1
|
Uemura Y, Sakaoka S, Morikami A, Tsukagoshi H. Glycosylphosphatidylinositol-anchored lipid transfer proteins influence root cap cuticle formation at primary root tips, promoting NaCl tolerance in Arabidopsis seedlings. Biosci Biotechnol Biochem 2024; 88:1299-1306. [PMID: 39223096 DOI: 10.1093/bbb/zbae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Root cap cuticles (RCCs), comprising mainly very-long-chain fatty acids (VLCFAs), promote salt tolerance by preventing ion influx. Glycosylphosphatidylinositol-anchored lipid transfer protein (LTPG)1 and LTPG2 participate in VLCFA deposition in the extracellular region, aiding RCC formation in the lateral roots. In this study, we investigated whether LTPG1 and LTPG2 have similar functions in the primary roots of young Arabidopsis thaliana. Phenotypic analyses, fluorescence microscopy, and quantitative real-time reverse transcription polymerase chain reaction confirmed that NaCl exposure induced LTPG1 and LTPG2 expression and promoted RCC formation in young primary roots. The loss of RCC in the ltpg1 and ltpg2 mutants resulted in increased NaCl sensitivity of root elongation. NaCl also upregulated the expression of several NaCl-responsive genes in ltpg1 and ltpg2. We conclude that RCC formation via LTPG function is pivotal in enhancing salt tolerance in young primary roots.
Collapse
Affiliation(s)
- Yuta Uemura
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | - Satomi Sakaoka
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | | | | |
Collapse
|
2
|
Ullah I, Toor MD, Yerlikaya BA, Mohamed HI, Yerlikaya S, Basit A, Rehman AU. High-temperature stress in strawberry: understanding physiological, biochemical and molecular responses. PLANTA 2024; 260:118. [PMID: 39419853 DOI: 10.1007/s00425-024-04544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
MAIN CONCLUSION Heat stress reduces strawberry growth and fruit quality by impairing photosynthesis, disrupting hormone regulation, and altering mineral nutrition. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic and metabolomic under high temperatures. Garden strawberry is a globally cultivated, economically important fruit crop highly susceptible to episodic heat waves and chronically rising temperatures associated with climate change. Heat stress negatively affects the growth, development, and quality of strawberries. Elevated temperatures affect photosynthesis, respiration, water balance, hormone signaling, and carbohydrate metabolism in strawberries. Heat stress reduces the size and number of leaves, the number of crowns, the differentiation of flower buds, and the viability of pollen and fruit set, ultimately leading to a lower yield. On a physiological level, heat stress reduces membrane stability, increases the production of reactive oxygen species, and reduces the antioxidant capacity of strawberries. Heat-tolerant varieties have better physiological and biochemical adaptation mechanisms compared to heat-sensitive varieties. Breeding heat-tolerant strawberry cultivars involves selection for traits such as increased leaf temperature, membrane thermostability, and chlorophyll content. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic, metabolomic, and ionomic reprogramming at high temperatures. Integrative-omics approaches combine multiple omics datasets to obtain a systemic understanding of the responses to heat stress in strawberries. This article summarizes the deciphering of strawberry responses to heat stress using physiological, biochemical, and molecular approaches that will enable the development of resilient adaptation strategies that sustain strawberry production under global climate change.
Collapse
Affiliation(s)
- Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Muhammad Danish Toor
- Department of Botany, Faculty of Science and Technology, İnstitute of Ecology and Earth Science's, Chair of Mycology, University of Tartu, Tartu, Estonia
- Department of Agrochemistry and Soil Science, Faculty of Agronomy, Agricultural University, Plovdiv, Bulgaria
| | - Bayram Ali Yerlikaya
- Department of Plant Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Seher Yerlikaya
- Department of Plant Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, 41566, Daegu, South Korea
| | - Attiq Ur Rehman
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, The University of Helsinki, 00790, Helsinki, Finland
| |
Collapse
|
3
|
Wang F, Li Y, Yuan J, Li C, Lin Y, Gu J, Wang ZY. The U1 small nuclear RNA enhances drought tolerance in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1126-1146. [PMID: 39067058 DOI: 10.1093/plphys/kiae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
Alternative splicing (AS) is an important posttranscriptional regulatory mechanism that improves plant tolerance to drought stress by modulating gene expression and generating proteome diversity. The interaction between the 5' end of U1 small nuclear RNA (U1 snRNA) and the conserved 5' splice site of precursor messenger RNA (pre-mRNA) is pivotal for U1 snRNP involvement in AS. However, the roles of U1 snRNA in drought stress responses remain unclear. This study provides a comprehensive analysis of AtU1 snRNA in Arabidopsis (Arabidopsis thaliana), revealing its high conservation at the 5' end and a distinctive four-leaf clover structure. AtU1 snRNA is localized in the nucleus and expressed in various tissues, with prominent expression in young floral buds, flowers, and siliques. The overexpression of AtU1 snRNA confers enhanced abiotic stress tolerance, as evidenced in seedlings by longer seedling primary root length, increased fresh weight, and a higher greening rate compared with the wild-type. Mature AtU1 snRNA overexpressor plants exhibit higher survival rates and lower water loss rates under drought stress, accompanied by a significant decrease in H2O2 and an increase in proline. This study also provides evidence of altered expression levels of drought-related genes in AtU1 snRNA overexpressor or genome-edited lines, reinforcing the crucial role of AtU1 snRNA in drought stress responses. Furthermore, the overexpression of AtU1 snRNA influences the splicing of downstream target genes, with a notable impact on SPEECHLESS (SPCH), a gene associated with stomatal development, potentially explaining the observed decrease in stomatal aperture and density. These findings elucidate the critical role of U1 snRNA as an AS regulator in enhancing drought stress tolerance in plants, contributing to a deeper understanding of the AS pathway in drought tolerance and increasing awareness of the molecular network governing drought tolerance in plants.
Collapse
Affiliation(s)
- Fan Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
| | - Yang Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Jianbo Yuan
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| | - Cong Li
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Yan Lin
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| | - Jinbao Gu
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
- Zhanjiang Research Center, Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, Guangdong, China
| | - Zhen-Yu Wang
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
| |
Collapse
|
4
|
Namba J, Harada M, Shibata R, Toda Y, Maruta T, Ishikawa T, Shigeoka S, Yoshimura K, Ogawa T. AtDREB2G is involved in the regulation of riboflavin biosynthesis in response to low-temperature stress and abscisic acid treatment in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112196. [PMID: 39025268 DOI: 10.1016/j.plantsci.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Riboflavin (RF) serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide, which are crucial cofactors in various metabolic processes. Strict regulation of cellular flavin homeostasis is imperative, yet information regarding the factors governing this regulation remains largely elusive. In this study, we first examined the impact of external flavin treatment on the Arabidopsis transcriptome to identify novel regulators of cellular flavin levels. Our analysis revealed alterations in the expression of 49 putative transcription factors. Subsequent reverse genetic screening highlighted a member of the dehydration-responsive element binding (DREB) family, AtDREB2G, as a potential regulator of cellular flavin levels. Knockout mutants of AtDREB2G (dreb2g) exhibited reduced flavin levels and decreased expression of RF biosynthetic genes compared to wild-type plants. Conversely, conditional overexpression of AtDREB2G led to an increase in the expression of RF biosynthetic genes and elevated flavin levels. In wild-type plants, exposure to low temperatures and abscisic acid treatment stimulated enhanced flavin levels and upregulated the expression of RF biosynthetic genes, concomitant with the induction of AtDREB2G. Notably, these responses were significantly attenuated in dreb2g mutants. Our findings establish AtDREB2G is involved in the positive regulation of flavin biosynthesis in Arabidopsis, particularly under conditions of low temperature and abscisic acid treatment.
Collapse
Affiliation(s)
- Junya Namba
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Miho Harada
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Rui Shibata
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Yuina Toda
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Takanori Maruta
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan; Experimental Farm, Kindai University, Yuasa, Wakayama 643-0004, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Takahisa Ogawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| |
Collapse
|
5
|
An Y, Wang Q, Cui Y, Liu X, Wang P, Zhou Y, Kang P, Chen Y, Wang Z, Zhou Q, Wang P. Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus). Sci Rep 2024; 14:21060. [PMID: 39256456 PMCID: PMC11387644 DOI: 10.1038/s41598-024-71847-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024] Open
Abstract
Siberian wildrye (Elymus sibiricus) is a xero-mesophytic forage grass with high nutritional quality and stress tolerance. Among its numerous germplasm resources, some possess superior drought resistance. In this study, we firstly investigated the physiological differences between the leaves of drought-tolerant (DT) and drought-sensitive (DS) genotypes under different field water contents (FWC) in soil culture. The results showed that, under drought stress, DT maintained a lower leaf water potential for water absorption, sustained higher photosynthetic efficiency, and reduced oxidative damage in leaves by efficiently maintaining the ascorbic acid-glutathione (ASA-GSH) cycle to scavenge reactive oxygen species (ROS) compared to DS. Secondly, using RNA sequencing (RNA-seq), we analyzed the gene expression profiles of DT and DS leaves under osmotic stress of hydroponics induced by PEG-6000. Through differential analysis, we identified 1226 candidate unigenes, from which we subsequently screened out 115/212 differentially expressed genes (DEGs) that were more quickly induced/reduced in DT than in DS under osmotic stress. Among them, Unigene0005863 (EsSnRK2), Unigene0053902 (EsLRK10) and Unigene0031985 (EsCIPK5) may be involved in stomatal closure induced by abscisic acid (ABA) signaling pathway. Unigene0047636 (EsCER1) may positively regulates the synthesis of very-long-chain (VLC) alkanes in cuticular wax biosynthesis, influencing plant responses to abiotic stresses. Finally, the contents of wax and cutin were measured by GC-MS under osmotic stress of hydroponics induced by PEG-6000. Corresponding to RNA-seq, contents of wax monomers, especially alkanes and alcohols, showed significant induction by osmotic stress in DT but not in DS. It is suggested that limiting stomatal and cuticle transpiration under drought stress to maintain higher photosynthetic efficiency and water use efficiency (WUE) is one of the critical mechanisms that confer stronger drought resistance to DT. This study provides some insights into the molecular mechanisms underlying drought tolerance in E. sibiricus. The identified genes may provide a foundation for the selection and breeding of drought-tolerant crops.
Collapse
Affiliation(s)
- Yongping An
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Qian Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yannong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Xin Liu
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Yue Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Peng Kang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Youjun Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Zhiwei Wang
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China
| | - Pei Wang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, China.
| |
Collapse
|
6
|
Shilpa, Thakur R, Prasad P. Epigenetic regulation of abiotic stress responses in plants. Biochim Biophys Acta Gen Subj 2024; 1868:130661. [PMID: 38885816 DOI: 10.1016/j.bbagen.2024.130661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Plants face a wide array of challenges in their environment, both from living organisms (biotic stresses) and non-living factors (abiotic stresses). Among the major abiotic stressors affecting crop plants, variations in temperature, water availability, salinity, and cold pose significant threats to crop yield and the quality of produce. Plants possess remarkable adaptability and resilience, and they employ a range of genetic and epigenetic mechanisms to respond and cope with abiotic stresses. A few crucial set of epigenetic mechanisms that support plants in their battle against these stresses includes DNA methylation and histone modifications. These mechanisms play a pivotal role in enabling plants to endure and thrive under challenging environmental conditions. The mechanisms of different epigenetic mechanisms in responding to the abiotic stresses vary. Each plant species and type of stress may trigger distinct epigenetic responses, highlighting the complexity of the plant's ability to adapt under stress conditions. This review focuses on the paramount importance of epigenetics in enhancing a plant's ability to survive and excel under various abiotic stresses. It highlights recent advancements in our understanding of the epigenetic mechanisms that contribute to abiotic stress tolerance in plants. This growing knowledge is pivotal for shaping future efforts aimed at mitigating the impact of abiotic stresses on diverse crop plants.
Collapse
Affiliation(s)
- Shilpa
- Department of Biotechnology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Rajnikant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla-2, Himachal Pradesh, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla-2, Himachal Pradesh, India.
| |
Collapse
|
7
|
Tuong HM, Méndez SG, Vandecasteele M, Willems A, Iancheva A, Ngoc PB, Phat DT, Ha CH, Goormachtig S. A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions. PLANTA 2024; 260:79. [PMID: 39182196 DOI: 10.1007/s00425-024-04510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
MAIN CONCLUSION Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ho Manh Tuong
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sonia García Méndez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Michiel Vandecasteele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Anne Willems
- Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anelia Iancheva
- AgroBioInstitute, Agricultural Academy, 1164, Sofia, Bulgaria
| | - Pham Bich Ngoc
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Do Tien Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Chu Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 100000, Vietnam
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| |
Collapse
|
8
|
Tu M, Li Z, Zhu Y, Wang P, Jia H, Wang G, Zhou Q, Hua Y, Yang L, Xiao J, Song G, Li Y. Potential Roles of the GRF Transcription Factors in Sorghum Internodes during Post-Reproductive Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:2352. [PMID: 39273836 PMCID: PMC11396856 DOI: 10.3390/plants13172352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
Growth-regulating factor (GRF) is a plant-specific family of transcription factors crucial for meristem development and plant growth. Sorghum (Sorghum bicolor L. Moench) is a cereal species widely used for food, feed and fuel. While sorghum stems are important biomass components, the regulation of stem development and the carbohydrate composition of the stem tissues remain largely unknown. Here, we identified 11 SbGRF-encoding genes and found the SbGRF expansion driven by whole-genome duplication events. By comparative analyses of GRFs between rice and sorghum, we demonstrated the divergence of whole-genome duplication (WGD)-derived OsGRFs and SbGRFs. A comparison of SbGRFs' expression profiles supports that the WGD-duplicated OsGRFs and SbGRFs experienced distinct evolutionary trajectories, possibly leading to diverged functions. RNA-seq analysis of the internode tissues identified several SbGRFs involved in internode elongation, maturation and cell wall metabolism. We constructed co-expression networks with the RNA-seq data of sorghum internodes. Network analysis discovered that SbGRF1, 5 and 7 could be involved in the down-regulation of the biosynthesis of cell wall components, while SbGRF4, 6, 8 and 9 could be associated with the regulation of cell wall loosening, reassembly and/or starch biosynthesis. In summary, our genome-wide analysis of SbGRFs reveals the distinct evolutionary trajectories of WGD-derived SbGRF pairs. Importantly, expression analyses highlight previously unknown functions of several SbGRFs in internode elongation, maturation and the potential involvement in the metabolism of the cell wall and starch during post-anthesis stages.
Collapse
Affiliation(s)
- Min Tu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhuang Li
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanlin Zhu
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Peng Wang
- School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbin Jia
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guoli Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Zhou
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuqing Hua
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Yang
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangrong Xiao
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guangsen Song
- Hubei Technical Engineering Research Center for Chemical Utilization and Engineering Development of Agricultural and Byproduct Resources, School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Scialò E, Sicilia A, Continella A, Gentile A, Lo Piero AR. Transcriptome Profiling and Weighted Gene Correlation Network Analysis Reveal Hub Genes and Pathways Involved in the Response to Polyethylene-Glycol-Induced Drought Stress of Two Citrus Rootstocks. BIOLOGY 2024; 13:595. [PMID: 39194533 DOI: 10.3390/biology13080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Agriculture faces the dual challenge of increasing food production and safeguarding the environment. Climate change exacerbates this challenge, reducing crop yield and biomass due to drought stress, especially in semi-arid regions where Citrus plants are cultivated. Understanding the molecular mechanisms underlying drought tolerance in Citrus is crucial for developing adaptive strategies. Plants of two citrus rootstocks, Carrizo Citrange and Bitters (C22), were grown in aerated half-strength Hoagland's nutrient solution. Post-acclimation, the plants were exposed to a solution containing 0% (control) or 15% PEG-8000 for 10 days. Leaf malonyl dialdehyde (MDA) and hydrogen peroxide (H2O2) content were measured to assess the reached oxidative stress level. Total RNA was extracted, sequenced, and de novo-assembled. Weighted Gene Correlation Network Analysis (WGCNA) was conducted to examine the relationship between gene expression patterns and the levels of MDA and H2O2 used as oxidative stress indicators. Plant visual inspection and MDA and H2O2 contents clearly indicate that Bitters is more tolerant than Carrizo towards PEG-induced drought stress. RNA-Seq analysis revealed a significantly higher number of differentially expressed genes (DEGs) in Carrizo (6092) than in Bitters (320), with most being associated with drought sensing, ROS scavenging, osmolyte biosynthesis, and cell wall metabolism. Moreover, the WGCNA identified transcription factors significantly correlated with MDA and H2O2 levels, thus providing insights into drought-coping strategies and offering candidate genes for enhancing citrus drought tolerance.
Collapse
Affiliation(s)
- Emanuele Scialò
- Department of Agriculture, Food and Environment, University of Catania, 951213 Catania, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food and Environment, University of Catania, 951213 Catania, Italy
| | - Alberto Continella
- Department of Agriculture, Food and Environment, University of Catania, 951213 Catania, Italy
| | - Alessandra Gentile
- Department of Agriculture, Food and Environment, University of Catania, 951213 Catania, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food and Environment, University of Catania, 951213 Catania, Italy
| |
Collapse
|
10
|
Morffy N, Van den Broeck L, Miller C, Emenecker RJ, Bryant JA, Lee TM, Sageman-Furnas K, Wilkinson EG, Pathak S, Kotha SR, Lam A, Mahatma S, Pande V, Waoo A, Wright RC, Holehouse AS, Staller MV, Sozzani R, Strader LC. Identification of plant transcriptional activation domains. Nature 2024; 632:166-173. [PMID: 39020176 DOI: 10.1038/s41586-024-07707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Gene expression in Arabidopsis is regulated by more than 1,900 transcription factors (TFs), which have been identified genome-wide by the presence of well-conserved DNA-binding domains. Activator TFs contain activation domains (ADs) that recruit coactivator complexes; however, for nearly all Arabidopsis TFs, we lack knowledge about the presence, location and transcriptional strength of their ADs1. To address this gap, here we use a yeast library approach to experimentally identify Arabidopsis ADs on a proteome-wide scale, and find that more than half of the Arabidopsis TFs contain an AD. We annotate 1,553 ADs, the vast majority of which are, to our knowledge, previously unknown. Using the dataset generated, we develop a neural network to accurately predict ADs and to identify sequence features that are necessary to recruit coactivator complexes. We uncover six distinct combinations of sequence features that result in activation activity, providing a framework to interrogate the subfunctionalization of ADs. Furthermore, we identify ADs in the ancient AUXIN RESPONSE FACTOR family of TFs, revealing that AD positioning is conserved in distinct clades. Our findings provide a deep resource for understanding transcriptional activation, a framework for examining function in intrinsically disordered regions and a predictive model of ADs.
Collapse
Affiliation(s)
| | - Lisa Van den Broeck
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Caelan Miller
- Department of Biology, Duke University, Durham, NC, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - John A Bryant
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tyler M Lee
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Sunita Pathak
- Department of Biology, Duke University, Durham, NC, USA
| | - Sanjana R Kotha
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Angelica Lam
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Saloni Mahatma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Vikram Pande
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Aman Waoo
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - R Clay Wright
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA
| | - Max V Staller
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
11
|
Chong X, Liu Y, Li P, Wang Y, Zhou T, Chen H, Wang H. Heterologous Expression of Chrysanthemum TCP Transcription Factor CmTCP13 Enhances Salinity Tolerance in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2118. [PMID: 39124235 PMCID: PMC11313808 DOI: 10.3390/plants13152118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) proteins play critical roles in plant development and stress responses; however, their functions in chrysanthemum (Chrysanthemum morifolium) have not been well-studied. In this study, we isolated and characterized the chrysanthemum TCP transcription factor family gene CmTCP13, a homolog of AtTCP13. This gene encoded a protein harboring a conserved basic helix-loop-helix motif, and its expression was induced by salinity stress in chrysanthemum plants. Subcellular localization experiments showed that CmTCP13 localized in the nucleus. Sequence analysis revealed the presence of multiple stress- and hormone-responsive cis-elements in the promoter region of CmTCP13. The heterologous expression of CmTCP13 in Arabidopsis plants enhanced their tolerance to salinity stress. Under salinity stress, CmTCP13 transgenic plants exhibited enhanced germination, root length, seedling growth, and chlorophyll content and reduced relative electrical conductivity compared with those exhibited by wild-type (WT) plants. Moreover, the expression levels of stress-related genes, including AtSOS3, AtP5CS2, AtRD22, AtRD29A, and AtDREB2A, were upregulated in CmTCP13 transgenic plants than in WT plants under salt stress. Taken together, our results demonstrate that CmTCP13 is a critical regulator of salt stress tolerance in plants.
Collapse
Affiliation(s)
- Xinran Chong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Yanan Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China
| | - Peiling Li
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yue Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Ting Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Weng Y, Mega R, Abe F, Tsujimoto H, Okamoto M. Metabolic profiles in drought-tolerant wheat with enhanced abscisic acid sensitivity. PLoS One 2024; 19:e0307393. [PMID: 39038025 PMCID: PMC11262632 DOI: 10.1371/journal.pone.0307393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Global warming has led to the expansion of arid lands and more frequent droughts, which are the largest cause of global food production losses. In our previous study, we developed TaPYLox wheat overexpressing the plant hormone abscisic acid (ABA) receptor, which is important for the drought stress response in plants. TaPYLox showed resistance to drought stress and acquired water-saving traits that enable efficient grain production with less water use. In this study, we used TaPYLox to identify ABA-dependent and -independent metabolites in response to drought stress. We compared the variation of metabolites in wheat under well-watered, ABA treatment, and drought stress conditions using the ABA-sensitive TaPYLox line and control lines. The results showed that tagatose and L-serine were ABA-dependently regulated metabolites, because their stress-induced accumulation was increased by ABA treatment in TaPYLox. In contrast, L-valine, L-leucine, and DL-isoleucine, which are classified as branched chain amino acids, were not increased by ABA treatment in TaPYLox, suggesting that they are metabolites regulated in an ABA-independent manner. Interestingly, the accumulation of L-valine, L-leucine, and DL-isoleucine was suppressed in drought-tolerant TaPYLox under drought stress, suggesting that drought-tolerant wheat might be low in these amino acids. 3-dehydroshikimic acid and α-ketoglutaric acid were decreased by drought stress in an ABA-independent manner. In this study, we have succeeded in identifying metabolites that are regulated by drought stress in an ABA-dependent and -independent manner. The findings of this study should be useful for future breeding of drought-tolerant wheat.
Collapse
Affiliation(s)
- Yuanjie Weng
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryosuke Mega
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Fumitaka Abe
- Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Masanori Okamoto
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
13
|
Jin Z, Zhou T, Chen J, Lang C, Zhang Q, Qin J, Lan H, Li J, Zeng X. Genome-wide identification and expression analysis of the BZR gene family in Zanthoxylum armatum DC and functional analysis of ZaBZR1 in drought tolerance. PLANTA 2024; 260:41. [PMID: 38954109 DOI: 10.1007/s00425-024-04469-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION In this study, six ZaBZRs were identified in Zanthoxylum armatum DC, and all the ZaBZRs were upregulated by abscisic acid (ABA) and drought. Overexpression of ZaBZR1 enhanced the drought tolerance of transgenic Nicotiana benthamian. Brassinosteroids (BRs) are a pivotal class of sterol hormones in plants that play a crucial role in plant growth and development. BZR (brassinazole resistant) is a crucial transcription factor in the signal transduction pathway of BRs. However, the BZR gene family members have not yet been identified in Zanthoxylum armatum DC. In this study, six members of the ZaBZR family were identified by bioinformatic methods. All six ZaBZRs exhibited multiple phosphorylation sites. Phylogenetic and collinearity analyses revealed a closest relationship between ZaBZRs and ZbBZRs located on the B subgenomes. Expression analysis revealed tissue-specific expression patterns of ZaBZRs in Z. armatum, and their promoter regions contained cis-acting elements associated with hormone response and stress induction. Additionally, all six ZaBZRs showed upregulation upon treatment after abscisic acid (ABA) and polyethylene glycol (PEG), indicating their participation in drought response. Subsequently, we conducted an extensive investigation of ZaBZR1. ZaBZR1 showed the highest expression in the root, followed by the stem and terminal bud. Subcellular localization analysis revealed that ZaBZR1 is present in the cytoplasm and nucleus. Overexpression of ZaBZR1 in transgenic Nicotiana benthamiana improved seed germination rate and root growth under drought conditions, reducing water loss rates compared to wild-type plants. Furthermore, ZaBZR1 increased proline content (PRO) and decreased malondialdehyde content (MDA), indicating improved tolerance to drought-induced oxidative stress. The transgenic plants also showed a reduced accumulation of reactive oxygen species. Importantly, ZaBZR1 up-regulated the expression of drought-related genes such as NbP5CS1, NbDREB2A, and NbWRKY44. These findings highlight the potential of ZaBZR1 as a candidate gene for enhancing drought resistance in transgenic N. benthamiana and provide insight into the function of ZaBZRs in Z. armatum.
Collapse
Affiliation(s)
- Zhengyu Jin
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Tao Zhou
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jiajia Chen
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Chaoting Lang
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qingqing Zhang
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jin Qin
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Haibo Lan
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jianrong Li
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiaofang Zeng
- Guizhou Key Laboratory of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering/ Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
14
|
Gao S, Chen X, Lin M, Yin Y, Li X, Zhan Y, Xin Y, Zeng F. A birch ELONGATED HYPOCOTYL 5 gene enhances UV-B and drought tolerance. FORESTRY RESEARCH 2024; 4:e022. [PMID: 39524428 PMCID: PMC11524257 DOI: 10.48130/forres-0024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/14/2024] [Accepted: 05/21/2024] [Indexed: 11/16/2024]
Abstract
UV-B radiation and drought majorly restrict plant growth, particularly in summer. ELONGATED HYPOCOTYL 5 (HY5), a bZIP transcription factor (TF), has a beneficial impact on photomorphogenesis. However, the sequence of HY5 from Betula platyphylla (BpHY5) has not been identified and the gene functions remain unclarified. We cloned the sequence of BpHY5, which was targeted to the nucleus. The hypocotyl phenotypes of heterologous expression in Arabidopsis thaliana and reverse mutation showed that BpHY5 is homologous to AtHY5. The expression of BpHY5 was increased in response to UV-B radiation, drought conditions, and the presence of abscisic acid (ABA). The overexpression of BpHY5 resulted in increased tolerance to UV-B radiation and drought and decreased ABA sensitivity with higher germination and greening rate, more developmental root system, stronger reactive oxygen species scavenging ability, and lower damage degree. The lignin content under UV-B condition of BpHY5/Col was higher than that of Col. Furthermore, overexpressing BpHY5 up-regulated the expression of genes related to tolerance (NCED3/9, ABI5, DREB2A, RD20, ERF4, NDB2, and APX2). In brief, the study suggests that BpHY5 from birch serves as a beneficial modulator of plant responses to UV-B radiation and drought stress.
Collapse
Affiliation(s)
- Shangzhu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaohui Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Meihan Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yibo Yin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyi Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ying Xin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
15
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
16
|
Wang D, Zeng Y, Yang X, Nie S. Characterization of DREB family genes in Lotus japonicus and LjDREB2B overexpression increased drought tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2024; 24:497. [PMID: 39075356 PMCID: PMC11285619 DOI: 10.1186/s12870-024-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/30/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Drought stress affects plant growth and development. DREB proteins play important roles in modulating plant growth, development, and stress responses, particularly under drought stress. To study the function of DREB transcription factors (TFs), we screened key DREB-regulating TFs for drought in Lotus japonicus. RESULTS Forty-two DREB TFs were identified, and phylogenetic analysis of proteins from L. japonicus classified them into five subfamilies (A1, A2, A4, A5, A6). The gene motif composition of the proteins is conserved within the same subfamily. Based on the cis-acting regulatory element analysis, we identified many growth-, hormone-, and stress-responsive elements within the promoter regions of DREB. We further analyzed the expression pattern of four genes in the A2 subfamily in response to drought stress. We found that the expression of most of the LjDREB A2 subfamily genes, especially LjDREB2B, was induced by drought stress. We further generated LjDREB2B overexpression transgenic Arabidopsis plants. Under drought stress, the growth of wild-type (WT) and overexpressing LjDREB2B (OE) Arabidopsis lines was inhibited; however, OE plants showed better growth. The malondialdehyde content of LjDREB2B overexpressing lines was lower than that of the WT plants, whereas the proline content and antioxidant enzyme activities in the OE lines were significantly higher than those in the WT plants. Furthermore, after drought stress, the expression levels of AtP5CS1, AtP5CS2, AtRD29A, and AtRD29B in the OE lines were significantly higher than those in the WT plants. CONCLUSIONS Our results facilitate further functional analysis of L. japonicus DREB. LjDREB2B overexpression improves drought tolerance in transgenic Arabidopsis. These results indicate that DREB holds great potential for the genetic improvement of drought tolerance in L. japonicus.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Yuanyuan Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Xiuxiu Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Shuming Nie
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
17
|
Yin Z, Zhao Q, Lv X, Zhang X, Wu Y. Circular RNA ath-circ032768, a competing endogenous RNA, response the drought stress by targeting miR472-RPS5 module. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:544-559. [PMID: 38588338 DOI: 10.1111/plb.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
CircRNAs (circular RNAs) reduce the abundance of miRNAs through ceRNA (competing endogenous RNA), to regulate many physiological processes and stress responses in plants. However, the role of circRNA in drought stress is poorly understood. Through ring identification and sequencing verification of ath-circ032768, bioinformatics analysis predicted the interaction of ath-circ032768-miR472-RPS5, and further obtained transgenic plants overexpressing ath-circ032768 and silencing STTM-miR472. The change in drought stress was analysed using biochemical and molecular biological methods. Sequencing and biological analysis confirmed that ath-circ032768, miR472 and RPS5 were responsive to drought stress, and changes in gene expression were consistent with the prediction of ceRNA. The silencing vectors ath-circ032768 and STTM-miR472 were constructed using molecular biology techniques, and stable transgenic plants with drought tolerance obtained. Further physiological and biochemical studies showed that ath-circ032768 could bind to miR472, and that miR472 could bind to the RPS5 gene, resulting in decreased expression of RPS5. Hence, ath-circ032768 can competitively inhibit degradation of RPS5 by miR472 through ceRNA. This process is accompanied by increased expression of DREB2A, RD29A and RD29B genes. Through the ath-circ032768-miR472-RPS5 pathway, the RPS5 stress resistance protein interacts with DREB2A protein to enhance expression of downstream drought resistance genes, RD29A and RD29B, and participate in the regulation mechanism of plant drought resistance, thereby improving drought tolerance of plants.
Collapse
Affiliation(s)
- Z Yin
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - Q Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - X Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - X Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| | - Y Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaan Xi, China
| |
Collapse
|
18
|
Huang G, Wan R, Zou L, Ke J, Zhou L, Tan S, Li T, Chen L. The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco. PLANT CELL REPORTS 2024; 43:143. [PMID: 38750149 DOI: 10.1007/s00299-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.
Collapse
Affiliation(s)
- Gang Huang
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Renjing Wan
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Liping Zou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jie Ke
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Lihong Zhou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.
| | - Tiantian Li
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Lihong Chen
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
19
|
Zhang TT, Lin YJ, Liu HF, Liu YQ, Zeng ZF, Lu XY, Li XW, Zhang ZL, Zhang S, You CX, Guan QM, Lang ZB, Wang XF. The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress. PLANT, CELL & ENVIRONMENT 2024; 47:1668-1684. [PMID: 38282271 DOI: 10.1111/pce.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yu-Jing Lin
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi-Feng Zeng
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xue-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Shuai Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Bo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
20
|
Xu J, Liu H, Zhou C, Wang J, Wang J, Han Y, Zheng N, Zhang M, Li X. The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112035. [PMID: 38367822 DOI: 10.1016/j.plantsci.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The post-translational modification (PTM) of proteins by ubiquitination modulates many physiological processes in plants. As the major protein degradation pathway in plants, the ubiquitin-proteasome system (UPS) is considered a promising target for improving crop tolerance drought, high salinity, extreme temperatures, and other abiotic stressors. The UPS also participates in abiotic stress-related abscisic acid (ABA) signaling. E3 ligases are core components of the UPS-mediated modification process due to their substrate specificity. In this review, we focus on the abiotic stress-associated regulatory mechanisms and functions of different UPS components, emphasizing the participation of E3 ubiquitin ligases. We also summarize and discuss UPS-mediated modulation of ABA signaling. In particular, we focus our review on recent research into the UPS-mediated modulation of the abiotic stress response in major crop plants. We propose that altering the ubiquitination site of the substrate or the substrate-specificity of E3 ligase using genome editing technology such as CRISPR/Cas9 may improve the resistance of crop plants to adverse environmental conditions. Such a strategy will require continued research into the role of the UPS in mediating the abiotic stress response in plants.
Collapse
Affiliation(s)
- Jian Xu
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongjie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhou
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jinxing Wang
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua, China
| | - Junqiang Wang
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yehui Han
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Nan Zheng
- Industrial Crop Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming Zhang
- Industrial Crop Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaoming Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
21
|
Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory networks in plant responses to drought and cold stress. PLANT PHYSIOLOGY 2024; 195:170-189. [PMID: 38514098 PMCID: PMC11060690 DOI: 10.1093/plphys/kiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy. We delve into the molecular mechanisms of stress perception, stress signaling, and the activation of gene regulatory pathways, with a focus on insights gained from model species. By elucidating both the shared and distinct aspects of plant responses to drought and cold, we provide insight into the adaptive strategies of plants, paving the way for the engineering of stress-resilient crop varieties that can withstand a changing climate.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502Japan
| | - Kazuko Yamaguchi-Shinozaki
- Research Institute for Agriculture and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502Japan
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601Japan
| |
Collapse
|
22
|
He L, Wu Z, Wang X, Zhao C, Cheng D, Du C, Wang H, Gao Y, Zhang R, Han J, Xu J. A novel maize F-bZIP member, ZmbZIP76, functions as a positive regulator in ABA-mediated abiotic stress tolerance by binding to ACGT-containing elements. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111952. [PMID: 38072329 DOI: 10.1016/j.plantsci.2023.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
The group F-bZIP transcription factors (TFs) in Arabidopsis are involved in nutrient deficiency or salt stress responses. Nevertheless, our learning about the functions of group F-bZIP genes in maize remains limited. Here, we cloned a new F-bZIP gene (ZmbZIP76) from maize inbred line He344. The expression of ZmbZIP76 in maize was dramatically induced by high salt, osmotic stress and abscisic acid. Accordingly, overexpression of ZmbZIP76 increased tolerance of transgenic plants to salt and osmotic stress. In addition, ZmbZIP76 functions as a nuclear transcription factor and upregulates the expression of a range of abiotic stress-responsive genes by binding to the ACGT-containing elements, leading to enhanced reactive oxygen species (ROS) scavenging capability, increased abscisic acid level, proline content, and ratio of K+/Na+, reduced water loss rate, and membrane damage. These physiological changes caused by ZmbZIP76 ultimately enhanced tolerance of transgenic plants to salt and osmotic stress.
Collapse
Affiliation(s)
- Lin He
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Zixuan Wu
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Xueheyuan Wang
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Changjiang Zhao
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Dianjun Cheng
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Chuhuai Du
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Haoyu Wang
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Yuan Gao
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Ruijia Zhang
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina
| | - Jienan Han
- Institute of Crop Science, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, PR China.
| | - Jingyu Xu
- Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PRChina.
| |
Collapse
|
23
|
Fang H, Zuo J, Ma Q, Zhang X, Xu Y, Ding S, Wang J, Luo Q, Li Y, Wu C, Lv J, Yu J, Shi K. Phytosulfokine promotes fruit ripening and quality via phosphorylation of transcription factor DREB2F in tomato. PLANT PHYSIOLOGY 2024; 194:2739-2754. [PMID: 38214105 DOI: 10.1093/plphys/kiae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Phytosulfokine (PSK), a plant peptide hormone with a wide range of biological functions, is recognized by its receptor PHYTOSULFOKINE RECEPTOR 1 (PSKR1). Previous studies have reported that PSK plays important roles in plant growth, development, and stress responses. However, the involvement of PSK in fruit development and quality formation remains largely unknown. Here, using tomato (Solanum lycopersicum) as a research model, we show that exogenous application of PSK promotes the initiation of fruit ripening and quality formation, while these processes are delayed in pskr1 mutant fruits. Transcriptomic profiling revealed that molecular events and metabolic pathways associated with fruit ripening and quality formation are affected in pskr1 mutant lines and transcription factors are involved in PSKR1-mediated ripening. Yeast screening further identified that DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2F (DREB2F) interacts with PSKR1. Silencing of DREB2F delayed the initiation of fruit ripening and inhibited the promoting effect of PSK on fruit ripening. Moreover, the interaction between PSKR1 and DREB2F led to phosphorylation of DREB2F. PSK improved the efficiency of DREB2F phosphorylation by PSKR1 at the tyrosine-30 site, and the phosphorylation of this site increased the transcription level of potential target genes related to the ripening process and functioned in promoting fruit ripening and quality formation. These findings shed light on the involvement of PSK and its downstream signaling molecule DREB2F in controlling climacteric fruit ripening, offering insights into the regulatory mechanisms governing ripening processes in fleshy fruits.
Collapse
Affiliation(s)
- Hanmo Fang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinhua Zuo
- Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiaomei Ma
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuanbo Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanrui Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qian Luo
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yimei Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Changqi Wu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianrong Lv
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Yuan Y, Tan M, Zhou M, Hassan MJ, Lin L, Lin J, Zhang Y, Li Z. Drought priming-induced stress memory improves subsequent drought or heat tolerance via activation of γ-aminobutyric acid-regulated pathways in creeping bentgrass. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38509772 DOI: 10.1111/plb.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Recurrent drought can induce stress memory in plants to induce tolerance to subsequent stress, such as high temperature or drought. Drought priming (DP) is an effective approach to improve tolerance to various stresses; however, the potential mechanism of DP-induced stress memory has not been fully resoved. We examined DP-regulated subsequent drought tolerance or thermotolerance associated with changes in physiological responses, GABA and NO metabolism, heat shock factor (HSF) and dehydrin (DHN) pathways in perennial creeping bentgrass. Plants can recover after two cycle of DP, and DP-treated plants had significantly higher tolerance to subsequent drought or heat stress, with higher leaf RWC, Chl content, photochemical efficiency, and cell membrane stability. DP significantly alleviated oxidative damage through enhancing total antioxidant capacity in response to subsequent drought or heat stress. Endogenous GABA was significantly increased by DP through activating glutamic acid decarboxylase activity and inhibiting GABA transaminase activity. DP also enhanced accumulation of NO, depending on NOS activity, under subsequent drought or heat stress. Transcript levels of multiple transcription factors, heat shock proteins, and DHNs in the HSF and DHN pathways were up-regulated by DP under drought or heat stress, but there were differences between DP-regulated heat tolerance and drought tolerance in these pathways. The findings indicate that under recurrent moderate drought, DP improves subsequent tolerance to drought or heat stress in relation to GABA-regulated pathways, providing new insight into understanding of the role of stress memory in plant adaptation to complex environmental stresses.
Collapse
Affiliation(s)
- Y Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - M Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - M Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - M J Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - L Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - J Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Y Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Z Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
25
|
Méndez-Gómez M, Sierra-Cacho D, Jiménez-Morales E, Guzmán P. Modulation of early gene expression responses to water deprivation stress by the E3 ubiquitin ligase ATL80: implications for retrograde signaling interplay. BMC PLANT BIOLOGY 2024; 24:180. [PMID: 38459432 PMCID: PMC10921668 DOI: 10.1186/s12870-024-04872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Primary response genes play a pivotal role in translating short-lived stress signals into sustained adaptive responses. In this study, we investigated the involvement of ATL80, an E3 ubiquitin ligase, in the dynamics of gene expression following water deprivation stress. We observed that ATL80 is rapidly activated within minutes of water deprivation stress perception, reaching peak expression around 60 min before gradually declining. ATL80, despite its post-translational regulation role, emerged as a key player in modulating early gene expression responses to water deprivation stress. RESULTS The impact of ATL80 on gene expression was assessed using a time-course microarray analysis (0, 15, 30, 60, and 120 min), revealing a burst of differentially expressed genes, many of which were associated with various stress responses. In addition, the diversity of early modulation of gene expression in response to water deprivation stress was significantly abolished in the atl80 mutant compared to wild-type plants. A subset of 73 genes that exhibited a similar expression pattern to ATL80 was identified. Among them, several are linked to stress responses, including ERF/AP2 and WRKY transcription factors, calcium signaling genes, MAP kinases, and signaling peptides. Promoter analysis predicts enrichment of binding sites for CAMTA1 and CAMTA5, which are known regulators of rapid stress responses. Furthermore, we have identified a group of differentially expressed ERF/AP2 transcription factors, proteins associated with folding and refolding, as well as pinpointed core module genes which are known to play roles in retrograde signaling pathways that cross-referenced with the early ATL80 transcriptome. CONCLUSIONS Based on these findings, we propose that ATL80 may target one or more components within the retrograde signaling pathways for degradation. In essence, ATL80 serves as a bridge connecting these signaling pathways and effectively functions as an alarm signal.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México
| | - Daniel Sierra-Cacho
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México
| | - Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, 36824, Gto, México.
| |
Collapse
|
26
|
Guo G, Liu L, Shen T, Wang H, Zhang S, Sun Y, Xiong G, Tang X, Zhu L, Jia B. Genome-wide identification of GA2ox genes family and analysis of PbrGA2ox1-mediated enhanced chlorophyll accumulation by promoting chloroplast development in pear. BMC PLANT BIOLOGY 2024; 24:166. [PMID: 38433195 PMCID: PMC10910807 DOI: 10.1186/s12870-024-04842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Chlorophyll (Chl) is an agronomic trait associated with photosynthesis and yield. Gibberellin 2-oxidases (GA2oxs) have previously been shown to be involved in Chl accumulation. However, whether and how the PbrGA2ox proteins (PbrGA2oxs) mediate Chl accumulation in pear (Pyrus spp.) is scarce. RESULTS Here, we aimed to elucidate the role of the pear GA2ox gene family in Chl accumulation and the related underlying mechanisms. We isolated 13 PbrGA2ox genes (PbrGA2oxs) from the pear database and identified PbrGA2ox1 as a potential regulator of Chl accumulation. We found that transiently overexpressing PbrGA2ox1 in chlorotic pear leaves led to Chl accumulation, and PbrGA2ox1 silencing in normal pear leaves led to Chl degradation, as evident by the regreening and chlorosis phenomenon, respectively. Meanwhile, PbrGA2ox1-overexpressing (OE) tobacco plants discernably exhibited Chl built-up, as evidenced by significantly higher Pn and Fv/Fm. In addition, RNA sequencing (RNA-seq), physiological and biochemical investigations revealed an increase in abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) concentrations and signaling pathways; a marked elevation in reducing and soluble sugar contents; and a marginal decline in the starch and sucrose levels in OE plants. Interestingly, PbrGA2ox1 overexpression did not prominently affect Chl synthesis. However, it indeed facilitated chloroplast development by increasing chloroplast number per cell and compacting the thylakoid granum stacks. These findings might jointly contribute to Chl accumulation in OE plants. CONCLUSION Overall, our results suggested that GA2oxs accelerate Chl accumulation by stimulating chloroplast development and proved the potential of PbrGA2ox1 as a candidate gene for genetically breeding biofortified pear plants with a higher yield.
Collapse
Affiliation(s)
- Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Taijing Shen
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haozhe Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuqin Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yu Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guoyu Xiong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaomei Tang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Liwu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
27
|
Zhao G, Liu Y, Li L, Che R, Douglass M, Benza K, Angove M, Luo K, Hu Q, Chen X, Henry C, Li Z, Ning G, Luo H. Gene pyramiding for boosted plant growth and broad abiotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:678-697. [PMID: 37902192 PMCID: PMC10893947 DOI: 10.1111/pbi.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Abiotic stresses such as salinity, heat and drought seriously impair plant growth and development, causing a significant loss in crop yield and ornamental value. Biotechnology approaches manipulating specific genes prove to be effective strategies in crop trait modification. The Arabidopsis vacuolar pyrophosphatase gene AVP1, the rice SUMO E3 ligase gene OsSIZ1 and the cyanobacterium flavodoxin gene Fld have previously been implicated in regulating plant stress responses and conferring enhanced tolerance to different abiotic stresses when individually overexpressed in various plant species. We have explored the feasibility of combining multiple favourable traits brought by individual genes to acquire superior plant performance. To this end, we have simultaneously introduced AVP1, OsSIZ1 and Fld in creeping bentgrass. Transgenic (TG) plants overexpressing these three genes performed significantly better than wild type controls and the TGs expressing individual genes under both normal and various abiotic stress conditions, exhibited significantly enhanced plant growth and tolerance to drought, salinity and heat stresses as well as nitrogen and phosphate starvation, which were associated with altered physiological and biochemical characteristics and delicately fine-tuned expression of genes involved in plant stress responses. Our results suggest that AVP1, OsSIZ1 and Fld function synergistically to regulate plant development and plant stress response, leading to superior overall performance under both normal and adverse environments. The information obtained provides new insights into gene stacking as an effective approach for plant genetic engineering. A similar strategy can be extended for the use of other beneficial genes in various crop species for trait modifications, enhancing agricultural production.
Collapse
Affiliation(s)
- Guiqin Zhao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Grassland ScienceGansu Agricultural UniversityLanzhouGansuChina
| | - Yu Liu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of Landscape ArchitectureNortheast Forestry UniversityHarbinHeilongjiangChina
| | - Lei Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Rui Che
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Megan Douglass
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Katherine Benza
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Mitchell Angove
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Kristopher Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Xiaotong Chen
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Charles Henry
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Zhigang Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
28
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
29
|
Zhu M, Zheng L, Cao S, Liu Q, Wei S, Zhou Y, Gao F. AnDREB5.1, a A5 group DREB gene from desert shrub Ammopiptanthus nanus, confers osmotic and cold stress tolerances in transgenic tobacco. PHYSIOLOGIA PLANTARUM 2024; 176:e14272. [PMID: 38566275 DOI: 10.1111/ppl.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
The Dehydration-Responsive Element Binding (DREB) subfamily of transcription factors plays crucial roles in plant abiotic stress response. Ammopiptanthus nanus (A. nanus) is an eremophyte exhibiting remarkable tolerance to environmental stress and DREB proteins may contribute to its tolerance to water deficit and low-temperature stress. In the present study, an A. nanus DREB A5 group transcription factor gene, AnDREB5.1, was isolated and characterized in terms of structure and function in abiotic stress tolerance. AnDREB5.1 protein is distributed in the nucleus, possesses transactivation capacity, and is capable of binding to DRE core cis-acting element. The transcription of AnDREB5.1 was induced under osmotic and cold stress. Tobacco seedlings overexpressing AnDREB5.1 displayed higher tolerance to cold stress, osmotic stress, and oxidative stress compared to wild-type tobacco (WT). Under osmotic and cold stress, overexpression of AnDREB5.1 increased antioxidant enzyme activity in tobacco leaves, inhibiting excessive elevation of ROS levels. Transcriptome sequencing analysis showed that overexpression of AnDREB5.1 raised the tolerance of transgenic tobacco seedlings to abiotic stress by regulating multiple genes, including antioxidant enzymes, transcription factors, and stress-tolerant related functional genes like NtCOR413 and NtLEA14. This study provides new evidence for understanding the potential roles of the DREB A5 subgroup members in plants.
Collapse
Affiliation(s)
- Ming Zhu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Yunnan Open University, Kunming, Yunnan, China
| | - Lamei Zheng
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shilin Cao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shanjun Wei
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
30
|
Xu L, Lan Y, Lin M, Zhou H, Ying S, Chen M. Genome-Wide Identification and Transcriptional Analysis of AP2/ERF Gene Family in Pearl Millet ( Pennisetum glaucum). Int J Mol Sci 2024; 25:2470. [PMID: 38473718 DOI: 10.3390/ijms25052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The apetala2/ethylene response factor (AP2/ERF) gene family plays a crucial role in regulating plant growth and development and responding to different abiotic stresses (e.g., drought, heat, cold, and salinity). However, the knowledge of the ERF family in pearl millet remains limited. Here, a total of 167 high-confidence PgERF genes are identified and divided into five subgroups based on gene-conserved structure and phylogenetic analysis. Forty-one pairs of segmental duplication are found using collinear analysis. Nucleotide substitution analysis reveals these duplicated pairs are under positive purification, indicating they are actively responding to natural selection. Comprehensive transcriptomic analysis reveals that PgERF genesare preferentially expressed in the imbibed seeds and stem (tilling stage) and respond to heat, drought, and salt stress. Prediction of the cis-regulatory element by the PlantCARE program indicates that PgERF genes are involved in responses to environmental stimuli. Using reverse transcription quantitative real-time PCR (RT-qPCR), expression profiles of eleven selected PgERF genes are monitored in various tissues and during different abiotic stresses. Transcript levels of each PgERF gene exhibit significant changes during stress treatments. Notably, the PgERF7 gene is the only candidate that can be induced by all adverse conditions. Furthermore, four PgERF genes (i.e., PgERF22, PgERF37, PgERF88, and PgERF155) are shown to be involved in the ABA-dependent signaling pathway. These results provide useful bioinformatic and transcriptional information for understanding the roles of the pearl millet ERF gene family in adaptation to climate change.
Collapse
Affiliation(s)
- Liang Xu
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Ying Lan
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Miaohong Lin
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Hongkai Zhou
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Sheng Ying
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Miao Chen
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
31
|
Luo J, Li M, Ju J, Hai H, Wei W, Ling P, Li D, Su J, Zhang X, Wang C. Genome-Wide Identification of the GhANN Gene Family and Functional Validation of GhANN11 and GhANN4 under Abiotic Stress. Int J Mol Sci 2024; 25:1877. [PMID: 38339155 PMCID: PMC10855742 DOI: 10.3390/ijms25031877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Annexins (ANNs) are a structurally conserved protein family present in almost all plants. In the present study, 27 GhANNs were identified in cotton and were unevenly distributed across 14 chromosomes. Transcriptome data and RT-qPCR results revealed that multiple GhANNs respond to at least two abiotic stresses. Similarly, the expression levels of GhANN4 and GhANN11 were significantly upregulated under heat, cold, and drought stress. Using virus-induced gene silencing (VIGS), functional characterization of GhANN4 and GhANN11 revealed that, compared with those of the controls, the leaf wilting of GhANN4-silenced plants was more obvious, and the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were lower under NaCl and PEG stress. Moreover, the expression of stress marker genes (GhCBL3, GhDREB2A, GhDREB2C, GhPP2C, GhRD20-2, GhCIPK6, GhNHX1, GhRD20-1, GhSOS1, GhSOS2 and GhSnRK2.6) was significantly downregulated in GhANN4-silenced plants after stress. Under cold stress, the growth of the GHANN11-silenced plants was significantly weaker than that of the control plants, and the activities of POD, SOD, and CAT were also lower. However, compared with those of the control, the elasticity and orthostatic activity of the GhANN11-silenced plants were greater; the POD, SOD, and CAT activities were higher; and the GhDREB2C, GhHSP, and GhSOS2 expression levels were greater under heat stress. These results suggest that different GhANN family members respond differently to different types of abiotic stress.
Collapse
Affiliation(s)
- Jin Luo
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Meili Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Jisheng Ju
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Han Hai
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Wei Wei
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Pingjie Ling
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Dandan Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Junji Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| | - Xianliang Zhang
- Institute of Cotton Research, State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Caixiang Wang
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.L.); (M.L.); (J.J.); (H.H.); (W.W.); (P.L.); (D.L.); (J.S.)
| |
Collapse
|
32
|
Mao K, Yang J, Sun Y, Guo X, Qiu L, Mei Q, Li N, Ma F. MdbHLH160 is stabilized via reduced MdBT2-mediated degradation to promote MdSOD1 and MdDREB2A-like expression for apple drought tolerance. PLANT PHYSIOLOGY 2024; 194:1181-1203. [PMID: 37930306 DOI: 10.1093/plphys/kiad579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Drought stress is a key environmental factor limiting the productivity, quality, and geographic distribution of crops worldwide. Abscisic acid (ABA) plays an important role in plant drought stress responses, but the molecular mechanisms remain unclear. Here, we report an ABA-responsive bHLH transcription factor, MdbHLH160, which promotes drought tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica). Under drought conditions, MdbHLH160 is directly bound to the MdSOD1 (superoxide dismutase 1) promoter and activated its transcription, thereby triggering reactive oxygen species (ROS) scavenging and enhancing apple drought tolerance. MdbHLH160 also promoted MdSOD1 enzyme activity and accumulation in the nucleus through direct protein interactions, thus inhibiting excessive nuclear ROS levels. Moreover, MdbHLH160 directly upregulated the expression of MdDREB2A-like, a DREB (dehydration-responsive element binding factor) family gene that promotes apple drought tolerance. Protein degradation and ubiquitination assays showed that drought and ABA treatment stabilized MdbHLH160. The BTB protein MdBT2 was identified as an MdbHLH160-interacting protein that promoted MdbHLH160 ubiquitination and degradation, and ABA treatment substantially inhibited this process. Overall, our findings provide insights into the molecular mechanisms of ABA-modulated drought tolerance at both the transcriptional and post-translational levels via the ABA-MdBT2-MdbHLH160-MdSOD1/MdDREB2A-like cascade.
Collapse
Affiliation(s)
- Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yunxia Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xin Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
33
|
Choudhury S. Computational analysis of the AP2/ERF family in crops genome. BMC Genomics 2024; 25:102. [PMID: 38262942 PMCID: PMC10807240 DOI: 10.1186/s12864-024-09970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The Apetala 2/ethylene-responsive factor family has diverse functions that enhance development and torment resistance in the plant genome. In variation, the ethylene-responsive factor (ERF) family of TF's genes is extensive in the crop genome. Generally, the plant-specific ethylene-responsive factor family may divided by the dehydration-responsive element-binding (DREB) subfamily. So, the AP2/ERF super-family demonstrated the repeated AP2 domain during growth. The sole AP2 domain function represents abiotic stress resistance. Also, the AP2 with B3 domain enhances during the replication of brassinosteroid. OBJECTIVE The study objective is to investigate the Apetala 2/ethylene-responsive factor family in a model organism of the Arabidopsis thaliana for comparative analysis towards Solanum lycopersicum (Tomato), Brassica juncea (Indian and Chinese mustard), Zea mays L. (Maize) and Oryza sativa (Indian and Japanese Rice). So, examinations of the large AP2/ERF super-family are mandatory to explore the Apetala 2 (AP2) family, ERF family, DREB subfamily, and RAV family involved during growth and abiotic stress stimuli in crops. METHODS Therefore, perform bioinformatics and computational methods to the current knowledge of the Apetala 2/ethylene-responsive factor family and their subfamilies in the crop genome. This method may be valuable for functional analysis of particular genes and their families in the plant genome. RESULTS Observation data provided evidence of the Apetala 2/ethylene-responsive factor (AP2/ERF) super-family and their sub-family present in Arabidopsis thaliana (Dicots) and compared with Solanum lycopersicum (Dicots), Brassica juncea (Dicots), Zea mays L. (Monocots) and Oryza sativa (Monocots). Also, remarks genes in Oryza sativa. This report upgraded the Apetala 2/ethylene-responsive factor (AP2/ERF) family in the crop genome. So, the analysis documented the conserved domain, motifs, and phylogenetic tree towards Dicots and Monocots species. Those outcomes will be valuable for future studies of the defensive Apetala 2/ethylene-responsive factor family in crops. CONCLUSION Therefore, the study concluded that the several species-specific TF genes in the Apetala 2/ethylene-responsive factor (AP2/ERF) family in Arabidopsis thaliana and compared with crop-species of Solanum lycopersicum, Brassica juncea, Zea mays L. and Oryza sativa. Those plant-specific genes regulate during growth and abiotic stress control in plants.
Collapse
Affiliation(s)
- Shouhartha Choudhury
- Har Gobind Khorana School of Life Sciences, Assam University, Silchar-788011, Assam, India.
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India.
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, Assam, India.
| |
Collapse
|
34
|
Theisen FF, Prestel A, Elkjær S, Leurs YHA, Morffy N, Strader LC, O'Shea C, Teilum K, Kragelund BB, Skriver K. Molecular switching in transcription through splicing and proline-isomerization regulates stress responses in plants. Nat Commun 2024; 15:592. [PMID: 38238333 PMCID: PMC10796322 DOI: 10.1038/s41467-024-44859-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
The Arabidopsis thaliana DREB2A transcription factor interacts with the negative regulator RCD1 and the ACID domain of subunit 25 of the transcriptional co-regulator mediator (Med25) to integrate stress signals for gene expression, with elusive molecular interplay. Using biophysical and structural analyses together with high-throughput screening, we reveal a bivalent binding switch in DREB2A containing an ACID-binding motif (ABS) and the known RCD1-binding motif (RIM). The RIM is lacking in a stress-induced DREB2A splice variant with retained transcriptional activity. ABS and RIM bind to separate sites on Med25-ACID, and NMR analyses show a structurally heterogeneous complex deriving from a DREB2A-ABS proline residue populating cis- and trans-isomers with remote impact on the RIM. The cis-isomer stabilizes an α-helix, while the trans-isomer may introduce energetic frustration facilitating rapid exchange between activators and repressors. Thus, DREB2A uses a post-transcriptionally and post-translationally modulated switch for transcriptional regulation.
Collapse
Affiliation(s)
- Frederik Friis Theisen
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Steffie Elkjær
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yannick H A Leurs
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Charlotte O'Shea
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Liang Y, Li X, Lei F, Yang R, Bai W, Yang Q, Zhang D. Transcriptome Profiles Reveals ScDREB10 from Syntrichia caninervis Regulated Phenylpropanoid Biosynthesis and Starch/Sucrose Metabolism to Enhance Plant Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:205. [PMID: 38256758 PMCID: PMC10820175 DOI: 10.3390/plants13020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Desiccation is a kind of extreme form of drought stress and desiccation tolerance (DT) is an ancient trait of plants that allows them to survive tissue water potentials reaching -100 MPa or lower. ScDREB10 is a DREB A-5 transcription factor gene from a DT moss named Syntrichia caninervis, which has strong comprehensive tolerance to osmotic and salt stresses. This study delves further into the molecular mechanism of ScDREB10 stress tolerance based on the transcriptome data of the overexpression of ScDREB10 in Arabidopsis under control, osmotic and salt treatments. The transcriptional analysis of weight gene co-expression network analysis (WGCNA) showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" were key pathways in the network of cyan and yellow modules. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) also showed that "phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways demonstrate the highest enrichment in response to osmotic and salt stress, respectively. Quantitative real-time PCR (qRT-PCR) results confirmed that most genes related to phenylpropanoid biosynthesis" and "starch and sucrose metabolism" pathways in overexpressing ScDREB10 Arabidopsis were up-regulated in response to osmotic and salt stresses, respectively. In line with the results, the corresponding lignin, sucrose, and trehalose contents and sucrose phosphate synthase activities were also increased in overexpressing ScDREB10 Arabidopsis under osmotic and salt stress treatments. Additionally, cis-acting promoter element analyses and yeast one-hybrid experiments showed that ScDREB10 was not only able to bind with classical cis-elements, such as DRE and TATCCC (MYBST1), but also bind with unknown element CGTCCA. All of these findings suggest that ScDREB10 may regulate plant stress tolerance by effecting phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. This research provides insights into the molecular mechanisms underpinning ScDREB10-mediated stress tolerance and contributes to deeply understanding the A-5 DREB regulatory mechanism.
Collapse
Affiliation(s)
- Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Feiya Lei
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Y.L.)
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China
- Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China
| |
Collapse
|
36
|
Ge M, Tang Y, Guan Y, Lv M, Zhou C, Ma H, Lv J. TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance. BMC PLANT BIOLOGY 2024; 24:27. [PMID: 38172667 PMCID: PMC10763432 DOI: 10.1186/s12870-023-04709-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Wheat, a crucial food crop in China, is highly vulnerable to drought stress throughout its growth and development. WRKY transcription factors (TFs), being one of the largest families of TFs, play a vital role in responding to various abiotic stresses in plants. RESULTS Here, we cloned and characterized the TF TaWRKY31 isolated from wheat. This TF, belonging to the WRKY II family, contains a WRKYGQK amino acid sequence and a C2H2-type zinc finger structure. TaWRKY31 exhibits tissue-specific expression and demonstrates responsiveness to abiotic stresses in wheat. TaWRKY31 protein is localized in the nucleus and can function as a TF with transcription activating activity at the N-terminus. Results showed that the wheat plants with silenced strains (BSMV:TaWRKY31-1as and BSMV:TaWRKY31-2as) exhibited poor growth status and low relative water content when subjected to drought treatment. Moreover, the levels of O2·-, H2O2, and malondialdehyde (MDA) in the BSMV:TaWRKY31-induced wheat plants increased, while the activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) decreased. Compared to control plants, BSMV:TaWRKY31-induced wheat plants exhibited lower expression levels of TaSOD (Fe), TaPOD, TaCAT, TaDREB1, TaP5CS, TaNCED1, TaSnRK2, TaPP2C, and TaPYL5.Under stress or drought treatment conditions, the overexpression of TaWRKY31 in Arabidopsis resulted in decreased levels of H2O2 and MDA, as well as reduced stomatal opening and water loss. Furthermore, an increase in resistance oxidase activity, germination rate, and root length in the TaWRKY31 transgenic Arabidopsis was observed. Lastly, overexpression of TaWRKY31 in Arabidopsis resulted in higher the expression levels of AtNCED3, AtABA2, AtSnRK2.2, AtABI1, AtABF3, AtP5CS1, AtSOD (Cu/Zn), AtPOD, AtCAT, AtRD29A, AtRD29B, and AtDREB2A than in control plants. CONCLUSIONS Our findings indicate that TaWRKY31 enhances drought resistance in plants by promoting the scavenging of reactive oxygen species, reducing stomatal opening, and increasing the expression levels of stress-related genes.
Collapse
Affiliation(s)
- Miaomiao Ge
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yijun Guan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Meicheng Lv
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Chunjv Zhou
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huiling Ma
- College of Life Sciences, Northwest A&F University, Yangling, China.
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
37
|
Zhou Q, Sun P, Xiong HM, Xie J, Zhu GY, Tantillo DJ, Huang AC. Insight into neofunctionalization of 2,3-oxidosqualene cyclases in B,C-ring-opened triterpene biosynthesis in quinoa. THE NEW PHYTOLOGIST 2024; 241:764-778. [PMID: 37904576 DOI: 10.1111/nph.19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
Bioactive triterpenes feature complex fused-ring structures, primarily shaped by the first-committed enzyme, 2,3-oxidosqualene cyclases (OSCs) in plant triterpene biosynthesis. Triterpenes with B,C-ring-opened skeletons are extremely rare with unknown formation mechanisms, harbouring unchartered chemistry and biology. Here, through mining the genome of Chenopodium quinoa followed by functional characterization, we identified a stress-responsive and neofunctionalized OSC capable of generating B,C-ring-opened triterpenes, including camelliol A and B and the novel (-)-quinoxide A as wax components of the specialized epidermal bladder cells, namely the quinoxide synthase (CqQS). Protein structure analysis followed by site-directed mutagenesis identified key variable amino acid sites underlying functional interconversion between pentacyclic β-amyrin synthase (CqbAS1) and B,C-ring-opened triterpene synthase CqQS. Mutation of one key residue (N612K) in even evolutionarily distant Arabidopsis β-amyrin synthase could generate quinoxides, indicating a conserved mechanism for B,C-ring-opened triterpene formation in plants. Quantum computation combined with docking experiments further suggests that conformations of conserved W613 and F413 of CqQS might be key to selectively stabilizing intermediate carbocations towards B,C-ring-opened triterpene formation. Our findings shed light on quinoa triterpene skeletal diversity and mechanisms underlying B,C-ring-opened triterpene biosynthesis, opening avenues towards accessing their chemistry and biology and paving the way for quinoa trait engineering and quality improvement.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peng Sun
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hao-Ming Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Jiali Xie
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
38
|
Zhu QY, Zhang LL, Liu JX. NFXL1 functions as a transcriptional activator required for thermotolerance at reproductive stage in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:54-65. [PMID: 38141041 DOI: 10.1111/jipb.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Plants are highly susceptible to abiotic stresses, particularly heat stress during the reproductive stage. However, the specific molecular mechanisms underlying this sensitivity remain largely unknown. In the current study, we demonstrate that the Nuclear Transcription Factor, X-box Binding Protein 1-Like 1 (NFXL1), directly regulates the expression of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2A (DREB2A), which is crucial for reproductive thermotolerance in Arabidopsis. NFXL1 is upregulated by heat stress, and its mutation leads to a reduction in silique length (seed number) under heat stress conditions. RNA-Seq analysis reveals that NFXL1 has a global impact on the expression of heat stress responsive genes, including DREB2A, Heat Shock Factor A3 (HSFA3) and Heat Shock Protein 17.6 (HSP17.6) in flower buds. Interestingly, NFXL1 is enriched in the promoter region of DREB2A, but not of either HSFA3 or HSP17.6. Further experiments using electrophoretic mobility shift assay have confirmed that NFXL1 directly binds to the DNA fragment derived from the DREB2A promoter. Moreover, effector-reporter assays have shown that NFXL1 activates the DREB2A promoter. The DREB2A mutants are also heat stress sensitive at the reproductive stage, and DEREB2A is epistatic to NFXL1 in regulating thermotolerance in flower buds. It is known that HSFA3, a direct target of DREB2A, regulates the expression of heat shock proteins genes under heat stress conditions. Thus, our findings establish NFXL1 as a critical upstream regulator of DREB2A in the transcriptional cassette responsible for heat stress responses required for reproductive thermotolerance in Arabidopsis.
Collapse
Affiliation(s)
- Qiao-Yun Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Lin-Lin Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
39
|
Pandey V, Singh S. Plant Adaptation and Tolerance to Heat Stress: Advance Approaches and Future Aspects. Comb Chem High Throughput Screen 2024; 27:1701-1715. [PMID: 38441014 DOI: 10.2174/0113862073300371240229100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Heat stress impacts plant growth at all phases of development, although the particular threshold for heat tolerance varies significantly across different developmental stages. During seed germination, elevated temperatures can either impede or completely halt the process, contingent upon the plant type and the severity of the stress. During advanced stages, high temperatures can have a negative impact on photosynthesis, respiration, water balance, and membrane integrity. Additionally, they can also influence the levels of hormones and primary and secondary metabolites. In addition, during the growth and development of plants, there is an increased expression of various heat shock proteins, as well as other proteins related to stress, and the generation of reactive oxygen species (ROS). These are significant plant responses to heat stress. Plants employ several strategies to deal with heat stress, such as maintaining the stability of their cell membranes, removing harmful reactive oxygen species (ROS), producing antioxidants, accumulating and adjusting compatible solutes, activating mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades, and, crucially, signaling through chaperones and activating transcription. These molecular-level systems boost the ability of plants to flourish in heat stress. Potential genetic methods to enhance plant heat stress resistance encompass old and modern molecular breeding techniques and transgenic approaches, all of which rely on a comprehensive comprehension of these systems. Although several plants exhibit enhanced heat tolerance through traditional breeding methods, the effectiveness of genetic transformation techniques has been somewhat restricted. The latter results from the current constraints in our understanding and access to genes that have known impacts on plant heat stress tolerance. However, these challenges may be overcome in the future. Besides genetic methods, crops' heat tolerance can be improved through the pre-treatment of plants with various environmental challenges or the external application of osmoprotectants such as glycine betaine and proline. Thermotolerance is achieved through an active process in which plants allocate significant energy to maintain their structure and function to avoid damage induced by heat stress. The practice of nanoparticles has been shown to upgrade both the standard and the quantity of produce when crops are under heat stress. This review provides information on the effects of heat stress on plants and explores the importance of nanoparticles, transgenics, and genomic techniques in reducing the negative consequences of heat stress. Furthermore, it explores how plants might adapt to heat stress by modifying their biochemical, physiological, and molecular reactions.
Collapse
Affiliation(s)
- Vineeta Pandey
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, 17 km Stone, NH-2, Mathura, Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| |
Collapse
|
40
|
Park S, Shi A, Meinhardt LW, Mou B. Genome-wide characterization and evolutionary analysis of the AP2/ERF gene family in lettuce (Lactuca sativa). Sci Rep 2023; 13:21990. [PMID: 38081919 PMCID: PMC10713603 DOI: 10.1038/s41598-023-49245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) gene family plays vital roles in plants, serving as a key regulator in responses to abiotic stresses. Despite its significance, a comprehensive understanding of this family in lettuce remains incomplete. In this study, we performed a genome-wide search for the AP2/ERF family in lettuce and identified a total of 224 members. The duplication patterns provided evidence that both tandem and segmental duplications contributed to the expansion of this family. Ka/Ks ratio analysis demonstrated that, following duplication events, the genes have been subjected to purifying selection pressure, leading to selective constraints on their protein sequence. This selective pressure provides a dosage benefit against stresses in plants. Additionally, a transcriptome analysis indicated that some duplicated genes gained novel functions, emphasizing the contribution of both dosage effect and functional divergence to the family functionalities. Furthermore, an orthologous relationship study showed that 60% of genes descended from a common ancestor of Rosid and Asterid lineages, 28% from the Asterid ancestor, and 12% evolved in the lettuce lineage, suggesting lineage-specific roles in adaptive evolution. These results provide valuable insights into the evolutionary mechanisms of the AP2/ERF gene family in lettuce, with implications for enhancing abiotic stress tolerance, ultimately contributing to the genetic improvement of lettuce crop production.
Collapse
Affiliation(s)
- Sunchung Park
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Ainong Shi
- Horticulture Department, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lyndel W Meinhardt
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Beiquan Mou
- US Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| |
Collapse
|
41
|
Liu W, Thapa P, Park SW. RD29A and RD29B rearrange genetic and epigenetic markers in priming systemic defense responses against drought and salinity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111895. [PMID: 37838156 DOI: 10.1016/j.plantsci.2023.111895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Drought has become the most important limiting factor to crop productions. Research thus far has been devoted to identifying drought-responsive genes (DRGs) via breeding and engineering approaches. Still, these efforts have not resulted in a solution to combat drought's effects because the ectopic expression of most DRGs causes adverse effects that reduce plant growth and yields. Lately, we discovered that two DRGs, Response to Desiccation (RD)29A and RD29B, induced by Paenibacillus polymyxa CR1, a plant growth-promoting rhizobacterium capable of priming drought tolerance and concurrently stimulating plant growth, play pivotal roles in defense responses against drought. In this study, we employ the ChlP and qRT-PCR analyses and further clarify that P. polymyxa CR1 reformats the chromatin/transcriptional memory of RD29s, positioned as upstream controllers that fine-tune the temporal dynamic of stress-regulating transcription factors (TFs) in elaborating induced systemic drought tolerance without growth penalties. Two genes coordinate the upregulation of NAC TFs, while feedback inhibiting CBF TFs, which regulate downstream DRG expressions. This supports that RD29s are unique, feasible transgene candidates for improving plants' survival capacity in both optimal and drought conditions. However, the mode of action of RD29A and RD29B are partly independent, exerting distinct roles in disparate ecological states. When subjected to increasing NaCl concentrations, the KO mutant of RD29A (rd29a) displayed enhanced tolerance compared to WT and rd29b plants, proposing that RD29B, but not RD29A, a key player in conferring WT-like tolerance to salinity stress; further studies will be needed to optimize/maximize their applications in engineering for-profit drought and/or broad-spectrum stress tolerant crops.
Collapse
Affiliation(s)
- Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Parbati Thapa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
42
|
Hu X, Liang J, Wang W, Cai C, Ye S, Wang N, Han F, Wu Y, Zhu Q. Comprehensive genome-wide analysis of the DREB gene family in Moso bamboo (Phyllostachys edulis): evidence for the role of PeDREB28 in plant abiotic stress response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1248-1270. [PMID: 37566437 DOI: 10.1111/tpj.16420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Dehydration response element binding (DREB) proteins are vital for plant abiotic stress responses, but the understanding of DREBs in bamboo, an important sustainable non-timber forest product, is limited. Here we conducted a comprehensive genome-wide analysis of the DREB gene family in Moso bamboo, representing the most important running bamboo species in Asia. In total, 44 PeDREBs were identified, and information on their gene structures, protein motifs, phylogenetic relationships, and stress-related cis-regulatory elements (CREs) was provided. Based on the bioinformatical analysis, we further analyzed PeDREBs from the A5 group and found that four of five PeDREB transcripts were induced by salt, drought, and cold stresses, and their proteins could bind to stress-related CREs. Among these, PeDREB28 was selected as a promising candidate for further functional characterization. PeDREB28 is localized in nucleus, has transcriptional activation activity, and could bind to the DRE- and coupling element 1- (CE1) CREs. Overexpression of PeDREB28 in Arabidopsis and bamboo improved plant abiotic stress tolerance. Transcriptomic analysis showed that broad changes due to the overexpression of PeDREB28. Furthermore, 628 genes that may act as the direct PeDREB28 downstream genes were identified by combining DAP-seq and RNA-seq analysis. Moreover, we confirmed that PeDREB28 could bind to the promoter of pyrabactin-resistance-like gene (DlaPYL3), which is a homolog of abscisic acid receptor in Arabidopsis, and activates its expression. In summary, our study provides important insights into the DREB gene family in Moso bamboo, and contributes to their functional verification and genetic engineering applications in the future.
Collapse
Affiliation(s)
- Xin Hu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Jianxiang Liang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Changyang Cai
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Shanwen Ye
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Nannan Wang
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Fangying Han
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Yuxin Wu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), HaiXia Institute for Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, 350002, Fujian, China
| |
Collapse
|
43
|
Chen K, Chen J, Pi X, Huang LJ, Li N. Isolation, Purification, and Application of Protoplasts and Transient Expression Systems in Plants. Int J Mol Sci 2023; 24:16892. [PMID: 38069215 PMCID: PMC10706244 DOI: 10.3390/ijms242316892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Protoplasts, derived from plant cells, exhibit remarkable totipotency and hold significant value across a wide spectrum of biological and biotechnological applications. These versatile applications encompass protein subcellular localization and interaction analysis, gene expression regulation, functional characterization, gene editing techniques, and single-cell sequencing. Protoplasts' usability stems from their inherent accessibility and their ability to efficiently incorporate exogenous genes. In this review, we provide a comprehensive overview, including details on isolation procedures and influencing factors, purification and viability assessment methodologies, and the utilization of the protoplast transient expression system. The aim is to provide a comprehensive overview of current applications and offer valuable insights into protoplast isolation and the establishment of transient expression systems in a diverse range of plant species, thereby serving as a valuable resource for the plant science community.
Collapse
Affiliation(s)
- Kebin Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
44
|
Qian Y, Xi Y, Xia L, Qiu Z, Liu L, Ma H. Membrane-Bound Transcription Factor ZmNAC074 Positively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:16157. [PMID: 38003347 PMCID: PMC10671035 DOI: 10.3390/ijms242216157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Maize (Zea mays L.) is one of the most widely cultivated crops for humans, making a vital contribution to human nutrition and health. However, in recent years, due to the influence of external adverse environments, the yield and quality of maize have been seriously affected. NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are important plant-unique TFs, which are crucial for regulating the abiotic stress response of plants. Therefore, it is of great biological significance to explore the underlying regulatory function of plant NAC TFs under various abiotic stresses. In this study, wild-type and ZmNAC074-overexpressed transgenic Arabidopsis were used as experimental materials to dissect the stress-resistant function of ZmNAC074 in transgenic Arabidopsis at phenotypic, physiological and molecular levels. The analyses of seed germination rate, survival rate, phenotype, the content of chlorophyll, carotenoids, malondialdehyde (MDA), proline and other physiological indexes induced by distinct abiotic stress conditions showed that overexpression of ZmNAC074 could confer the enhanced resistance of salt, drought, and endoplasmic reticulum (ER) stress in transgenic Arabidopsis, indicating that ZmNAC074 plays an important regulatory role in plant response to abiotic stress, which provides an important theoretical foundation for further uncovering the molecular regulation mechanism of ZmNAC074 under abiotic stresses.
Collapse
Affiliation(s)
- Yexiong Qian
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yan Xi
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lingxue Xia
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ziling Qiu
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Liu
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
45
|
Okooboh GO, Haferkamp I, Rühle T, Leister D, Neuhaus HE. Expression of the plastocyanin gene PETE2 in Camelina sativa improves seed yield and salt tolerance. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154103. [PMID: 37788546 DOI: 10.1016/j.jplph.2023.154103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Plastocyanin functions as an electron carrier in the photosynthetic electron transport chain, located at the thylakoid membrane. In several species, endogenous plastocyanin levels are correlated with the photosynthetic electron transport rate. Overexpression of plastocyanin genes in Arabidopsis thaliana increases plant size, but this phenomenon has not been observed in crop species. Here, we investigated the effects of heterologous expression of a gene encoding a plastocyanin isoform from Arabidopsis, AtPETE2, in the oil seed crop Camelina sativa under standard growth conditions and under salt stress. AtPETE2 heterologous expression enhanced photosynthetic activity in Camelina, accelerating plant development and improving seed yield under standard growth conditions. Additionally, CsPETE2 from Camelina was induced by salt stress and AtPETE2 expression lines had larger primary roots and more lateral roots than the wild type. AtPETE2 expression lines also had larger seeds and higher total seed yield under long-term salt stress compared with non-transgenic Camelina. Our results demonstrate that increased plastocyanin levels in Camelina can enhance photosynthesis and productivity, as well as tolerance to osmotic and salt stresses. Heterologous expression of plastocyanin may be a useful strategy to mitigate crop stress in saline soils.
Collapse
Affiliation(s)
- Gloria O Okooboh
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| | - Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany
| | - Thilo Rühle
- Department of Biology I, Molecular Plant Biology, Ludwig-Maximilians University of Munich, D-82152, Planegg, Martinsried, Germany
| | - Dario Leister
- Department of Biology I, Molecular Plant Biology, Ludwig-Maximilians University of Munich, D-82152, Planegg, Martinsried, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653, Kaiserslautern, Germany.
| |
Collapse
|
46
|
Yu J, Khomenko I, Biasioli F, Li M, Varotto C. A Novel Isoprene Synthase from the Monocot Tree Copernicia prunifera (Arecaceae) Confers Enhanced Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:15329. [PMID: 37895009 PMCID: PMC10607627 DOI: 10.3390/ijms242015329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The capacity to emit isoprene, among other stresses, protects plants from drought, but the molecular mechanisms underlying this trait are only partly understood. The Arecaceae (palms) constitute a very interesting model system to test the involvement of isoprene in enhancing drought tolerance, as their high isoprene emissions may have contributed to make them hyperdominant in neotropical dry forests, characterized by recurrent and extended periods of drought stress. In this study we isolated and functionally characterized a novel isoprene synthase, the gene responsible for isoprene biosynthesis, from Copernicia prunifera, a palm from seasonally dry tropical forests. When overexpressed in the non-emitter Arabidopsis thaliana, CprISPS conferred significant levels of isoprene emission, together with enhanced tolerance to water limitation throughout plant growth and development, from germination to maturity. CprISPS overexpressors displayed higher germination, cotyledon/leaf greening, water usage efficiency, and survival than WT Arabidopsis under various types of water limitation. This increased drought tolerance was accompanied by a marked transcriptional up-regulation of both ABA-dependent and ABA-independent key drought response genes. Taken together, these results demonstrate the capacity of CprISPS to enhance drought tolerance in Arabidopsis and suggest that isoprene emission could have evolved in Arecaceae as an adaptive mechanism against drought.
Collapse
Affiliation(s)
- Jiamei Yu
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Iuliia Khomenko
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Franco Biasioli
- Food and Nutrition Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy; (I.K.); (F.B.)
| | - Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
47
|
Chen X, Chen H, Xu H, Li M, Luo Q, Wang T, Yang Z, Gan S. Effects of drought and rehydration on root gene expression in seedlings of Pinus massoniana Lamb. TREE PHYSIOLOGY 2023; 43:1619-1640. [PMID: 37166353 DOI: 10.1093/treephys/tpad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/12/2023]
Abstract
The mechanisms underlying plant response to drought involve the expression of numerous functional and regulatory genes. Transcriptome sequencing based on the second- and/or third-generation high-throughput sequencing platforms has proven to be powerful for investigating the transcriptional landscape under drought stress. However, the full-length transcriptomes related to drought responses in the important conifer genus Pinus L. remained to be delineated using the third-generation sequencing technology. With the objectives of identifying the candidate genes responsible for drought and/or rehydration and clarifying the expression profile of key genes involved in drought regulation, we combined the third- and second-generation sequencing techniques to perform transcriptome analysis on seedling roots under drought stress and rewatering in the drought-tolerant conifer Pinus massoniana Lamb. A sum of 294,114 unique full-length transcripts were produced with a mean length of 3217 bp and N50 estimate of 5075 bp, including 279,560 and 124,438 unique full-length transcripts being functionally annotated and Gene Ontology enriched, respectively. A total of 4076, 6295 and 18,093 differentially expressed genes (DEGs) were identified in three pair-wise comparisons of drought-treatment versus control transcriptomes, including 2703, 3576 and 8273 upregulated and 1373, 2719 and 9820 downregulated DEGs, respectively. Moreover, 157, 196 and 691 DEGs were identified as transcription factors in the three transcriptome comparisons and grouped into 26, 34 and 44 transcription factor families, respectively. Gene Ontology enrichment analysis revealed that a remarkable number of DEGs were enriched in soluble sugar-related and cell wall-related processes. A subset of 75, 68 and 97 DEGs were annotated to be associated with starch, sucrose and raffinose metabolism, respectively, while 32 and 70 DEGs were associated with suberin and lignin biosynthesis, respectively. Weighted gene co-expression network analysis revealed modules and hub genes closely related to drought and rehydration. This study provides novel insights into root transcriptomic changes in response to drought dynamics in Masson pine and serves as a fundamental work for further molecular investigation on drought tolerance in conifers.
Collapse
Affiliation(s)
- Xinhua Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Hu Chen
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Huilan Xu
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Mei Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| | - Qunfeng Luo
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Ting Wang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Zhangqi Yang
- Engineering Research Center of Masson Pine of State Forestry Administration & Engineering Research Center of Masson Pine of Guangxi & Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning 530002, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, 682 Guangshan Road 1, Guangzhou 510520, China
| |
Collapse
|
48
|
Baoxiang W, Zhiguang S, Yan L, Bo X, Jingfang L, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. PLANTA 2023; 258:73. [PMID: 37668677 DOI: 10.1007/s00425-023-04232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Transcriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress. Abiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
Collapse
Grants
- CARS-01-61 the earmarked funds for China Agricultural Research System
- 2015BAD01B01 National Science and Technology Support Program of China
- BE2016370-3 Science and Technology Support Program of Jiangsu Province, China
- BE2017323 Science and Technology Support Program of Jiangsu Province, China
- BK20201214 Natural Science Foundation of Jiangsu Province of China
- BK20161299 the Natural Science Foundation of Jiangsu Province, China
- QNJJ1704 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2102 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2107 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2211 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
Collapse
Affiliation(s)
- Wang Baoxiang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Sun Zhiguang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Yan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jingfang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chi Ming
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xing Yungao
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Yang Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jian
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Jinbo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chen Tingmu
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Fang Zhaowei
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Lu Baiguan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Dayong
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| | - Babatunde Kazeem Bello
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| |
Collapse
|
49
|
Khan NZ, Ali A, Ali W, Aasim M, Khan T, Khan Z, Munir I. Heterologous expression of bacterial dehydrin gene in Arabidopsis thaliana promotes abiotic stress tolerance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1239-1246. [PMID: 38024953 PMCID: PMC10678877 DOI: 10.1007/s12298-023-01358-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/01/2023]
Abstract
Salinity, low temperature, and drought are major environmental factors in agriculture leading to reduced crop yield. Dehydrins (DHNs) are induced transcriptionally during cellular dehydration and accumulate in different tissues during abiotic stresses. Here we isolated and characterized a bacterial gene BG757 in Arabidopsis, encoding a putative dehydrin type protein. ABA induces the expression of various dehydrins in plants, therefore, to elucidate the potential role, ABA sensitivity was examined in Arabidopsis transgenic lines expressing BG757. Interestingly, BG757-expressing plants showed hypersensitivity towards NaCl and ABA during seed germination. In addition to germination, BG757-expressing plants also showed root growth retardation in the presence of ABA and NaCl when compared with wild type (WT), suggesting that BG757 positively regulate salt stress and ABA response. Furthermore, BG757-expressing plants showed significant drought tolerance compared with WT. Consistent with drought tolerance, expression levels of stress inducible genes (DREB2A, RD22, RD26, LEA7 and SOS1) were strongly upregulated in transgenic plants compared with WT. All together these results suggest that heterologous expression of bacterial gene, BG757 in plants promotes resistance to environmental stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01358-w.
Collapse
Affiliation(s)
- Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Akhtar Ali
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029 South Korea
- Department Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Waqar Ali
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Zaryab Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Iqbal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
50
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|