1
|
Wang Y, Gong C, Liu L, Wang T. The invertase gene PWIN1 confers chilling tolerance of rice at the booting stage via mediating pollen development. PLANT, CELL & ENVIRONMENT 2024; 47:4651-4663. [PMID: 39051263 DOI: 10.1111/pce.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Pollen fertility is a primary regulator of grain yield and is highly susceptible to cold and other environmental stress. We revealed the roles of rice cell wall invertase gene PWIN1 in pollen development and chilling tolerance. We uncovered its preferential expression in microspores and bicellular pollen and identified its knock-down and knock-out mutants. pwin1 mutants produced a higher proportion of abnormal pollen than wild-type plants. The contents of sucrose, glucose, and fructose were increased, while ATP content and primary metabolism activity were reduced in the mutant pollen. Furthermore, the loss of function of PWIN1 coincided with an increase in SnRK1 activity and a decrease in TOR activity. Under chilling conditions, pwin1 mutants displayed significantly reduced pollen viability and seed-setting rate, while overexpressing PWIN1 notably increased pollen viability and seed-setting rate as compared with the wild-type, indicating that PWIN1 is essential for rice pollen development and grain yield under cold stress. This study provides insights into the molecular mechanisms underlying rice pollen fertility during chilling stress, and a new module to improve chilling tolerance of rice at the booting stage by molecular design.
Collapse
Affiliation(s)
- Yanli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Ma G, Zuo Z, Xie L, Han J. Genome-wide identification and characterization of the sucrose invertase gene family in Hemerocallis citrina. PeerJ 2024; 12:e17999. [PMID: 39221283 PMCID: PMC11366234 DOI: 10.7717/peerj.17999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Background Sucrose invertase is an important catalytic enzyme that is widely distributed in plants and can irreversibly hydrolyze sucrose into fructose and glucose. Daylily is an important perennial flower worldwide and a traditional vegetable in East Asia. Previous studies have suggested that sucrose invertase is involved in the aging of daylily flowers. However, knowledge about the number, physicochemical properties, and expression patterns of daylily sucrose invertases is still lacking. Identifying the daylily sucrose invertase family genes in the genome is highly important for understanding phylogenetic evolution and determining the genetic function of sucrose invertase. Methods To obtain basic knowledge about the number, classification, sequence composition, and physicochemical properties of sucrose invertases in daylily, bioinformatics software was used to analyze the genome of Hemerocallis citrina (H. citrina), and the basic properties of sucrose invertase genes and proteins were obtained. Then, combined with transcriptome data from flower organs at different developmental stages, the expression patterns of each gene were clarified. Finally, the reliability of the transcriptome data was verified by quantitative real-time polymerase chain reaction (PCR). Results Through software analysis, 35 sucrose invertases were identified from the H. citrina genome and named HcINV1-HcINV35; these enzymes belong to three subfamilies: cell wall invertases, vacuolar invertases, and chloroplast invertases. The amino acid composition, motif types, promoter composition, gene structure, protein physicochemical properties, gene chromosomal localization, and evolutionary adaptability of daylily invertases were determined; these results provided a comprehensive understanding of daylily invertases. The transcriptome expression profile combined with fluorescence quantitative reverse transcription-polymerase chain reaction (RT‒PCR) analysis suggested that almost all daylily invertase genes were expressed in flower organs, but even genes belonging to the same subfamily did not exhibit the same expression pattern at different developmental stages, suggesting that there may be redundancy or dissimilation in the function of daylily sucrose invertases.
Collapse
Affiliation(s)
- Guangying Ma
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Ziwei Zuo
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Lupeng Xie
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| | - Jiao Han
- Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Traine J, Rusman Q, Schiestl FP. Too hot to handle: temperature-induced plasticity influences pollinator behaviour and plant fitness. THE NEW PHYTOLOGIST 2024; 243:1571-1585. [PMID: 38922897 DOI: 10.1111/nph.19918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Increased temperature can induce plastic changes in many plant traits. However, little is known about how these changes affect plant interactions with insect pollinators and herbivores, and what the consequences for plant fitness and selection are. We grew fast-cycling Brassica rapa plants at two temperatures (ambient and increased temperature) and phenotyped them (floral traits, scent, colour and glucosinolates). We then exposed plants to both pollinators (Bombus terrestris) and pollinating herbivores (Pieris rapae). We measured flower visitation, oviposition of P. rapae, herbivore development and seed output. Plants in the hot environment produced more but smaller flowers, with lower UV reflectance and emitted a different volatile blend with overall lower volatile emission. Moreover, these plants received fewer first-choice visits by bumblebees and butterflies, and fewer flower visits by butterflies. Seed production was lower in hot environment plants, both because of a reduction in flower fertility due to temperature and because of the reduced visitation of pollinators. The selection on plant traits changed in strength and direction between temperatures. Our study highlights an important mechanism by which global warming can change plant-pollinator interactions and negatively impact plant fitness, as well as potentially alter plant evolution through changes in phenotypic selection.
Collapse
Affiliation(s)
- Juan Traine
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| | - Florian P Schiestl
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, Zürich, 8008, Switzerland
| |
Collapse
|
4
|
Liu H, Yao X, Fan J, Lv L, Zhao Y, Nie J, Guo Y, Zhang L, Huang H, Shi Y, Zhang Q, Li J, Sui X. Cell wall invertase 3 plays critical roles in providing sugars during pollination and fertilization in cucumber. PLANT PHYSIOLOGY 2024; 195:1293-1311. [PMID: 38428987 DOI: 10.1093/plphys/kiae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
In plants, pollen-pistil interactions during pollination and fertilization mediate pollen hydration and germination, pollen tube growth, and seed set and development. Cell wall invertases (CWINs) help provide the carbohydrates for pollen development; however, their roles in pollination and fertilization have not been well established. In cucumber (Cucumis sativus), CsCWIN3 showed the highest expression in flowers, and we further examined CsCWIN3 for functions during pollination to seed set. Both CsCWIN3 transcript and CsCWIN3 protein exhibited similar expression patterns in the sepals, petals, stamen filaments, anther tapetum, and pollen of male flowers, as well as in the stigma, style, transmitting tract, and ovule funiculus of female flowers. Notably, repression of CsCWIN3 in cucumber did not affect the formation of parthenocarpic fruit but resulted in an arrested growth of stigma integuments in female flowers and a partially delayed dehiscence of anthers with decreased pollen viability in male flowers. Consequently, the pollen tube grew poorly in the gynoecia after pollination. In addition, CsCWIN3-RNA interference plants also showed affected seed development. Considering that sugar transporters could function in cucumber fecundity, we highlight the role of CsCWIN3 and a potential close collaboration between CWIN and sugar transporters in these processes. Overall, we used molecular and physiological analyses to determine the CsCWIN3-mediated metabolism during pollen formation, pollen tube growth, and plant fecundity. CsCWIN3 has essential roles from pollination and fertilization to seed set but not parthenocarpic fruit development in cucumber.
Collapse
Affiliation(s)
- Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingwei Fan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yalong Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lidong Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Hongyu Huang
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Yuzi Shi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiawang Li
- Tianjin Academy of Agricultural Sciences, Tianjin Kernel Cucumber Research Institute, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Ministry of Science and Technology of the People's Republic of China, Tianjin 300192, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Chen S, Marcelis LFM, Offringa R, Kohlen W, Heuvelink E. Far-red light-enhanced apical dominance stimulates flower and fruit abortion in sweet pepper. PLANT PHYSIOLOGY 2024; 195:924-939. [PMID: 38366641 PMCID: PMC11142340 DOI: 10.1093/plphys/kiae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Far-red radiation affects many plant processes, including reproductive organ abortion. Our research aimed to determine the role of apical dominance in far-red light-induced flower and fruit abortion in sweet pepper (Capsicum annuum L.). We conducted several climate room experiments where plants were grown under white- or red-rich LED light, with or without additional far-red light. Additional far-red light enhanced apical dominance: it increased auxin levels in the apices of dominant shoots, and caused a greater difference in internode length and apical auxin levels between dominant and subordinate shoots. Additional far-red light stimulated fruit abortion in intact plants but not in decapitated plants, suggesting a crucial role of shoot apices in this effect. However, reducing basipetal auxin transport in the stems with N-1-naphthylphthalamic acid did not influence far-red light-stimulated fruit abortion, although auxin levels in the stem were largely reduced. Applying the synthetic auxin 1-naphthaleneacetic acid on decapitated apices did not influence fruit abortion. However, applying the auxin biosynthesis inhibitor yucasin to shoot apices reduced fruit abortion regardless of the light conditions, accompanied by slight shoot growth retardation. These findings suggest that the basipetal auxin stream does not mediate far-red light-stimulated fruit abortion. Far-red light-stimulated fruit abortion was associated with reduced sucrose accumulation and lower invertase activities in flowers. We suggest that under additional far-red light conditions, increased auxin levels in shoot apices promote fruit abortion probably through enhanced competition for assimilates between apices and flowers, which limits assimilate import into flowers.
Collapse
Affiliation(s)
- Sijia Chen
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
6
|
Mao T, Zhang Y, Xue W, Jin Y, Zhao H, Wang Y, Wang S, Zhuo S, Gao F, Su Y, Yu C, Guo X, Sheng Y, Zhang J, Zhang H. Identification, characterisation and expression analysis of peanut sugar invertase genes reveal their vital roles in response to abiotic stress. PLANT CELL REPORTS 2024; 43:30. [PMID: 38195770 DOI: 10.1007/s00299-023-03123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.
Collapse
Affiliation(s)
- Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yaru Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Wenwen Xue
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yu Jin
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Hongfei Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yibo Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Shengnan Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Shengjie Zhuo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Feifei Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yanping Su
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Xiaotong Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
| |
Collapse
|
7
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
8
|
Zuccarelli R, Rodríguez-Ruiz M, Silva FO, Gomes LDL, Lopes-Oliveira PJ, Zsögön A, Andrade SCS, Demarco D, Corpas FJ, Peres LEP, Rossi M, Freschi L. Loss of S-nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6349-6368. [PMID: 37157899 DOI: 10.1093/jxb/erad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Fernanda O Silva
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Letícia D L Gomes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Patrícia J Lopes-Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Shen S, Ma S, Wu L, Zhou SL, Ruan YL. Winners take all: competition for carbon resource determines grain fate. TRENDS IN PLANT SCIENCE 2023; 28:893-901. [PMID: 37080837 DOI: 10.1016/j.tplants.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
As an evolutionary strategy, plants overproduce ovaries as a safety net for survival, with those losing in the competition for resources being aborted. Grain abortion is, however, highly detrimental agronomically. The molecular basis of selective abortion of grain siblings remains unknown. In this opinion article we assess the current understanding of the molecular players controlling carbon resource import into ovaries and young grains, followed by an evaluation of the spatial hierarchy of sink capacity among grain siblings, focusing on the roles exerted by sugar transporters and enzymes. We argue that, upon sequential pollination and fertilization, robust activation of the carbon import and sugar signaling system plays a key role in establishing the capacity of grain siblings to acquire enough carbon resources to survive and thrive.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Limin Wu
- Agriculture and Food, CSIRO, Canberra, ACT 2617, Australia
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, China; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
10
|
Feng B, Xu Y, Fu W, Li H, Li G, Li J, Wang W, Tao L, Chen T, Fu G. RGA1 Negatively Regulates Thermo-tolerance by Affecting Carbohydrate Metabolism and the Energy Supply in Rice. RICE (NEW YORK, N.Y.) 2023; 16:32. [PMID: 37495715 PMCID: PMC10371973 DOI: 10.1186/s12284-023-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Signal transduction mediated by heterotrimeric G proteins, which comprise the α, β, and γ subunits, is one of the most important signaling pathways in rice plants. RGA1, which encodes the Gα subunit of the G protein, plays an important role in the response to various types of abiotic stress, including salt, drought, and cold stress. However, the role of RGA1 in the response to heat stress remains unclear. RESULTS The heat-resistant mutant ett1 (enhanced thermo-tolerance 1) with a new allele of the RGA1 gene was derived from an ethane methyl sulfonate-induced Zhonghua11 mutant. After 45 °C heat stress treatment for 36 h and recovery for 7 d, the survival rate of the ett1 mutants was significantly higher than that of wild-type (WT) plants. The malondialdehyde content was lower, and the maximum fluorescence quantum yield of photosystem II, peroxidase activity, and hsp expression were higher in ett1 mutants than in WT plants after 12 h of exposure to 45 °C. The RNA-sequencing results revealed that the expression of genes involved in the metabolism of carbohydrate, nicotinamide adenine dinucleotide, and energy was up-regulated in ett1 under heat stress. The carbohydrate content and the relative expression of genes involved in sucrose metabolism indicated that carbohydrate metabolism was accelerated in ett1 under heat stress. Energy parameters, including the adenosine triphosphate (ATP) content and the energy charge, were significantly higher in the ett1 mutants than in WT plants under heat stress. Importantly, exogenous glucose can alleviate the damages on rice seedling plants caused by heat stress. CONCLUSION RGA1 negatively regulates the thermo-tolerance in rice seedling plants through affecting carbohydrate and energy metabolism.
Collapse
Affiliation(s)
- Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yongqiang Xu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Gengmi Li
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture/Luzhou Branch of National Rice Improvement Center, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Juncai Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- China National Key Laboratory of Rice Biology, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Wenting Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
- China National Key Laboratory of Rice Biology, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
11
|
Cheng L, Jin J, He X, Luo Z, Wang Z, Yang J, Xu X. Genome-wide identification and analysis of the invertase gene family in tobacco ( Nicotiana tabacum) reveals NtNINV10 participating the sugar metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1164296. [PMID: 37332710 PMCID: PMC10272776 DOI: 10.3389/fpls.2023.1164296] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Sucrose (Suc) is directly associated with plant growth and development as well as tolerance to various stresses. Invertase (INV) enzymes played important role in sucrose metabolism by irreversibly catalyzing Suc degradation. However, genome-wide identification and function of individual members of the INV gene family in Nicotiana tabacum have not been conducted. In this report, 36 non-redundant NtINV family members were identified in Nicotiana tabacum including 20 alkaline/neutral INV genes (NtNINV1-20), 4 vacuolar INV genes (NtVINV1-4), and 12 cell wall INV isoforms (NtCWINV1-12). A comprehensive analysis based on the biochemical characteristics, the exon-intron structures, the chromosomal location and the evolutionary analysis revealed the conservation and the divergence of NtINVs. For the evolution of the NtINV gene, fragment duplication and purification selection were major factors. Besides, our analysis revealed that NtINV could be regulated by miRNAs and cis-regulatory elements of transcription factors associated with multiple stress responses. In addition, 3D structure analysis has provided evidence for the differentiation between the NINV and VINV. The expression patterns in diverse tissues and under various stresses were investigated, and qRT-PCR experiments were conducted to confirm the expression patterns. Results revealed that changes in NtNINV10 expression level were induced by leaf development, drought and salinity stresses. Further examination revealed that the NtNINV10-GFP fusion protein was located in the cell membrane. Furthermore, inhibition of the expression of NtNINV10 gene decreased the glucose and fructose in tobacco leaves. Overall, we have identified possible NtINV genes functioned in leaf development and tolerance to environmental stresses in tobacco. These findings provide a better understanding of the NtINV gene family and establish the basis for future research.
Collapse
Affiliation(s)
- Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
12
|
Yi JW, Ge HT, Abbas F, Zhao JT, Huang XM, Hu GB, Wang HC. Function of a non-enzymatic hexokinase LcHXK1 as glucose sensor in regulating litchi fruit abscission. TREE PHYSIOLOGY 2023; 43:130-141. [PMID: 35951668 DOI: 10.1093/treephys/tpac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Fruit abscission is a severe hindrance to commercial crop production, and a lack of carbohydrates causes fruit abscission to intensify in a variety of plant species. However, the precise mechanism by which carbohydrates affect fruit setting potential has yet to be determined. In the current study, we noticed negative correlation between hexose level and fruit setting by comparing different cultivars, bearing shoots of varying diameters, and girdling and defoliation treatments. The cumulative fruit-dropping rate was significantly reduced in response to exogenous glucose dipping. These results suggested that hexose, especially glucose, is the key player in lowering litchi fruit abscission. Moreover, five putative litchi hexokinase genes (LcHXKs) were isolated and the subcellular localization as well as activity of their expressed proteins in catalyzing hexose phosphorylation were investigated. LcHXK2 was only found in mitochondria and expressed catalytic protein, whereas the other four HXKs were found in both mitochondria and nuclei and had no activity in catalyzing hexose phosphorylation. LcHXK1 and LcHXK4 were found in the same cluster as previously reported hexose sensors AtHXK1 and MdHXK1. Furthermore, VIGS-mediated silencing assay confirms that LcHXK1 suppression increases fruit abscission. These findings revealed that LcHXK1 functions as hexose sensor, negatively regulating litchi fruit abscission.
Collapse
Affiliation(s)
- Jun-Wen Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Han-Tao Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Farhat Abbas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jie-Tang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Cong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling 408100, China
| |
Collapse
|
13
|
Liang X, Qian R, Wang D, Liu L, Sun C, Lin X. Lipid-Derived Aldehydes: New Key Mediators of Plant Growth and Stress Responses. BIOLOGY 2022; 11:biology11111590. [PMID: 36358291 PMCID: PMC9687549 DOI: 10.3390/biology11111590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 01/25/2023]
Abstract
Aldehydes, derivatives of lipids, are ubiquitously produced through non-enzymatic and enzymatic pathways in higher plants and participate in many physiological and biological processes. Increasing evidence demonstrates that aldehydes are involved in plants response to many abiotic stresses, such as light, drought, heat and nutrient deficiency. In plant cells, endogenously triggered or exogenously applied high concentrations of aldehydes can damage proteins and nucleic acid, disturb redox homeostasis, and consequently inhibit plant growth; therefore, they are considered cytotoxins. Aldehyde levels are also used as biomarkers to evaluate the health status of plants. Further genetic research shows that several enzymes have strong capacities to detoxify these electrophilic aldehydes. Small molecules, such as carnosine and glutathione, also exhibit the ability to scavenge aldehydes, effectively promoting plant growth. Recently, increasing evidence has shown that certain aldehydes at certain concentrations can upregulate survival genes, activate antioxidant responses, increase defense against pathogens and stimulate plant growth. This review summarizes recent studies of lipid-derived aldehydes in higher plants, mainly focusing on the generation pathway, toxic effects, and detoxification strategies. In addition, the signaling effects of aldehydes in plants are also discussed.
Collapse
Affiliation(s)
- Xin Liang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Qian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lijuan Liu
- Iterdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
14
|
Chavez Mendoza K, Peña-Valdivia CB, Hernández Rodríguez M, Vázquez Sánchez M, Morales Elías NC, Jiménez Galindo JC, García Esteva A, Padilla Chacón D. Phenotypic, Anatomical, and Diel Variation in Sugar Concentration Linked to Cell Wall Invertases in Common Bean Pod Racemes under Water Restriction. PLANTS 2022; 11:plants11131622. [PMID: 35807573 PMCID: PMC9268661 DOI: 10.3390/plants11131622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
Abstract
The common bean (Phaseolus vulgaris L.) pod wall is essential for seed formation and to protect seeds. To address the effect of water restriction on sugar metabolism in fruits differing in sink strength under light–dark cycles, we used plants of cv. OTI at 100% field capacity (FC) and at 50% FC over 10 days at the beginning of pod filling. Water restriction intensified the symptoms of leaf senescence. However, pods maintained a green color for several days longer than leaves did. In addition, the functionality of pods of the same raceme was anatomically demonstrated, and no differences were observed between water regimes. The glucose and starch concentrations were lower than those of sucrose, independent of pod wall size. Remarkably, the fructose concentration decreased only under water restriction. The cell wall invertase activity was twofold higher in the walls of small pods than in those of large ones in both water regimes; similar differences were not evident for cytosolic or vacuolar invertase. Using bioinformatics tools, six sequences of invertase genes were identified in the P. vulgaris genome. The PvINVCW4 protein sequence contains substitutions for conserved residues in the sucrose-binding site, while qPCR showed that transcript levels were induced in the walls of small pods under stress. The findings support a promising strategy for addressing sink strength under water restriction.
Collapse
Affiliation(s)
- Karla Chavez Mendoza
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Cecilia Beatriz Peña-Valdivia
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Martha Hernández Rodríguez
- Postgrado en Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico;
| | - Monserrat Vázquez Sánchez
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Norma Cecilia Morales Elías
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | | | - Antonio García Esteva
- Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico; (K.C.M.); (C.B.P.-V.); (M.V.S.); (N.C.M.E.); (A.G.E.)
| | - Daniel Padilla Chacón
- CONACYT-Programa de Posgrado en Botánica, Colegio de Postgraduados, Carretera México-Texcoco, km 36.5, Montecillo 56230, Mexico
- Correspondence: ; Tel.: +52-595-952-0200 (ext. 1344)
| |
Collapse
|
15
|
Liu YH, Song YH, Ruan YL. Sugar conundrum in plant-pathogen interactions: roles of invertase and sugar transporters depend on pathosystems. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1910-1925. [PMID: 35104311 PMCID: PMC8982439 DOI: 10.1093/jxb/erab562] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/25/2021] [Indexed: 06/12/2023]
Abstract
It has been increasingly recognized that CWIN (cell wall invertase) and sugar transporters including STP (sugar transport protein) and SWEET (sugar will eventually be exported transporters) play important roles in plant-pathogen interactions. However, the information available in the literature comes from diverse systems and often yields contradictory findings and conclusions. To solve this puzzle, we provide here a comprehensive assessment of the topic. Our analyses revealed that the regulation of plant-microbe interactions by CWIN, SWEET, and STP is conditioned by the specific pathosystems involved. The roles of CWINs in plant resistance are largely determined by the lifestyle of pathogens (biotrophs versus necrotrophs or hemibiotrophs), possibly through CWIN-mediated salicylic acid or jasmonic acid signaling and programmed cell death pathways. The up-regulation of SWEETs and STPs may enhance or reduce plant resistance, depending on the cellular sites from which pathogens acquire sugars from the host cells. Finally, plants employ unique mechanisms to defend against viral infection, in part through a sugar-based regulation of plasmodesmatal development or aperture. Our appraisal further calls for attention to be paid to the involvement of microbial sugar metabolism and transport in plant-pathogen interactions, which is an integrated but overlooked component of such interactions.
Collapse
Affiliation(s)
- Yong-Hua Liu
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Haikou, China
| | - You-Hong Song
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yong-Ling Ruan
- Innovation Cluster of Crop Molecular Biology and Breeding, Anhui Agricultural University, Hefei, China
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
16
|
Arshad M, Hannoufa AA. Alfalfa transcriptome profiling provides insight into miR156-mediated molecular mechanisms of heat stress tolerance. Genome 2022; 65:315-330. [PMID: 35298891 DOI: 10.1139/gen-2021-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat is one of the major environmental stressors that negatively affects alfalfa production. Previously, we reported the role of microRNA156 (miR156) in heat tolerance, however, mechanisms and downstream genes involved in this process were not fully studied. To provide further insight, we compared an empty vector control and miR156 overexpressing alfalfa plants (miR156+) after exposing them to heat stress (40 °C) for 24h. We collected leaf samples for transcriptome analysis to illustrate the miR156-regualted molecular mechanisms underlying the heat stress response. A total of 3579 differentially expressed genes (DEG) were detected exclusively in miR156+ plants under heat stress using the Medicago sativa genome as reference. GO and KEGG analysis indicated that these DEGs were mainly involved in "polysaccharide metabolism", "response to chemical", "secondary metabolism", "carbon metabolism" and "cell cycle". Transcription factors predicted in miR156+ plants belonged to TCP family, MYB, ABA response element-binding factor, WRKY and heat shock transcription factor. We also identified two new SPL family gene member (SPL8a and SPL12a), putatively regulated by miR156. The present study provides comprehensive transcriptome profile of alfalfa, identifies a number of genes and pathways, and reveals a miR156-regulated network of mechanisms at the gene expression level to modulate heat responses in alfalfa.
Collapse
Affiliation(s)
- Muhammad Arshad
- London Research and Development Centre, 98671, London, Ontario, Canada.,New York University - Abu Dhabi Campus, 167632, Centre for Genomics and Systems Biology , Abu Dhabi, United Arab Emirates;
| | | |
Collapse
|
17
|
Wang Z, Ma B, Yang N, Jin L, Wang L, Ma S, Ruan YL, Ma F, Li M. Variation in the promoter of the sorbitol dehydrogenase gene MdSDH2 affects binding of the transcription factor MdABI3 and alters fructose content in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1183-1198. [PMID: 34888978 DOI: 10.1111/tpj.15624] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Fructose (Fru) content is a key determinant of fruit sweetness and quality. An F1 hybrid population of the apple cultivars 'Honeycrisp' × 'Qinguan' was used to investigate the quantitative trait locus (QTL) regions and genes controlling Fru content in fruit. A stable QTL on linkage group (LG) 01 in 'Honeycrisp' was detected on the single nucleotide polymorphism (SNP) genetic linkage maps. In this region, a sorbitol dehydrogenase (SDH) gene, MdSDH2, was detected and showed promoter variations and differential expression patterns between 'Honeycrisp' and 'Qinguan' fruits as well as their hybrids. A SNP variant (A/G) in the MdSDH2 promoter region (SDH2p-491) affected the binding ability of the transcription factor MdABI3, which can affect the expression of MdSDH2. Promoter sequences with an A nucleotide at SDH2p-491 had stronger binding affinity for MdABI3 than those with a G. Among 27 domesticated apple cultivars and wild relatives, this SNP (A/G) was associated with Fru content. Our results indicate that MdSDH2 can alter Fru content as the major regulatory gene and that ABA signaling might be involved in Fru content accumulation in apple fruit.
Collapse
Affiliation(s)
- Zhengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Nanxiang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ling Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Songya Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Kumar S, Thakur M, Mitra R, Basu S, Anand A. Sugar metabolism during pre- and post-fertilization events in plants under high temperature stress. PLANT CELL REPORTS 2022; 41:655-673. [PMID: 34628530 DOI: 10.1007/s00299-021-02795-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
High temperature challenges global crop production by limiting the growth and development of the reproductive structures and seed. It impairs the developmental stages of male and female gametogenesis, pollination, fertilization, endosperm formation and embryo development. Among these, the male reproductive processes are highly prone to abnormalities under high temperature at various stages of development. The disruption of source-sink balance is the main constraint for satisfactory growth of the reproductive structures which is disturbed at the level of sucrose import and utilization within the tissue. Seed development after fertilization is affected by modulation in the activity of enzymes involved in starch metabolism. In addition, the alteration in the seed-filling rate and its duration affects the seed weight and quality. The present review critically discusses the role of sugar metabolism in influencing the various stages of gamete and seed development under high temperature stress. It also highlights the interaction of the sugars with hormones that mediate the transport of sugars to sink tissues. The role of transcription factors for the regulation of sugar availability under high temperature has also been discussed. Further, the omics-based systematic investigation has been suggested to understand the synergistic or antagonistic interactions between sugars, hormones and reactive oxygen species at various points of sucrose flow from source to sink under high temperature stress.
Collapse
Affiliation(s)
- Sunil Kumar
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Meenakshi Thakur
- College of Horticulture and Forestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Neri, Hamirpur, 177 001, Himachal Pradesh, India
| | - Raktim Mitra
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Sudipta Basu
- Division of Seed Science and Technology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| |
Collapse
|
19
|
Samkumar A, Karppinen K, Dhakal B, Martinussen I, Jaakola L. Insights into sugar metabolism during bilberry (Vaccinium myrtillus L.) fruit development. PHYSIOLOGIA PLANTARUM 2022; 174:e13657. [PMID: 35243654 PMCID: PMC9313557 DOI: 10.1111/ppl.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 06/12/2023]
Abstract
Bilberry fruit is regarded as one of the best natural sources of anthocyanins and is widely explored for its health-beneficial compounds. Besides anthocyanins, one of the major attributes that determine the berry quality is the accumulation of sugars that provide sweetness and flavor to ripening fruit. In this study, we have identified 25 sugar metabolism-related genes in bilberry, including invertases (INVs), hexokinases (HKs), fructokinases (FKs), sucrose synthases (SSs), sucrose phosphate synthases (SPSs), and sucrose phosphate phosphatases (SPPs). The results indicate that isoforms of the identified genes are expressed differentially during berry development, suggesting specialized functions. The highest sugar content was found in ripe berries, with fructose and glucose dominating accompanied by low sucrose amount. The related enzyme activities during berry development and ripening were further analyzed to understand the molecular mechanism of sugar accumulation. The activity of INVs in the cell wall and vacuole increased toward ripe berries. Amylase activity involved in starch metabolism was not detected in unripe berries but was found in ripe berries. Sucrose resynthesizing SS enzyme activity was detected upon early ripening and had the highest activity in ripe berries. Interestingly, our transcriptome data showed that supplemental irradiation with red and blue light triggered upregulation of several sugar metabolism-related genes, including α- and β-amylases. Also, differential expression patterns in responses to red and blue light were found across sucrose, galactose, and sugar-alcohol metabolism. Our enzymological and transcriptional data provide new understanding of the bilberry fruit sugar metabolism having major effect on fruit quality.
Collapse
Affiliation(s)
- Amos Samkumar
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Katja Karppinen
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Binita Dhakal
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| | - Inger Martinussen
- Division of Food Production and SocietyNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Laura Jaakola
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Division of Food Production and SocietyNorwegian Institute of Bioeconomy ResearchÅsNorway
| |
Collapse
|
20
|
Sharif R, Su L, Chen X, Qi X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. HORTICULTURE RESEARCH 2022; 9:6497882. [PMID: 35031797 PMCID: PMC8788353 DOI: 10.1093/hr/uhab024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
In some horticultural crops, such as Cucurbitaceae, Solanaceae, and Rosaceae species, fruit set and development can occur without the fertilization of ovules, a process known as parthenocarpy. Parthenocarpy is an important agricultural trait that can not only mitigate fruit yield losses caused by environmental stresses but can also induce the development of seedless fruit, which is a desirable trait for consumers. In the present review, the induction of parthenocarpic fruit by the application of hormones such as auxins (2,4 dichlorophenoxyacetic acid; naphthaleneacetic acid), cytokinins (forchlorfenuron; 6-benzylaminopurine), gibberellic acids, and brassinosteroids is first presented. Then, the molecular mechanisms of parthenocarpic fruit formation, mainly related to plant hormones, are presented. Auxins, gibberellic acids, and cytokinins are categorized as primary players in initiating fruit set. Other hormones, such as ethylene, brassinosteroids, and melatonin, also participate in parthenocarpic fruit formation. Additionally, synergistic and antagonistic crosstalk between these hormones is crucial for deciding the fate of fruit set. Finally, we highlight knowledge gaps and suggest future directions of research on parthenocarpic fruit formation in horticultural crops.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Li Su
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
- Corresponding authors. E-mail: ,
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
21
|
Ruan YL. CWIN-sugar transporter nexus is a key component for reproductive success. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153572. [PMID: 34839101 DOI: 10.1016/j.jplph.2021.153572] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
Reproductive development is critical for completion of plant life cycle and realization of crop yield potential. Reproductive organs comprise multiple distinctive or even transgenerational tissues, which are symplasmically disconnected from each other for protection and better control of nutrition and development. Cell wall invertases (CWINs) and sugar transporters are often specifically or abundantly expressed in these apoplasmic interfaces to provide carbon nutrients and sugar signals to developing pollens, endosperm and embryo. Emerging evidence shows that some of those genes were indeed targeted for selection during crop domestication. In this Opinion paper, I discuss the functional significance of the localized expression of CWINs and sugar transporters in reproductive organs followed by an analysis on how their spatial patterning may be regulated at the molecular levels and how the localized CWIN activity may be exploited for improvement of reproductive output.
Collapse
Affiliation(s)
- Yong-Ling Ruan
- School of Environmental and Life Science, University of Newcastle, NSW, 2308, Australia; Centre of Plant Reproductive and Stress Biology, Northwest A&F University, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Dahro B, Wang Y, Alhag A, Li C, Guo D, Liu JH. Genome-wide identification and expression profiling of invertase gene family for abiotic stresses tolerance in Poncirus trifoliata. BMC PLANT BIOLOGY 2021; 21:559. [PMID: 34823468 PMCID: PMC8614057 DOI: 10.1186/s12870-021-03337-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/08/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Sucrose (Suc) hydrolysis is directly associated with plants tolerance to multiple abiotic stresses. Invertase (INV) enzymes irreversibly catalyze Suc degradation to produce glucose (Glc) and fructose (Frc). However, genome-wide identification and function of individual members of the INV gene family in Poncirus trifoliata or its Citrus relatives in response to abiotic stresses are not fully understood. RESULTS In this report, fourteen non-redundant PtrINV family members were identified in P. trifoliata including seven alkaline/neutral INV genes (PtrA/NINV1-7), two vacuolar INV genes (PtrVINV1-2), and five cell wall INV isoforms (PtrCWINV1-5). A comprehensive analysis based on the biochemical characteristics, the chromosomal location, the exon-intron structures and the evolutionary relationships demonstrated the conservation and the divergence of PtrINVs. In addition, expression analysis of INV genes during several abiotic stresses in various tissues indicated the central role of A/NINV7 among INV family members in response to abiotic stresses. Furthermore, our data demonstrated that high accumulation of Suc, Glc, Frc and total sugar contents were directly correlated with the elevated activities of soluble INV enzymes in the cold-tolerant P. trifoliata, C. ichangensis and C. sinensis, demonstrating the potential role of soluble INV enzymes for the cold tolerance of Citrus. CONCLUSIONS This work offered a framework for understanding the physiological role of INV genes and laid a foundation for future functional studies of these genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Alhag
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dayong Guo
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Chen T, Zhang Z, Li B, Qin G, Tian S. Molecular basis for optimizing sugar metabolism and transport during fruit development. ABIOTECH 2021; 2:330-340. [PMID: 36303881 PMCID: PMC9590571 DOI: 10.1007/s42994-021-00061-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Sugars are fundamental metabolites synthesized in leaves and further delivered to fruit in fruit crops. They not only provide "sweetness" as fruit quality traits, but also function as signaling molecules to modulate the responses of fruit to environmental stimuli. Therefore, the understanding to the molecular basis for sugar metabolism and transport is crucial for improving fruit quality and dissecting responses to abiotic/biotic factors. Here, we provide a review for molecular components involved in sugar metabolism and transport, crosstalk with hormone signaling, and the roles of sugars in responses to abiotic and biotic stresses. Moreover, we also envisage the strategies for optimizing sugar metabolism during fruit quality maintenance.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
24
|
Wang Y, Impa SM, Sunkar R, Jagadish SVK. The neglected other half - role of the pistil in plant heat stress responses. PLANT, CELL & ENVIRONMENT 2021; 44:2200-2210. [PMID: 33866576 DOI: 10.1111/pce.14067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 05/26/2023]
Abstract
Heat stress coinciding with reproductive stage leads to a significant loss in reproductive organs viability, resulting in lower seed-set and crop productivity. Successful fertilization and seed formation are determined by the viability of male and female reproductive organs. The impact of heat stress on the male reproductive organ (pollen) is studied more often compared to the female reproductive organ (pistil). This is attributed to easier accessibility of the pollen coupled with the notion that the pistil's role in fertilization and seed-set under heat stress is negligible. However, depending on species and developmental stages, recent studies reveal varying degrees of sensitivity of the pistil to heat stress. Remarkably, in some cases, the vulnerability of the pistil is even greater than the pollen. This article summarizes the current knowledge of the impact of heat stress on three critical stages of pistil for successful seed-set, that is, female reproductive organ development (gametogenesis), pollen-pistil interactions including pollen capture on stigma and pollen tube growth in style, as well as fertilization and early embryogenesis. Further, future research directions are suggested to unravel molecular basis of heat stress tolerance in pistil, which is critical for sustaining crop yields under predicted warming scenarios.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - S M Impa
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | |
Collapse
|
25
|
Almeida J, Perez-Fons L, Fraser PD. A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. PLANT, CELL & ENVIRONMENT 2021; 44:2211-2229. [PMID: 32691430 DOI: 10.1111/pce.13854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 05/21/2023]
Abstract
High temperatures can negatively influence plant growth and development. Besides yield, the effects of heat stress on fruit quality traits remain poorly characterised. In tomato, insights into how fruits regulate cellular metabolism in response to heat stress could contribute to the development of heat-tolerant varieties, without detrimental effects on quality. In the present study, the changes occurring in wild type tomato fruits after exposure to transient heat stress have been elucidated at the transcriptome, cellular and metabolite level. An impact on fruit quality was evident as nutritional attributes changed in response to heat stress. Fruit carotenogenesis was affected, predominantly at the stage of phytoene formation, although altered desaturation/isomerisation arose during the transient exposure to high temperatures. Plastidial isoprenoid compounds showed subtle alterations in their distribution within chromoplast sub-compartments. Metabolite profiling suggests limited effects on primary/intermediary metabolism but lipid remodelling was evident. The heat-induced molecular signatures included the accumulation of sucrose and triacylglycerols, and a decrease in the degree of membrane lipid unsaturation, which influenced the volatile profile. Collectively, these data provide valuable insights into the underlying biochemical and molecular adaptation of fruit to heat stress and will impact on our ability to develop future climate resilient tomato varieties.
Collapse
Affiliation(s)
- Juliana Almeida
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Laura Perez-Fons
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
26
|
Kou X, Zhou J, Wu CE, Yang S, Liu Y, Chai L, Xue Z. The interplay between ABA/ethylene and NAC TFs in tomato fruit ripening: a review. PLANT MOLECULAR BIOLOGY 2021; 106:223-238. [PMID: 33634368 DOI: 10.1007/s11103-021-01128-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 05/02/2023]
Abstract
This review contains functional roles of NAC transcription factors in the transcriptional regulation of ripening in tomato fruit, describes the interplay between ABA/ethylene and NAC TFs in tomato fruit ripening. Fruit ripening is regulated by a complex network of transcription factors (TFs) and genetic regulators in response to endogenous hormones and external signals. Studying the regulation of fruit ripening has important significance for controlling fruit quality, enhancing nutritional value, improving storage conditions and extending shelf-life. Plant-specific NAC (named after no apical meristem (NAM), Arabidopsis transcription activator factor 1/2 (ATAF1/2) and Cup-shaped cotyledon (CUC2)) TFs play essential roles in plant development, ripening and stress responses. In this review, we summarize the recent progress on the regulation of NAC TFs in fruit ripening, discuss the interactions between NAC and other factors in controlling fruit development and ripening, and emphasize how NAC TFs are involved in tomato fruit ripening through the ethylene and abscisic acid (ABA) pathways. The signaling network regulating ripening is complex, and both hormones and individual TFs can affect the status or activity of other network participants, which can alter the overall ripening network regulation, including response signals and fruit ripening. Our review helps in the systematic understanding of the regulation of NAC TFs involved in fruit ripening and provides a basis for the development or establishment of complex ripening regulatory network models.
Collapse
Affiliation(s)
- XiaoHong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - JiaQian Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Cai E Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, People's Republic of China
| | - Sen Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - YeFang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - LiPing Chai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - ZhaoHui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
27
|
Li J, Foster R, Ma S, Liao SJ, Bliss S, Kartika D, Wang L, Wu L, Eamens AL, Ruan YL. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1058-1074. [PMID: 33650173 DOI: 10.1111/tpj.15218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Cell wall invertase (CWIN) hydrolyses sucrose into glucose and fructose in the extracellular matrix and plays crucial roles in assimilate partitioning and sugar signalling. However, the molecular regulators controlling CWIN gene transcription remain unknown. As the first step to address this issue, we performed bioinformatic and transgenic studies, which identified a cohort of transcription factors (TFs) modulating CWIN gene expression in Arabidopsis thaliana. Comprehensive bioinformatic analyses identified 18 TFs as putative regulators of the expression of AtCWIN2 and AtCWIN4 that are predominantly expressed in Arabidopsis reproductive organs. Among them, MYB21, ARF6, ARF8, AP3 and CRC were subsequently shown to be the most likely regulators of CWIN gene expression based on molecular characterization of the respective mutant of each candidate TF. More specifically, the obtained data indicate that ARF6, ARF8 and MYB21 regulate CWIN2 expression in the anthers and CWIN4 in nectaries, anthers and petals, whereas AP3 and CRC were determined primarily to regulate the transcriptional activity of CWIN4. TF-promoter interaction assays demonstrated that ARF6 and ARF8 directly control CWIN2 and CWIN4 transcription with AP3 activating CWIN4. The involvement of ARF8 in regulating CWIN4 expression was further supported by the finding that enhanced CWIN4 expression partially recovered the short silique phenotype displayed by the arf8-3 mutant. The identification of the five TFs regulating CWIN expression serves as a launching pad for future studies to dissect the upstream molecular network underpinning the transcription of CWINs and provides a new avenue, potentially, to engineer assimilate allocation and reproductive development for improving seed yield.
Collapse
Affiliation(s)
- Jun Li
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ryan Foster
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Si Ma
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Sheng-Jin Liao
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Samuel Bliss
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Dewi Kartika
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lu Wang
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Limin Wu
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Andrew L Eamens
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences and Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
28
|
Structure and Expression Analysis of Sucrose Phosphate Synthase, Sucrose Synthase and Invertase Gene Families in Solanum lycopersicum. Int J Mol Sci 2021; 22:ijms22094698. [PMID: 33946733 PMCID: PMC8124378 DOI: 10.3390/ijms22094698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Sucrose phosphate synthase (SPS), sucrose synthase (SUS) and invertase (INV) are all encoded by multigene families. In tomato (Solanum lycopersicum), a comprehensive analysis of structure characteristics of these family genes is still lacking, and the functions of individual isoforms of these families are mostly unclear under stress. Here, the structure characteristics of the three families in tomato were analyzed; moreover, as a first step toward understanding the functions of isoforms of these proteins under stress, the tissue expression pattern and stress response of these genes were also investigated. The results showed that four SPS genes, six SUS genes and nineteen INV genes were identified in tomato. The subfamily differentiation of SlSPS and SlSUS might have completed before the split of monocotyledons and dicotyledons. The conserved motifs were mostly consistent within each protein family/subfamily. These genes demonstrated differential expressions among family members and tissues, and in response to polyethylene glycerol, NaCl, H2O2, abscisic acid or salicylic acid treatment. Our results suggest that each isoform of these families may have different functions in different tissues and under environmental stimuli. SlSPS1, SlSPS3, SlSUS1, SlSUS3, SlSUS4, SlINVAN5 and SlINVAN7 demonstrated consistent expression responses and may be the major genes responding to exogenous stimuli.
Collapse
|
29
|
Rao SQ, Chen XQ, Wang KH, Zhu ZJ, Yang J, Zhu B. Effect of short-term high temperature on the accumulation of glucosinolates in Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:222-233. [PMID: 33639590 DOI: 10.1016/j.plaphy.2021.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Glucosinolates, an important class of secondary metabolites in cruciferous vegetables, play a crucial role in protecting plants from stress-related damage. The mechanism of glucosinolate synthesis under short-term high temperature stress has not been sufficiently studied. In this work, we investigated the changes in transcription factors, synthetic genes, and related metabolites involved in glucosinolate synthesis by pakchoi seedlings under short-term high temperature stress (40 °C for 8 h). Short-term high temperature stress inhibited the primary sulfur assimilation and the contents of methionine, cysteine and glutathione. The contents of aliphatic and indolic glucosinolates were increased by short-term high temperature stress, whereas the content of 4-methoxy-glucobrassicin increased significantly. During the stress period, the transcript level of glucosinolate related MYB transcription factors had been basically significantly up-regulated, whereas the transcript level of aliphatic and indolic glucosinolate synthetic genes were predominantly up-regulated and down-regulated respectively. In the early recovery period, primary sulfur assimilation up-regulated rapidly, and decreased during the late recovery process. The glucosinolate content and synthesis gene expression act similar to the primary sulfur assimilation, a short up-regulated in early recovery, then all go down at 40 and 48 h after short-term high temperature treatment.
Collapse
Affiliation(s)
- Shuai-Qi Rao
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Xiao-Qi Chen
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Kuan-Hong Wang
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Zhu-Jun Zhu
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China
| | - Jing Yang
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China.
| | - Biao Zhu
- Zhejiang Agricultural and Forestry University, School of Agriculture and Food Science, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
30
|
Coluccio Leskow C, Conte M, Del Pozo T, Bermúdez L, Lira BS, Gramegna G, Baroli I, Burgos E, Zavallo D, Kamenetzky L, Asís R, Gonzalez M, Fernie AR, Rossi M, Osorio S, Carrari F. The cytosolic invertase NI6 affects vegetative growth, flowering, fruit set, and yield in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2525-2543. [PMID: 33367755 DOI: 10.1093/jxb/eraa594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Sucrose metabolism is important for most plants, both as the main source of carbon and via signaling mechanisms that have been proposed for this molecule. A cleaving enzyme, invertase (INV) channels sucrose into sink metabolism. Although acid soluble and insoluble invertases have been largely investigated, studies on the role of neutral invertases (A/N-INV) have lagged behind. Here, we identified a tomato A/N-INV encoding gene (NI6) co-localizing with a previously reported quantitative trait locus (QTL) largely affecting primary carbon metabolism in tomato. Of the eight A/N-INV genes identified in the tomato genome, NI6 mRNA is present in all organs, but its expression was higher in sink tissues (mainly roots and fruits). A NI6-GFP fusion protein localized to the cytosol of mesophyll cells. Tomato NI6-silenced plants showed impaired growth phenotype, delayed flowering and a dramatic reduction in fruit set. Global gene expression and metabolite profile analyses of these plants revealed that NI6 is not only essential for sugar metabolism, but also plays a signaling role in stress adaptation. We also identified major hubs, whose expression patterns were greatly affected by NI6 silencing; these hubs were within the signaling cascade that coordinates carbohydrate metabolism with growth and development in tomato.
Collapse
Affiliation(s)
- Carla Coluccio Leskow
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1712WAA Hurlingham, Argentina
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1712WAA Hurlingham, Argentina
| | - Talia Del Pozo
- Centro Tecnológico de Recursos Vegetales, Escuela de Agronomía, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Luisa Bermúdez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1712WAA Hurlingham, Argentina
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giovanna Gramegna
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Irene Baroli
- Instituto de Biodiversidad y Biología Experimental Aplicada., IBBEA, CONICET, Buenos Aires, Argentina
| | - Estanislao Burgos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B1712WAA Hurlingham, Argentina
| | - Laura Kamenetzky
- Laboratorio de Genómica y Bioinformática de Patógenos. iB3 | Instituto de Biociencias, Biotecnología y Biología traslacional. Departamento de Fisiologia y Biologia Molecular y Celular Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Ramón Asís
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mauricio Gonzalez
- Centro Tecnológico de Recursos Vegetales, Escuela de Agronomía, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago, Chile
| | - Alisdair Robert Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschafts Park Golm, Am Mühlenberg 1, Potsdam-Golm, D-14 476, Germany
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain
| | - Fernando Carrari
- Cátedra de Genética, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
31
|
Alsamir M, Mahmood T, Trethowan R, Ahmad N. An overview of heat stress in tomato ( Solanum lycopersicum L.). Saudi J Biol Sci 2021; 28:1654-1663. [PMID: 33732051 PMCID: PMC7938145 DOI: 10.1016/j.sjbs.2020.11.088] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Heat stress has been defined as the rise of temperature for a period of time higher than a threshold level, thereby permanently affecting the plant growth and development. Day or night temperature is considered as the major limiting factor for plant growth. Earlier studies reported that night temperature is an important factor in the heat reaction of the plants. Tomato cultivars capable of setting viable fruits under night temperatures above 21 °C are considered as heat-tolerant cultivars. The development of breeding objectives is generally summarized in four points: (a) cultivars with higher yield, (b) disease resistant varieties in the 1970s, (c) long shelf-life in 1980s, and (d) nutritive and taste quality during 1990s. Some unique varieties like the dwarf "Micro-Tom", and the first transgenic tomato (FlavrSavr) were developed through breeding; they were distributed late in the 1980s. High temperature significantly affects seed, pollen viability and root expansion. Researchers have employed different parameters to evaluate the tolerance to heat stress, including membrane thermo stability, floral characteristics (Stigma exertion and antheridia cone splitting), flower number, and fruit yield per plant. Reports on pollen viability and fruit set/plant under heat stress by comparing the pollen growth and tube development in heat-treated and non-heat-stressed conditions are available in literature. The electrical conductivity (EC) have been used to evaluate the tolerance of some tomato cultivars in vitro under heat stress conditions as an indication of cell damage due to electrolyte leakage; they classified the cultivars into three groups: (a) heat tolerant, (b) moderately heat tolerant, and (c) heat sensitive. It is important to determine the range in genetic diversity for heat tolerance in tomatoes. Heat stress experiments under field conditions offer breeders information to identify the potentially heat tolerant germplasm.
Collapse
Affiliation(s)
- Muhammed Alsamir
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Tariq Mahmood
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Richard Trethowan
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | - Nabil Ahmad
- Plant Breeding Institute, Faculty of Agriculture and Environment, University of Sydney, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| |
Collapse
|
32
|
Zhang Y, Zhang Y, Xing J, Li Y, Yang Y, Wang Y, Jiang L, Zhang M, Li Z. Efficient carbon recycling and modulation of antioxidants involved in elongation of the parasitic plant dodder (Cuscuta spp.) in vitro. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110770. [PMID: 33487354 DOI: 10.1016/j.plantsci.2020.110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/31/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Dodder is a holoparasitic flowering plant that re-establishes parasitism with the host when broken off from the host. However, how in vitro dodder shoots recycle stored nutrients to maintain growth for reparasitizing hosts is not well characterized. Here, the spatial and temporal distribution characteristics of carbohydrates and reactive oxygen species (ROS) were analysed to explore the mechanism of recycling stored nutrients in dodder shoots in vitro. Our results showed that in vitro dodder shoots grew actively for more than 10 d, while dry mass decreased continuously. During this process, the transcript levels and activities of amylases gradually increased until 2 d and then declined in basal stems, which induced starch degradation at the tissue, cellular and subcellular levels. Additionally, the distribution characteristics of H2O2 and the activities and transcript levels of antioxidant enzymes indicated that shoot tips exhibited more robust ROS-scavenging capacity, and basal stems maintained higher ROS accumulation. Comparative proteomics analysis revealed that starch in basal stems acted as an energy source, and the glycolysis, TCA cycle and pentose phosphate pathway represented the energy supply for shoot tip elongation with time. These results indicated that efficient nutrient recycling and ROS modulation facilitated the parasitism of dodder grown in vitro by promoting shoot elongation growth to reach the host.
Collapse
Affiliation(s)
- Yuexia Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yajun Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Yan Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Linjian Jiang
- Key Laboratory of Pest Monitoring and Green Management, Ministry of Agriculture and Rural Affairs, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Cembrowska-Lech D. Tissue Printing and Dual Excitation Flow Cytometry for Oxidative Stress-New Tools for Reactive Oxygen Species Research in Seed Biology. Int J Mol Sci 2020; 21:E8656. [PMID: 33212814 PMCID: PMC7697308 DOI: 10.3390/ijms21228656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 01/14/2023] Open
Abstract
The intracellular homeostasis of reactive oxygen species (ROS) and especially of superoxide anion and hydrogen peroxide participate in signaling cascades which dictate developmental processes and reactions to stresses. ROS are also biological molecules that play important roles in seed dormancy and germination. Because of their rapid reactivity, short half-life and low concentration, ROS are difficult to measure directly with high accuracy and precision. In presented work tissue printing method with image analysis and dual excitation flow cytometry (FCM) were developed for rapid detection and localization of O2•- and H2O2 in different part of seed. Tissue printing and FCM detection of ROS showed that germination of wild oat seeds was associated with the accumulation of O2•- and H2O2 in embryo (coleorhiza, radicle and scutellum), aleurone layer and coat. To verify if printing and FCM signals were specified, the detection of O2•- and H2O2 in seeds incubated in presence of O2•- generation inhibitor (DPI) or H2O2 scavenger (CAT) were examined. All results were a high level of agreement among the level of ROS derived from presented procedures with the ones created from spectrophotometric measured data. In view of the data obtained, tissue printing with image analysis and FCM are recommended as a simple and fast methods, which could help researchers to detection and level determination of ROS in the external and inner parts of the seeds.
Collapse
|
34
|
Ru L, He Y, Zhu Z, Patrick JW, Ruan YL. Integrating Sugar Metabolism With Transport: Elevation of Endogenous Cell Wall Invertase Activity Up-Regulates SlHT2 and SlSWEET12c Expression for Early Fruit Development in Tomato. Front Genet 2020; 11:592596. [PMID: 33193736 PMCID: PMC7604364 DOI: 10.3389/fgene.2020.592596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Early fruit development is critical for determining crop yield. Cell wall invertase (CWIN) and sugar transporters both play important roles in carbon allocation and plant development. However, there is little information about the relationship between CWIN and those functionally related sugar transporters during fruit development. By using transgenic tomato with an elevated CWIN activity, we investigated how an increase in CWIN activity may regulate the expression of sugar transporter genes during fruit development. Our analyses indicate that CWIN activity may be under tight regulation by multiple regulators, including two invertase inhibitors (INVINHs) and one defective CWIN (deCWIN) in tomato ovaries prior to anthesis. Among the sugar transporters, expression of SlSWEET12c for sucrose efflux and SlHT2 for hexose uptake was enhanced by the elevated CWIN activity at 10 and 15 days after anthesis of tomato fruit development, respectively. The findings show that some specific sugars will eventually be exported transporters (SWEETs) and hexose transporters (HTs) respond to elevate CWIN activity probably to promote rapid fruit expansion when sucrose efflux from phloem and hexose uptake by parenchyma cell are in high demand. The analyses provide new leads for improving crop yield by manipulating CWIN-responsive sugar transporters, together with CWIN itself, to enhance fruit development and sugar accumulation.
Collapse
Affiliation(s)
- Lei Ru
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China.,School of Environmental and Life Sciences, Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, Australia
| | - Yong He
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhujun Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - John W Patrick
- School of Environmental and Life Sciences, Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, Australia-China Research Centre for Crop Improvement, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
35
|
Abstract
Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.
Collapse
|
36
|
Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:564917. [PMID: 32983216 PMCID: PMC7485278 DOI: 10.3389/fpls.2020.564917] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Collapse
Affiliation(s)
| | | | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
37
|
Liao S, Wang L, Li J, Ruan YL. Cell Wall Invertase Is Essential for Ovule Development through Sugar Signaling Rather Than Provision of Carbon Nutrients. PLANT PHYSIOLOGY 2020; 183:1126-1144. [PMID: 32332089 PMCID: PMC7333721 DOI: 10.1104/pp.20.00400] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
Ovule formation is essential for realizing crop yield because it determines seed number. The underlying molecular mechanism, however, remains elusive. Here, we show that cell wall invertase (CWIN) functions as a positive regulator of ovule initiation in Arabidopsis (Arabidopsis thaliana). In situ hybridization revealed that CWIN2 and CWIN4 were expressed at the placenta region where ovule primordia initiated. Specific silencing of CWIN2 and CWIN4 using targeted artificial microRNA driven by an ovule-specific SEEDSTICK promoter (pSTK) resulted in a substantial reduction of CWIN transcript and activity, which blocked ovule initiation and aggravated ovule abortion. There was no induction of carbon (C) starvation genes in the transgenic lines, and supplementing newly forming floral buds with extra C failed to recover the ovule phenotype. This indicates that suppression of CWIN did not lead to C starvation. A group of hexose transporters was downregulated in the transgenic plants. Among them, two representative ones were spatially coexpressed with CWIN2 and CWIN4, suggesting a coupling between CWIN and hexose transporters for ovule initiation. RNA-sequencing analysis identified differentially expressed genes encoding putative extracellular receptor-like kinases, MADS-box transcription factors, including STK, and early auxin response genes in response to CWIN-silencing. Our data demonstrate the essential role of CWIN in ovule initiation, which is most likely to occur through sugar signaling instead of C nutrient contribution. We propose that CWIN-mediated sugar signaling may be perceived by, and transmitted through, hexose transporters or receptor-like kinases to regulate ovule formation by modulating downstream auxin signaling and MADS-box transcription factors.
Collapse
Affiliation(s)
- Shengjin Liao
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Lu Wang
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jun Li
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
38
|
Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. PLANT, CELL & ENVIRONMENT 2020; 43:1273-1287. [PMID: 31994745 DOI: 10.1111/pce.13733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/25/2023]
Abstract
Heat stress impairs both pollen germination and pollen tube elongation, resulting in pollination failure caused by energy imbalance. Invertase plays a critical role in the maintenance of energy homoeostasis; however, few studies investigated this during heat stress. Two rice cultivars with different heat tolerance, namely, TLY83 (heat tolerant) and LLY722 (heat susceptible), were subjected to heat stress. At anthesis, heat stress significantly decreased spikelet fertility, accompanied by notable reductions in pollen germination on stigma and pollen tube elongation in ovule, especially in LLY722. Acid invertase (INV), rather than sucrose synthase, contributed to sucrose metabolism, which explains the different tolerances of both cultivars. Under heat stress, larger enhancements in NAD(H), ATP, and antioxidant capacity were found in TLY83 compared with LLY722, whereas a sharp reduction in poly(ADP-ribose) polymerase (PARP) activity was found in the former compared with the latter. Importantly, exogenous INV, 3-aminobenzamide (a PARP inhibitor), sucrose, glucose, and fructose significantly increased spikelet fertility under heat stress, where INV activity was enhanced and PARP activity was inhibited. Therefore, INV can balance the energy production and consumption to provide sufficient energy for pollen germination and pollen tube growth under heat stress.
Collapse
Affiliation(s)
- Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Pinghui Yu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hubo Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
39
|
Li G, Zhang C, Zhang G, Fu W, Feng B, Chen T, Peng S, Tao L, Fu G. Abscisic Acid Negatively Modulates Heat Tolerance in Rolled Leaf Rice by Increasing Leaf Temperature and Regulating Energy Homeostasis. RICE (NEW YORK, N.Y.) 2020; 13:18. [PMID: 32170463 PMCID: PMC7070142 DOI: 10.1186/s12284-020-00379-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/28/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Abscisic acid (ABA) acts as a signaling hormone in plants against abiotic stress, but its function in energy homeostasis under heat stress is unclear. RESULTS Two rice genotypes, Nipponbare (wild-type, WT) with flat leaves and its mutant high temperature susceptibility (hts) plant with semi-rolled leaves, were subjected to heat stress. We found significantly higher tissue temperature, respiration rate, and ABA and H2O2 contents in leaves as well as a lower transpiration rate and stomatal conductance in hts than WT plants. Additionally, increased expression of HSP71.1 and HSP24.1 as well as greater increases in carbohydrate content, ATP, NAD (H), and dry matter weight, were detected in WT than hts plants under heat stress. More importantly, exogenous ABA significantly decreased heat tolerance of hts plants, but clearly enhanced heat resistance of WT plants. The increases in carbohydrates, ATP, NAD (H), and heat shock proteins in WT plants were enhanced by ABA under heat stress, whereas these increases were reduced in hts plants. CONCLUSION It was concluded that ABA is a negative regulator of heat tolerance in hts plants with semi-rolled leaves by modulating energy homeostasis.
Collapse
Affiliation(s)
- Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 Zhejiang China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Caixia Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Guangheng Zhang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 Zhejiang China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 Zhejiang China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 Zhejiang China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 Zhejiang China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 Zhejiang China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 Zhejiang China
| |
Collapse
|
40
|
Wang Z, Wei X, Yang J, Li H, Ma B, Zhang K, Zhang Y, Cheng L, Ma F, Li M. Heterologous expression of the apple hexose transporter MdHT2.2 altered sugar concentration with increasing cell wall invertase activity in tomato fruit. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:540-552. [PMID: 31350935 PMCID: PMC6953210 DOI: 10.1111/pbi.13222] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 05/08/2023]
Abstract
Sugar transporters are necessary to transfer hexose from cell wall spaces into parenchyma cells to boost hexose accumulation to high concentrations in fruit. Here, we have identified an apple hexose transporter (HTs), MdHT2.2, located in the plasma membrane, which is highly expressed in mature fruit. In a yeast system, the MdHT2.2 protein exhibited high 14 C-fructose and 14 C-glucose transport activity. In transgenic tomato heterologously expressing MdHT2.2, the levels of both fructose and glucose increased significantly in mature fruit, with sugar being unloaded via the apoplastic pathway, but the level of sucrose decreased significantly. Analysis of enzyme activity and the expression of genes related to sugar metabolism and transport revealed greatly up-regulated expression of SlLIN5, a key gene encoding cell wall invertase (CWINV), as well as increased CWINV activity in tomatoes transformed with MdHT2.2. Moreover, the levels of fructose, glucose and sucrose recovered nearly to those of the wild type in the sllin5-edited mutant of the MdHT2.2-expressing lines. However, the overexpression of MdHT2.2 decreased hexose levels and increased sucrose levels in mature leaves and young fruit, suggesting that the response pathway for the apoplastic hexose signal differs among tomato tissues. The present study identifies a new HTs in apple that is able to take up fructose and glucose into cells and confirms that the apoplastic hexose levels regulated by HT controls CWINV activity to alter carbohydrate partitioning and sugar content.
Collapse
Affiliation(s)
- Zhengyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoyu Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Jingjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Huixia Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Kaikai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Yanfeng Zhang
- Hybrid Rape Research Center of Shaanxi ProvinceYanglingChina
| | - Lailiang Cheng
- Section of HorticultureSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Horticulture/Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
41
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
42
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|
43
|
Pan L, Guo Q, Chai S, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Li Z, Deng M, Jin F, Liu L, Wan H. Evolutionary Conservation and Expression Patterns of Neutral/Alkaline Invertases in Solanum. Biomolecules 2019; 9:biom9120763. [PMID: 31766568 PMCID: PMC6995568 DOI: 10.3390/biom9120763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
The invertase gene family in plants is composed of two subfamilies of enzymes, namely, acid- and neutral/alkaline invertases (cytosolic invertase, CIN). Both can irreversibly cleave sucrose into fructose and glucose, which are thought to play key roles in carbon metabolism and plant growth. CINs are widely found in plants, but little is reported about this family. In this paper, a comparative genomic approach was used to analyze the CIN gene family in Solanum, including Solanum tuberosum, Solanum lycopersicum, Solanum pennellii, Solanum pimpinellifolium, and Solanum melongena. A total of 40 CINs were identified in five Solanum plants, and sequence features, phylogenetic relationships, motif compositions, gene structure, collinear relationship, and expression profile were further analyzed. Sequence analysis revealed a remarkable conservation of CINs in sequence length, gene number, and molecular weight. The previously verified four amino acid residues (D188, E414, Arg430, and Ser547) were also observed in 39 out of 40 CINs in our study, showing to be deeply conserved. The CIN gene family could be distinguished into groups α and β, and α is further subdivided into subgroups α1 and α2 in our phylogenetic tree. More remarkably, each species has an average of four CINs in the α and β groups. Marked interspecies conservation and collinearity of CINs were also further revealed by chromosome mapping. Exon-intron configuration and conserved motifs were consistent in each of these α and β groups on the basis of in silico analysis. Expression analysis indicated that CINs were constitutively expressed and share similar expression profiles in all tested samples from S. tuberosum and S. lycopersicum. In addition, in CIN genes of the tomato and potato in response to abiotic and biotic stresses, phytohormones also performed. Overall, CINs in Solanum were encoded by a small and highly conserved gene family, possibly reflecting structural and functional conservation in Solanum. These results lay the foundation for further expounding the functional characterization of CIN genes and are also significant for understanding the evolutionary profiling of the CIN gene family in Solanum.
Collapse
Affiliation(s)
- Luzhao Pan
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.P.); (S.C.); (L.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Qinwei Guo
- Quzhou Academy of Agricultural Sciences, Quzhou 324000, Zhejiang, China;
| | - Songlin Chai
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.P.); (S.C.); (L.L.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Zhimiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
| | - Minghua Deng
- College of Horticulture and landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Fengmei Jin
- Tianjin Research Center of Agricultural Biotechnology, Tianjin 300192, China;
| | - Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; (L.P.); (S.C.); (L.L.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.); (G.Z.); (Z.L.)
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: ; Tel.: +86-571-86407677; Fax: +86-571-86400997
| |
Collapse
|
44
|
Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, Ma JF, Shou H. The Soybean Sugar Transporter GmSWEET15 Mediates Sucrose Export from Endosperm to Early Embryo. PLANT PHYSIOLOGY 2019; 180:2133-2141. [PMID: 31221732 PMCID: PMC6670074 DOI: 10.1104/pp.19.00641] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 05/07/2023]
Abstract
Soybean (Glycine max) seed is primarily composed of a mature embryo that provides a major source of protein and oil for humans and other animals. Early in development, the tiny embryos grow rapidly and acquire large quantities of sugars from the liquid endosperm of developing seeds. An insufficient supply of nutrients from the endosperm to the embryo results in severe seed abortion and yield reduction. Hence, an understanding of the molecular basis and regulation of assimilate partitioning involved in early embryo development is important for improving soybean seed yield and quality. Here, we used expression profiling analysis to show that two paralogous sugar transporter genes from the SWEET (Sugars Will Eventually be Exported Transporter) family, GmSWEET15a and GmSWEET15b, were highly expressed in developing soybean seeds. In situ hybridization and quantitative real-time PCR showed that both genes were mainly expressed in the endosperm at the cotyledon stage. GmSWEET15b showed both efflux and influx activities for sucrose in Xenopus oocytes. In Arabidopsis (Arabidopsis thaliana), knockout of three AtSWEET alleles is required to see a defective, but not lethal, embryo phenotype, whereas knockout of both GmSWEET15 genes in soybean caused retarded embryo development and endosperm persistence, resulting in severe seed abortion. In addition, the embryo sugar content of the soybean knockout mutants was greatly reduced. These results demonstrate that the plasma membrane sugar transporter, GmSWEET15, is essential for embryo development in soybean by mediating Suc export from the endosperm to the embryo early in seed development.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046 Japan
| | - Runze Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant, and Soil Science, School of Life Science, La Trobe University, Victoria 3086, Australia
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046 Japan
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
45
|
Liu Y, Li J, Zhu Y, Jones A, Rose RJ, Song Y. Heat Stress in Legume Seed Setting: Effects, Causes, and Future Prospects. FRONTIERS IN PLANT SCIENCE 2019; 10:938. [PMID: 31417579 PMCID: PMC6684746 DOI: 10.3389/fpls.2019.00938] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/04/2019] [Indexed: 05/21/2023]
Abstract
Grain legumes provide a rich resource of plant nutrition to human diets and are vital for food security and sustainable cropping. Heat stress during flowering has a detrimental effect on legume seed yield, mainly due to irreversible loss of seed number. To start with, we provide an overview of the developmental and physiological basis of controlling seed setting in response to heat stress. It is shown that every single process of seed setting including male and female gametophyte development, fertilization, and early seed/fruit development is sensitive to heat stress, in particular male reproductive development in legume crops is especially susceptible. A series of physiochemical processes including heat shock proteins, antioxidants, metabolites, and hormones centered with sugar starvation are proposed to play a key role in regulating legume seed setting in response to heat stress. The exploration of the molecular mechanisms underlying reproductive heat tolerance is in its infancy. Medicago truncatula, with a small diploid genome, and well-established transformation system and molecular platforms, has become a valuable model for testing gene function that can be applied to advance the physiological and molecular understanding of legume reproductive heat tolerance.
Collapse
Affiliation(s)
- Yonghua Liu
- College of Horticulture, Hainan University, Haikou, China
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yulei Zhu
- School of Agronomy, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Ashley Jones
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- School of Agronomy, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| |
Collapse
|
46
|
Zhang J, Zhang D, Wei J, Shi X, Ding H, Qiu S, Guo J, Li D, Zhu K, Horvath DP, Xia Y. Annual growth cycle observation, hybridization and forcing culture for improving the ornamental application of Paeonia lactiflora Pall. in the low-latitude regions. PLoS One 2019; 14:e0218164. [PMID: 31194806 PMCID: PMC6564672 DOI: 10.1371/journal.pone.0218164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/28/2019] [Indexed: 11/19/2022] Open
Abstract
Expanding the southern range of herbaceous peony (Paeonia lactiflora Pall.) is a meaningful and worthwhile horticultural endeavor in the Northern Hemisphere. However, high temperatures in winter seriously hinder the bud dormancy release and flowering of peony in the more southern areas of subtropical and tropical regions. Resource introduction and hybridization can contribute to creating new cultivars with high adaptability in a warmer winter climate. In this study, three representative cultivars of P. lactiflora were screened for flowering capabilities and their annual growth cycles were observed to provide information needed for hybridization. Among these three cultivars, ‘Hang Baishao’ is the best adapted cultivar for southern growing regions and is unique in its ability to thrive in southern areas of N 30°00’. Pollen viability of ‘Hang Baishao’ was 55.60% based on five measuring methods, which makes it an excellent male parent in hybridization. Hybrid plants among these three cultivars grew well, but all of their flower buds aborted. Additionally, the ability of three growth regulators that advance the flowering of ‘Hang Baishao’ to promote an indoor cultivation strategy for improving peony application as a potted or cut-flower plant was tested. 5-azacytidine could impact the growth of ‘Hang Baishao’ and induce dwarfism and small flowers but not advance the flowering time. Gibberellin A3 promoted the sprouting and growth significantly, but all plants eventually withered. Chilling at 0–4°C for four weeks and irrigation with 300 mg/L humic acid was the optimal combination used to hasten flowering and ensure flowering quality simultaneously. These results can lay the foundation for future studies on the chilling requirement trait, bud dormancy release and key functional gene exploration of herbaceous peony. Additionally, this study can also provide guidance for expanding the range of economically important plants with the winter dormancy trait to the low-latitude regions.
Collapse
Affiliation(s)
- Jiaping Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dong Zhang
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianfen Wei
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, Zhejiang Province, China
| | - Xiaohua Shi
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Huaqiao Ding
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Shuai Qiu
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, Zhejiang Province, China
| | - Juan Guo
- Research & Development Center, Hangzhou Landscaping Incorporated, Hangzhou, Zhejiang Province, China
| | - Danqin Li
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kaiyuan Zhu
- Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - David P. Horvath
- Sunflower and Plant Biology Research, Red River Valley Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, North Dakota, United States of America
- * E-mail: (YX); (DH)
| | - Yiping Xia
- Physiology and Molecular Biology Laboratory of Ornamental Plants, Institute of Landscape Architecture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail: (YX); (DH)
| |
Collapse
|
47
|
Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl Microbiol Biotechnol 2019; 103:5379-5390. [PMID: 31069486 DOI: 10.1007/s00253-019-09834-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 10/26/2022]
Abstract
Trehalose is a nonreducing disaccharide, and it plays an intracellular protective role in organisms under various stress conditions. In this study, the trehalose synthesis and its protective role in Pleurotus ostreatus were investigated. As a signal in metabolic regulation, reactive oxygen species (ROS) accumulated in the mycelia of P. ostreatus under heat stress (HS). Furthermore, mycelial growth was significantly inhibited, and the malondialdehyde (MDA) level significantly increased under HS. First, exogenous addition of H2O2 inhibited mycelial growth and elevated the MDA level, while N-acetyl cysteine (NAC) and vitamin C (VC) reduced the MDA level and recovered mycelial growth under HS by scavenging ROS. These results indicated that the mycelial radial growth defect under HS might be partly caused by ROS accumulation. Second, adding NAC and VC to the media resulted in rescued trehalose accumulation, which indicated that ROS has an effect on inducing trehalose synthesis. Third, the mycelial growth was recovered by addition of trehalose to the media after HS, and the MDA level was reduced. This effect was further verified by the overexpression of genes for trehalose-6-phosphate synthase (TPS) and neutral trehalase (NTH), which led to increased and reduced trehalose content, respectively. In addition, adding validamycin A (NTH inhibitor) to the media promoted trehalose accumulation and the recovered mycelial growth after HS. In conclusion, trehalose production was partly induced by ROS accumulation in the mycelia under HS, and the accumulated trehalose could promote the recovery of growth after HS, partly by reducing the MDA level in the mycelia.
Collapse
|
48
|
Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P. Cell Wall Invertase 3 Affects Cassava Productivity via Regulating Sugar Allocation From Source to Sink. FRONTIERS IN PLANT SCIENCE 2019; 10:541. [PMID: 31114601 PMCID: PMC6503109 DOI: 10.3389/fpls.2019.00541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/09/2019] [Indexed: 05/28/2023]
Abstract
Storage roots are the main sink for photo-assimilate accumulation and reflect cassava yield and productivity. Regulation of sugar partitioning from leaves to storage roots has not been elucidated. Cell wall invertases are involved in the hydrolysis of sugar during phloem unloading of vascular plants to control plant development and sink strength but have rarely been studied in root crops like cassava. MeCWINV3 encodes a typical cell wall invertase in cassava and is mainly expressed in vascular bundles. The gene is highly expressed in leaves, especially mature leaves, in response to diurnal rhythm. When MeCWINV3 was overexpressed in cassava, sugar export from leaves to storage roots was largely inhibited and sucrose hydrolysis in leaves was accelerated, leading to increased transient starch accumulation by blocking starch degradation and reduced overall plant growth. The progress of leaf senescence was promoted in the MeCWINV3 over-expressed cassava plants with increased expression of senescence-related genes. Storage root development was also delayed because of dramatically reduced sugar allocation from leaves. As a result, the transcriptional expression of starch biosynthetic genes such as small subunit ADP-glucose pyrophosphorylase, granule-bound starch synthase I, and starch branching enzyme I was reduced in accordance with insufficient sugar supply in the storage roots of the transgenic plants. These results show that MeCWINV3 regulates sugar allocation from source to sink and maintains sugar balance in cassava, thus affecting yield of cassava storage roots.
Collapse
Affiliation(s)
- Wei Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Xiaoyun Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Guanghua Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Zhanfei Cui
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tailing Jiang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Shen S, Ma S, Liu Y, Liao S, Li J, Wu L, Kartika D, Mock HP, Ruan YL. Cell Wall Invertase and Sugar Transporters Are Differentially Activated in Tomato Styles and Ovaries During Pollination and Fertilization. FRONTIERS IN PLANT SCIENCE 2019; 10:506. [PMID: 31057596 PMCID: PMC6482350 DOI: 10.3389/fpls.2019.00506] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/02/2019] [Indexed: 05/05/2023]
Abstract
Flowering plants depend on pollination and fertilization to activate the transition from ovule to seed and ovary to fruit, namely seed and fruit set, which are key for completing the plant life cycle and realizing crop yield potential. These processes are highly energy consuming and rely on the efficient use of sucrose as the major nutrient and energy source. However, it remains elusive as how sucrose imported into and utilizated within the female reproductive organ is regulated in response to pollination and fertilization. Here, we explored this issue in tomato by focusing on genes encoding cell wall invertase (CWIN) and sugar transporters, which are major players in sucrose phloem unloading, and sink development. The transcript level of a major CWIN gene, LIN5, and CWIN activity were significantly increased in style at 4 h after pollination (HAP) in comparison with that in the non-pollination control, and this was sustained at 2 days after pollination (DAP). In the ovaries, however, CWIN activity and LIN5 expression did not increase until 2 DAP when fertilization occurred. Interestingly, a CWIN inhibitor gene INVINH1 was repressed in the pollinated style at 2 DAP. In response to pollination, the style exhibited increased expressions of genes encoding hexose transporters, SlHT1, 2, SlSWEET5b, and sucrose transporters SlSUT1, 2, and 4 from 4 HAP to 2 DAP. Upon fertilization, SlSUT1 and SlHT1 and 2, but not SlSWEETs, were also stimulated in fruitlets at 2 DAP. Together, the findings reveal that styles respond promptly and more broadly to pollination for activation of CWIN and sugar transporters to fuel pollen tube elongation, whereas the ovaries do not exhibit activation for some of these genes until fertilization occurs. HIGHLIGHTS Expression of genes encoding cell wall invertases and sugar transporters was stimulated in pollinated style and fertilized ovaries in tomato.
Collapse
Affiliation(s)
- Si Shen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Ma
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yonghua Liu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shengjin Liao
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jun Li
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Limin Wu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dewi Kartika
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
50
|
Rezaul IM, Baohua F, Tingting C, Weimeng F, Caixia Z, Longxing T, Guanfu F. Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. PHYSIOLOGIA PLANTARUM 2019; 165:644-663. [PMID: 29766507 DOI: 10.1111/ppl.12759] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/22/2018] [Accepted: 05/11/2018] [Indexed: 05/20/2023]
Abstract
Heat stress at the pollen mother cell (PMC) meiotic stage leads to pollen sterility in rice, in which the reactive oxygen species (ROS) and sugar homeostasis are always adversely affected. This damage is reversed by abscisic acid (ABA), but the mechanisms underlying the interactions among the ABA, sugar metabolism, ROS and heat shock proteins in rice spikelets under heat stress are unclear. Two rice genotypes, Zhefu802 (a recurrent parent) and fgl (its near-isogenic line) were subjected to heat stress of 40°C after pre-foliage sprayed with ABA and its biosynthetic inhibitor fluridone at the meiotic stage of PMC. The results revealed that exogenous application of ABA reduced pollen sterility caused by heat stress. This was achieved through various means, including: increased levels of soluble sugars, starch and non-structural carbohydrates, markedly higher relative expression levels of heat shock proteins (HSP24.1 and HSP71.1) and genes related to sugar metabolism and transport, such as sucrose transporters (SUT) genes, sucrose synthase (SUS) genes and invertase (INV) genes as well as increased antioxidant activities and increased content of adenosine triphosphate and endogenous ABA in spikelets. In short, exogenous application of ABA prior to heat stress enhanced sucrose transport and accelerated sucrose metabolism to maintain the carbon balance and energy homeostasis, thus ABA contributed to heat tolerance in rice.
Collapse
Affiliation(s)
- Islam Md Rezaul
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
- Department of Agricultural Extension, Ministry of Agriculture, Dhaka 1215, Bangladesh
| | - Feng Baohua
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Chen Tingting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Fu Weimeng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhang Caixia
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Tao Longxing
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Fu Guanfu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|