1
|
Manandhar A, Pichaco J, McAdam SAM. Abscisic acid increase correlates with the soil water threshold of transpiration decline during drought. PLANT, CELL & ENVIRONMENT 2024; 47:5067-5075. [PMID: 39139139 DOI: 10.1111/pce.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
By regulating carbon uptake and water loss by plants, stomata are not only responsible for productivity but also survival during drought. The timing of the onset of stomatal closure is crucial for preventing excessive water loss during drought, but is poorly explained by plant hydraulics alone and what triggers stomatal closure remains disputed. We investigated whether the hormone abscisic acid (ABA) was this trigger in a highly embolism-resistant tree species Umbellularia californica. We tracked leaf ABA levels, determined the leaf water potential and gravimetric soil water content (gSWC) thresholds for stomatal closure and transpiration decline during a progressive drought. We found that U. californica plants have a peaking-type ABA dynamic, where ABA levels rise early in drought and then decline under prolonged drought conditions. The early increase in ABA levels correlated with the closing of stomata and reduced transpiration. Furthermore, we found that transpiration declined before any large decreases in predawn plant water status and could best be explained by transient drops in midday water potentials triggering increased ABA levels. Our results indicate that ABA-mediated stomatal regulation may be an integral mechanism for reducing transpiration during drought before major drops in bulk soil and plant water status.
Collapse
Affiliation(s)
- Anju Manandhar
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Javier Pichaco
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
- Instituto de Recursos Naturales y Agrobiología de Sevilla, IRNAS-CSIC, Seville, Spain
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Harrison Day BL, Brodersen CR, Brodribb TJ. Weak link or strong foundation? Vulnerability of fine root networks and stems to xylem embolism. THE NEW PHYTOLOGIST 2024; 244:1288-1302. [PMID: 39267263 DOI: 10.1111/nph.20115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.
Collapse
Affiliation(s)
- Beatrice L Harrison Day
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Craig R Brodersen
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
3
|
Mekarni L, Cochard H, Lehmann MM, Turberg P, Grossiord C. In vivo X-ray microtomography locally affects stem radial growth with no immediate physiological impact. PLANT PHYSIOLOGY 2024; 196:153-163. [PMID: 38757896 PMCID: PMC11491841 DOI: 10.1093/plphys/kiae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.
Collapse
Affiliation(s)
- Laura Mekarni
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Marco M Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Pascal Turberg
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology Unit, 8903 Birmensdorf, Switzerland
| |
Collapse
|
4
|
Aun MA, Farnese F, Loram-Lourenço L, de Abreu IMPG, Silva BRA, Freitas JCE, Filho VMA, Silva FG, Franco AC, Hammond WM, Cochard H, Menezes-Silva PE. Evidence of combined flower thermal and drought vulnerabilities portends reproductive failure under hotter-drought conditions. PLANT, CELL & ENVIRONMENT 2024; 47:1971-1986. [PMID: 38372066 DOI: 10.1111/pce.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Despite the abundant evidence of impairments to plant performance and survival under hotter-drought conditions, little is known about the vulnerability of reproductive organs to climate extremes. Here, by conducting a comparative analysis between flowers and leaves, we investigated how variations in key morphophysiological traits related to carbon and water economics can explain the differential vulnerabilities to heat and drought among these functionally diverse organs. Due to their lower construction costs, despite having a higher water storage capacity, flowers were more prone to turgor loss (higher turgor loss point; ΨTLP) than leaves, thus evidencing a trade-off between carbon investment and drought tolerance in reproductive organs. Importantly, the higher ΨTLP of flowers also resulted in narrow turgor safety margins (TSM). Moreover, compared to leaves, the cuticle of flowers had an overall higher thermal vulnerability, which also resulted in low leakage safety margins (LSM). As a result, the combination of low TSMs and LSMs may have negative impacts on reproduction success since they strongly influenced the time to turgor loss under simulated hotter-drought conditions. Overall, our results improve the knowledge of unexplored aspects of flower structure and function and highlight likely threats to successful plant reproduction in a warmer and drier world.
Collapse
Affiliation(s)
- Marina Alves Aun
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Fernanda Farnese
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Lucas Loram-Lourenço
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | | | | | | | | | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, Rio Verde Campus, Rio Verde, Brazil
| | - Augusto Cesar Franco
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - William M Hammond
- Department of Agronomy, University of Florida, Gainesville, Florida, USA
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | |
Collapse
|
5
|
Castillo-Argaez R, Sapes G, Mallen N, Lippert A, John GP, Zare A, Hammond WM. Spectral ecophysiology: hyperspectral pressure-volume curves to estimate leaf turgor loss. THE NEW PHYTOLOGIST 2024; 242:935-946. [PMID: 38482720 DOI: 10.1111/nph.19669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Turgor loss point (TLP) is an important proxy for plant drought tolerance, species habitat suitability, and drought-induced plant mortality risk. Thus, TLP serves as a critical tool for evaluating climate change impacts on plants, making it imperative to develop high-throughput and in situ methods to measure TLP. We developed hyperspectral pressure-volume curves (PV curves) to estimate TLP using leaf spectral reflectance. We used partial least square regression models to estimate water potential (Ψ) and relative water content (RWC) for two species, Frangula caroliniana and Magnolia grandiflora. RWC and Ψ's model for each species had R2 ≥ 0.7 and %RMSE = 7-10. We constructed PV curves with model estimates and compared the accuracy of directly measured and spectra-predicted TLP. Our findings indicate that leaf spectral measurements are an alternative method for estimating TLP. F. caroliniana TLP's values were -1.62 ± 0.15 (means ± SD) and -1.62 ± 0.34 MPa for observed and reflectance predicted, respectively (P > 0.05), while M. grandiflora were -1.78 ± 0.34 and -1.66 ± 0.41 MPa (P > 0.05). The estimation of TLP through leaf reflectance-based PV curves opens a broad range of possibilities for future research aimed at understanding and monitoring plant water relations on a large scale with spectral ecophysiology.
Collapse
Affiliation(s)
| | - Gerard Sapes
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole Mallen
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Alston Lippert
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Grace P John
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Alina Zare
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - William M Hammond
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
6
|
Bozonnet C, Saudreau M, Badel E, Charrier G, Améglio T. On the mechanism for winter stem pressure build-up in walnut trees. TREE PHYSIOLOGY 2024; 44:tpae037. [PMID: 38531772 DOI: 10.1093/treephys/tpae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Xylem embolism is a significant factor in tree mortality. Restoration of hydraulic conductivity after massive embolization of the vascular system requires the application of positive pressure to the vessels and/or the creation of new conductive elements. Some species generate positive pressure from the root system to propagate pressure in distal, aboveground organs in spring, whereas other species generate positive pressure locally at the stem level during winter. We provide a mechanistic explanation for winter stem pressure build-up in the walnut tree. We have developed a physical model that accounts for temperature fluctuations and phase transitions. This model is based on the exchange of water and sugars between living cells and vessels. Our computations demonstrate that vessel pressurization can be attributed to the transfer of water between vessels across the parenchyma rays, which is facilitated by a radial imbalance in sugar concentration. The ability to dispose of soluble sugars in living cells, and to transport them between living cells and up to the vessels, is identified as the main drivers of stem pressure build-up in the walnut tree.
Collapse
Affiliation(s)
- Cyril Bozonnet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Marc Saudreau
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
8
|
Yang D, Zhou W, Wang X, Zhao M, Zhang YJ, Tyree MT, Peng G. An analytical complete model of root pressure generation: Theoretical bases for studying hydraulics of bamboo. PLANT, CELL & ENVIRONMENT 2024; 47:59-71. [PMID: 37807644 DOI: 10.1111/pce.14730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/16/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023]
Abstract
To better understand the dynamics and functional roles of root pressure, we represent a novel and the first complete analytical model for root pressure, which can be applied to complex roots/shoots. The osmotic volume of a single root is equal to that of the vessel lumen in fine roots and adjacent apoplastic spaces. Water uptake occurs via passive osmosis and active solute uptake (J s * , osmol s-1 ), resulting in the osmolyte concentration Cr (mol·kg-1 of water) at a fixed osmotic volume. Solute loss occurs via two passive processes: radial diffusion of solute Km (Cr - Csoil ) from fine roots to soil, where Km is the diffusional constant and Csoil is the soil-solute concentration, and the mass flow of solute and water into the plant from the fine roots. The proposed model predicts the quadratic function of root pressure (Pr ),P r 2 + b P r + c = 0 , where b and c are the functions of plant hydraulic resistance, soil water potential, solute flux and gravitational potential. The model demonstrates the root pressure-mediated distribution of water through the hydraulic architecture of a 6.8-m-tall bamboo shoot. This model provides a theoretical basis to test the functional roles of root pressure in shaping the hydraulic architecture and refilling potential xylem embolisms.
Collapse
Affiliation(s)
- Dongmei Yang
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wei Zhou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xiaolin Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Mei Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- Climate Change Institute, University of Maine, Orono, Maine, USA
| | - Melvin T Tyree
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Guoquan Peng
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
9
|
Paschalis A, De Kauwe MG, Sabot M, Fatichi S. When do plant hydraulics matter in terrestrial biosphere modelling? GLOBAL CHANGE BIOLOGY 2024; 30:e17022. [PMID: 37962234 PMCID: PMC10952296 DOI: 10.1111/gcb.17022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The ascent of water from the soil to the leaves of vascular plants, described by the study of plant hydraulics, regulates ecosystem responses to environmental forcing and recovery from stress periods. Several approaches to model plant hydraulics have been proposed. In this study, we introduce four different versions of plant hydraulics representations in the terrestrial biosphere model T&C to understand the significance of plant hydraulics to ecosystem functioning. We tested representations of plant hydraulics, investigating plant water capacitance, and long-term xylem damages following drought. The four models we tested were a combination of representations including or neglecting capacitance and including or neglecting xylem damage legacies. Using the models at six case studies spanning semiarid to tropical ecosystems, we quantify how plant xylem flow, plant water storage and long-term xylem damage can modulate overall water and carbon dynamics across multiple time scales. We show that as drought develops, models with plant hydraulics predict a slower onset of plant water stress, and a diurnal variability of water and carbon fluxes closer to observations. Plant water storage was found to be particularly important for the diurnal dynamics of water and carbon fluxes, with models that include plant water capacitance yielding better results. Models including permanent damage to conducting plant tissues show an additional significant drought legacy effect, limiting plant productivity during the recovery phase following major droughts. However, when considering ecosystem responses to the observed climate variability, plant hydraulic modules alone cannot significantly improve the overall model performance, even though they reproduce more realistic water and carbon dynamics. This opens new avenues for model development, explicitly linking plant hydraulics with additional ecosystem processes, such as plant phenology and improved carbon allocation algorithms.
Collapse
Affiliation(s)
- Athanasios Paschalis
- Department of Civil and Environmental EngineeringImperial College LondonLondonUK
| | | | - Manon Sabot
- ARC Centre of Excellence for Climate Extremes and Climate Change Research CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Simone Fatichi
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
10
|
Sorek Y, Netzer Y, Cohen S, Hochberg U. Rapid leaf xylem acclimation diminishes the chances of embolism in grapevines. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6836-6846. [PMID: 37659088 DOI: 10.1093/jxb/erad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/01/2023] [Indexed: 09/04/2023]
Abstract
Under most conditions tight stomatal regulation in grapevines (Vitis vinifera) avoids xylem embolism. The current study evaluated grapevine responses to challenging scenarios that might lead to leaf embolism and consequential leaf damage. We hypothesized that embolism would occur if the vines experienced low xylem water potential (Ψx) shortly after bud break or later in the season under a combination of extreme drought and heat. We subjected vines to two potentially dangerous environments: (i) withholding irrigation from a vineyard grown in a heatwave-prone environment, and (ii) subjecting potted vines to terminal drought 1 month after bud break. In the field experiment, a heatwave at the beginning of August resulted in leaf temperatures over 45 °C. However, effective stomatal response maintained the xylem water potential (Ψx) well above the embolism threshold, and no leaf desiccation was observed. In the pot experiment, leaves of well-watered vines in May were relatively vulnerable to embolism with 50% embolism (P50) at -1.8 MPa. However, when exposed to drought, these leaves acclimated their leaf P50 by 0.65 MPa in less than a week and before reaching embolism values. When dried to embolizing Ψx, the leaf damage proportion matched (percentage-wise) the leaf embolism level. Our findings indicate that embolism and leaf damage are usually avoided by the grapevines' efficient stomatal regulation and rapid acclimation of their xylem vulnerability.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yishai Netzer
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
- Eastern R and D Center, Ariel 40700, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
11
|
Charra-Vaskou K, Lintunen A, Améglio T, Badel E, Cochard H, Mayr S, Salmon Y, Suhonen H, van Rooij M, Charrier G. Xylem embolism and bubble formation during freezing suggest complex dynamics of pressure in Betula pendula stems. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5840-5853. [PMID: 37463327 DOI: 10.1093/jxb/erad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Freeze-thaw-induced embolism, a key limiting factor for perennial plants results from the formation of gas bubbles during freezing and their expansion during thawing. However, the ice volumetric increase generates local pressures, which can affect the formation of bubbles. To characterize local dynamics of pressure tension and the physical state of the sap during freeze-thaw cycles, we simultaneously used ultrasonic acoustic emission analysis and synchrotron-based high-resolution computed tomography on the diffuse-porous species Betula pendula. Visualization of individual air-filled vessels and the distribution of gas bubbles in frozen xylem were performed.. Ultrasonic emissions occurred after ice formation, together with bubble formation, whereas the development of embolism took place after thawing. The pictures of frozen tissues indicated that the positive pressure induced by the volumetric increase of ice can provoke inward flow from the cell wall toward the lumen of the vessels. We found no evidence that wider vessels within a tissue were more prone to embolism, although the occurrence of gas bubbles in larger conduits would make them prone to earlier embolism. These results highlight the need to monitor local pressure as well as ice and air distribution during xylem freezing to understand the mechanism leading to frost-induced embolism.
Collapse
Affiliation(s)
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research/ Physics, Faculty of Science, University of Helsinki, Finland
- Institute for Atmospheric and Earth System Research/ Forest Science, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Stefan Mayr
- Institute for Botany, University of Innsbruck, Austria
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/ Physics, Faculty of Science, University of Helsinki, Finland
- Institute for Atmospheric and Earth System Research/ Forest Science, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | | | - Mahaut van Rooij
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Nadal M, Carriquí M, Badel E, Cochard H, Delzon S, King A, Lamarque LJ, Flexas J, Torres-Ruiz JM. Photosynthesis, leaf hydraulic conductance and embolism dynamics in the resurrection plant Barbacenia purpurea. PHYSIOLOGIA PLANTARUM 2023; 175:e14035. [PMID: 37882305 DOI: 10.1111/ppl.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae). Gas exchange, chlorophyll fluorescence, and leaf water status were monitored along the whole dehydration-rehydration cycle. Simultaneously, embolism formation and hydraulic functioning recovery were measured at leaf level using micro-computed tomography imaging. Photosynthesis and leaf hydraulic conductance ceased at relatively high water potential (-1.28 and -1.54 MPa, respectively), whereas the onset of leaf embolism occurred after stomatal closure and photosynthesis cessation (<-1.61 MPa). This sequence of physiological processes during water stress may be associated with the need to delay dehydration, to prepare the molecular changes required in the desiccated state. Complete rehydration occurred rapidly in the mesophyll, whereas partial xylem refilling, and subsequent recovery of photosynthesis, occurred at later stages after rewatering. These results highlight the importance of stomata as safety valves to protect the vascular system from embolism, even in a plant able to fully recover after complete embolism.
Collapse
Affiliation(s)
- Miquel Nadal
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Eric Badel
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | | - Andrew King
- Synchrotron Source Optimisée de Lumière d'Energie Intermédiaire du LURE, L'Orme de Merisiers, France
| | | | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | | |
Collapse
|
13
|
Vuerich M, Petrussa E, Boscutti F, Braidot E, Filippi A, Petruzzellis F, Tomasella M, Tromba G, Pizzuto M, Nardini A, Secchi F, Casolo V. Contrasting Responses of Two Grapevine Cultivars to Drought: The Role of Non-structural Carbohydrates in Xylem Hydraulic Recovery. PLANT & CELL PHYSIOLOGY 2023; 64:920-932. [PMID: 37384580 DOI: 10.1093/pcp/pcad066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Xylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation. Stem embolism rate and its recovery were monitored in vivo by X-ray micro-computed tomography (micro-CT). The same plants were further analyzed for xylem conduit dimension and NSC content. Both cultivars significantly decreased Ψpd in response to drought and recovered from xylem embolism after re-irrigation. However, although the mean vessel diameter was similar between the cultivars, Barbera was more prone to embolism. Surprisingly, vessel diameter was apparently reduced during recovery in this cultivar. Hydraulic recovery was linked to sugar content in both cultivars, showing a positive relationship between soluble NSCs and the degree of xylem embolism. However, when starch and sucrose concentrations were considered separately, the relationships showed cultivar-specific and contrasting trends. We showed that the two cultivars adopted different NSC-use strategies in response to drought, suggesting two possible scenarios driving conduit refilling. In Grenache, sucrose accumulation seems to be directly linked to embolism formation and possibly sustains refilling. In Barbera, maltose/maltodextrins could be involved in a conduit recovery strategy via the formation of cell-wall hydrogels, likely responsible for the reduction of conduit lumen detected by micro-CT.
Collapse
Affiliation(s)
- Marco Vuerich
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Elisa Petrussa
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Francesco Boscutti
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Enrico Braidot
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| | - Antonio Filippi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
- Dipartimento di Area Medica, Università di Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste 34149, Italy
| | - Mauro Pizzuto
- Vivai Cooperativi Rauscedo, Via Udine, 39, Rauscedo (PN) 33095, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste 34127, Italy
| | - Francesca Secchi
- Dipartimento di Scienze Agrarie, Forestali, Alimentari (DISAFA), Università di Torino, Largo Paolo Braccini 2, Grugliasco (TO) 10095, Italy
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Via delle Scienze 91, Udine 33100, Italy
| |
Collapse
|
14
|
de Assis Prado CHB, de Brito Melo Trovão DM. The woody crown network model incorporates maximum height. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Lamarque LJ, Delmas CEL, Charrier G, Burlett R, Dell'Acqua N, Pouzoulet J, Gambetta GA, Delzon S. Quantifying the grapevine xylem embolism resistance spectrum to identify varieties and regions at risk in a future dry climate. Sci Rep 2023; 13:7724. [PMID: 37173393 PMCID: PMC10181993 DOI: 10.1038/s41598-023-34224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maintaining wine production under global warming partly relies on optimizing the choice of plant material for a given viticultural region and developing drought-resistant cultivars. However, progress in these directions is hampered by the lack of understanding of differences in drought resistance among Vitis genotypes. We investigated patterns of xylem embolism vulnerability within and among 30 Vitis species and sub-species (varieties) from different locations and climates, and assessed the risk of drought vulnerability in 329 viticultural regions worldwide. Within a variety, vulnerability to embolism decreased during summer. Among varieties, we have found wide variations in drought resistance of the vascular system in grapevines. This is particularly the case within Vitis vinifera, with varieties distributed across four clusters of embolism vulnerability. Ugni blanc and Chardonnay featured among the most vulnerable, while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. Regions possibly at greater risk of being vulnerable to drought, such as Poitou-Charentes, France and Marlborough, New Zealand, do not necessarily have arid climates, but rather bear a significant proportion of vulnerable varieties. We demonstrate that grapevine varieties may not respond equally to warmer and drier conditions, and highlight that hydraulic traits are key to improve viticulture suitability under climate change.
Collapse
Affiliation(s)
- Laurent J Lamarque
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France.
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
| | | | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Régis Burlett
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | | | | | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 33882, Villenave d'Ornon, France
| | - Sylvain Delzon
- Université de Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| |
Collapse
|
16
|
Yang D, Wang YSD, Wang Q, Ke Y, Zhang YB, Zhang SB, Zhang YJ, McDowell NG, Zhang JL. Physiological response and photosynthetic recovery to an extreme drought: Evidence from plants in a dry-hot valley savanna of Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161711. [PMID: 36682563 DOI: 10.1016/j.scitotenv.2023.161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The frequency of extreme drought events has been rising worldwide, but due to its unpredictability, how plants will respond remains poorly understood. Here, we aimed to characterize how the hydraulics and photosynthesis of savanna plants respond to extreme drought, and tested whether they can subsequently recover photosynthesis after drought. There was an extreme drought in 2019 in Southwest (SW) China. We investigated photosynthetic gas exchange, leaf-, stem-, and whole-shoot hydraulic conductance of 18 plant species with diverse leaf habits (deciduous, semi-deciduous and evergreen) and growth forms (tree and shrub) from a dry-hot valley savanna in SW China for three rainy seasons from 2019 to 2021. We also compared photosynthetic gas exchange to those of a regular year (2014). We found that leaf stomatal and hydraulic conductance and maximum photosynthetic rate were significantly lower during the drought in 2019 than in the wetter years. In 2019, all studied plants maintained stomatal conductance at their minimum level observed, which could be related to high vapor pressure deficits (VPD, >2 kPa). However, no significant difference in stem and shoot hydraulic conductance was detected across years. The reductions in leaf hydraulic conductance and stomatal regulation under extreme drought might help keep the stem hydraulic function. Stomatal conductance and photosynthesis after drought (2020 and 2021) showed comparable or even higher values compared to that of 2014, suggesting high recovery of photosynthetic gas exchange. In addition, the response of hydraulic and photosynthetic traits to extreme drought was convergent across leaf habits and growth forms. Our results will help better understand the physiological mechanism underlying the response of savanna ecosystems to climate change.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA.
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China.
| |
Collapse
|
17
|
Li Z, Wang C, Luo D, Hou E, Ibrahim MM. Leaf-branch vulnerability segmentation occurs all year round for three temperate evergreen tree species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107658. [PMID: 37001301 DOI: 10.1016/j.plaphy.2023.107658] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Vulnerability segmentation (VS) and Hydraulic segmentation (HS) hypotheses propose higher hydraulic resistance and vulnerability to embolism in leaves than in branches, respectively. The VS and HS are suggested as an acclimation strategy of trees to drought stress, but whether they occur during freezing stress has rarely been explored. We measured the leaf and branch hydraulic traits of three temperate evergreen tree species [Picea koraiensis (Korean spruce), Pinus koraiensis (Korean pine), and Pinus sylvestris var. mongolica (Mongolian pine)] during four seasons (winter, spring, summer, and autumn) across the year. We assessed the applicability of VS and HS all year round, particularly in winter. The water potential at which leaf hydraulic conductance lost 50% (P50L), was more negative in winter than in summer, while higher leaf mass per area was obtained in winter. These results suggest that these species invest more carbon into leaf (including hydraulic systems) to acclimate to winter frost drought. Leaf and branch hydraulic conductance (KmL and KmB) were lower, and the percentage loss of branch hydraulic conductance (PLCB) was higher in spring than in autumn. These results were probably because of more freeze-thaw cycles in spring (69 cycles) than in autumn (37 cycles). The water potential at which branch hydraulic conductance lost 50%, P50B, was more negative than P50L across the year. The values of VS (P50L minus P50B) were positive, i.e. leaf was more vulnerable than the branch in all species and across seasons, with higher values occurring in spring or autumn. However, KmL positively correlated with KmB, suggesting hydraulic coordination between leaf and branch, but did not support HS. Our findings indicate that leaf-branch vulnerability segmentation can occur all year round, including freezing stress, to protect branches from hydraulic failure in temperate evergreen conifers.
Collapse
Affiliation(s)
- Zhimin Li
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Chuankuan Wang
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Dandan Luo
- Center for Ecological Research, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammed Mustapha Ibrahim
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Volaire F, Barkaoui K, Grémillet D, Charrier G, Dangles O, Lamarque LJ, Martin-StPaul N, Chuine I. Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants? ANNALS OF BOTANY 2023; 131:245-254. [PMID: 36567631 PMCID: PMC9992932 DOI: 10.1093/aob/mcac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plants have adapted to survive seasonal life-threatening frost and drought. However, the timing and frequency of such events are impacted by climate change, jeopardizing plant survival. Understanding better the strategies of survival to dehydration stress is therefore timely and can be enhanced by the cross-fertilization of research between disciplines (ecology, physiology), models (woody, herbaceous species) and types of stress (drought, frost). SCOPE We build upon the 'growth-stress survival' trade-off, which underpins the identification of global plant strategies across environments along a 'fast-slow' economics spectrum. Although phenological adaptations such as dormancy are crucial to survive stress, plant global strategies along the fast-slow economic spectrum rarely integrate growth variations across seasons. We argue that the growth-stress survival trade-off can be a useful framework to identify convergent plant ecophysiological strategies to survive both frost and drought. We review evidence that reduced physiological activity, embolism resistance and dehydration tolerance of meristematic tissues are interdependent strategies that determine thresholds of mortality among plants under severe frost and drought. We show that complete dormancy, i.e. programmed growth cessation, before stress occurrence, minimizes water flows and maximizes dehydration tolerance during seasonal life-threatening stresses. We propose that incomplete dormancy, i.e. the programmed reduction of growth potential during the harshest seasons, could be an overlooked but major adaptation across plants. Quantifying stress survival in a range of non-dormant versus winter- or summer-dormant plants, should reveal to what extent incomplete to complete dormancy could represent a proxy for dehydration tolerance and stress survival. CONCLUSIONS Our review of the strategies involved in dehydration stress survival suggests that winter and summer dormancy are insufficiently acknowledged as plant ecological strategies. Incorporating a seasonal fast-slow economics spectrum into global plant strategies improves our understanding of plant resilience to seasonal stress and refines our prevision of plant adaptation to extreme climatic events.
Collapse
Affiliation(s)
- Florence Volaire
- CEFE, Université Montpellier, INRAE, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Karim Barkaoui
- CIRAD, UMR ABSys, F-34398 Montpellier, France
- ABSys, Université F-34060 Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Grémillet
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont Ferrand, France
| | - Olivier Dangles
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| | - Laurent J Lamarque
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Nicolas Martin-StPaul
- INRAE, URFM, Domaine Saint Paul, Centre de recherche PACA, 228 route de l’Aérodrome, CS 40509, Domaine Saint-Paul, Site Agroparc, France
| | - Isabelle Chuine
- CEFE, Université Montpellier, CNRS, EPHE, IRD, F-34090 Montpellier, France
| |
Collapse
|
19
|
Avila RT, Kane CN, Batz TA, Trabi C, Damatta FM, Jansen S, McAdam SAM. The relative area of vessels in xylem correlates with stem embolism resistance within and between genera. TREE PHYSIOLOGY 2023; 43:75-87. [PMID: 36070431 DOI: 10.1093/treephys/tpac110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.
Collapse
Affiliation(s)
- Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Cade N Kane
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Timothy A Batz
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Christophe Trabi
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Fábio M Damatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Steven Jansen
- Faculty of Natural Sciences, Institute of Systematic Botany and Ecology, Ulm University, Ulm, Baden-Württemberg 89081, Germany
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
20
|
Verbeke S, Padilla-Díaz CM, Martínez-Arias C, Goossens W, Haesaert G, Steppe K. Mechanistic modeling reveals the importance of turgor-driven apoplastic water transport in wheat stem parenchyma during carbohydrate mobilization. THE NEW PHYTOLOGIST 2023; 237:423-440. [PMID: 36259090 DOI: 10.1111/nph.18547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
During stem elongation, wheat (Triticum aestivum) increases its stem carbohydrate content before anthesis as a reserve for grain filling. Hydraulic functioning during this mobilization process is not well understood, and contradictory results exist on the direct effect of drought on carbohydrate mobilization. In a dedicated experiment, wheat plants were subjected to drought stress during carbohydrate mobilization. Measurements, important to better understand stem physiology, showed some unexpected patterns that could not be explained by our current knowledge on water transport. Traditional water flow and storage models failed to properly describe the drought response in wheat stems during carbohydrate mobilization. To explain the measured patterns, hypotheses were formulated and integrated in a dedicated model for wheat. The new mechanistic model simulates two hypothetical water storage compartments: one where water is quickly exchanged with the xylem and one that contains the carbohydrate storage. Water exchange between these compartments is turgor-driven. The model was able to simulate the measured increase in stored carbohydrate concentrations with a decrease in water content and stem diameter. Calibration of the model showed the importance of turgor-driven apoplastic water flow during carbohydrate mobilization. This resulted in an increase in stem hydraulic capacitance, which became more important under drought stress.
Collapse
Affiliation(s)
- Sarah Verbeke
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Carmen María Padilla-Díaz
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Clara Martínez-Arias
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Willem Goossens
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| |
Collapse
|
21
|
Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S. Functional xylem characteristics associated with drought-induced embolism in angiosperms. THE NEW PHYTOLOGIST 2022; 236:2019-2036. [PMID: 36039697 DOI: 10.1111/nph.18447] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.
Collapse
Affiliation(s)
- Frederic Lens
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
- Leiden University, Institute of Biology Leiden, Plant Sciences, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
| | - Giovanni Bortolami
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, the Netherlands
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Sylvain Delzon
- University of Bordeaux, INRAE, BIOGECO, 33615, Pessac, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| |
Collapse
|
22
|
Guan X, Werner J, Cao KF, Pereira L, Kaack L, McAdam SAM, Jansen S. Stem and leaf xylem of angiosperm trees experiences minimal embolism in temperate forests during two consecutive summers with moderate drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1208-1223. [PMID: 34990084 DOI: 10.1111/plb.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long-term measurements. We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems. Apart from A. pseudoplatanus and Q. petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited to B. pendula and C. avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM ) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel. Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental and TPM data show that leaf xylem is generally no more vulnerable than stem xylem.
Collapse
Affiliation(s)
- X Guan
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - J Werner
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - K-F Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - L Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - L Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - S A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - S Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| |
Collapse
|
23
|
Spiers KM, Brueckner D, Garrevoet J, Falkenberg G, van der Ent A. Synchrotron XFM tomography for elucidating metals and metalloids in hyperaccumulator plants. Metallomics 2022; 14:mfac069. [PMID: 36099903 PMCID: PMC9683111 DOI: 10.1093/mtomcs/mfac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/20/2022] [Indexed: 11/14/2022]
Abstract
Visualizing the endogenous distribution of elements within plant organs affords key insights in the regulation of trace elements in plants. Hyperaccumulators have extreme metal(loid) concentrations in their tissues, which make them useful models for studying metal(loid) homeostasis in plants. X-ray-based methods allow for the nondestructive analysis of most macro and trace elements with low limits of detection. However, observing the internal distributions of elements within plant organs still typically requires destructive sample preparation methods, including sectioning, for synchrotron X-ray fluorescence microscopy (XFM). X-ray fluorescence microscopy-computed tomography (XFM-CT) enables "virtual sectioning" of a sample thereby entirely avoiding artefacts arising from destructive sample preparation. The method can be used on frozen-hydrated samples, as such preserving "life-like" conditions. Absorption and Compton scattering maps obtained from synchrotron XFM-CT offer exquisite detail on structural features that can be used in concert with elemental data to interpret the results. In this article we introduce the technique and use it to reveal the internal distribution of hyperaccumulated elements in hyperaccumulator plant species. XFM-CT can be used to effectively probe the distribution of a range of different elements in plant tissues/organs, which has wide ranging applications across the plant sciences.
Collapse
Affiliation(s)
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, University of Hamburg, Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Australia
| |
Collapse
|
24
|
Dayer S, Lamarque LJ, Burlett R, Bortolami G, Delzon S, Herrera JC, Cochard H, Gambetta GA. Model-assisted ideotyping reveals trait syndromes to adapt viticulture to a drier climate. PLANT PHYSIOLOGY 2022; 190:1673-1686. [PMID: 35946780 PMCID: PMC9614441 DOI: 10.1093/plphys/kiac361] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 05/27/2023]
Abstract
Climate change is challenging the resilience of grapevine (Vitis), one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach including the breeding of more drought-tolerant genotypes. In this study, we focused on plant hydraulics as a multi-trait system that allows the plant to maintain hydraulic integrity and gas exchange rates longer under drought. We quantified a broad range of drought-related traits within and across Vitis species, created in silico libraries of trait combinations, and then identified drought tolerant trait syndromes. By modeling the maintenance of hydraulic integrity of current cultivars and the drought tolerant trait syndromes, we identified elite ideotypes that increased the amount of time they could experience drought without leaf hydraulic failure. Generally, elites exhibited a trait syndrome with lower stomatal conductance, earlier stomatal closure, and a larger hydraulic safety margin. We demonstrated that, when compared with current cultivars, elite ideotypes have the potential to decrease the risk of hydraulic failure across wine regions under future climate scenarios. This study reveals the syndrome of traits that can be leveraged to protect grapevine from experiencing hydraulic failure under drought and increase drought tolerance.
Collapse
Affiliation(s)
| | - Laurent J Lamarque
- Département des Sciences de l’Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada G9A 5H7
- Univ. Bordeaux, INRAE, BIOGECO, Cestas 33610, France
| | - Régis Burlett
- Univ. Bordeaux, INRAE, BIOGECO, Cestas 33610, France
| | | | | | - José C Herrera
- Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences (BOKU), Tulln 3430, Austria
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63000, France
| | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, Villenave d’Ornon 33882, France
| |
Collapse
|
25
|
Oliveira LA, Cardoso AA, Andrade MT, Pereira TS, Araújo WL, Santos GA, Damatta FM, Martins SCV. Exploring leaf hydraulic traits to predict drought tolerance of Eucalyptus clones. TREE PHYSIOLOGY 2022; 42:1750-1761. [PMID: 35388901 DOI: 10.1093/treephys/tpac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Ongoing changes in climate, and the consequent mortality of natural and cultivated forests across the globe, highlight the urgent need to understand the plant traits associated with greater tolerance to drought. Here, we aimed at assessing key foliar traits, with a focus on the hydraulic component, that could confer a differential ability to tolerate drought in three commercial hybrids of the most important Eucalyptus species utilized in tropical silviculture: E. urophyla, E. grandis and E. camaldulensis. All genotypes exhibited similar water potential when the 90% stomatal closure (Ψgs90) occurs with Ψgs90 always preceding the start of embolism events. The drought-tolerant hybrid showed a higher leaf resistance to embolism, but the leaf hydraulic efficiency was similar among all genotypes. Other traits presented by the drought-tolerant hybrid were a higher cell wall reinforcement, lower value of osmotic potential at full turgor and greater bulk modulus of elasticity. We also identified that the leaf capacitance after the turgor loss, the ratio between cell wall thickness (t) and lumen breadth (b) ratio (t/b)3, and the minimal conductance might be good proxies for screening drought-tolerant Eucalyptus genotypes. Our findings suggest that xylem resistance to embolism can be an important component of drought tolerance in Eucalyptus in addition to other traits aimed at delaying the development of high tensions in the xylem. Highlight Drought tolerance in tropical Eucalyptus hybrids encompasses a high leaf resistance to embolism and a suite of traits aimed at delaying the development of high tensions in the xylem.
Collapse
Affiliation(s)
- Leonardo A Oliveira
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Amanda A Cardoso
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Moab T Andrade
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Talitha S Pereira
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L Araújo
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Gleison A Santos
- Departmento de Engenharia Florestal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Fábio M Damatta
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Samuel C V Martins
- Departmento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
26
|
Levionnois S, Kaack L, Heuret P, Abel N, Ziegler C, Coste S, Stahl C, Jansen S. Pit characters determine drought-induced embolism resistance of leaf xylem across 18 Neotropical tree species. PLANT PHYSIOLOGY 2022; 190:371-386. [PMID: 35567500 PMCID: PMC9434246 DOI: 10.1093/plphys/kiac223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/19/2022] [Indexed: 05/16/2023]
Abstract
Embolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf xylem across 18 Neotropical tree species. We also conducted gold perfusion and polar lipid detection experiments on three species covering the full range of leaf embolism resistance. We then related these observations to previously published data on embolism resistance of leaf xylem. We also incorporated previously published data on stem embolism resistance and stem xylem pit membranes to investigate the link between vulnerability segmentation (i.e. difference in embolism resistance) and leaf-stem anatomical variation. Maximum pit membrane thickness (Tpm,max) and the pit membrane thickness-to-diameter ratio (Tpm,max/Dpm) were predictive of leaf embolism resistance, especially when vestured pits were taken into account. Variation in Tpm,max/Dpm was the only trait predictive of vulnerability segmentation between leaves and stems. Gold particles of 5- and 10-nm infiltrated pit membranes in three species, while the entry of 50-nm particles was blocked. Moreover, polar lipids were associated with inner conduit walls and pits. Our results suggest that mechanisms related to embolism spreading are determined by Tpm, pore constrictions (i.e. the narrowest bottlenecks along pore pathways), and lipid surfactants, which are largely similar between leaf and stem xylem and between temperate and tropical trees. However, our mechanistic understanding of embolism propagation and the functional relevance of Tpm,max/Dpm remains elusive.
Collapse
Affiliation(s)
| | - Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | | | - Nina Abel
- Institute of Systematic Botany and Ecology, Ulm University, Ulm D-89081, Germany
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
- Université de Lorraine, AgroParisTech, INRAE, UMR SILVA, Nancy 54000, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou 97310, France
| | | |
Collapse
|
27
|
Jiang (蒋国凤) GF, Li (李溯源) SY, Li (李艺蝉) YC, Roddy AB. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. PLANT PHYSIOLOGY 2022; 189:2159-2174. [PMID: 35640109 PMCID: PMC9342987 DOI: 10.1093/plphys/kiac240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/09/2022] [Indexed: 05/30/2023]
Abstract
Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.
Collapse
Affiliation(s)
| | - Su-Yuan Li (李溯源)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi-Chan Li (李艺蝉)
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
28
|
Cardoso AA, Kane CN, Rimer IM, McAdam SAM. Seeing is believing: what visualising bubbles in the xylem has revealed about plant hydraulic function. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:759-772. [PMID: 35718950 DOI: 10.1071/fp21326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K ) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field.
Collapse
Affiliation(s)
- Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cade N Kane
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Ian M Rimer
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
29
|
Limousin JM, Roussel A, Rodríguez-Calcerrada J, Torres-Ruiz JM, Moreno M, Garcia de Jalon L, Ourcival JM, Simioni G, Cochard H, Martin-StPaul N. Drought acclimation of Quercus ilex leaves improves tolerance to moderate drought but not resistance to severe water stress. PLANT, CELL & ENVIRONMENT 2022; 45:1967-1984. [PMID: 35394675 DOI: 10.1111/pce.14326] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increasing temperature and drought can result in leaf dehydration and defoliation even in drought-adapted tree species such as the Mediterranean evergreen Quercus ilex L. The stomatal regulation of leaf water potential plays a central role in avoiding this phenomenon and is constrained by a suite of leaf traits including hydraulic conductance and vulnerability, hydraulic capacitance, minimum conductance to water vapour, osmotic potential and cell wall elasticity. We investigated whether the plasticity in these traits may improve leaf tolerance to drought in two long-term rainfall exclusion experiments in Mediterranean forests. Osmotic adjustment was observed to lower the water potential at turgor loss in the rainfall-exclusion treatments, thus suggesting a stomatal closure at more negative water potentials and a more anisohydric behaviour in drier conditions. Conversely, leaf hydraulic conductance and vulnerability did not exhibit any plasticity between treatments so the hydraulic safety margins were narrower in the rainfall-exclusion treatments. The sequence of leaf responses to seasonal drought and dehydration was conserved among treatments and sites but trees were more likely to suffer losses of turgor and hydraulic functioning in the rainfall-exclusion treatments. We conclude that leaf plasticity might help the trees to tolerate moderate drought but not to resist severe water stress.
Collapse
Affiliation(s)
| | - Amélie Roussel
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jesús Rodríguez-Calcerrada
- Departamento de Sistemas y Recursos Naturales, ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid Ciudad Universitaria, Madrid, Spain
| | | | - Myriam Moreno
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| | | | | | - Guillaume Simioni
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| | - Hervé Cochard
- PIAF, University Clermont-Auvergne, INRAE, Clermont-Ferrand, France
| | - Nicolas Martin-StPaul
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE Avignon Cedex 9, Domaine Saint Paul, Site Agroparc, France
| |
Collapse
|
30
|
Jacob V, Choat B, Churchill AC, Zhang H, Barton CVM, Krishnananthaselvan A, Post AK, Power SA, Medlyn BE, Tissue DT. High safety margins to drought-induced hydraulic failure found in five pasture grasses. PLANT, CELL & ENVIRONMENT 2022; 45:1631-1646. [PMID: 35319101 DOI: 10.1111/pce.14318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Determining the relationship between reductions in stomatal conductance (gs ) and leaf water transport during dehydration is key to understanding plant drought responses. While numerous studies have analysed the hydraulic function of woody species, minimal research has been conducted on grasses. Here, we sought to characterize hydraulic vulnerability in five widely-occurring pasture grasses (including both C3 and C4 grasses) and determine whether reductions in gs and leaf hydraulic conductance (Kleaf ) during dehydration could be attributed to xylem embolism. Using the optical vulnerability (OV) technique, we found that all species were highly resistant to xylem embolism when compared to other herbaceous angiosperms, with 50% xylem embolism (PX50 ) occurring at xylem pressures ranging from -4.4 to -6.1 MPa. We observed similar reductions in gs and Kleaf under mild water stress for all species, occurring well before PX50 . The onset of xylem embolism (PX12 ) occurred consistently after stomatal closure and 90% reduction of Kleaf . Our results suggest that factors other than xylem embolism are responsible for the majority of reductions in gs and Kleaf during drought and reductions in the productivity of pasture species under moderate drought may not be driven by embolism.
Collapse
Affiliation(s)
- Vinod Jacob
- Western Sydney University, Penrith, New South Wales, Australia
| | - Brendan Choat
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - Haiyang Zhang
- Western Sydney University, Penrith, New South Wales, Australia
| | | | | | - Alison K Post
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sally A Power
- Western Sydney University, Penrith, New South Wales, Australia
| | | | - David T Tissue
- Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
31
|
Song J, Trueba S, Yin XH, Cao KF, Brodribb TJ, Hao GY. Hydraulic vulnerability segmentation in compound-leaved trees: Evidence from an embolism visualization technique. PLANT PHYSIOLOGY 2022; 189:204-214. [PMID: 35099552 PMCID: PMC9070814 DOI: 10.1093/plphys/kiac034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 05/11/2023]
Abstract
The hydraulic vulnerability segmentation (HVS) hypothesis implies the existence of differences in embolism resistance between plant organs along the xylem pathway and has been suggested as an adaptation allowing the differential preservation of more resource-rich tissues during drought stress. Compound leaves in trees are considered a low-cost means of increasing leaf area and may thus be expected to show evidence of strong HVS, given the tendency of compound-leaved tree species to shed their leaf units during drought. However, the existence and role of HVS in compound-leaved tree species during drought remain uncertain. We used an optical visualization technique to estimate embolism occurrence in stems, petioles, and leaflets of shoots in two compound-leaved tree species, Manchurian ash (Fraxinus mandshurica) and Manchurian walnut (Juglans mandshurica). We found higher (less negative) water potentials corresponding to 50% loss of conductivity (P50) in leaflets and petioles than in stems in both species. Overall, we observed a consistent pattern of stem > petiole > leaflet in terms of xylem resistance to embolism and hydraulic safety margins (i.e. the difference between mid-day water potential and P50). The coordinated variation in embolism vulnerability between organs suggests that during drought conditions, trees benefit from early embolism and subsequent shedding of more expendable organs such as leaflets and petioles, as this provides a degree of protection to the integrity of the hydraulic system of the more carbon costly stems. Our results highlight the importance of HVS as an adaptive mechanism of compound-leaved trees to withstand drought stress.
Collapse
Affiliation(s)
- Jia Song
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
- Yangtze River Delta National Observatory of Wetland Ecosystem, Shanghai Normal University, Shanghai 200234, China
| | - Santiago Trueba
- University of Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
| | - Xiao-Han Yin
- CAS Key Laboratory of Forest Ecology and Management & Key Laboratory of Terrestrial Ecosystem Carbon Neutrality Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Kun-Fang Cao
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, and College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Timothy J Brodribb
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|
32
|
Hajek P, Link RM, Nock CA, Bauhus J, Gebauer T, Gessler A, Kovach K, Messier C, Paquette A, Saurer M, Scherer-Lorenzen M, Rose L, Schuldt B. Mutually inclusive mechanisms of drought-induced tree mortality. GLOBAL CHANGE BIOLOGY 2022; 28:3365-3378. [PMID: 35246895 DOI: 10.1111/gcb.16146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
Collapse
Affiliation(s)
- Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman M Link
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Freiburg, Germany
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, Switzerland
| | - Kyle Kovach
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Messier
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
- University of Quebec in Outaouais (UQO), Institut des Sciences de la Forêt Tempérée (ISFORT), Gatineau, Quebec, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | | | - Laura Rose
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernhard Schuldt
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| |
Collapse
|
33
|
Arend M, Link RM, Zahnd C, Hoch G, Schuldt B, Kahmen A. Lack of hydraulic recovery as a cause of post-drought foliage reduction and canopy decline in European beech. THE NEW PHYTOLOGIST 2022; 234:1195-1205. [PMID: 35238410 PMCID: PMC9310744 DOI: 10.1111/nph.18065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/19/2022] [Indexed: 05/06/2023]
Abstract
European beech (Fagus sylvatica) was among the most affected tree species during the severe 2018 European drought. It not only suffered from instant physiological stress but also showed severe symptoms of defoliation and canopy decline in the following year. To explore the underlying mechanisms, we used the Swiss-Canopy-Crane II site and studied in branches of healthy and symptomatic trees the repair of hydraulic function and concentration of carbohydrates during the 2018 drought and in 2019. We found loss of hydraulic conductance in 2018, which did not recover in 2019 in trees that developed defoliation symptoms in the year after drought. Reduced branch foliation in symptomatic trees was associated with a gradual decline in wood starch concentration throughout summer 2019. Visualization of water transport in healthy and symptomatic branches in the year after the drought confirmed the close relationship between xylem functionality and supported branch leaf area. Our findings showed that embolized xylem does not regain function in the season following a drought and that sustained branch hydraulic dysfunction is counterbalanced by the reduction in supported leaf area. It suggests acclimation of leaf development after drought to mitigate disturbances in canopy hydraulic function.
Collapse
Affiliation(s)
- Matthias Arend
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Roman Mathias Link
- Ecophysiology and Vegetation EcologyUniversität Würzburg97082WürzburgGermany
| | - Cedric Zahnd
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Günter Hoch
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| | - Bernhard Schuldt
- Ecophysiology and Vegetation EcologyUniversität Würzburg97082WürzburgGermany
| | - Ansgar Kahmen
- Physiological Plant EcologyUniversity of Basel4056BaselSwitzerland
| |
Collapse
|
34
|
Hajek P, Link RM, Nock CA, Bauhus J, Gebauer T, Gessler A, Kovach K, Messier C, Paquette A, Saurer M, Scherer-Lorenzen M, Rose L, Schuldt B. Mutually inclusive mechanisms of drought-induced tree mortality. GLOBAL CHANGE BIOLOGY 2022; 28:3365-3378. [PMID: 35246895 DOI: 10.1101/2020.12.17.423038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 05/22/2023]
Abstract
Unprecedented tree dieback across Central Europe caused by recent global change-type drought events highlights the need for a better mechanistic understanding of drought-induced tree mortality. Although numerous physiological risk factors have been identified, the importance of two principal mechanisms, hydraulic failure and carbon starvation, is still debated. It further remains largely unresolved how the local neighborhood composition affects individual mortality risk. We studied 9435 young trees of 12 temperate species planted in a diversity experiment in 2013 to assess how hydraulic traits, carbon dynamics, pest infestation, tree height and neighborhood competition influence individual mortality risk. Following the most extreme global change-type drought since record in 2018, one third of these trees died. Across species, hydraulic safety margins (HSMs) were negatively and a shift towards a higher sugar fraction in the non-structural carbohydrate (NSC) pool positively associated with mortality risk. Moreover, trees infested by bark beetles had a higher mortality risk, and taller trees a lower mortality risk. Most neighborhood interactions were beneficial, although neighborhood effects were highly species-specific. Species that suffered more from drought, especially Larix spp. and Betula spp., tended to increase the survival probability of their neighbors and vice versa. While severe tissue dehydration marks the final stage of drought-induced tree mortality, we show that hydraulic failure is interrelated with a series of other, mutually inclusive processes. These include shifts in NSC pools driven by osmotic adjustment and/or starch depletion as well as pest infestation and are modulated by the size and species identity of a tree and its neighbors. A more holistic view that accounts for multiple causes of drought-induced tree mortality is required to improve predictions of trends in global forest dynamics and to identify mutually beneficial species combinations.
Collapse
Affiliation(s)
- Peter Hajek
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Roman M Link
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Freiburg, Germany
| | - Tobias Gebauer
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arthur Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, Switzerland
| | - Kyle Kovach
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christian Messier
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
- University of Quebec in Outaouais (UQO), Institut des Sciences de la Forêt Tempérée (ISFORT), Gatineau, Quebec, Canada
| | - Alain Paquette
- Center for Forest Research, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | | | - Laura Rose
- Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bernhard Schuldt
- Chair of Ecophysiology and Vegetation Ecology, University of Würzburg, Julius-von-Sachs-Institute of Biological Sciences, Würzburg, Germany
| |
Collapse
|
35
|
Gauthey A, Peters JMR, Lòpez R, Carins-Murphy MR, Rodriguez-Dominguez CM, Tissue DT, Medlyn BE, Brodribb TJ, Choat B. Mechanisms of xylem hydraulic recovery after drought in Eucalyptus saligna. PLANT, CELL & ENVIRONMENT 2022; 45:1216-1228. [PMID: 35119114 DOI: 10.1111/pce.14265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.
Collapse
Affiliation(s)
- Alice Gauthey
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Jennifer M R Peters
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Environmental Sciences Division, Oak Ridge National Laboratory, Climate Change Science Institute, Oak Ridge, Tennessee, USA
| | - Rosana Lòpez
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Celia M Rodriguez-Dominguez
- Irrigation and Crop Ecophysiology Group, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
- Laboratory of Plant Molecular Ecophysiology, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC), Sevilla, Spain
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Syndey University, Richmond, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Tim J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
36
|
Barbeta A, Burlett R, Martín-Gómez P, Fréjaville B, Devert N, Wingate L, Domec JC, Ogée J. Evidence for distinct isotopic compositions of sap and tissue water in tree stems: consequences for plant water source identification. THE NEW PHYTOLOGIST 2022; 233:1121-1132. [PMID: 34767646 DOI: 10.1111/nph.17857] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The long-standing hypothesis that the isotopic composition of plant stem water reflects that of source water is being challenged by studies reporting bulk water from woody stems with an isotopic composition that cannot be attributed to any potential water source. The mechanism behind such source-stem water isotopic offsets is still poorly understood. Using a novel technique to extract selectively sap water from xylem conduits, we show that, in cut stems and potted plants, the isotopic composition of sap water reflects that of irrigation water, demonstrating unambiguously that no isotopic fractionation occurs during root water uptake or sap water extraction. By contrast, water in nonconductive xylem tissues is always depleted in deuterium compared with sap water, irrespective of wood anatomy. Previous studies have shown that isotopic heterogeneity also exists in soils at the pore scale in which water adsorbed onto soil particles is more depleted in deuterium than unbound water. Data collected at a riparian forest indicated that sap water matches best unbound soil water from depth below -70 cm, while bulk stem and soil water differ markedly. We conclude that source-stem isotopic offsets can be explained by micrometre-scale heterogeneity in the isotope ratios of water within woody stems and soil micro-pores.
Collapse
Affiliation(s)
- Adrià Barbeta
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
- BEECA, Universitat de Barcelona, Barcelona, Catalonia, 08028, Spain
| | - Régis Burlett
- Université de Bordeaux, INRAE, BIOGECO, Pessac, 33615, France
| | | | | | - Nicolas Devert
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
| | - Lisa Wingate
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
| | | | - Jérôme Ogée
- INRAE, Bordeaux Sciences Agro, ISPA, Villenave d'Ornon, 33140, France
| |
Collapse
|
37
|
Johnson KM, Lucani C, Brodribb TJ. In vivo monitoring of drought-induced embolism in Callitris rhomboidea trees reveals wide variation in branchlet vulnerability and high resistance to tissue death. THE NEW PHYTOLOGIST 2022; 233:207-218. [PMID: 34625973 DOI: 10.1111/nph.17786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Damage to the plant water transport system through xylem cavitation is known to be a driver of plant death in drought conditions. However, a lack of techniques to continuously monitor xylem embolism in whole plants in vivo has hampered our ability to investigate both how this damage propagates and the possible mechanistic link between xylem damage and tissue death. Using optical and fluorescence sensors, we monitored drought-induced xylem embolism accumulation and photosynthetic damage in vivo throughout the canopy of a drought-resistant conifer, Callitris rhomboidea, during drought treatments of c. 1 month duration. We show that drought-induced damage to the xylem can be monitored in vivo in whole trees during extended periods of water stress. Under these conditions, vulnerability of the xylem to cavitation varied widely among branchlets, with photosynthetic damage only recorded once > 90% of the xylem was cavitated. The variation in branchlet vulnerability has important implications for understanding how trees like C. rhomboidea survive drought, and the high resistance of branchlets to tissue damage points to runaway cavitation as a likely driver of tissue death in C. rhomboidea branch tips.
Collapse
Affiliation(s)
- Kate M Johnson
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Christopher Lucani
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Timothy J Brodribb
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
38
|
Qin DW, Chen WJ, Zhong LX, Qin WM, Cao KF. Gas exchange and hydraulic function in seedlings of three basal angiosperm tree-species during water-withholding and re-watering. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
39
|
Avila RT, Cardoso AA, Batz TA, Kane CN, DaMatta FM, McAdam SAM. Limited plasticity in embolism resistance in response to light in leaves and stems in species with considerable vulnerability segmentation. PHYSIOLOGIA PLANTARUM 2021; 172:2142-2152. [PMID: 33942915 DOI: 10.1111/ppl.13450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Xylem resistance to embolism is a key metric determining plant survival during drought. Yet, we have a limited understanding of the degree of plasticity in vulnerability to embolism. Here, we tested whether light availability influences embolism resistance in leaves and stems. The optical vulnerability method was used to assess stem and leaf resistance to embolism in Phellodendron amurense and Ilex verticillata acclimated to sun and shade microenvironments within the same canopy. In both species, we found considerable segmentation in xylem resistance to embolism between leaves and stems, but only minor acclimation in response to light availability. With the addition of a third species, Betula pubescens, which shows no vulnerability segmentation, we sought to investigate xylem anatomical traits that might correlate with strong vulnerability segmentation. We found a correlation between the area fraction of vessels in the xylem and embolism resistance across species and tissue types. Our results suggest that minimal acclimation of embolism resistance occurs in response to light environment in the same individual and that the degree of vulnerability segmentation between leaves and stems might be determined by the vessel lumen fraction of the xylem.
Collapse
Affiliation(s)
- Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Amanda A Cardoso
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Timothy A Batz
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Cade N Kane
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
40
|
Feng F, Losso A, Tyree M, Zhang S, Mayr S. Cavitation fatigue in conifers: a study on eight European species. PLANT PHYSIOLOGY 2021; 186:1580-1590. [PMID: 33905499 PMCID: PMC8260135 DOI: 10.1093/plphys/kiab170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
After drought-induced embolism and repair, tree xylem may be weakened against future drought events (cavitation fatigue). As there are few data on cavitation fatigue in conifers available, we quantified vulnerability curves (VCs) after embolism/repair cycles on eight European conifer species. We induced 50% and 100% loss of conductivity (LC) with a cavitron, and analyzed VCs. Embolism repair was obtained by vacuum infiltration. All species demonstrated complete embolism repair and a lack of any cavitation fatigue after 50% LC . After 100% LC, European larch (Larix decidua), stone pine (Pinus cembra), Norway spruce (Picea abies), and silver fir (Abies alba) remained unaffected, while mountain pine (Pinus mugo), yew (Taxus baccata), and common juniper (Juniperus communis) exhibited 0.4-0.9 MPa higher vulnerability to embolism. A small cavitation fatigue observed in Scots pine (Pinus sylvestris) was probably biased by incomplete embolism repair, as indicated by a correlation of vulnerability shifts and conductivity restoration. Our data demonstrate that cavitation fatigue in conifers is species-specific and depends on the intensity of preceding LC. The lack of fatigue effects after moderate LC, and relevant effects in only three species after high LC, indicate that conifers are relatively resistant against cavitation fatigue. This is remarkable considering the complex and delicate conifer pit architecture and may be important considering climate change projections.
Collapse
Affiliation(s)
- Feng Feng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi 711600, China
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Innsbruck 6020, Austria
| | - Melvin Tyree
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Shuoxin Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
- Qinling National Forest Ecosystem Research Station, Huoditang, Ningshan, Shaanxi 711600, China
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
41
|
Bortolami G, Farolfi E, Badel E, Burlett R, Cochard H, Ferrer N, King A, Lamarque LJ, Lecomte P, Marchesseau-Marchal M, Pouzoulet J, Torres-Ruiz JM, Trueba S, Delzon S, Gambetta GA, Delmas CEL. Seasonal and long-term consequences of esca grapevine disease on stem xylem integrity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3914-3928. [PMID: 33718947 DOI: 10.1093/jxb/erab117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/11/2021] [Indexed: 05/26/2023]
Abstract
Hydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. Xylem occlusions (tyloses) and subsequent loss of stem hydraulic conductivity (ks) occurred in all shoots with severe symptoms (apoplexy) and in more than 60% of shoots with moderate symptoms (tiger-stripe), with no tyloses in asymptomatic shoots. In vivo stem observations demonstrated that tyloses occurred only when leaf symptoms appeared, and resulted in more than 50% loss of hydraulic conductance in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal, with no long-term impact of disease history. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality through hydraulic failure.
Collapse
Affiliation(s)
| | - Elena Farolfi
- INRAE, BSA, ISVV, SAVE, 33882 Villenave d'Ornon, France
| | - Eric Badel
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Regis Burlett
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
| | - Herve Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | | - Andrew King
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, 91192, France
| | - Laurent J Lamarque
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
- Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada
| | | | | | - Jerome Pouzoulet
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | - Jose M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Santiago Trueba
- Univ. Bordeaux, INRAE, BIOGECO, 33615 Pessac, France
- School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
| | | | - Gregory A Gambetta
- EGFV, Bordeaux-Sciences Agro, INRAE, Université de Bordeaux, ISVV, 210 chemin de Leysotte, 33882 Villenave d'Ornon, France
| | | |
Collapse
|
42
|
Schenk HJ, Jansen S, Hölttä T. Positive pressure in xylem and its role in hydraulic function. THE NEW PHYTOLOGIST 2021; 230:27-45. [PMID: 33206999 DOI: 10.1111/nph.17085] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/13/2020] [Indexed: 05/29/2023]
Abstract
Although transpiration-driven transport of xylem sap is well known to operate under absolute negative pressure, many terrestrial, vascular plants show positive xylem pressure above atmospheric pressure on a seasonal or daily basis, or during early developmental stages. The actual location and mechanisms behind positive xylem pressure remain largely unknown, both in plants that show seasonal xylem pressure before leaf flushing, and those that show a diurnal periodicity of bleeding and guttation. Available evidence shows that positive xylem pressure can be driven based on purely physical forces, osmotic exudation into xylem conduits, or hydraulic pressure in parenchyma cells associated with conduits. The latter two mechanisms may not be mutually exclusive and can be understood based on a similar modelling scenario. Given the renewed interest in positive xylem pressure, this review aims to provide a constructive way forward by discussing similarities and differences of mechanistic models, evaluating available evidence for hydraulic functions, such as rehydration of tissues, refilling of water stores, and embolism repair under positive pressure, and providing recommendations for future research, including methods that avoid or minimise cutting artefacts.
Collapse
Affiliation(s)
- H Jochen Schenk
- Department of Biological Science, California State University Fullerton, PO Box 6850, Fullerton, CA, 92834, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Teemu Hölttä
- Faculty of Agriculture and Forestry, Institute for Atmospheric and Earth System Research/Forest Sciences, University of Helsinki, PO Box 27, Helsinki, FI-00014, Finland
| |
Collapse
|
43
|
Bartlett MK, Sinclair G. Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1995-2009. [PMID: 33300576 DOI: 10.1093/jxb/eraa577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Selection for crop cultivars has largely focused on reproductive traits, while the impacts of global change on crop productivity are expected to depend strongly on the vegetative physiology traits that drive plant resource use and stress tolerance. We evaluated relationships between physiology traits and growing season climate across wine grape cultivars to characterize trait variation across European growing regions. We compiled values from the literature for seven water use and drought tolerance traits and growing season climate. Cultivars with a lower maximum stomatal conductance were associated with regions with a higher mean temperature and mean and maximum vapor pressure deficit (r2=0.39-0.65, P<0.05, n=14-29). Cultivars with greater stem embolism resistance and more anisohydric stomatal behavior (i.e. a more negative water potential threshold for 50% stomatal closure) were associated with cooler regions (r2=0.48-0.72, P<0.03, n=10-29). Overall, cultivars grown in warmer, drier regions exhibited traits that would reduce transpiration and conserve soil water longer into the growing season, but potentially increase stomatal and temperature limitations on photosynthesis under future, hotter conditions.
Collapse
Affiliation(s)
- Megan K Bartlett
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| | - Gabriela Sinclair
- Department of Viticulture & Enology, University of California, Davis, CA, USA
| |
Collapse
|
44
|
Sorek Y, Greenstein S, Netzer Y, Shtein I, Jansen S, Hochberg U. An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes. THE NEW PHYTOLOGIST 2021; 229:1955-1969. [PMID: 33098088 DOI: 10.1111/nph.17025] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Although xylem embolism resistance is traditionally considered as static, we hypothesized that in grapevine (Vitis vinifera) leaf xylem becomes more embolism-resistant over the growing season. We evaluated xylem architecture, turgor loss point (ΨTLP ) and water potentials leading to 25% of maximal stomatal conductance (gs25 ) or 50% embolism in the leaf xylem (P50 ) in three irrigation treatments and at three time points during the growing season, while separating the effects of leaf age and time of season. Hydraulic traits acclimated over the growing season in a coordinated manner. Without irrigation, ΨTLP , gs25 , and P50 decreased between late May and late August by 0.95, 0.77 and 0.71 MPa, respectively. A seasonal shift in P50 occurred even in mature leaves, while irrigation had only a mild effect (< 0.2 MPa) on P50 . Vessel size and pit membrane thickness were also seasonally dynamic, providing a plausible explanation for the shift in P50 . Our findings provide clear evidence that grapevines can modify their hydraulic traits along a growing season to allow lower xylem water potential, without compromising gas exchange, leaf turgor or xylem integrity. Seasonal changes should be considered when modeling ecosystem vulnerability to drought or comparing datasets acquired at different phenological stages.
Collapse
Affiliation(s)
- Yonatan Sorek
- Institute of Soil, Water and Environmental Science, Volcani Center, Agricultural Research Organization, PO Box 6, Bet-Dagan, 50250, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Smadar Greenstein
- Institute of Soil, Water and Environmental Science, Volcani Center, Agricultural Research Organization, PO Box 6, Bet-Dagan, 50250, Israel
| | - Yishai Netzer
- Department of Chemical engineering, Ariel University, Ariel, 40700, Israel
- Agriculture and Oenology Department, Eastern R&D Center, Ariel, 40700, Israel
| | - Ilana Shtein
- Agriculture and Oenology Department, Eastern R&D Center, Ariel, 40700, Israel
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Uri Hochberg
- Institute of Soil, Water and Environmental Science, Volcani Center, Agricultural Research Organization, PO Box 6, Bet-Dagan, 50250, Israel
| |
Collapse
|
45
|
Chen YJ, Maenpuen P, Zhang YJ, Barai K, Katabuchi M, Gao H, Kaewkamol S, Tao LB, Zhang JL. Quantifying vulnerability to embolism in tropical trees and lianas using five methods: can discrepancies be explained by xylem structural traits? THE NEW PHYTOLOGIST 2021; 229:805-819. [PMID: 32929748 DOI: 10.1111/nph.16927] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
Vulnerability curves (VCs) describe the loss of hydraulic conductance against increasing xylem tension, providing valuable insights about the response of plant water transport to water stress. Techniques to construct VCs have been developed and modified continuously, but controversies continue. We compared VCs constructed using the bench-top dehydration (BD), air-injection-flow (AI), pneumatic-air-discharge (PAD), optical (OP) and X-ray-computed microtomography (MicroCT) methods for tropical trees and lianas with contrasting vessel lengths. The PAD method generated highly vulnerable VCs, the AI method intermediate VCs, whereas the BD, OP and MicroCT methods produced comparable and more resistant VCs. Vessel-length and diameter accounted for the overestimation ratio of vulnerability estimated using the AI but not the PAD method. Compared with directly measured midday embolism levels, the PAD and AI methods substantially overestimated embolism, whereas the BD, MicroCT and OP methods provided more reasonable estimations. Cut-open vessels, uncertainties in maximum air volume estimations, sample-length effects, tissue cracks and shrinkage together may impede the reliability of the PAD method. In conclusion, we validate the BD, OP and MicroCT methods for tropical plants, whereas the PAD and AI need further mechanistic testing. Therefore, applications of VCs in estimating plant responses to drought need to be cautious.
Collapse
Affiliation(s)
- Ya-Jun Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Yuanjiang Savanna Ecosystem Research Station, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yuanjiang, Yunnan, 653300, China
| | - Phisamai Maenpuen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Kallol Barai
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Hui Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sasiwimol Kaewkamol
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lian-Bin Tao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
46
|
Secchi F, Pagliarani C, Cavalletto S, Petruzzellis F, Tonel G, Savi T, Tromba G, Obertino MM, Lovisolo C, Nardini A, Zwieniecki MA. Chemical inhibition of xylem cellular activity impedes the removal of drought-induced embolisms in poplar stems - new insights from micro-CT analysis. THE NEW PHYTOLOGIST 2021; 229:820-830. [PMID: 32890423 DOI: 10.1111/nph.16912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
In drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process. Application of the vanadate treatment (NaVO3, an inhibitor of many ATPases) completely halted recovery from drought-induced embolism for up to 24 h after re-irrigation, while partial recovery was observed in vivo in control plants using X-ray microcomputed tomography. Our results suggest that stem hydraulic recovery in poplar is a biological, energy-dependent process that coincides with accumulation of sugars in the apoplast during stress. Recovery and damage are spatially coordinated, with embolism formation occurring from the inside out and refilling from the outside in. The outside-in pattern highlights the importance of xylem proximity to the sugars within the phloem to the embolism recovery process.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, Torino, 10135, Italy
| | - Silvia Cavalletto
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, Trieste, 34127, Italy
| | - Giulia Tonel
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Tadeja Savi
- Institute of Botany, Department of Integrative Biology and Biodiversity Research, BOKU, Gregor-Mendel-Straße 33, Vienna, 1180, Austria
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, 34149, Italy
| | - Maria Margherita Obertino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, Trieste, 34127, Italy
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
47
|
Ziemińska K, Rosa E, Gleason SM, Holbrook NM. Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species. PLANT, CELL & ENVIRONMENT 2020; 43:3048-3067. [PMID: 32935340 DOI: 10.1111/pce.13891] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Water released from wood during transpiration (capacitance) can meaningfully affect daily water use and drought response. To provide context for better understanding of capacitance mechanisms, we investigated links between capacitance and wood anatomy. On twigs of 30 temperate angiosperm tree species, we measured day capacitance (between predawn and midday), water content, wood density, and anatomical traits, that is, vessel dimensions, tissue fractions, and vessel-tissue contact fractions (fraction of vessel circumference in contact with other tissues). Across all species, wood density (WD) and predawn lumen volumetric water content (VWCL-pd ) together were the strongest predictors of day capacitance (r2adj = .44). Vessel-tissue contact fractions explained an additional ~10% of the variation in day capacitance. Regression models were not improved by including tissue lumen fractions. Among diffuse-porous species, VWCL-pd and vessel-ray contact fraction together were the best predictors of day capacitance, whereas among semi/ring-porous species, VWCL-pd , WD and vessel-fibre contact fraction were the best predictors. At predawn, wood was less than fully saturated for all species (lumen relative water content = 0.52 ± 0.17). Our findings imply that day capacitance depends on the amount of stored water, tissue connectivity and the bulk wood properties arising from WD (e.g., elasticity), rather than the fraction of any particular tissue.
Collapse
Affiliation(s)
- Kasia Ziemińska
- Arnold Arboretum of Harvard University, Boston, Massachusetts, USA
- Department of Plant Ecology and Evolution, Uppsala University, Uppsala, Sweden
| | - Emily Rosa
- Department of Biology, Sonoma State University, Rohnert Park, California, USA
| | - Sean M Gleason
- United States Department of Agriculture - Agricultural Research Service, Water Management and Systems Research Unit, Fort Collins, Colorado, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Levionnois S, Ziegler C, Jansen S, Calvet E, Coste S, Stahl C, Salmon C, Delzon S, Guichard C, Heuret P. Vulnerability and hydraulic segmentations at the stem-leaf transition: coordination across Neotropical trees. THE NEW PHYTOLOGIST 2020; 228:512-524. [PMID: 32496575 DOI: 10.1111/nph.16723] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Hydraulic segmentation at the stem-leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf-stem transition at the whole-plant level, including both xylem and outer xylem tissue.
Collapse
Affiliation(s)
- Sébastien Levionnois
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Camille Ziegler
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- UMR SILVA, INRAE , Université de Lorraine, Nancy, 54000, France
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, D-89081, Germany
| | - Emma Calvet
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Sabrina Coste
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Clément Stahl
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Camille Salmon
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| | - Sylvain Delzon
- Univ. Bordeaux , INRAE, BIOGECO, Pessac, F-33615, France
| | - Charlotte Guichard
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
| | - Patrick Heuret
- UMR EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Kourou, 97310, France
- AMAP , Univ Montpellier , CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
| |
Collapse
|
49
|
Rehschuh R, Cecilia A, Zuber M, Faragó T, Baumbach T, Hartmann H, Jansen S, Mayr S, Ruehr N. Drought-Induced Xylem Embolism Limits the Recovery of Leaf Gas Exchange in Scots Pine. PLANT PHYSIOLOGY 2020; 184:852-864. [PMID: 32820065 PMCID: PMC7536670 DOI: 10.1104/pp.20.00407] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 05/16/2023]
Abstract
Climate change increases the occurrence of prolonged drought periods with large implications for forest functioning. Scots pine (Pinus sylvestris) is one of the most abundant conifers worldwide, and evidence is rising that its resilience to severe drought is limited. However, we know little about its ability to recover from drought-induced embolism. To analyze postdrought hydraulic recovery, we investigated stress and recovery dynamics of leaf gas exchange, nonstructural carbohydrates, and hydraulic properties in 2.5-year-old Scots pine seedlings. We quantified the degree of xylem embolism by combining in vivo x-ray microtomography with intrusive techniques including measurements of hydraulic conductivity and dye staining during drought progression and short-term (2 d) and long-term (4 weeks) recovery. Seedlings were grown under controlled conditions, and irrigation was withheld until stomata closed and xylem water potential declined to -3.2 MPa on average, causing a 46% loss of stem hydraulic conductivity. Following drought release, we found a gradual recovery of leaf gas exchange to 50% to 60% of control values. This partial recovery indicates hydraulic limitations due to drought-induced damage. Whereas xylem water potential recovered close to control values within 2 d, both x-ray microtomography and intrusive measurements revealed no recovery of stem hydraulic conductivity. Moreover, we did not find indications for nonstructural carbohydrate reserves limiting hydraulic recovery. Our findings demonstrate that Scots pine is able to survive severe drought and to partially recover, although we assume that xylem development during the next growing season might compensate for some of the hydraulic impairment. Such drought-induced legacy effects are important when considering vegetation responses to extreme events.
Collapse
Affiliation(s)
- Romy Rehschuh
- Karlsruhe Institute of Technology, KIT Campus Alpin, Institute of Meteorology and Climate Research- Atmospheric Environmental Research, 82467 Garmisch-Partenkirchen, Germany
| | - Angelica Cecilia
- Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marcus Zuber
- Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tomáš Faragó
- Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, 76344 Eggenstein-Leopoldshafen, Germany
| | - Tilo Baumbach
- Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, 76344 Eggenstein-Leopoldshafen, Germany
| | - Henrik Hartmann
- Max Planck Institute for Biogeochemistry, Department of Biogeochemical Processes, 07745 Jena, Germany
| | - Steven Jansen
- Ulm University, Institute of Systematic Botany and Ecology, 89081 Ulm, Germany
| | - Stefan Mayr
- University of Innsbruck, Institute of Botany, 6020 Innsbruck, Austria
| | - Nadine Ruehr
- Karlsruhe Institute of Technology, KIT Campus Alpin, Institute of Meteorology and Climate Research- Atmospheric Environmental Research, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
50
|
Charrier G. Extrapolating Physiological Response to Drought through Step-by-Step Analysis of Water Potential. PLANT PHYSIOLOGY 2020; 184:560-561. [PMID: 33020321 PMCID: PMC7536708 DOI: 10.1104/pp.20.01110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Guillaume Charrier
- Université Clermont Auvergne, IINRAE, PIAF, F-63000 Clermont-Ferrand, France
| |
Collapse
|