1
|
Voothuluru P, Wu Y, Sharp RE. Not so hidden anymore: Advances and challenges in understanding root growth under water deficits. THE PLANT CELL 2024; 36:1377-1409. [PMID: 38382086 PMCID: PMC11062450 DOI: 10.1093/plcell/koae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Limited water availability is a major environmental factor constraining plant development and crop yields. One of the prominent adaptations of plants to water deficits is the maintenance of root growth that enables sustained access to soil water. Despite early recognition of the adaptive significance of root growth maintenance under water deficits, progress in understanding has been hampered by the inherent complexity of root systems and their interactions with the soil environment. We highlight selected milestones in the understanding of root growth responses to water deficits, with emphasis on founding studies that have shaped current knowledge and set the stage for further investigation. We revisit the concept of integrated biophysical and metabolic regulation of plant growth and use this framework to review central growth-regulatory processes occurring within root growth zones under water stress at subcellular to organ scales. Key topics include the primary processes of modifications of cell wall-yielding properties and osmotic adjustment, as well as regulatory roles of abscisic acid and its interactions with other hormones. We include consideration of long-recognized responses for which detailed mechanistic understanding has been elusive until recently, for example hydrotropism, and identify gaps in knowledge, ongoing challenges, and opportunities for future research.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Nimmo V, Violle C, Entz M, Rolhauser AG, Isaac ME. Changes in crop trait plasticity with domestication history: Management practices matter. Ecol Evol 2023; 13:e10690. [PMID: 38020689 PMCID: PMC10651313 DOI: 10.1002/ece3.10690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Crop domestication has led to the development of distinct trait syndromes, a series of constrained plant trait trade-offs to maximize yield in high-input agricultural environments, and potentially constrained trait plasticity. Yet, with the ongoing transition to organic and diversified agroecosystems, which create more heterogeneous nutrient availability, this constrained plasticity, especially in root functional traits, may be undesirable for nutrient acquisition. Such agricultural systems require a nuanced understanding of the soil-crop continuum under organic amendments and with intercropping, and the role crop genetic resources play in governing nutrient management and design. In this study, we use a functional traits lens to determine if crops with a range of domestication histories express different functional trait plasticity and how this expression changes with soil amendments and intercropping. We utilize a common garden experiment including five wheat (Triticum aestivum) varietals with a range of domestication histories planted in a factorial combination with amendment type (organic and inorganic) and cropping design (monoculture or intercropped with soybean). We use bivariate, multivariate and trait space analyses to quantify trait variation and plasticity in five leaf and five root functional traits. Almost all leaf and root traits varied among varieties. Yet, amendment type was nearly inconsequential for explaining trait expression across varieties. However, intercropping was linked to significant differences in root acquisitive strategies, regardless of the varietals' distinct history. Our findings show substantial leaf and root trait plasticity, with roots expressing greater trait space occupation with domestication, but also the strong role of management in crop trait expression. We underscore the utility of a functional trait-based approach to understand plant-soil dynamics with organic amendments, as well as the role of crop genetic histories in the successful transition to low-input and diversified agroecosystems.
Collapse
Affiliation(s)
| | - Cyrille Violle
- CEFE, Univ. Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Martin Entz
- University of ManitobaWinnipegManitobaCanada
| | - Andres G. Rolhauser
- University of Toronto ScarboroughTorontoOntarioCanada
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
- IFEVA, CONICET, Facultad de AgronomíaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Marney E. Isaac
- University of TorontoTorontoOntarioCanada
- University of Toronto ScarboroughTorontoOntarioCanada
| |
Collapse
|
3
|
Padmashree R, Barbadikar KM, Honnappa, Magar ND, Balakrishnan D, Lokesha R, Gireesh C, Siddaiah AM, Madhav MS, Ramesha YM, Bharamappanavara M, Phule AS, Senguttuvel P, Diwan JR, Subrahmanyam D, Sundaram RM. Genome-wide association studies in rice germplasm reveal significant genomic regions for root and yield-related traits under aerobic and irrigated conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1143853. [PMID: 37538056 PMCID: PMC10395336 DOI: 10.3389/fpls.2023.1143853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 08/05/2023]
Abstract
The development of nutrient-use efficient rice lines is a priority amidst the changing climate and depleting resources viz., water, land, and labor for achieving sustainability in rice cultivation. Along with the traditional transplanted irrigated system of cultivation, the dry direct-seeded aerobic system is gaining ground nationwide. The root-related traits play a crucial role in nutrient acquisition, adaptation and need to be concentrated along with the yield-attributing traits. We phenotyped an association panel of 118 rice lines for seedling vigour index (SVI) traits at 14 and 21 days after sowing (DAS), root-related traits at panicle initiation (PI) stage in polythene bags under controlled aerobic condition, yield and yield-related traits under the irrigated condition at ICAR-IIRR, Hyderabad, Telangana; irrigated and aerobic conditions at ARS, Dhadesugur, Raichur, Karnataka. The panel was genotyped using simple sequence repeats (SSR) markers and genome-wide association studies were conducted for identifying marker-trait associations (MTAs). Significant correlations were recorded for root length, root dry weight with SVI, root volume at the PI stage, number of productive tillers per plant, spikelet fertility, the total number of grains per panicle with grain yield per plant under irrigated conditions, and the total number of grains per panicle with grain yield per plant under aerobic condition. The panel was divided into three sub-groups (K = 3) and correlated with the principal component analysis. The maximum number of MTAs were found on chromosomes 2, 3, and 12 with considerable phenotypic variability. Consistent MTAs were recorded for SVI traits at 14 and 21 DAS (RM25310, RM80, RM22961, RM1385), yield traits under irrigated conditions (RM2584, RM5179, RM410, RM20698, RM14753) across years at ICAR-IIRR, grain yield per plant (RM22961, RM1146) under the aerobic condition, grain yield per plant at irrigated ICAR-IIRR and SVI (RM5501), root traits at PI stage (RM2584, RM80, RM410, RM1146, RM18472). Functionally relevant genes near the MTAs through in-silico expression analysis in root and panicle tissues viz., HBF2 bZIP transcription factor, WD40 repeat-like domain, OsPILS6a auxin efflux carrier, WRKY108, OsSCP42, OsMADS80, nodulin-like domain-containing protein, amino acid transporter using various rice expression databases were identified. The identified MTAs and rice lines having high SVI traits (Langphou, TI-128, Mouli, TI-124, JBB-631-1), high yield under aerobic (Phouren, NPK-43, JBB-684, Ratnamudi, TI-112), irrigated conditions (KR-209, KR-262, Phouren, Keibi-Phou, TI-17), robust root traits like root length (MoirangPhou-Angouba, Wangoo-Phou, JBB-661, Dissi, NPK-45), root volume (Ratnachudi, KJ-221, Mow, Heimang-Phou, PUP-229) can be further employed in breeding programs for the targeted environments aimed at improving seedling vigour, yield-related traits under irrigated condition, aerobic condition as adaptability to water-saving technology.
Collapse
Affiliation(s)
- Revadi Padmashree
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
- University of Agricultural Sciences (UAS), Raichur, India
| | - Kalyani M. Barbadikar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Honnappa
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
- University of Agricultural Sciences (UAS), Raichur, India
| | - Nakul D. Magar
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
- Chaudhary Charan Singh University, Meerut, India
| | - Divya Balakrishnan
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - R. Lokesha
- University of Agricultural Sciences (UAS), Raichur, India
| | - C. Gireesh
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Anantha M. Siddaiah
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Maganti Sheshu Madhav
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Y. M Ramesha
- Agricultural Research Station (ARS) Dhadesugur, University of Agricultural Sciences (UAS), Raichur, India
| | | | - Amol S. Phule
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - P. Senguttuvel
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - J. R. Diwan
- University of Agricultural Sciences (UAS), Raichur, India
| | - D. Subrahmanyam
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Menakshi Sundaram
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Rice Research (IIRR), Hyderabad, India
| |
Collapse
|
4
|
Zheng C, Bochmann H, Liu Z, Kant J, Schrey SD, Wojciechowski T, Postma JA. Plant root plasticity during drought and recovery: What do we know and where to go? FRONTIERS IN PLANT SCIENCE 2023; 14:1084355. [PMID: 37008469 PMCID: PMC10061088 DOI: 10.3389/fpls.2023.1084355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
AIMS Drought stress is one of the most limiting factors for agriculture and ecosystem productivity. Climate change exacerbates this threat by inducing increasingly intense and frequent drought events. Root plasticity during both drought and post-drought recovery is regarded as fundamental to understanding plant climate resilience and maximizing production. We mapped the different research areas and trends that focus on the role of roots in plant response to drought and rewatering and asked if important topics were overlooked. METHODS We performed a comprehensive bibliometric analysis based on journal articles indexed in the Web of Science platform from 1900-2022. We evaluated a) research areas and temporal evolution of keyword frequencies, b) temporal evolution and scientific mapping of the outputs over time, c) trends in the research topics analysis, d) marked journals and citation analysis, and e) competitive countries and dominant institutions to understand the temporal trends of root plasticity during both drought and recovery in the past 120 years. RESULTS Plant physiological factors, especially in the aboveground part (such as "photosynthesis", "gas-exchange", "abscisic-acid") in model plants Arabidopsis, crops such as wheat and maize, and trees were found to be the most popular study areas; they were also combined with other abiotic factors such as salinity, nitrogen, and climate change, while dynamic root growth and root system architecture responses received less attention. Co-occurrence network analysis showed that three clusters were classified for the keywords including 1) photosynthesis response; 2) physiological traits tolerance (e.g. abscisic acid); 3) root hydraulic transport. Thematically, themes evolved from classical agricultural and ecological research via molecular physiology to root plasticity during drought and recovery. The most productive (number of publications) and cited countries and institutions were situated on drylands in the USA, China, and Australia. In the past decades, scientists approached the topic mostly from a soil-plant hydraulic perspective and strongly focused on aboveground physiological regulation, whereas the actual belowground processes seemed to have been the elephant in the room. There is a strong need for better investigation into root and rhizosphere traits during drought and recovery using novel root phenotyping methods and mathematical modeling.
Collapse
Affiliation(s)
- Congcong Zheng
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Helena Bochmann
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Agriculture, University of Bonn, Bonn, Germany
| | - Zhaogang Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Josefine Kant
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Silvia D. Schrey
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tobias Wojciechowski
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Auke Postma
- Institute of Bio- and Geosciences – Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
5
|
Vaisman M, Hak H, Arazi T, Spiegelman Z. The Impact of Tobamovirus Infection on Root Development Involves Induction of Auxin Response Factor 10a in Tomato. PLANT & CELL PHYSIOLOGY 2023; 63:1980-1993. [PMID: 34977939 DOI: 10.1093/pcp/pcab179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Plant viruses cause systemic diseases that severely impair plant growth and development. While the accumulation of viruses in the root system has long been established, little is known as to how viruses affect root architecture. Here, we examined how the emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), alters root development in tomato. We found that ToBRFV and tobacco mosaic virus both invaded root systems during the first week of infection. ToBRFV infection of tomato plants resulted in a significant decrease in root biomass and elongation and root-to-shoot ratio and a marked suppression of root branching. Mutation in RNA-dependent RNA polymerase 6 increased the susceptibility of tomato plants to ToBRFV, resulting in severe reduction of various root growth parameters including root branching. Viral root symptoms were associated with the accumulation of auxin response factor 10a (SlARF10a) transcript, a homolog of Arabidopsis ARF10, a known suppressor of lateral root development. Interestingly, loss-of-function mutation in SlARF10a moderated the effect of ToBRFV on root branching. In contrast, downregulation of sly-miR160a, which targets SlARF10a, was associated with constitutive suppression root branching independent of viral infection. In addition, overexpression of a microRNA-insensitive mutant of SlARF10a mimicked the effect of ToBRFV on root development, suggesting a specific role for SlARF10a in ToBRFV-mediated suppression of root branching. Taken together, our results provide new insights into the impact of tobamoviruses on root development and the role of ARF10a in the suppression of root branching in tomato.
Collapse
Affiliation(s)
- Michael Vaisman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, PO Box 12, Rehovot 761001, Israel
| | - Hagit Hak
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- Plant Sciences Institute, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization-The Volcani Institute, 68 HaMaccabim Road, P.O.B 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
6
|
Kou X, Han W, Kang J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:1085409. [PMID: 36570905 PMCID: PMC9780461 DOI: 10.3389/fpls.2022.1085409] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.
Collapse
Affiliation(s)
- Xinyue Kou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Weihua Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Jian Kang
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Brooker R, Brown LK, George TS, Pakeman RJ, Palmer S, Ramsay L, Schöb C, Schurch N, Wilkinson MJ. Active and adaptive plasticity in a changing climate. TRENDS IN PLANT SCIENCE 2022; 27:717-728. [PMID: 35282996 DOI: 10.1016/j.tplants.2022.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Better understanding of the mechanistic basis of plant plasticity will enhance efforts to breed crops resilient to predicted climate change. However, complexity in plasticity's conceptualisation and measurement may hinder fruitful crossover of concepts between disciplines that would enable such advances. We argue active adaptive plasticity is particularly important in shaping the fitness of wild plants, representing the first line of a plant's defence to environmental change. Here, we define how this concept may be applied to crop breeding, suggest appropriate approaches to measure it in crops, and propose a refocussing on active adaptive plasticity to enhance crop resilience. We also discuss how the same concept may have wider utility, such as in ex situ plant conservation and reintroductions.
Collapse
Affiliation(s)
- Rob Brooker
- Department of Ecological Sciences, James Hutton Institute, Aberdeen, UK; Department of Ecological Sciences, James Hutton Institute, Dundee, UK.
| | - Lawrie K Brown
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Timothy S George
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Robin J Pakeman
- Department of Ecological Sciences, James Hutton Institute, Aberdeen, UK
| | - Sarah Palmer
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| | - Luke Ramsay
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Christian Schöb
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Mike J Wilkinson
- Institute of Biological, Environmental, and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, UK
| |
Collapse
|
8
|
Gobu R, Dash GK, Lal JP, Swain P, Mahender A, Anandan A, Ali J. Unlocking the Nexus between Leaf-Level Water Use Efficiency and Root Traits Together with Gas Exchange Measurements in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091270. [PMID: 35567271 PMCID: PMC9101036 DOI: 10.3390/plants11091270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/19/2023]
Abstract
Drought stress severely affects plant growth and development, causing significant yield loss in rice. This study demonstrates the relevance of water use efficiency with deeper rooting along with other root traits and gas exchange parameters. Forty-nine rice genotypes were evaluated in the basket method to examine leaf-level water use efficiency (WUEi) variation and its relation to root traits. Significant variation in WUEi was observed (from 2.29 to 7.39 µmol CO2 mmol−1 H2O) under drought stress. Regression analysis revealed that high WUEi was associated with higher biomass accumulation, low transpiration rate, and deep rooting ratio. The ratio of deep rooting was also associated with low internal CO2 concentration. The association of deep rooting with lower root number and root dry weight suggests that an ideal drought-tolerant genotype with higher water use efficiency should have deeper rooting (>30% RDR) with moderate root number and root dry weight to be sustained under drought for a longer period. The study also revealed that, under drought stress conditions, landraces are more water-use efficient with superior root traits than improved genotypes.
Collapse
Affiliation(s)
- Ramasamy Gobu
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (R.G.); (G.K.D.)
- Division of Crop Improvement and Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Institute of Spices Research (IISR), Kozhikode 673012, Kerala, India
| | - Goutam Kumar Dash
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (R.G.); (G.K.D.)
- Crop Physiology and Biochemistry Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jai Prakash Lal
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Padmini Swain
- Crop Physiology and Biochemistry Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Anumalla Mahender
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Philippines;
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (R.G.); (G.K.D.)
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Science (IISS), Bangalore 560065, India
- Correspondence: (A.A.); (J.A.); Tel.: +671-2367768-783 (ext. 2227) (A.A.); +63-2580-5600 (ext. 2541) (J.A.)
| | - Jauhar Ali
- Rice Breeding Innovation Platform, International Rice Research Institute (IRRI), Los Baños 4031, Philippines;
- Correspondence: (A.A.); (J.A.); Tel.: +671-2367768-783 (ext. 2227) (A.A.); +63-2580-5600 (ext. 2541) (J.A.)
| |
Collapse
|
9
|
Ndoye MS, Burridge J, Bhosale R, Grondin A, Laplaze L. Root traits for low input agroecosystems in Africa: Lessons from three case studies. PLANT, CELL & ENVIRONMENT 2022; 45:637-649. [PMID: 35037274 DOI: 10.1111/pce.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing new cultivars adapted to these environments, where production already suffers from climate change, is a major priority for food security. Here, we illustrate how breeding for specific root traits could improve crop resilience in Africa using three case studies covering very contrasting low-input agroecosystems. We first review how greater basal root whorl number and longer and denser root hairs increased P acquisition efficiency and yield in common bean in South East Africa. We then discuss how water-saving strategies, root hair density and deep root growth could be targeted to improve sorghum and pearl millet yield in West Africa. Finally, we evaluate how breeding for denser root systems in the topsoil and interactions with arbuscular mycorrhizal fungi could be mobilised to optimise water-saving alternate wetting and drying practices in West African rice agroecosystems. We conclude with a discussion on how to evaluate the utility of root traits and how to make root trait selection feasible for breeders so that improved varieties can be made available to farmers through participatory approaches.
Collapse
Affiliation(s)
- Mame S Ndoye
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - James Burridge
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Alexandre Grondin
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Laurent Laplaze
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| |
Collapse
|
10
|
Sandhu N, Singh J, Singh G, Sethi M, Singh MP, Pruthi G, Raigar OP, Kaur R, Kaur R, Sarao PS, Lore JS, Singh UM, Dixit S, Sagare DB, Singh S, Satturu V, Singh VK, Kumar A. Development and validation of a novel core set of KASP markers for the traits improving grain yield and adaptability of rice under direct-seeded cultivation conditions. Genomics 2022; 114:110269. [DOI: 10.1016/j.ygeno.2022.110269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/12/2021] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
|
11
|
Liao Q, Chebotarov D, Islam MS, Quintana MR, Natividad MA, De Ocampo M, Beredo JC, Torres RO, Zhang Z, Song H, Price AH, McNally KL, Henry A. Aus rice root architecture variation contributing to grain yield under drought suggests a key role of nodal root diameter class. PLANT, CELL & ENVIRONMENT 2022; 45:854-870. [PMID: 35099814 DOI: 10.1111/pce.14272] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The aus rice variety group originated in stress-prone regions and is a promising source for the development of new stress-tolerant rice cultivars. In this study, an aus panel (~220 genotypes) was evaluated in field trials under well-watered and drought conditions and in the greenhouse (basket, herbicide and lysimeter studies) to investigate relationships between grain yield and root architecture, and to identify component root traits behind the composite trait of deep root growth. In the field trials, high and stable grain yield was positively related to high and stable deep root growth (r = 0.16), which may indicate response to within-season soil moisture fluctuations (i.e., plasticity). When dissecting component traits related to deep root growth (including angle, elongation and branching), the number of nodal roots classified as 'large-diameter' was positively related to deep root growth (r = 0.24), and showed the highest number of colocated genome-wide association study (GWAS) peaks with grain yield under drought. The role of large-diameter nodal roots in deep root growth may be related to their branching potential. Two candidate loci that colocated for yield and root traits were identified that showed distinct haplotype distributions between contrasting yield/stability groups and could be good candidates to contribute to rice improvement.
Collapse
Affiliation(s)
- Qiong Liao
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Dmytro Chebotarov
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| | - Mohammad S Islam
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Marinell R Quintana
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| | - Mignon A Natividad
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| | - Marjorie De Ocampo
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| | - Joseph C Beredo
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| | - Rolando O Torres
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Haixing Song
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha, China
| | - Adam H Price
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Kenneth L McNally
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| | - Amelia Henry
- Rice Breeding Innovations, International Rice Research Institute, Pili Drive, UPLB Compound, Los Baños, Laguna, Philippines, 4031, Philippines
| |
Collapse
|
12
|
Groen SC, Joly-Lopez Z, Platts AE, Natividad M, Fresquez Z, Mauck WM, Quintana MR, Cabral CLU, Torres RO, Satija R, Purugganan MD, Henry A. Evolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystems. THE PLANT CELL 2022; 34:759-783. [PMID: 34791424 PMCID: PMC8824591 DOI: 10.1093/plcell/koab275] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/02/2021] [Indexed: 05/24/2023]
Abstract
Rice (Oryza sativa) was domesticated around 10,000 years ago and has developed into a staple for half of humanity. The crop evolved and is currently grown in stably wet and intermittently dry agro-ecosystems, but patterns of adaptation to differences in water availability remain poorly understood. While previous field studies have evaluated plant developmental adaptations to water deficit, adaptive variation in functional and hydraulic components, particularly in relation to gene expression, has received less attention. Here, we take an evolutionary systems biology approach to characterize adaptive drought resistance traits across roots and shoots. We find that rice harbors heritable variation in molecular, physiological, and morphological traits that is linked to higher fitness under drought. We identify modules of co-expressed genes that are associated with adaptive drought avoidance and tolerance mechanisms. These expression modules showed evidence of polygenic adaptation in rice subgroups harboring accessions that evolved in drought-prone agro-ecosystems. Fitness-linked expression patterns allowed us to identify the drought-adaptive nature of optimizing photosynthesis and interactions with arbuscular mycorrhizal fungi. Taken together, our study provides an unprecedented, integrative view of rice adaptation to water-limited field conditions.
Collapse
Affiliation(s)
- Simon C Groen
- Author for correspondence: (S.C.G.), (M.D.P.), (A.H.)
| | | | | | - Mignon Natividad
- International Rice Research Institute, Los Baños, Laguna, Philippines, USA
| | - Zoë Fresquez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
| | | | | | - Carlo Leo U Cabral
- International Rice Research Institute, Los Baños, Laguna, Philippines, USA
| | - Rolando O Torres
- International Rice Research Institute, Los Baños, Laguna, Philippines, USA
| | - Rahul Satija
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
- New York Genome Center, New York, USA
| | | | - Amelia Henry
- Author for correspondence: (S.C.G.), (M.D.P.), (A.H.)
| |
Collapse
|
13
|
Zargar SM, Mir RA, Ebinezer LB, Masi A, Hami A, Manzoor M, Salgotra RK, Sofi NR, Mushtaq R, Rohila JS, Rakwal R. Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:803603. [PMID: 35154193 PMCID: PMC8829427 DOI: 10.3389/fpls.2021.803603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Drought differs from other natural disasters in several respects, largely because of the complexity of a crop's response to it and also because we have the least understanding of a crop's inductive mechanism for addressing drought tolerance among all abiotic stressors. Overall, the growth and productivity of crops at a global level is now thought to be an issue that is more severe and arises more frequently due to climatic change-induced drought stress. Among the major crops, rice is a frontline staple cereal crop of the developing world and is critical to sustaining populations on a daily basis. Worldwide, studies have reported a reduction in rice productivity over the years as a consequence of drought. Plants are evolutionarily primed to withstand a substantial number of environmental cues by undergoing a wide range of changes at the molecular level, involving gene, protein and metabolite interactions to protect the growing plant. Currently, an in-depth, precise and systemic understanding of fundamental biological and cellular mechanisms activated by crop plants during stress is accomplished by an umbrella of -omics technologies, such as transcriptomics, metabolomics and proteomics. This combination of multi-omics approaches provides a comprehensive understanding of cellular dynamics during drought or other stress conditions in comparison to a single -omics approach. Thus a greater need to utilize information (big-omics data) from various molecular pathways to develop drought-resilient crop varieties for cultivation in ever-changing climatic conditions. This review article is focused on assembling current peer-reviewed published knowledge on the use of multi-omics approaches toward expediting the development of drought-tolerant rice plants for sustainable rice production and realizing global food security.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu, India
| | - Najeebul Rehman Sofi
- Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Roohi Mushtaq
- Department of Biotechnology and Bioinformatics, SP College, Cluster University Srinagar, Srinagar, India
| | - Jai Singh Rohila
- Dale Bumpers National Rice Research Center, United States Department of Agriculture (USDA)-Agricultural Research Service (ARS), Stuttgart, AR, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Chu G, Xu R, Chen S, Xu C, Liu Y, Abliz B, Zhang X, Wang D. Root morphological‐physiological traits for
japonica/indica
hybrid rice with better yield performance under low N conditions. Food Energy Secur 2022. [DOI: 10.1002/fes3.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guang Chu
- China National Rice Research Institute Chinese Academy of Agricultural Sciences Hangzhou Zhejiang Province China
| | - Ran Xu
- China National Rice Research Institute Chinese Academy of Agricultural Sciences Hangzhou Zhejiang Province China
| | - Song Chen
- China National Rice Research Institute Chinese Academy of Agricultural Sciences Hangzhou Zhejiang Province China
| | - Chunmei Xu
- China National Rice Research Institute Chinese Academy of Agricultural Sciences Hangzhou Zhejiang Province China
| | - Yuanhui Liu
- China National Rice Research Institute Chinese Academy of Agricultural Sciences Hangzhou Zhejiang Province China
| | - Buhailiqem Abliz
- Reserch Inistitute of Nuclear and Biotechnologyies Xinjiang Academy of Agricultural Sciences Ürümqi China
| | - Xiufu Zhang
- China National Rice Research Institute Chinese Academy of Agricultural Sciences Hangzhou Zhejiang Province China
| | - Danying Wang
- China National Rice Research Institute Chinese Academy of Agricultural Sciences Hangzhou Zhejiang Province China
| |
Collapse
|
15
|
Chen Z, Sun J, Li D, Li P, He K, Ali F, Mi G, Chen F, Yuan L, Pan Q. Plasticity of root anatomy during domestication of a maize-teosinte derived population. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:139-153. [PMID: 34487165 DOI: 10.1093/jxb/erab406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Maize (Zea mays L.) has undergone profound changes in root anatomy for environmental adaptation during domestication. However, the genetic mechanism of plasticity of maize root anatomy during the domestication process remains unclear. In this study, high-resolution mapping was performed for nine root anatomical traits using a maize-teosinte population (mexicana × Mo17) across three environments. Large genetic variations were detected for different root anatomical traits. The cortex, stele, aerenchyma areas, xylem vessel number, and cortical cell number had large variations across three environments, indicating high plasticity. Sixteen quantitative trait loci (QTL) were identified, including seven QTL with QTL × environment interaction (EIQTL) for high plasticity traits and nine QTL without QTL × environment interaction (SQTL). Most of the root loci were consistent with shoot QTL depicting domestication signals. Combining transcriptome and genome-wide association studies revealed that AUXIN EFFLUX CARRIER PIN-FORMED LIKE 4 (ZmPILS4) serves as a candidate gene underlying a major QTL of xylem traits. The near-isogenic lines (NILs) with lower expression of ZmPILS4 had 18-24% more auxin concentration in the root tips and 8-15% more xylem vessels. Nucleotide diversity values analysis in the promoter region suggested that ZmPILS4 was involved in maize domestication and adaptation. These results revealed the potential genetic basis of root anatomical plasticity during domestication.
Collapse
Affiliation(s)
- Zhe Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Junli Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Dongdong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Pengcheng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225000, China
| | - Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Farhan Ali
- Cereal Crops Research Institute, Pirsabak Nowshera, Pakistan
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of MOE, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Heredia MC, Kant J, Prodhan MA, Dixit S, Wissuwa M. Breeding rice for a changing climate by improving adaptations to water saving technologies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:17-33. [PMID: 34218290 DOI: 10.1007/s00122-021-03899-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Climate change is expected to increasingly affect rice production through rising temperatures and decreasing water availability. Unlike other crops, rice is a main contributor to greenhouse gas emissions due to methane emissions from flooded paddy fields. Climate change can therefore be addressed in two ways in rice: through making the crop more climate resilient and through changes in management practices that reduce methane emissions and thereby slow global warming. In this review, we focus on two water saving technologies that reduce the periods lowland rice will be grown under fully flooded conditions, thereby improving water use efficiency and reducing methane emissions. Rice breeding over the past decades has mostly focused on developing high-yielding varieties adapted to continuously flooded conditions where seedlings were raised in a nursery and transplanted into a puddled flooded soil. Shifting cultivation to direct-seeded rice or to introducing non-flooded periods as in alternate wetting and drying gives rise to new challenges which need to be addressed in rice breeding. New adaptive traits such as rapid uniform germination even under anaerobic conditions, seedling vigor, weed competitiveness, root plasticity, and moderate drought tolerance need to be bred into the current elite germplasm and to what extent this is being addressed through trait discovery, marker-assisted selection and population improvement are reviewed.
Collapse
Affiliation(s)
| | | | - M Asaduzzaman Prodhan
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Shalabh Dixit
- International Rice Research Institute (IRRI), Los Baños, The Philippines
| | - Matthias Wissuwa
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.
| |
Collapse
|
17
|
Fonta JE, Vejchasarn P, Henry A, Lynch JP, Brown KM. Many paths to one goal: Identifying integrated rice root phenotypes for diverse drought environments. FRONTIERS IN PLANT SCIENCE 2022; 13:959629. [PMID: 36072326 PMCID: PMC9441928 DOI: 10.3389/fpls.2022.959629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 05/02/2023]
Abstract
Drought is a major source of yield loss in the production of rice (Oryza sativa L.), and cultivars that maintain yield under drought across environments and drought stress scenarios are urgently needed. Root phenotypes directly affect water interception and uptake, so plants with root systems optimized for water uptake under drought would likely exhibit reduced yield loss. Deeper nodal roots that have a low metabolic cost per length (i.e., cheaper roots) via smaller root diameter and/or more aerenchyma and that transport water efficiently through smaller diameter metaxylem vessels may be beneficial during drought. Subsets of the Rice Diversity Panel 1 and Azucena × IR64 recombinant inbred lines were grown in two greenhouse and two rainout shelter experiments under drought stress to assess their shoot, root anatomical, and root architectural phenotypes. Root traits and root trait plasticity in response to drought varied with genotype and environment. The best-performing groups in the rainout shelter experiments had less plasticity of living tissue area in nodal roots than the worst performing groups. Root traits under drought were partitioned into similar groups or clusters via the partitioning-around-medoids algorithm, and this revealed two favorable integrated root phenotypes common within and across environments. One favorable integrated phenotype exhibited many, deep nodal roots with larger root cross-sectional area and more aerenchyma, while the other favorable phenotype exhibited many, deep nodal roots with small root cross-sectional area and small metaxylem vessels. Deeper roots with high theoretical axial hydraulic conductance combined with reduced root metabolic cost contributed to greater shoot biomass under drought. These results reflect how some root anatomical and architectural phenes work in concert as integrated phenotypes to influence the performance of plant under drought stress. Multiple integrated root phenotypes are therefore recommended to be selected in breeding programs for improving rice yield across diverse environments and drought scenarios.
Collapse
Affiliation(s)
- Jenna E. Fonta
- Intercollege Graduate Degree Program in Plant Biology, Huck Institutes of the Life Sciences, Penn State University, University Park, PA, United States
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Phanchita Vejchasarn
- Rice Department, Ministry of Agriculture, Ubon Ratchathani Rice Research Center, Ubon Ratchathani, Thailand
| | - Amelia Henry
- Rice Breeding Innovations Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| | - Kathleen M. Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Kathleen M. Brown,
| |
Collapse
|
18
|
Sandhu N, Pruthi G, Prakash Raigar O, Singh MP, Phagna K, Kumar A, Sethi M, Singh J, Ade PA, Saini DK. Meta-QTL Analysis in Rice and Cross-Genome Talk of the Genomic Regions Controlling Nitrogen Use Efficiency in Cereal Crops Revealing Phylogenetic Relationship. Front Genet 2021; 12:807210. [PMID: 34992638 PMCID: PMC8724540 DOI: 10.3389/fgene.2021.807210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The phenomenal increase in the use of nitrogenous fertilizers coupled with poor nitrogen use efficiency is among the most important threats to the environment, economic, and social health. During the last 2 decades, a number of genomic regions associated with nitrogen use efficiency (NUE) and related traits have been reported by different research groups, but none of the stable and major effect QTL have been utilized in the marker-assisted introgression/pyramiding program. Compiling the data available in the literature could be very useful in identifying stable and major effect genomic regions associated with the root and NUE-related trait improving the rice grain yield. In the present study, we performed meta-QTL analysis on 1,330 QTL from 29 studies published in the past 2 decades. A total of 76 MQTL with a stable effect over different genetic backgrounds and environments were identified. The significant reduction in the confidence interval of the MQTL compared to the initial QTL resulted in the identification of annotated and putative candidate genes related to the traits considered in the present study. A hot spot region associated with correlated traits on chr 1, 4, and 8 and candidate genes associated with nitrate transporters, nitrogen content, and ammonium uptake on chromosomes 2, 4, 6, and 8 have been identified. The identified MQTL, putative candidate genes, and their orthologues were validated on our previous studies conducted on rice and wheat. The research-based interventions such as improving nitrogen use efficiency via identification of major genomic regions and candidate genes can be a plausible, simple, and low-cost solution to address the challenges of the crop improvement program.
Collapse
Affiliation(s)
| | | | | | | | - Kanika Phagna
- Indian Institute of Science Education and Research, Berhampur, India
| | - Aman Kumar
- Punjab Agricultural University, Ludhiana, India
| | - Mehak Sethi
- Punjab Agricultural University, Ludhiana, India
| | | | | | | |
Collapse
|
19
|
Ramtekey V, Bansal R, Aski MS, Kothari D, Singh A, Pandey R, Tripathi K, Mishra GP, Kumar S, Dikshit HK. Genetic Variation for Traits Related to Phosphorus Use Efficiency in Lens Species at the Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2021; 10:2711. [PMID: 34961182 PMCID: PMC8707046 DOI: 10.3390/plants10122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is an essential, non-renewable resource critical for crop productivity across the world. P is immobile in nature and, therefore, the identification of novel genotypes with efficient P uptake and utilization under a low P environment is extremely important. This study was designed to characterize eighty genotypes of different Lens species for shoot and root traits at two contrasting levels of P. A significant reduction in primary root length (PRL), total surface area (TSA), total root tips (TRT), root forks (RF), total dry weight (TDW), root dry weight (RDW) and shoot dry weight (SDW) in response to P deficiency was recorded. A principal component analysis revealed that the TDW, SDW and RDW were significantly correlated to P uptake and utilization efficiency in lentils. Based on total dry weight (TDW) under low P, L4727, EC718309, EC714238, PL-97, EC718348, DPL15, PL06 and EC718332 were found promising. The characterization of different Lens species revealed species-specific variations for the studied traits. Cultivated lentils exhibited higher P uptake and utilization efficiency as compared to the wild forms. The study, based on four different techniques, identified EC714238 as the most P use-efficient genotype. The genotypes identified in this study can be utilized for developing mapping populations and deciphering the genetics for breeding lentil varieties suited for low P environments.
Collapse
Affiliation(s)
- Vinita Ramtekey
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.R.); (M.S.A.); (D.K.)
- Department of Genetics and Plant Breeding, ICAR—Indian Institute of Seed Science, Mau 275103, India
| | - Ruchi Bansal
- Division of Germplasm Evaluation, ICAR—National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.B.); (K.T.)
| | - Muraleedhar S. Aski
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.R.); (M.S.A.); (D.K.)
| | - Deepali Kothari
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.R.); (M.S.A.); (D.K.)
| | - Akanksha Singh
- Amity Institute of Organic Agriculture, Amity University, Noida 201303, India;
| | - Renu Pandey
- Division of Plant Physiology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Kuldeep Tripathi
- Division of Germplasm Evaluation, ICAR—National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.B.); (K.T.)
| | - Gyan P. Mishra
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.R.); (M.S.A.); (D.K.)
| | - Shiv Kumar
- Rabat-Institutes, ICARDA, B.P. 6299, Station Experiment, INRA-Quich, Rue Hafiane Cherkaoui Agdal, Rabat 10112, Morocco
| | - Harsh Kumar Dikshit
- Division of Genetics, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; (V.R.); (M.S.A.); (D.K.)
| |
Collapse
|
20
|
Janaki Ramayya P, Vinukonda VP, Singh UM, Alam S, Venkateshwarlu C, Vipparla AK, Dixit S, Yadav S, Abbai R, Badri J, T. R, Phani Padmakumari A, Singh VK, Kumar A. Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance. PLoS One 2021; 16:e0256721. [PMID: 34473798 PMCID: PMC8412243 DOI: 10.1371/journal.pone.0256721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
The elite Indian rice variety, Naveen is highly susceptible to major biotic and abiotic stresses such as blast, bacterial blight (BB), gall midge (GM) and drought which limit its productivity in rainfed areas. In the present study, a combined approach of marker-assisted forward (MAFB) and back cross (MABC) breeding was followed to introgress three major genes, viz., Pi9 for blast, Xa21 for bacterial blight (BB), and Gm8 for gall midge (GM) and three major QTLs, viz., qDTY1.1, qDTY2.2 and qDTY4.1 conferring increased yield under drought in the background of Naveen. At each stage of advancement, gene-based/linked markers were used for the foreground selection of biotic and abiotic stress tolerant genes/QTLs. Intensive phenotype-based selections were performed in the field for identification of lines with high level of resistance against blast, BB, GM and drought tolerance without yield penalty under non-stress situation. A set of 8 MAFB lines and 12 MABC lines with 3 to 6 genes/QTLs and possessing resistance/tolerance against biotic stresses and reproductive stage drought stress with better yield performance compared to Naveen were developed. Lines developed through combined MAFB and MABC performed better than lines developed only through MAFB. This study exemplifies the utility of the combined approach of marker-assisted forward and backcrosses breeding for targeted improvement of multiple biotic and abiotic stress resistance in the background of popular mega varieties.
Collapse
Affiliation(s)
| | | | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Shamshad Alam
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Challa Venkateshwarlu
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | | | - Shilpi Dixit
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Shailesh Yadav
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Ragavendran Abbai
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jyothi Badri
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad, India
| | - Ram T.
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad, India
| | | | - Vikas Kumar Singh
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
| | - Arvind Kumar
- International Rice Research Institute (IRRI), South-Asia Hub, ICRISAT, Hyderabad, India
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
- * E-mail:
| |
Collapse
|
21
|
Xie X, Quintana MR, Sandhu N, Subedi SR, Zou Y, Rutkoski JE, Henry A. Establishment method affects rice root plasticity in response to drought and its relationship with grain yield stability. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5208-5220. [PMID: 33989419 DOI: 10.1093/jxb/erab214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
By responding to the variable soil environments in which they are grown, the roots of rice crops are likely to contribute to yield stability across a range of soil moistures, nutrient levels, and establishment methods. In this study, we explored different approaches to quantification of root plasticity and characterization of its relationship with yield stability. Using four different statistical approaches (plasticity index, slope, AMMI, and factor analytic) on a set of 17 genotypes including several recently-developed breeding lines targeted to dry direct-seeding, we identified only very few direct relationships between root plasticity and yield stability. However, genotypes identified as having combined yield stability and root plasticity showed higher grain yields across trials. Furthermore, root plasticity was expressed to a greater degree in puddled transplanted trials rather than under dry direct-seeding. Significant interactions between nitrogen and water resulted in contrasting relationships between nitrogen-use efficiency and biomass stability between puddled-transplanted and direct-seeded conditions. These results reflect the complex interaction between nitrogen, drought, and even different types of drought (as a result of the establishment method) on rice root growth, and suggest that although rice root plasticity may confer stable yield across a range of environments, it might be necessary to more narrowly define the targeted environments to which it will be most beneficial.
Collapse
Affiliation(s)
- Xiaobing Xie
- International Rice Research Institute, Los Baños, Laguna, Philippines
- Hunan Agricultural University, Changsha, China
| | | | - Nitika Sandhu
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Sushil R Subedi
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Yingbin Zou
- Hunan Agricultural University, Changsha, China
| | | | - Amelia Henry
- International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
22
|
Kumar S, Tripathi S, Singh SP, Prasad A, Akter F, Syed MA, Badri J, Das SP, Bhattarai R, Natividad MA, Quintana M, Venkateshwarlu C, Raman A, Yadav S, Singh SK, Swain P, Anandan A, Yadaw RB, Mandal NP, Verulkar SB, Kumar A, Henry A. Rice breeding for yield under drought has selected for longer flag leaves and lower stomatal density. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4981-4992. [PMID: 33852008 PMCID: PMC8219034 DOI: 10.1093/jxb/erab160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/10/2021] [Indexed: 05/11/2023]
Abstract
Direct selection for yield under drought has resulted in the release of a number of drought-tolerant rice varieties across Asia. In this study, we characterized the physiological traits that have been affected by this strategy in breeding trials across sites in Bangladesh, India, and Nepal. Drought- breeding lines and drought-tolerant varieties showed consistently longer flag leaves and lower stomatal density than our drought-susceptible check variety, IR64. The influence of environmental parameters other than drought treatments on leaf traits was evidenced by close grouping of treatments within a site. Flag-leaf length and width appeared to be regulated by different environmental parameters. In separate trials in the Philippines, the same breeding lines studied in South Asia showed that canopy temperature under drought and harvest index across treatments were most correlated with grain yield. Both atmospheric and soil stress strengthened the relationships between leaf traits and yield. The stable expression of leaf traits among genotypes and the identification of the environmental conditions in which they contribute to yield, as well as the observation that some breeding lines showed longer time to flowering and higher canopy temperature than IR64, suggest that selection for additional physiological traits may result in further improvements of this breeding pool.
Collapse
Affiliation(s)
- Santosh Kumar
- ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Santosh Tripathi
- Nepal Agricultural Research Council Regional Agriculture Research Station, Nepalgunj, Khajura, Banke, Nepal
- Regional Agricultural Research Station, Tarahara, Sunsari, Nepal
| | | | - Archana Prasad
- Indira Gandhi Agricultural University, Raipur, Chhattisgarh, India
| | - Fahamida Akter
- Bangladesh Rice Research Institute, Regional Station, Rajshahi, Bangladesh
| | - Md Abu Syed
- Bangladesh Rice Research Institute, Regional Station, Rajshahi, Bangladesh
| | - Jyothi Badri
- ICAR Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana, India
| | - Sankar Prasad Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Rudra Bhattarai
- Regional Agricultural Research Station, Tarahara, Sunsari, Nepal
| | | | - Marinell Quintana
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Challa Venkateshwarlu
- International Rice Research Institute South Asia Hub, ICRISAT, Patancheru, Telangana, India
| | - Anitha Raman
- International Rice Research Institute South Asia Hub, ICRISAT, Patancheru, Telangana, India
| | - Shailesh Yadav
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | - Padmini Swain
- ICAR National Rice Research Institute, Cuttack, Odisha, India
| | - A Anandan
- ICAR National Rice Research Institute, Cuttack, Odisha, India
| | - Ram Baran Yadaw
- National Rice Research Program, Hardinath, Baniniya, Janakpurdham, Nepal
| | - Nimai P Mandal
- Central Rainfed Upland Rice Research Station, Hazaribag, Jharkand, India
| | - S B Verulkar
- Indira Gandhi Agricultural University, Raipur, Chhattisgarh, India
| | - Arvind Kumar
- International Rice Research Institute South Asia Hub, ICRISAT, Patancheru, Telangana, India
| | - Amelia Henry
- International Rice Research Institute, Los Baños, Laguna, Philippines
- Correspondence:
| |
Collapse
|
23
|
Panda S, Majhi PK, Anandan A, Mahender A, Veludandi S, Bastia D, Guttala SB, Singh SK, Saha S, Ali J. Proofing Direct-Seeded Rice with Better Root Plasticity and Architecture. Int J Mol Sci 2021; 22:6058. [PMID: 34199720 PMCID: PMC8199995 DOI: 10.3390/ijms22116058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.
Collapse
Affiliation(s)
- Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Prasanta Kumar Majhi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| | - Sumanth Veludandi
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India; (S.P.); (S.V.)
| | - Debendranath Bastia
- Department of Plant Breeding and Genetics, Odisha University of Agriculture & Technology, Bhubaneswar 751003, Odisha, India;
| | - Suresh Babu Guttala
- Department of Genetics and Plant Breeding, Naini Agricultural Institute, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj 211007, Uttar Pradesh, India;
| | - Shravan Kumar Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University (B.H.U.), Varanasi 221005, Uttar Pradesh, India; (P.K.M.); (S.K.S.)
| | - Sanjoy Saha
- Crop Production Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, Odisha, India;
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines;
| |
Collapse
|
24
|
Khan MIR, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, Maheshwari C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. PHYSIOLOGIA PLANTARUM 2021; 172:645-668. [PMID: 33006143 DOI: 10.1111/ppl.13223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.
Collapse
Affiliation(s)
| | - Sudhakar R Palakolanu
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ashish B Rajurkar
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
25
|
Dowd T, McInturf S, Li M, Topp CN. Rated-M for mesocosm: allowing the multimodal analysis of mature root systems in 3D. Emerg Top Life Sci 2021; 5:249-260. [PMID: 33555320 PMCID: PMC8166344 DOI: 10.1042/etls20200278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022]
Abstract
A plants' water and nutrients are primarily absorbed through roots, which in a natural setting is highly dependent on the 3-dimensional configuration of the root system, collectively known as root system architecture (RSA). RSA is difficult to study due to a variety of factors, accordingly, an arsenal of methods have been developed to address the challenges of both growing root systems for imaging, and the imaging methods themselves, although there is no 'best' method as each has its own spectrum of trade-offs. Here, we describe several methods for plant growth or imaging. Then, we introduce the adaptation and integration of three complementary methods, root mesocosms, photogrammetry, and electrical resistance tomography (ERT). Mesocosms can allow for unconstrained root growth, excavation and preservation of 3-dimensional RSA, and modularity that facilitates the use of a variety of sensors. The recovered root system can be digitally reconstructed through photogrammetry, which is an inexpensive method requiring only an appropriate studio space and a digital camera. Lastly, we demonstrate how 3-dimensional water availability can be measured using ERT inside of root mesocosms.
Collapse
Affiliation(s)
- Tyler Dowd
- Topp Lab, Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO, 63124 U.S.A
| | - Samuel McInturf
- Topp Lab, Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO, 63124 U.S.A
| | - Mao Li
- Topp Lab, Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO, 63124 U.S.A
| | - Christopher N Topp
- Topp Lab, Donald Danforth Plant Science Center, 975 N Warson Road, St. Louis, MO, 63124 U.S.A
| |
Collapse
|
26
|
Oo AZ, Tsujimoto Y, Mukai M, Nishigaki T, Takai T, Uga Y. Synergy between a shallow root system with a DRO1 homologue and localized P application improves P uptake of lowland rice. Sci Rep 2021; 11:9484. [PMID: 33947950 PMCID: PMC8096825 DOI: 10.1038/s41598-021-89129-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Improved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.
Collapse
Affiliation(s)
- Aung Zaw Oo
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| | - Yasuhiro Tsujimoto
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan.
| | - Mana Mukai
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| | - Tomohiro Nishigaki
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| | - Toshiyuki Takai
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), 2-1-2, Kan-nondai, Tsukuba, Ibaraki, 3058518, Japan
| |
Collapse
|
27
|
Sandhu N, Yadav S, Catolos M, Cruz MTS, Kumar A. Developing Climate-Resilient, Direct-Seeded, Adapted Multiple-Stress-Tolerant Rice Applying Genomics-Assisted Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:637488. [PMID: 33936127 PMCID: PMC8082028 DOI: 10.3389/fpls.2021.637488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
There is an urgent need to breed dry direct-seeded adapted rice varieties in order to address the emerging scenario of water-labor shortage. The aim of this study was to develop high-yielding, direct-seeded adapted varieties utilizing biparental to multiparental crosses involving as many as six different parents in conventional breeding programs and 12 parents in genomics-assisted breeding programs. The rigorous single plant selections were followed from the F2 generation onwards utilizing phenotypic selection and quantitative trait locus (QTL)/gene-based/linked markers for tracking the presence of desirable alleles of targeted QTL/genes. In conventional breeding, multiparent lines had significantly higher yields (2,072-6,569 kg ha-1) than the biparental lines (1,493-6,326 kg ha-1). GAB lines derived from multiparent crosses had significantly higher (3,293-6,719 kg ha-1) yields than the multiparent lines from conventional breeding (2,072-6,569 kg ha-1). Eleven promising lines from genomics-assisted breeding carrying 7-11 QTL/genes and eight lines from conventional breeding with grain-yield improvement from 727 to 1,705 kg ha-1 and 68 to 902 kg ha-1, respectively, over the best check were selected. The developed lines may be released as varieties/parental lines to develop better rice varieties for direct-seeded situations or as novel breeding material to study genetic interactions.
Collapse
Affiliation(s)
- Nitika Sandhu
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Shailesh Yadav
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Margaret Catolos
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Ma Teresa Sta Cruz
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Arvind Kumar
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- International Rice Research Institute South Asia Regional Centre, Varanasi, India
| |
Collapse
|
28
|
Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield, yield-related traits and root architecture under water deficit conditions. Sci Rep 2021; 11:6942. [PMID: 33767323 PMCID: PMC7994909 DOI: 10.1038/s41598-021-86259-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/11/2021] [Indexed: 02/01/2023] Open
Abstract
Meta-QTL (MQTL) analysis is a robust approach for genetic dissection of complex quantitative traits. Rice varieties adapted to non-flooded cultivation are highly desirable in breeding programs due to the water deficit global problem. In order to identify stable QTLs for major agronomic traits under water deficit conditions, we performed a comprehensive MQTL analysis on 563 QTLs from 67 rice populations published from 2001 to 2019. Yield and yield-related traits including grain weight, heading date, plant height, tiller number as well as root architecture-related traits including root dry weight, root length, root number, root thickness, the ratio of deep rooting and plant water content under water deficit condition were investigated. A total of 61 stable MQTLs over different genetic backgrounds and environments were identified. The average confidence interval of MQTLs was considerably refined compared to the initial QTLs, resulted in the identification of some well-known functionally characterized genes and several putative novel CGs for investigated traits. Ortho-MQTL mining based on genomic collinearity between rice and maize allowed identification of five ortho-MQTLs between these two cereals. The results can help breeders to improve yield under water deficit conditions.
Collapse
|
29
|
Siddiqui MN, Léon J, Naz AA, Ballvora A. Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1007-1019. [PMID: 33096558 PMCID: PMC7904151 DOI: 10.1093/jxb/eraa487] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Cereals are important crops worldwide that help meet food demands and nutritional needs. In recent years, cereal production has been challenged globally by frequent droughts and hot spells. A plant's root is the most relevant organ for the plant adaptation to stress conditions, playing pivotal roles in anchorage and the acquisition of soil-based resources. Thus, dissecting root system variations and trait selection for enhancing yield and sustainability under drought stress conditions should aid in future global food security. This review highlights the variations in root system attributes and their interplay with shoot architecture features to face water scarcity and maintain thus yield of major cereal crops. Further, we compile the root-related drought responsive quantitative trait loci/genes in cereal crops including their interspecies relationships using microsynteny to facilitate comparative genomic analyses. We then discuss the potential of an integrated strategy combining genomics and phenomics at genetic and epigenetic levels to explore natural genetic diversity as a basis for knowledge-based genome editing. Finally, we present an outline to establish innovative breeding leads for the rapid and optimized selection of root traits necessary to develop resilient crop varieties.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Ali A Naz
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES) – Plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| |
Collapse
|
30
|
Lucob-Agustin N, Kawai T, Kano-Nakata M, Suralta RR, Niones JM, Hasegawa T, Inari-Ikeda M, Yamauchi A, Inukai Y. Morpho-physiological and molecular mechanisms of phenotypic root plasticity for rice adaptation to water stress conditions. BREEDING SCIENCE 2021; 71:20-29. [PMID: 33762873 PMCID: PMC7973496 DOI: 10.1270/jsbbs.20106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 05/23/2023]
Abstract
Different types of water stress severely affect crop production, and the plant root system plays a critical role in stress avoidance. In the case of rice, a cereal crop cultivated under the widest range of soil hydrologic conditions, from irrigated anaerobic conditions to rainfed conditions, phenotypic root plasticity is of particular relevance. Recently, important plastic root traits under different water stress conditions, and their physiological and molecular mechanisms have been gradually understood. In this review, we summarize these plastic root traits and their contributions to dry matter production through enhancement of water uptake under different water stress conditions. We also discuss the physiological and molecular mechanisms regulating the phenotypic plasticity of root systems.
Collapse
Affiliation(s)
- Nonawin Lucob-Agustin
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Tsubasa Kawai
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mana Kano-Nakata
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Roel R. Suralta
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Jonathan M. Niones
- Philippine Rice Research Institute, Central Experiment Station, Science City of Muñoz, Nueva Ecija, 3119, Philippines
| | - Tomomi Hasegawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Mayuko Inari-Ikeda
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
31
|
Wang J, Ma Z, Li C, Ren P, Yao L, Li B, Meng Y, Ma X, Si E, Yang K, Shang X, Wang H. Dynamic Responses of Barley Root Succinyl-Proteome to Short-Term Phosphate Starvation and Recovery. FRONTIERS IN PLANT SCIENCE 2021; 12:649147. [PMID: 33868348 PMCID: PMC8045032 DOI: 10.3389/fpls.2021.649147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 05/05/2023]
Abstract
Barley (Hordeum vulgare L.)-a major cereal crop-has low Pi demand, which is a distinct advantage for studying the tolerance mechanisms of phosphorus deficiency. We surveyed dynamic protein succinylation events in barley roots in response to and recovery from Pi starvation by firstly evaluating the impact of Pi starvation in a Pi-tolerant (GN121) and Pi-sensitive (GN42) barley genotype exposed to long-term low Pi (40 d) followed by a high-Pi recovery for 10 d. An integrated proteomics approach involving label-free, immune-affinity enrichment, and high-resolution LC-MS/MS spectrometric analysis was then used to quantify succinylome and proteome in GN121 roots under short-term Pi starvation (6, 48 h) and Pi recovery (6, 48 h). We identified 2,840 succinylation sites (Ksuc) across 884 proteins; of which, 11 representative Ksuc motifs had the preferred amino acid residue (lysine). Furthermore, there were 81 differentially abundant succinylated proteins (DFASPs) from 119 succinylated sites, 83 DFASPs from 110 succinylated sites, 93 DFASPs from 139 succinylated sites, and 91 DFASPs from 123 succinylated sites during Pi starvation for 6 and 48 h and during Pi recovery for 6 and 48 h, respectively. Pi starvation enriched ribosome pathways, glycolysis, and RNA degradation. Pi recovery enriched the TCA cycle, glycolysis, and oxidative phosphorylation. Importantly, many of the DFASPs identified during Pi starvation were significantly overexpressed during Pi recovery. These results suggest that barley roots can regulate specific Ksuc site changes in response to Pi stress as well as specific metabolic processes. Resolving the metabolic pathways of succinylated protein regulation characteristics will improve phosphate acquisition and utilization efficiency in crops.
Collapse
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Zengke Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Baochun Li
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Huajun Wang
| |
Collapse
|
32
|
Baudson C, Delory BM, Spaepen S, du Jardin P, Delaplace P. Developmental plasticity of Brachypodium distachyon in response to P deficiency: Modulation by inoculation with phosphate-solubilizing bacteria. PLANT DIRECT 2021; 5:e00296. [PMID: 33532689 PMCID: PMC7833465 DOI: 10.1002/pld3.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/17/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mineral phosphorus (P) fertilizers must be used wisely in order to preserve rock phosphate, a limited and non-renewable resource. The use of bio-inoculants to improve soil nutrient availability and trigger an efficient plant response to nutrient deficiency is one potential strategy in the attempt to decrease P inputs in agriculture. METHOD An in vitro co-cultivation system was used to study the response of Brachypodium distachyon to contrasted P supplies (soluble and poorly soluble forms of P) and inoculation with P solubilizing bacteria. Brachypodium's responses to P conditions and inoculation with bacteria were studied in terms of developmental plasticity and P use efficiency. RESULTS Brachypodium showed plasticity in its biomass allocation pattern in response to variable P conditions, specifically by prioritizing root development over shoot productivity under poorly soluble P conditions. Despite the ability of the bacteria to solubilize P, shoot productivity was depressed in plants inoculated with bacteria, although the root system development was maintained. The negative impact of bacteria on biomass production in Brachypodium might be attributed to inadequate C supply to bacteria, an increased competition for P between both organisms under P-limiting conditions, or an accumulation of toxic bacterial metabolites in our cultivation system. Both P and inoculation treatments impacted root system morphology. The modulation of Brachypodium's developmental response to P supplies by P solubilizing bacteria did not lead to improved P use efficiency. CONCLUSION Our results support the hypothesis that plastic responses of Brachypodium cultivated under P-limited conditions are modulated by P solubilizing bacteria. The considered experimental context impacts plant-bacteria interactions. Choosing experimental conditions as close as possible to real ones is important in the selection of P solubilizing bacteria. Both persistent homology and allometric analyses proved to be useful tools that should be considered when studying the impact of bio-inoculants on plant development in response to varying nutritional context.
Collapse
Affiliation(s)
- Caroline Baudson
- Plant SciencesGembloux Agro‐Bio TechUniversity of LiègeLiègeBelgium
| | | | - Stijn Spaepen
- Leuven Institute for Beer ResearchUniversity of LeuvenLeuvenBelgium
| | | | - Pierre Delaplace
- Plant SciencesGembloux Agro‐Bio TechUniversity of LiègeLiègeBelgium
| |
Collapse
|
33
|
Yoshida T, Fernie AR, Shinozaki K, Takahashi F. Long-distance stress and developmental signals associated with abscisic acid signaling in environmental responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:477-488. [PMID: 33249671 DOI: 10.1111/tpj.15101] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Flowering plants consist of highly differentiated organs, including roots, leaves, shoots and flowers, which have specific roles: root system for water and nutrient uptake, leaves for photosynthesis and gas exchange and reproductive organs for seed production. The communication between organs through the vascular system, by which water, nutrient and signaling molecules are transported, is essential for coordinated growth and development of the whole plant, particularly under adverse conditions. Here, we highlight recent progress in understanding how signaling pathways of plant hormones are associated with long-distance stress and developmental signals, with particular focus on environmental stress responses. In addition to the root-to-shoot peptide signal that induces abscisic acid accumulation in leaves under drought stress conditions, we summarize the diverse stress-responsive peptide signals reported to date to play a role in environmental responses.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
34
|
Sandhu N, Sethi M, Kumar A, Dang D, Singh J, Chhuneja P. Biochemical and Genetic Approaches Improving Nitrogen Use Efficiency in Cereal Crops: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:657629. [PMID: 34149755 PMCID: PMC8213353 DOI: 10.3389/fpls.2021.657629] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/06/2021] [Indexed: 05/22/2023]
Abstract
Nitrogen is an essential nutrient required in large quantities for the proper growth and development of plants. Nitrogen is the most limiting macronutrient for crop production in most of the world's agricultural areas. The dynamic nature of nitrogen and its tendency to lose soil and environment systems create a unique and challenging environment for its proper management. Exploiting genetic diversity, developing nutrient efficient novel varieties with better agronomy and crop management practices combined with improved crop genetics have been significant factors behind increased crop production. In this review, we highlight the various biochemical, genetic factors and the regulatory mechanisms controlling the plant nitrogen economy necessary for reducing fertilizer cost and improving nitrogen use efficiency while maintaining an acceptable grain yield.
Collapse
|
35
|
Rubin RL, Jones AN, Hayer M, Shuman-Goodier ME, Andrews LV, Hungate BA. Opposing effects of bacterial endophytes on biomass allocation of a wild donor and agricultural recipient. FEMS Microbiol Ecol 2020; 96:5710930. [PMID: 31960901 DOI: 10.1093/femsec/fiaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/17/2020] [Indexed: 11/12/2022] Open
Abstract
Root endophytes are a promising tool for increasing plant growth, but it is unclear whether they perform consistently across plant hosts. We characterized the blue grama (Bouteloua gracilis) root microbiome using two sequencing methods, quantified the effects of root endophytes in the original host (blue grama) and an agricultural recipient, corn (Zea mays), under drought and well-watered conditions and examined in vitro mechanisms for plant growth promotion. 16S rRNA amplicon sequencing revealed that the blue grama root microbiome was similar across an elevation gradient, with the exception of four genera. Culturing and Sanger sequencing revealed eight unique endophytes belonging to the genera Bacillus, Lysinibacillus and Pseudomonas. All eight endophytes colonized corn roots, but had opposing effects on aboveground and belowground biomass in each plant species: they increased blue grama shoot mass by 45% (19) (mean +/- SE) while decreasing corn shoot mass by 10% (19), and increased corn root:shoot by 44% (7), while decreasing blue grama root:shoot by 17% (7). Furthermore, contrary to our expectations, endophytes had stronger effects on plant growth under well-watered conditions rather than drought conditions. Collectively, these results suggest that ecological features, including host identity, bacterial traits, climate conditions and morphological outcomes, should be carefully considered in the design and implementation of agricultural inocula.
Collapse
Affiliation(s)
- Rachel L Rubin
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Environmental Studies, Mount Holyoke College, South Hadley, MA, 01075, USA
| | - Ashley N Jones
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Molly E Shuman-Goodier
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Lela V Andrews
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Environmental Genetics and Genomics Laboratory, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
36
|
Sagare DB, Abbai R, Jain A, Jayadevappa PK, Dixit S, Singh AK, Challa V, Alam S, Singh UM, Yadav S, Sandhu N, Kabade PG, Singh VK, Kumar A. More and more of less and less: Is genomics-based breeding of dry direct-seeded rice (DDSR) varieties the need of hour? PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2173-2186. [PMID: 32725933 PMCID: PMC7589319 DOI: 10.1111/pbi.13454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/07/2020] [Accepted: 07/13/2020] [Indexed: 06/02/2023]
Abstract
Rice is a staple food for half of the world's population. Changing climatic conditions, water and labour scarcity are the major challenges that shall limit future rice production. Dry direct-seeded rice (DDSR) is emerging as an efficient, resources conserving, mechanized, climate smart and economically viable strategy to be adopted as an alternative to puddled transplanted rice (TPR) with the potential to address the problem of labour-water shortages and ensure sustainable rice cultivation. Despite these benefits, several constraints obstruct the adoption of DDSR. In principle, the plant type for DDSR should be different from one for TPR, which could be achieved by developing rice varieties that combine the traits of upland and lowland varieties. In this context, recent advances in precise phenotyping and NGS-based trait mapping led to identification of promising donors and QTLs/genes for DDSR favourable traits to be employed in genomic breeding. This review discusses the important traits influencing DDSR, research studies to clarify the need for breeding DDSR-specific varieties to achieve enhanced grain yield, climate resilience and nutrition demand. We anticipate that in the coming years, genomic breeding for developing DDSR-specific varieties would be a regular practice and might be further strengthened by combining superior haplotypes regulating important DDSR traits by haplotype-based breeding.
Collapse
Affiliation(s)
- Deepti B. Sagare
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Ragavendran Abbai
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Abhinav Jain
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | | | - Shilpi Dixit
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Arun Kumar Singh
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | | | - Shamshad Alam
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Uma Maheshwar Singh
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Shailesh Yadav
- International Rice Research Institute (IRRI)Metro ManilaPhilippines
| | | | - Pramod G. Kabade
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
| | - Vikas Kumar Singh
- International Rice Research Institute (IRRI)South‐Asia Hub (SAH)HyderabadIndia
- International Rice Research Institute (IRRI)Metro ManilaPhilippines
| | - Arvind Kumar
- International Rice Research Institute (IRRI)Metro ManilaPhilippines
- International Rice Research Institute (IRRI)South‐Asia Regional Centre (SARC)VaranasiIndia
| |
Collapse
|
37
|
Guimarães PHR, de Lima IP, de Castro AP, Lanna AC, Guimarães Santos Melo P, de Raïssac M. Phenotyping Root Systems in a Set of Japonica Rice Accessions: Can Structural Traits Predict the Response to Drought? RICE (NEW YORK, N.Y.) 2020; 13:67. [PMID: 32930888 PMCID: PMC7492358 DOI: 10.1186/s12284-020-00404-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The root system plays a major role in plant growth and development and root system architecture is reported to be the main trait related to plant adaptation to drought. However, phenotyping root systems in situ is not suited to high-throughput methods, leading to the development of non-destructive methods for evaluations in more or less controlled root environments. This study used a root phenotyping platform with a panel of 20 japonica rice accessions in order to: (i) assess their genetic diversity for a set of structural and morphological root traits and classify the different types; (ii) analyze the plastic response of their root system to a water deficit at reproductive phase and (iii) explore the ability of the platform for high-throughput phenotyping of root structure and morphology. RESULTS High variability for the studied root traits was found in the reduced set of accessions. Using eight selected traits under irrigated conditions, five root clusters were found that differed in root thickness, branching index and the pattern of fine and thick root distribution along the profile. When water deficit occurred at reproductive phase, some accessions significantly reduced root growth compared to the irrigated treatment, while others stimulated it. It was found that root cluster, as defined under irrigated conditions, could not predict the plastic response of roots under drought. CONCLUSIONS This study revealed the possibility of reconstructing the structure of root systems from scanned images. It was thus possible to significantly class root systems according to simple structural traits, opening up the way for using such a platform for medium to high-throughput phenotyping. The study also highlighted the uncoupling between root structures under non-limiting water conditions and their response to drought.
Collapse
Affiliation(s)
| | - Isabela Pereira de Lima
- Universidade Federal de Lavras, Departamento de Agricultura, Campus Universitário, Lavras, MG, 37200-000, Brazil
| | | | - Anna Cristina Lanna
- Embrapa Arroz e Feijão, Rodovia GO-462, km 12, Santo Antônio de Goiás, GO, 75375-000, Brazil
| | | | - Marcel de Raïssac
- Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, AGAP, Montpellier, France.
| |
Collapse
|
38
|
Oo AZ, Tsujimoto Y, Rakotoarisoa NM, Kawamura K, Nishigaki T. P-dipping of rice seedlings increases applied P use efficiency in high P-fixing soils. Sci Rep 2020; 10:11919. [PMID: 32681148 PMCID: PMC7368074 DOI: 10.1038/s41598-020-68977-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
Applied phosphorus (P) use efficiency is generally low due to the low mobility of P in soil and its affinity to form insoluble complexes. Localized P application nearby the root zone is a potential approach to overcome this issue in crop production. However, the interaction with soil conditions is little understood, which results in less effective application of this approach. Using root-box experiments and changing P-retention capacity of soils, we revealed that applied P use efficiency of rice can be substantially improved by dipping seedlings in P-enriched slurry at transplanting (P-dipping) even in highly P-fixing soils. Spatial analysis of soluble P in soils indicated that P-dipping creates a P hotspot because the P-enriched slurry is transferred with seedling roots. The P hotspot could have induced vigorous surface root and facilitated further P uptake from the spot. In contrast, the effect of conventional P incorporation depended on P-retention capacity of soils; no increases in soluble P content in soils or plant P uptakes were observed when P-retention capacity was high. Our finding of significant interaction between localized P application and a specific soil property should help improving applied P use efficiency and achieving sustainable rice production against depleting P fertilizer resources.
Collapse
Affiliation(s)
- Aung Zaw Oo
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| | - Yasuhiro Tsujimoto
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan.
| | - Njato Mickaël Rakotoarisoa
- Département de Recherche Rizicoles (DRR), Centre National de Recherche Appliquée au Développement Rural (FOFIFA), BP 1690, Tsimbazaza, Antananarivo, Madagascar
| | - Kensuke Kawamura
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| | - Tomohiro Nishigaki
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 3058686, Japan
| |
Collapse
|
39
|
Genetic variation for root architectural traits in response to phosphorus deficiency in mungbean at the seedling stage. PLoS One 2020; 15:e0221008. [PMID: 32525951 PMCID: PMC7289352 DOI: 10.1371/journal.pone.0221008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 05/16/2020] [Indexed: 12/23/2022] Open
Abstract
Roots enable the plant to survive in the natural environment by providing anchorage and acquisition of water and nutrients. In this study, root architectural traits of 153 mungbean genotypes were compared under optimum and low phosphorus (P) conditions. Significant variations and medium to high heritability were observed for the root traits. Total root length was positively and significantly correlated with total root surface area, total root volume, total root tips and root forks under both optimum P (r = 0.95, r = 0.85, r = 0.68 and r = 0.82 respectively) and low P (r = 0.95, r = 0.82, r = 0.71 and r = 0.81 respectively). The magnitudes of the coefficient of variations were relatively higher for root forks, total root tips and total root volume. Total root length, total root surface area and total root volume were major contributors of variation and can be utilized for screening of P efficiency at the seedling stage. Released Indian mungbean varieties were found to be superior for root traits than other genotypic groups. Based on comprehensive P efficiency measurement, IPM-288, TM 96–25, TM 96–2, M 1477, PUSA 1342 were found to be the best highly efficient genotypes, whereas M 1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient. Highly efficient genotypes identified would be valuable genetic resources for P efficiency for utilizing in the mungbean breeding programme.
Collapse
|
40
|
Lou D, Chen Z, Yu D, Yang X. SAPK2 contributes to rice yield by modulating nitrogen metabolic processes under reproductive stage drought stress. RICE (NEW YORK, N.Y.) 2020; 13:35. [PMID: 32514747 PMCID: PMC7280414 DOI: 10.1186/s12284-020-00395-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND The sucrose non-fermenting 1-related kinases 2 (SnRK2s) play important roles in osmotic stress responses in A. thaliana and rice (Oryza sativa L.). Osmotic stress/ABA-activated protein kinase 2 (SAPK2) is a member of SnRK2s subclass II in rice, but its function in rice yield under drought stress is unclear. RESULTS Compared with wild-type (Oryza.Sativa L.spp.japonica, WT) plants, the sapk2 rice mutant lines were shorter and produced fewer grains per panicle, smaller grains and lower grain yield under reproductive stage drought stress (RDS). Subsequent analysis suggested that SAPK2 considerably influences the nitrogen, phosphorus, and potassium contents of rice grains. The examination of rice seedling growth and development under nutrient-deprived conditions (-N, -K, and - P) proved that SAPK2 can significantly affect rice seedling growth and root development in hydroponic cultures lacking N and K. Moreover, the NO3- influx rate and nitrate concentration analysis indicated that SAPK2 promotes nitrate uptake and assimilation by regulating nitrate-related transporters. CONCLUSION These results suggest that SAPK2 could enhance grain production by regulating nitrogen utilization efficiency under RDS. Our work provided insights to breeding drought tolerant rice with high nutrient uptake.
Collapse
Affiliation(s)
- Dengji Lou
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Zhen Chen
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi, 653100, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China.
| | - Xiaoyan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
41
|
Dwivedi SL, Stoddard FL, Ortiz R. Genomic-based root plasticity to enhance abiotic stress adaptation and edible yield in grain crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110365. [PMID: 32534611 DOI: 10.1016/j.plantsci.2019.110365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 06/11/2023]
Abstract
Phenotypic plasticity refers to changes expressed by a genotype across different environments and is one of the major means by which plants cope with environmental variability. Multi-fold differences in phenotypic plasticity have been noted across crops, with wild ancestors and landraces being more plastic than crops when under stress. Plasticity in response to abiotic stress adaptation, plant architecture, physio-reproductive and quality traits are multi-genic (QTL). Plasticity QTL (pQTL) were either collocated with main effect QTL and QEI (QTL × environment interaction) or located independently from the main effect QTL. For example, variations in root plasticity have been successfully introgressed to enhance abiotic stress adaptation in rice. The independence of genetic control of a trait and of its plasticity suggests that breeders may select for high or low plasticity in combination with high or low performance of economically important traits. Trait plasticity in stressful environments may be harnessed through breeding stress-tolerant crops. There exists a genetic cost associated with plasticity, so a better understanding of the trade-offs between plasticity and productivity is warranted prior to undertaking breeding for plasticity traits together with productivity in stress environments.
Collapse
Affiliation(s)
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural Sciences, Department of Plant Breeding, Sundsvagen, 14 Box 101, SE 23053, Alnarp, Sweden.
| |
Collapse
|
42
|
Schneider HM, Klein SP, Hanlon MT, Nord EA, Kaeppler S, Brown KM, Warry A, Bhosale R, Lynch JP. Genetic control of root architectural plasticity in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3185-3197. [PMID: 32080722 PMCID: PMC7260711 DOI: 10.1093/jxb/eraa084] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/20/2020] [Indexed: 05/05/2023]
Abstract
Root phenotypes regulate soil resource acquisition; however, their genetic control and phenotypic plasticity are poorly understood. We hypothesized that the responses of root architectural phenes to water deficit (stress plasticity) and different environments (environmental plasticity) are under genetic control and that these loci are distinct. Root architectural phenes were phenotyped in the field using a large maize association panel with and without water deficit stress for three seasons in Arizona and without water deficit stress for four seasons in South Africa. All root phenes were plastic and varied in their plastic response. We identified candidate genes associated with stress and environmental plasticity and candidate genes associated with phenes in well-watered conditions in South Africa and in well-watered and water-stress conditions in Arizona. Few candidate genes for plasticity overlapped with those for phenes expressed under each condition. Our results suggest that phenotypic plasticity is highly quantitative, and plasticity loci are distinct from loci that control phene expression in stress and non-stress, which poses a challenge for breeding programs. To make these loci more accessible to the wider research community, we developed a public online resource that will allow for further experimental validation towards understanding the genetic control underlying phenotypic plasticity.
Collapse
Affiliation(s)
- Hannah M Schneider
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Stephanie P Klein
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Meredith T Hanlon
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Eric A Nord
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Shawn Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Andrew Warry
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, UK
| | - Rahul Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
43
|
Schneider HM, Lynch JP. Should Root Plasticity Be a Crop Breeding Target? FRONTIERS IN PLANT SCIENCE 2020; 11:546. [PMID: 32499798 PMCID: PMC7243933 DOI: 10.3389/fpls.2020.00546] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 05/18/2023]
Abstract
Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research.
Collapse
Affiliation(s)
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
44
|
Abstract
Although root traits play a critical role in mediating plant-plant interactions and resource acquisition from the soil environment, research examining whether and how belowground competition can influence the evolution of root traits remains largely unexplored. Here we examine the possibility that root traits may evolve as a target of selection from interspecific competition using Ipomoea purpurea and I. hederacea, two closely related morning glory species that commonly co-occur in the United States, as a model system. We show that belowground competitive interactions between the two species can alter the pattern of selection on root traits in each species. Specifically, competition with I. purpurea changes the pattern of selection on root angle in I. hederacea, and competitive interactions with I. hederacea change the pattern of selection on root size in I. purpurea. However, we did not uncover evidence that intraspecific competition altered the pattern of selection on any root traits within I. hederacea. Overall, our results suggest that belowground competition between closely related species can influence the phenotypic evolution of root traits in natural populations. Our findings provide a microevolutionary perspective of how competitive belowground interactions may impact plant fitness, potentially leading to patterns of plant community structure.
Collapse
|
45
|
Schneider HM, Klein SP, Hanlon MT, Kaeppler S, Brown KM, Lynch JP. Genetic control of root anatomical plasticity in maize. THE PLANT GENOME 2020; 13:e20003. [PMID: 33016634 DOI: 10.1002/tpg2.20003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Root anatomical phenes have important roles in soil resource capture and plant performance; however, their phenotypic plasticity and genetic architecture is poorly understood. We hypothesized that (a) the responses of root anatomical phenes to water deficit (stress plasticity) and different environmental conditions (environmental plasticity) are genetically controlled and (b) stress and environmental plasticity are associated with different genetic loci than those controlling the expression of phenes under water-stress and well-watered conditions. Root anatomy was phenotyped in a large maize (Zea mays L.) association panel in the field with and without water deficit stress in Arizona and without water deficit stress in South Africa. Anatomical phenes displayed stress and environmental plasticity; many phenotypic responses to water deficit were adaptive, and the magnitude of response varied by genotype. We identified 57 candidate genes associated with stress and environmental plasticity and 64 candidate genes associated with phenes under well-watered and water-stress conditions in Arizona and under well-watered conditions in South Africa. Four candidate genes co-localized between plasticity groups or for phenes expressed under each condition. The genetic architecture of phenotypic plasticity is highly quantitative, and many distinct genes control plasticity in response to water deficit and different environments, which poses a challenge for breeding programs.
Collapse
Affiliation(s)
- Hannah M Schneider
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Stephanie P Klein
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Meredith T Hanlon
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Shawn Kaeppler
- Dep. of Agronomy, Univ. of Wisconsin, Madison, WI, 53706, USA
| | - Kathleen M Brown
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| | - Jonathan P Lynch
- Dep. of Plant Science, Pennsylvania State Univ., University Park, PA, 16802, USA
| |
Collapse
|
46
|
Correa J, Postma JA, Watt M, Wojciechowski T. Soil compaction and the architectural plasticity of root systems. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6019-6034. [PMID: 31504740 PMCID: PMC6859514 DOI: 10.1093/jxb/erz383] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/15/2019] [Indexed: 05/18/2023]
Abstract
Soil compaction is a serious global problem, and is a major cause of inadequate rooting and poor yield in crops around the world. Root system architecture (RSA) describes the spatial arrangement of root components within the soil and determines the plant's exploration of the soil. Soil strength restricts root growth and may slow down root system development. RSA plasticity may have an adaptive value, providing environmental tolerance to soil compaction. However, it is challenging to distinguish developmental retardation (apparent plasticity) or responses to severe stress from those root architectural changes that may provide an actual environmental tolerance (adaptive plasticity). In this review, we outline the consequences of soil compaction on the rooting environment and extensively review the various root responses reported in the literature. Finally, we discuss which responses enhance root exploration capabilities in tolerant genotypes, and to what extent these responses might be useful for breeding. We conclude that RSA plasticity in response to soil compaction is complex and can be targeted in breeding to increase the performance of crops under specific agronomical conditions.
Collapse
Affiliation(s)
- José Correa
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, Jülich,Germany
| | - Johannes A Postma
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, Jülich,Germany
| | - Michelle Watt
- Institute of Biosciences and Geosciences (IBG-2): Plant Sciences, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, Jülich,Germany
| | | |
Collapse
|
47
|
Mitsuya S, Murakami N, Sato T, Kazama T, Toriyama K, Skoulding NS, Kano-Nakata M, Yamauchi A. Evaluation of rice grain yield and yield components of Nona Bokra chromosome segment substitution lines with the genetic background of Koshihikari, in a saline paddy field. AOB PLANTS 2019; 11:plz040. [PMID: 31632626 PMCID: PMC6790112 DOI: 10.1093/aobpla/plz040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
The ability to tolerate salt differs with the growth stages of rice and thus the yield components that are determined during various growth stages, are differentially affected by salt stress. In this study, we utilized chromosome segment substitution lines (CSSLs) from Nona Bokra, a salt-tolerant indica landrace, with the genetic background of Koshihikari, a salt-susceptible japonica variety. These were screened to find superior CSSLs under long-term saline conditions that showed higher grain yield and yield components in comparison to Koshihikari. One-month-old seedlings were transplanted into a paddy field without salinity. These were allowed to establish for 1 month further, then the field was flooded, with saline water maintained at 7.41 dS m-1 salinity until harvest. The experiments were performed twice, once in 2015 and a targeted study in 2016. Salt tolerance of growth and reproductive stage parameters was evaluated as the Salt Effect Index (SEI) which was computed as the difference in each parameter within each line between control and saline conditions. All CSSLs and Koshihikari showed a decrease in grain yield and yield components except panicle number under salinity. SL538 showed a higher SEI for grain yield compared with Koshihikari under salinity throughout the two experiments. This was attributed to the retained grain filling and harvest index, yet the mechanism was not due to maintaining Na+, Cl- and K+ homeostasis. Few other CSSLs showed greater SEI for grain weight under salinity compared with Koshihikari, which might be related to low concentration of Na+ in leaves and panicles. These data indicate that substitution of different Nona Bokra chromosome segments independently contributed to the maintenance of grain filling and grain weight of Koshihikari under saline conditions.
Collapse
Affiliation(s)
- Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Norifumi Murakami
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Tadashi Sato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | | | - Mana Kano-Nakata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Akira Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
48
|
De Bauw P, Vandamme E, Lupembe A, Mwakasege L, Senthilkumar K, Dramé KN, Merckx R. Anatomical root responses of rice to combined phosphorus and water stress - relations to tolerance and breeding opportunities. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1009-1022. [PMID: 31543094 DOI: 10.1071/fp19002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Drought and low P availability are major limitations for rainfed rice (Oryza spp.) production. Root anatomy plays a key role in resource acquisition and tolerance to P and water limitations. Root anatomical responses of three contrasting rice varieties to combinations of different levels of P (deficient to non-limiting) and water availability (water stress to submergence) were evaluated in two pot trials. P availability was the dominant growth-limiting factor, but anatomical root responses to water availability were more prominent than responses to P availability. Cortical cell file number and number of xylem vessels decreased as a response to water stress, but stele and xylem diameter increased. Low P availability induced thinner xylem vessels and a thinner stele. Drought tolerance related to an overall thicker root stele, thicker xylem vessels and a larger water conductance. Some root traits were observed to be more responsive to water and P availability, whereas other traits were more robust to these environmental factors but highly determined by variety. The observed genotypic variation in root anatomy provides opportunities for trait-based breeding. The plasticity of several traits to multiple environmental factors highlights the need for strategic trait selection or breeding adapted to specific target environments.
Collapse
Affiliation(s)
- Pieterjan De Bauw
- Katholieke Universiteit Leuven, Dept. of Earth and Environmental Sciences, 3000 Leuven, Belgium; and Corresponding author.
| | - Elke Vandamme
- International Potato Center (CIP), PO Box 1269, Kigali, Rwanda; and Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania
| | - Allen Lupembe
- Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania
| | - Leah Mwakasege
- Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania
| | - Kalimuthu Senthilkumar
- Africa Rice Center (AfricaRice), PO Box 33581, Dar es Salaam, Tanzania; and Africa Rice Center (AfricaRice), PO Box 1690, Antananarivo, Madagascar
| | - Khady N Dramé
- Africa Rice Center (AfricaRice), 01 BP 4029, Abidjan, Côte d'Ivoire
| | - Roel Merckx
- Katholieke Universiteit Leuven, Dept. of Earth and Environmental Sciences, 3000 Leuven, Belgium
| |
Collapse
|
49
|
Long L, Ma X, Ye L, Zeng J, Chen G, Zhang G. Root plasticity and Pi recycling within plants contribute to low-P tolerance in Tibetan wild barley. BMC PLANT BIOLOGY 2019; 19:341. [PMID: 31382871 PMCID: PMC6683381 DOI: 10.1186/s12870-019-1949-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/29/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Barley is a low phosphorus (P) demand cereal crop. Tibetan wild barley, as a progenitor of cultivated barley, has revealed outstanding ability of tolerance to low-P stress. However, the underlying mechanisms of low-P adaption and the relevant genetic controlling are still unclear. RESULTS We identified low-P tolerant barley lines in a doubled-haploid (DH) population derived from an elite Tibetan wild barley accession and a high-yield cultivar. The tolerant lines revealed greater root plasticity in the terms of lateral root length, compared to low-P sensitive lines, in response to low-P stress. By integrating the QTLs associated with root length and root transcriptomic profiling, candidate genes encoding isoflavone reductase, nitrate reductase, nitrate transporter and transcriptional factor MYB were identified. The differentially expressed genes (DEGs) involved the growth of lateral root, Pi transport within cells as well as from roots to shoots contributed to the differences between low-P tolerant line L138 and low-P sensitive lines L73 in their ability of P acquisition and utilization. CONCLUSIONS The plasticity of root system is an important trait for barley to tolerate low-P stress. The low-P tolerance in the elite DH line derived from a cross of Tibetan wild barley and cultivated barley is characterized by enhanced growth of lateral root and Pi recycling within plants under low-P stress.
Collapse
Affiliation(s)
- Lizhi Long
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Xinyi Ma
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Lingzhen Ye
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Jianbin Zeng
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Guang Chen
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Guoping Zhang
- Department of Agronomy, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| |
Collapse
|
50
|
Rosales MA, Maurel C, Nacry P. Abscisic Acid Coordinates Dose-Dependent Developmental and Hydraulic Responses of Roots to Water Deficit. PLANT PHYSIOLOGY 2019; 180:2198-2211. [PMID: 31164395 PMCID: PMC6670111 DOI: 10.1104/pp.18.01546] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/14/2019] [Indexed: 05/04/2023]
Abstract
Root water uptake is influenced by root system architecture, which is determined by root growth and branching and the hydraulics of root cells and tissues. The phytohormone abscisic acid (ABA) plays a major role in the adaptation of plants to water deficit (WD). Here we addressed at the whole-root level in Arabidopsis (Arabidopsis thaliana) the regulatory role of ABA in mechanisms that determine root hydraulic architecture. Root system architecture and root hydraulic conductivity (Lpr) were analyzed in hydroponically grown plants subjected to varying degrees of WD induced by various polyethylene glycol (PEG) concentrations. The majority of root traits investigated, including first- and second-order lateral root production and elongation and whole-root hydraulics, had a bell-shaped dependency on WD, displaying stimulation under mild WD conditions (25 g PEG L-1) and repression under more severe conditions. These traits also showed a bell-shaped dependency on exogenous ABA, and their regulation by WD was attenuated in genotypes altered in ABA biosynthesis and response. Thus, we propose that ABA acts as a coordinator and an integrator of most root responses to mild and moderate WD, whereas responses to strong WD (150 g PEG L-1) are largely ABA independent. We also found that roots exhibit different growth responses to both WD and ABA depending on their rank and age. Taken together, our results give further insights into the coordinated water acquisition strategies of roots deployed in relation to WD intensity.
Collapse
Affiliation(s)
- Miguel A Rosales
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, 2 place P. Viala F34060 Montpellier, France
| | - Christophe Maurel
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, 2 place P. Viala F34060 Montpellier, France
| | - Philippe Nacry
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, 2 place P. Viala F34060 Montpellier, France
| |
Collapse
|