.1080/15592324.2018.1552057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Autophagy is an evolutionarily conserved system that degrades intracellular components including proteins and organelles, and is important in the adaptive response to starvation in various eukaryotic organisms. Plant chloroplasts convert light energy into chemical energy and assimilate atmospheric carbon dioxide (CO2) for carbohydrate production through photosynthesis reactions. We previously described an autophagy process for chloroplast degradation, during which a portion of chloroplasts are mobilized into the vacuole via autophagic vesicles termed Rubisco-containing bodies. Our recent study demonstrated that the activation of autophagy in photoassimilate-limited leaves is required for the production of free amino acids (AAs) as an alternative energy source. The catabolism of free branched-chain amino acids (BCAAs) is particularly important for survival under starvation conditions. These recent findings suggest an additional role for chloroplasts as a reservoir of AA when photosynthetic energy production is limited.
Collapse
Affiliation(s)
- Masanori Izumi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Hiroyuki Ishida
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Cavalcanti JHF, Kirma M, Barros JAS, Quinhones CGS, Pereira-Lima ÍA, Obata T, Nunes-Nesi A, Galili G, Fernie AR, Avin-Wittenberg T, Araújo WL. An L,L-diaminopimelate aminotransferase mutation leads to metabolic shifts and growth inhibition in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5489-5506. [PMID: 30215754 PMCID: PMC6255705 DOI: 10.1093/jxb/ery325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Lysine (Lys) connects the mitochondrial electron transport chain to amino acid catabolism and the tricarboxylic acid cycle. However, our understanding of how a deficiency in Lys biosynthesis impacts plant metabolism and growth remains limited. Here, we used a previously characterized Arabidopsis mutant (dapat) with reduced activity of the Lys biosynthesis enzyme L,L-diaminopimelate aminotransferase to investigate the physiological and metabolic impacts of impaired Lys biosynthesis. Despite displaying similar stomatal conductance and internal CO2 concentration, we observed reduced photosynthesis and growth in the dapat mutant. Surprisingly, whilst we did not find differences in dark respiration between genotypes, a lower storage and consumption of starch and sugars was observed in dapat plants. We found higher protein turnover but no differences in total amino acids during a diurnal cycle in dapat plants. Transcriptional and two-dimensional (isoelectric focalization/SDS-PAGE) proteome analyses revealed alterations in the abundance of several transcripts and proteins associated with photosynthesis and photorespiration coupled with a high glycine/serine ratio and increased levels of stress-responsive amino acids. Taken together, our findings demonstrate that biochemical alterations rather than stomatal limitations are responsible for the decreased photosynthesis and growth of the dapat mutant, which we hypothesize mimics stress conditions associated with impairments in the Lys biosynthesis pathway.
Collapse
Affiliation(s)
- João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Menny Kirma
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carla G S Quinhones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gad Galili
- Department of Plant Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Tamar Avin-Wittenberg
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem Israel
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
34
|
Lorenz C, Brandt S, Borisjuk L, Rolletschek H, Heinzel N, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. The Role of Persulfide Metabolism During Arabidopsis Seed Development Under Light and Dark Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1381. [PMID: 30283487 PMCID: PMC6156424 DOI: 10.3389/fpls.2018.01381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/30/2018] [Indexed: 05/25/2023]
Abstract
The sulfur dioxygenase ETHE1 oxidizes persulfides in the mitochondrial matrix and is involved in the degradation of L-cysteine and hydrogen sulfide. ETHE1 has an essential but as yet undefined function in early embryo development of Arabidopsis thaliana. In leaves, ETHE1 is strongly induced by extended darkness and participates in the use of amino acids as alternative respiratory substrates during carbohydrate starvation. Thus, we tested the effect of darkness on seed development in an ETHE1 deficient mutant in comparison to the wild type. Since ETHE1 knock-out is embryo lethal, the knock-down line ethe1-1 with about 1% residual sulfur dioxygenase activity was used for this study. We performed phenotypic analysis, metabolite profiling and comparative proteomics in order to investigate the general effect of extended darkness on seed metabolism and further define the specific function of the mitochondrial sulfur dioxygenase ETHE1 in seeds. Shading of the siliques had no morphological effect on embryogenesis in wild type plants. However, the developmental delay that was already visible in ethe1-1 seeds under control conditions was further enhanced in the darkness. Dark conditions strongly affected seed quality parameters of both wild type and mutant plants. The effect of ETHE1 knock-down on amino acid profiles was clearly different from that found in leaves indicating that in seeds persulfide oxidation interacts with alanine and glycine rather than branched-chain amino acid metabolism. Sulfur dioxygenase deficiency led to defects in endosperm development possibly due to alterations in the cellularization process. In addition, we provide evidence for a potential role of persulfide metabolism in abscisic acid (ABA) signal transduction in seeds. We conclude that the knock-down of ETHE1 causes metabolic re-arrangements in seeds that differ from those in leaves. Putative mechanisms that cause the aberrant endosperm and embryo development are discussed.
Collapse
Affiliation(s)
- Christin Lorenz
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Saskia Brandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| | - Tatjana M. Hildebrandt
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
35
|
Elasad M, Ondati E, Wei H, Wang H, Su J, Fan S, Pang C, Yu S. Functional analysis of nine cotton genes related to leaf senescence in Gossypium hirsutum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:729-739. [PMID: 30150850 PMCID: PMC6103938 DOI: 10.1007/s12298-018-0561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/14/2017] [Accepted: 05/21/2018] [Indexed: 05/06/2023]
Abstract
Leaf senescence is defined as a deterioration process that continues to the final developmental stage of leaf. This process is usually regulated by both external and internal factors. There are about 5356 senescence associated genes belonging to 44 plant species. A great number of these genes were identified in Arabidopsis. Leaf senescence can be regulated by many transcription factors. In this study, nine gene families were selected according to their expression levels during leaf senescence from our laboratory database. Phylogenetic tree was constructed by MEGA6. Cultivated cotton CCRI-10 seeds were sown in the experimental field of Institute of Cotton Research of CAAS for profiling and leaf development stages analysis. For abiotic (drought and salt) stress and phytohormone (ABA, SA, ET and JA) treatments, CCRI-10 seeds were sown in potting soil at 25 °C in a chamber room. Total RNA was isolated from various samples and the cDNA prepared for qRT-PCR. The comparative CT method was applied to calculate the relative expression levels of genes. For phylogenetic tree, nine cotton genes were divided into two groups, most of homologous genes in previous studies showed roles in phytohormones and abiotic stress. Expression profiling of the nine genes showed different patterns of tissue specific expression. In leaf development stages, majority of cotton genes showed high expression in early and complete senescence stage. Furthermore, most of cotton genes have positive or negative response to phytohormones and abiotic stress. Based on the results of this study, we found four cotton genes CotAD_07559, CotAD_37422, CotAD_21204 and CotAD_54353 as candidate genes for leaves senescence and abiotic stress.
Collapse
Affiliation(s)
- Mohammed Elasad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Evans Ondati
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 Henan Province China
| |
Collapse
|
36
|
Brandt S, Fachinger S, Tohge T, Fernie AR, Braun HP, Hildebrandt TM. Extended darkness induces internal turnover of glucosinolates in Arabidopsis thaliana leaves. PLoS One 2018; 13:e0202153. [PMID: 30092103 PMCID: PMC6084957 DOI: 10.1371/journal.pone.0202153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
Prolonged darkness leads to carbohydrate starvation, and as a consequence plants degrade proteins and lipids to oxidize amino acids and fatty acids as alternative substrates for mitochondrial ATP production. We investigated, whether the internal breakdown of glucosinolates, a major class of sulfur-containing secondary metabolites, might be an additional component of the carbohydrate starvation response in Arabidopsis thaliana (A. thaliana). The glucosinolate content of A. thaliana leaves was strongly reduced after seven days of darkness. We also detected a significant increase in the activity of myrosinase, the enzyme catalyzing the initial step in glucosinolate breakdown, coinciding with a strong induction of the main leaf myrosinase isoforms TGG1 and TGG2. In addition, nitrilase activity was increased suggesting a turnover via nitriles and carboxylic acids. Internal degradation of glucosinolates might also be involved in diurnal or developmental adaptations of the glucosinolate profile. We observed a diurnal rhythm for myrosinase activity in two-week-old plants. Furthermore, leaf myrosinase activity and protein abundance of TGG2 varied during plant development, whereas leaf protein abundance of TGG1 remained stable indicating regulation at the transcriptional as well as post-translational level.
Collapse
Affiliation(s)
- Saskia Brandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Sara Fachinger
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany
| | | |
Collapse
|
37
|
Durgud M, Gupta S, Ivanov I, Omidbakhshfard MA, Benina M, Alseekh S, Staykov N, Hauenstein M, Dijkwel PP, Hörtensteiner S, Toneva V, Brotman Y, Fernie AR, Mueller-Roeber B, Gechev TS. Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant. PLANT PHYSIOLOGY 2018; 177:1319-1338. [PMID: 29789435 PMCID: PMC6053018 DOI: 10.1104/pp.18.00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 05/28/2023]
Abstract
The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress- and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast- and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis- and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.
Collapse
Affiliation(s)
- Meriem Durgud
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Saurabh Gupta
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Ivan Ivanov
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - M Amin Omidbakhshfard
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Saleh Alseekh
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Nikola Staykov
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Mareike Hauenstein
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, 4474 Palmerston North, New Zealand
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Valentina Toneva
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
38
|
Tomassetti M, Garavaglia BS, Vranych CV, Gottig N, Ottado J, Gramajo H, Diacovich L. 3-methylcrotonyl Coenzyme A (CoA) carboxylase complex is involved in the Xanthomonas citri subsp. citri lifestyle during citrus infection. PLoS One 2018; 13:e0198414. [PMID: 29879157 PMCID: PMC5991677 DOI: 10.1371/journal.pone.0198414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/19/2018] [Indexed: 01/15/2023] Open
Abstract
Citrus canker is a disease caused by the phytopathogen Xanthomonas citri subsp. citri (Xcc), bacterium which is unable to survive out of the host for extended periods of time. Once established inside the plant, the pathogen must compete for resources and evade the defenses of the host cell. However, a number of aspects of Xcc metabolic and nutritional state, during the epiphytic stage and at different phases of infection, are poorly characterized. The 3-methylcrotonyl-CoA carboxylase complex (MCC) is an essential enzyme for the catabolism of the branched-chain amino acid leucine, which prevents the accumulation of toxic intermediaries, facilitates the generation of branched chain fatty acids and/or provides energy to the cell. The MCC complexes belong to a group of acyl-CoA carboxylases (ACCase) enzymes dependent of biotin. In this work, we have identified two ORFs (XAC0263 and XAC0264) encoding for the α and β subunits of an acyl-CoA carboxylase complex from Xanthomonas and demonstrated that this enzyme has MCC activity both in vitro and in vivo. We also found that this MCC complex is conserved in a group of pathogenic gram negative bacteria. The generation and analysis of an Xcc mutant strain deficient in MCC showed less canker lesions in the interaction with the host plant, suggesting that the expression of these proteins is necessary for Xcc fitness during infection.
Collapse
Affiliation(s)
- Mauro Tomassetti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Betiana S. Garavaglia
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cecilia V. Vranych
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Natalia Gottig
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina Ottado
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
39
|
Abstract
Most assimilated nutrients in the leaves of land plants are stored in chloroplasts as photosynthetic proteins, where they mediate CO2 assimilation during growth. During senescence or under suboptimal conditions, chloroplast proteins are degraded, and the amino acids released during this process are used to produce young tissues, seeds, or respiratory energy. Protein degradation machineries contribute to the quality control of chloroplasts by removing damaged proteins caused by excess energy from sunlight. Whereas previous studies revealed that chloroplasts contain several types of intraplastidic proteases that likely derived from an endosymbiosed prokaryotic ancestor of chloroplasts, recent reports have demonstrated that multiple extraplastidic pathways also contribute to chloroplast protein turnover in response to specific cues. One such pathway is autophagy, an evolutionarily conserved process that leads to the vacuolar or lysosomal degradation of cytoplasmic components in eukaryotic cells. Here, we describe and contrast the extraplastidic pathways that degrade chloroplasts. This review shows that diverse pathways participate in chloroplast turnover during sugar starvation, senescence, and oxidative stress. Elucidating the mechanisms that regulate these pathways will help decipher the relationship among the diverse pathways mediating chloroplast protein turnover.
Collapse
Affiliation(s)
- Masanori Izumi
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan.
| | - Sakuya Nakamura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
40
|
Pedrotti L, Weiste C, Nägele T, Wolf E, Lorenzin F, Dietrich K, Mair A, Weckwerth W, Teige M, Baena-González E, Dröge-Laser W. Snf1-RELATED KINASE1-Controlled C/S 1-bZIP Signaling Activates Alternative Mitochondrial Metabolic Pathways to Ensure Plant Survival in Extended Darkness. THE PLANT CELL 2018; 30:495-509. [PMID: 29348240 PMCID: PMC5868691 DOI: 10.1105/tpc.17.00414] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/30/2017] [Accepted: 01/16/2018] [Indexed: 05/18/2023]
Abstract
Sustaining energy homeostasis is of pivotal importance for all living organisms. In Arabidopsis thaliana, evolutionarily conserved SnRK1 kinases (Snf1-RELATED KINASE1) control metabolic adaptation during low energy stress. To unravel starvation-induced transcriptional mechanisms, we performed transcriptome studies of inducible knockdown lines and found that S1-basic leucine zipper transcription factors (S1-bZIPs) control a defined subset of genes downstream of SnRK1. For example, S1-bZIPs coordinate the expression of genes involved in branched-chain amino acid catabolism, which constitutes an alternative mitochondrial respiratory pathway that is crucial for plant survival during starvation. Molecular analyses defined S1-bZIPs as SnRK1-dependent regulators that directly control transcription via binding to G-box promoter elements. Moreover, SnRK1 triggers phosphorylation of group C-bZIPs and the formation of C/S1-heterodimers and, thus, the recruitment of SnRK1 directly to target promoters. Subsequently, the C/S1-bZIP-SnRK1 complex interacts with the histone acetylation machinery to remodel chromatin and facilitate transcription. Taken together, this work reveals molecular mechanisms underlying how energy deprivation is transduced to reprogram gene expression, leading to metabolic adaptation upon stress.
Collapse
Affiliation(s)
- Lorenzo Pedrotti
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria
| | - Elmar Wolf
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97074, Germany
| | - Francesca Lorenzin
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97074, Germany
| | - Katrin Dietrich
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria
| | | | - Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany
| |
Collapse
|
41
|
Barros JAS, Cavalcanti JHF, Medeiros DB, Nunes-Nesi A, Avin-Wittenberg T, Fernie AR, Araújo WL. Autophagy Deficiency Compromises Alternative Pathways of Respiration following Energy Deprivation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2017; 175:62-76. [PMID: 28710132 PMCID: PMC5580740 DOI: 10.1104/pp.16.01576] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/11/2017] [Indexed: 05/18/2023]
Abstract
Under heterotrophic conditions, carbohydrate oxidation inside the mitochondrion is the primary energy source for cellular metabolism. However, during energy-limited conditions, alternative substrates are required to support respiration. Amino acid oxidation in plant cells plays a key role in this by generating electrons that can be transferred to the mitochondrial electron transport chain via the electron transfer flavoprotein/ubiquinone oxidoreductase system. Autophagy, a catabolic mechanism for macromolecule and protein recycling, allows the maintenance of amino acid pools and nutrient remobilization. Although the association between autophagy and alternative respiratory substrates has been suggested, the extent to which autophagy and primary metabolism interact to support plant respiration remains unclear. To investigate the metabolic importance of autophagy during development and under extended darkness, Arabidopsis (Arabidopsis thaliana) mutants with disruption of autophagy (atg mutants) were used. Under normal growth conditions, atg mutants showed lower growth and seed production with no impact on photosynthesis. Following extended darkness, atg mutants were characterized by signatures of early senescence, including decreased chlorophyll content and maximum photochemical efficiency of photosystem II coupled with increases in dark respiration. Transcript levels of genes involved in alternative pathways of respiration and amino acid catabolism were up-regulated in atg mutants. The metabolite profiles of dark-treated leaves revealed an extensive metabolic reprogramming in which increases in amino acid levels were partially compromised in atg mutants. Although an enhanced respiration in atg mutants was observed during extended darkness, autophagy deficiency compromises protein degradation and the generation of amino acids used as alternative substrates to the respiration.
Collapse
Affiliation(s)
- Jessica A S Barros
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - João Henrique F Cavalcanti
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - David B Medeiros
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Tamar Avin-Wittenberg
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| |
Collapse
|
42
|
Xing A, Last RL. A Regulatory Hierarchy of the Arabidopsis Branched-Chain Amino Acid Metabolic Network. THE PLANT CELL 2017; 29:1480-1499. [PMID: 28522547 PMCID: PMC5502462 DOI: 10.1105/tpc.17.00186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 05/11/2017] [Indexed: 05/18/2023]
Abstract
The branched-chain amino acids (BCAAs) Ile, Val, and Leu are essential nutrients that humans and other animals obtain from plants. However, total and relative amounts of plant BCAAs rarely match animal nutritional needs, and improvement requires a better understanding of the mechanistic basis for BCAA homeostasis. We present an in vivo regulatory model of BCAA homeostasis derived from analysis of feedback-resistant Arabidopsis thaliana mutants for the three allosteric committed enzymes in the biosynthetic network: threonine deaminase (also named l-O-methylthreonine resistant 1 [OMR1]), acetohydroxyacid synthase small subunit 2 (AHASS2), and isopropylmalate synthase 1 (IPMS1). In this model, OMR1 exerts primary control on Ile accumulation and functions independently of AHAS and IPMS AHAS and IPMS regulate Val and Leu homeostasis, where AHAS affects total Val+Leu and IPMS controls partitioning between these amino acids. In addition, analysis of feedback-resistant and loss-of-function single and double mutants revealed that each AHAS and IPMS isoenzyme contributes to homeostasis rather than being functionally redundant. The characterized feedback resistance mutations caused increased free BCAA levels in both seedlings and seeds. These results add to our understanding of the basis of in vivo BCAA homeostasis and inform approaches to improve the amount and balance of these essential nutrients in crops.
Collapse
Affiliation(s)
- Anqi Xing
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
43
|
Gipson AB, Morton KJ, Rhee RJ, Simo S, Clayton JA, Perrett ME, Binkley CG, Jensen EL, Oakes DL, Rouhier MF, Rouhier KA. Disruptions in valine degradation affect seed development and germination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1029-1039. [PMID: 28321931 PMCID: PMC5461199 DOI: 10.1111/tpj.13538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 05/20/2023]
Abstract
We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kerry A. Rouhier
- Kenyon College 200 N. College Rd, Gambier, OH 43022
- Doan University 1014 Boswell Ave, Crete, NE 68333
- Corresponding author: Kerry A. Rouhier, 200 N. College Rd, Gambier, OH 43022, USA tel: (740) 427-5359, fax: (740) 427-5731,
| |
Collapse
|
44
|
Luu VT, Weinhold A, Ullah C, Dressel S, Schoettner M, Gase K, Gaquerel E, Xu S, Baldwin IT. O-Acyl Sugars Protect a Wild Tobacco from Both Native Fungal Pathogens and a Specialist Herbivore. PLANT PHYSIOLOGY 2017; 174:370-386. [PMID: 28275149 PMCID: PMC5411141 DOI: 10.1104/pp.16.01904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 05/04/2023]
Abstract
O-Acyl sugars (O-AS) are abundant trichome-specific metabolites that function as indirect defenses against herbivores of the wild tobacco Nicotiana attenuata; whether they also function as generalized direct defenses against herbivores and pathogens remains unknown. We characterized natural variation in O-AS among 26 accessions and examined their influence on two native fungal pathogens, Fusarium brachygibbosum U4 and Alternaria sp. U10, and the specialist herbivore Manduca sexta At least 15 different O-AS structures belonging to three classes were found in N. attenuata leaves. A 3-fold quantitative variation in total leaf O-AS was found among the natural accessions. Experiments with natural accessions and crosses between high- and low-O-AS accessions revealed that total O-AS levels were associated with resistance against herbivores and pathogens. Removing O-AS from the leaf surface increased M. sexta growth rate and plant fungal susceptibility. O-AS supplementation in artificial diets and germination medium reduced M. sexta growth and fungal spore germination, respectively. Finally, silencing the expression of a putative branched-chain α-ketoacid dehydrogenase E1 β-subunit-encoding gene (NaBCKDE1B) in the trichomes reduced total leaf O-AS by 20% to 30% and increased susceptibility to Fusarium pathogens. We conclude that O-AS function as direct defenses to protect plants from attack by both native pathogenic fungi and a specialist herbivore and infer that their diversification is likely shaped by the functional interactions among these biotic stresses.
Collapse
Affiliation(s)
- Van Thi Luu
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Alexander Weinhold
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Chhana Ullah
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Stefanie Dressel
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Matthias Schoettner
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Klaus Gase
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Emmanuel Gaquerel
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Shuqing Xu
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| | - Ian T Baldwin
- Department of Molecular Ecology (V.T.L., S.D., M.S., K.G., S.X., I.T.B.) and Department of Biochemistry (C.U.), Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
- Department of Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig 04103, Germany (A.W); and
- Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany (E.G.)
| |
Collapse
|
45
|
Yao L, Shen H, Wang N, Tatlay J, Li L, Tan TW, Lee YK. Elevated acetyl-CoA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:497-509. [PMID: 27734577 PMCID: PMC5362678 DOI: 10.1111/pbi.12648] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 05/16/2023]
Abstract
Microalgal neutral lipids [mainly in the form of triacylglycerols (TAGs)], feasible substrates for biofuel, are typically accumulated during the stationary growth phase. To make microalgal biofuels economically competitive with fossil fuels, generating strains that trigger TAG accumulation from the exponential growth phase is a promising biological approach. The regulatory mechanisms to trigger TAG accumulation from the exponential growth phase (TAEP) are important to be uncovered for advancing economic feasibility. Through the inhibition of pyruvate dehydrogenase kinase by sodium dichloroacetate, acetyl-CoA level increased, resulting in TAEP in microalga Dunaliella tertiolecta. We further reported refilling of acetyl-CoA pool through branched-chain amino acid catabolism contributed to an overall sixfold TAEP with marginal compromise (4%) on growth in a TAG-rich D. tertiolecta mutant from targeted screening. Herein, a three-step α loop-integrated metabolic model is introduced to shed lights on the neutral lipid regulatory mechanism. This article provides novel approaches to compress lipid production phase and heightens lipid productivity and photosynthetic carbon capture via enhancing acetyl-CoA level, which would optimize renewable microalgal biofuel to fulfil the demanding fuel market.
Collapse
Affiliation(s)
- Lina Yao
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Hui Shen
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Nan Wang
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Jaspaul Tatlay
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Liang Li
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Tin Wee Tan
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National Supercomputing Centre (NSCC)SingaporeSingapore
| | - Yuan Kun Lee
- Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
46
|
Knoch D, Riewe D, Meyer RC, Boudichevskaia A, Schmidt R, Altmann T. Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1655-1667. [PMID: 28338798 PMCID: PMC5444479 DOI: 10.1093/jxb/erx049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To gain insight into genetic factors controlling seed metabolic composition and its relationship to major seed properties, an Arabidopsis recombinant inbred line (RIL) population, derived from accessions Col-0 and C24, was studied using an MS-based metabolic profiling approach. Relative intensities of 311 polar primary metabolites were used to identify associated genomic loci and to elucidate their interactions by quantitative trait locus (QTL) mapping. A total of 786 metabolic QTLs (mQTLs) were unequally distributed across the genome, forming several hotspots. For the branched-chain amino acid leucine, mQTLs and candidate genes were elucidated in detail. Correlation studies displayed links between metabolite levels, seed protein content, and seed weight. Principal component analysis revealed a clustering of samples, with PC1 mapping to a region on the short arm of chromosome IV. The overlap of this region with mQTL hotspots indicates the presence of a potential master regulatory locus of seed metabolism. As a result of database queries, a series of candidate regulatory genes, including bZIP10, were identified within this region. Depending on the search conditions, metabolic pathway-derived candidate genes for 40-61% of tested mQTLs could be determined, providing an extensive basis for further identification and characterization of hitherto unknown genes causal for natural variation of Arabidopsis seed metabolism.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Rhonda Christiane Meyer
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Anastassia Boudichevskaia
- Department of Breeding Research/Genome Plasticity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Renate Schmidt
- Department of Breeding Research/Genome Plasticity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Thomas Altmann
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| |
Collapse
|
47
|
Angelovici R, Batushansky A, Deason N, Gonzalez-Jorge S, Gore MA, Fait A, DellaPenna D. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids. PLANT PHYSIOLOGY 2017; 173:872-886. [PMID: 27872244 PMCID: PMC5210728 DOI: 10.1104/pp.16.01287] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 05/18/2023]
Abstract
Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.);
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.);
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.);
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Albert Batushansky
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Nicholas Deason
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Sabrina Gonzalez-Jorge
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Michael A Gore
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Aaron Fait
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Dean DellaPenna
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| |
Collapse
|
48
|
Uygun S, Peng C, Lehti-Shiu MD, Last RL, Shiu SH. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations. PLoS Comput Biol 2016; 12:e1005244. [PMID: 27935950 PMCID: PMC5147789 DOI: 10.1371/journal.pcbi.1005244] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/13/2016] [Indexed: 01/25/2023] Open
Abstract
Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets. There remain genes with no known function even in the most well studied, model species. One common way to hypothesize gene function is based on the assumption that genes with similar expression profiles tend to have similar functions. However, using datasets and biological pathway information from the model plant Arabidopsis thaliana as an example, we discovered that, although genes in the same pathways are functionally related, genes in only a subset of the pathways have highly similar expression patterns. In addition, our ability to hypothesize gene functions based on expression is significantly impacted by how the dataset is processed and combined as well as the methodology used to identify genes with similar expression. Therefore, multiple datasets and methods should be tested to maximize the functional information that we can get based on similarity in gene expression.
Collapse
Affiliation(s)
- Sahra Uygun
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
| | - Cheng Peng
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Melissa D. Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert L. Last
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Shin-Han Shiu
- Genetics Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
49
|
Chrobok D, Law SR, Brouwer B, Lindén P, Ziolkowska A, Liebsch D, Narsai R, Szal B, Moritz T, Rouhier N, Whelan J, Gardeström P, Keech O. Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence. PLANT PHYSIOLOGY 2016; 172:2132-2153. [PMID: 27744300 PMCID: PMC5129728 DOI: 10.1104/pp.16.01463] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 05/20/2023]
Abstract
The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of α-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.
Collapse
Affiliation(s)
- Daria Chrobok
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Pernilla Lindén
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Agnieszka Ziolkowska
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Reena Narsai
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bozena Szal
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Thomas Moritz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Nicolas Rouhier
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - James Whelan
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.);
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.);
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.);
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| |
Collapse
|
50
|
Li L, Kubiszewski-Jakubiak S, Radomiljac J, Wang Y, Law SR, Keech O, Narsai R, Berkowitz O, Duncan O, Murcha MW, Whelan J. Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6061-6075. [PMID: 27811077 PMCID: PMC5100019 DOI: 10.1093/jxb/erw366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In plant cells, mitochondria are major providers of energy and building blocks for growth and development as well as abiotic and biotic stress responses. They are encircled by two lipid membranes containing proteins that control mitochondrial function through the import of macromolecules and metabolites. Characterization of a novel β-barrel protein, OUTER MEMBRANE PROTEIN 47 (OM47), unique to the green lineage and related to the voltage-dependent anion channel (VDAC) protein family, showed that OM47 can complement a VDAC mutant in yeast. Mutation of OM47 in Arabidopsis thaliana by T-DNA insertion had no effect on the import of proteins, such as the β-barrel proteins translocase of the outer membrane 40 (TOM40) or sorting and assembly machinery 50 (SAM50), into mitochondria. Molecular and physiological analyses revealed a delay in chlorophyll breakdown, higher levels of starch, and a delay in the induction of senescence marker genes in the mutant lines. While there was a reduction of >90% in OM47 protein in mitochondria isolated from 3-week-old om47 mutants, in mitochondria isolated from 8-week-old plants OM47 levels were similar to that of the wild type. This recovery was achieved by an up-regulation of OM47 transcript abundance in the mutants. Combined, these results highlight a role in leaf senescence for this plant-specific β-barrel protein, probably mediating the recovery and recycling of chloroplast breakdown products by transporting metabolic intermediates into and out of mitochondria.
Collapse
Affiliation(s)
- Lu Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Jordan Radomiljac
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|