1
|
Wang Y, Wei M, Naz S, Zheng X, Wu X. Genome-wide analysis reveals the evolutionary history of TAG intracellular lipases and their roles in different molting stages of Decapods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101444. [PMID: 39985982 DOI: 10.1016/j.cbd.2025.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Intracellular lipases can be broadly divided into two categories: neutral lipases and acid lipases. Adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoacylglycerol lipase (MAGL) are three key neutral lipases responsible for the hydrolysis of triacylglycerol (TAG) in lipid droplets (LDs). Although these three TAG intracellular lipase genes have been identified and characterized in multiple model species, their evolutionary history remains largely unknown. For the TAG intracellular lipase genes in Decapoda, there is also a large knowledge gap. Thus, in this study, we performed a genome-wide identification and investigation of TAG intracellular lipase genes in Decapoda and outgroups, analyzing their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 22 ATGL genes, 23 HSL genes and 21 MAGL genes were identified in 17 selected species. HSL is the oldest and most conserved gene to exist in any species. Furthermore, RNA-seq analysis was conducted on two representative Decapod species, Chinese mitten crab (Eriocheir sinensis) and swimming crab (Portunus trituberculatus), which represent freshwater and marine environments, respectively. The analysis revealed a positive correlation between the expression levels of TAG intracellular lipase genes and the energy demand during different molting stages. Overall, the results of this study provide valuable insights into the evolutionary history of TAG intracellular lipase genes, which could enhance our understanding for the role of these genes during key physiological processes of Decapods.
Collapse
Affiliation(s)
- Yufan Wang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Maolei Wei
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Saira Naz
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xirui Zheng
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Xugan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources Certified by the Ministry of Agriculture and Rural Affairs of China, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai 201306, China.
| |
Collapse
|
2
|
Peng Y, Hao Z, Zhou Y, Hu Y, Chen C, Xian B, Xi Z, Ren C, Pei J, Chen J. Characterizing the variation in safflower seed viability under different storage conditions through lipidomic and proteomic analyses. Sci Rep 2025; 15:9084. [PMID: 40097562 PMCID: PMC11914450 DOI: 10.1038/s41598-025-93426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
The aging of seeds seriously affects their yield. Vacuum and low temperatures have been shown to prolong seed life and delay seed senescence. However, the underlying mechanisms that control these processes in safflower have yet to be explored. Therefore, this study aimed to study the structural, physiological and biochemical changes that occur in safflower seeds stored for one year at different temperatures and sealing conditions. X-ray imaging, germination percentage determination, determination of water content, and TTC staining were utilized to analyze seed structure and viability. The structure of its outer surface was observed by scanning electron microscope, and the changes of catalase activity and malondialdehyde content were determined to understand its physiological and biochemical status. In addition, lipidomic and proteomic analyses were performed. The results showed that the germination percentage was improved under vacuum and low temperature conditions. Compared with high-temperature storage, low-temperature storage not only reduces the level of reactive oxygen species, but also facilitates the preservation of intact seed structure. Lipidomic analysis indicated the levels of PA reduced at low temperatures, while the content of PC, PE, PS, and PG exhibited an inverse correlation, increasing as temperatures decreased. Proteomic analysis identified two proteins (HH-013791-RA, HH-017308-RA) that may be involved in fatty acid metabolism and carbon metabolism respectively. Expression levels of these proteins were found to be lower at -18 °C, but increased with increasing storage temperatures. Storing safflower seeds under low-temperature and vacuum conditions significantly enhances germination rates and preserves seed structure by reducing reactive oxygen species levels. Two proteins (HH-013791-RA, HH-017308-RA) in the fatty acid metabolism and carbon metabolism pathways are temperature-regulated, and are involved in lipid metabolism, affecting seed structure and vitality.
Collapse
Grants
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- Nos: 82274039, U19A2010 the National Natural Science Foundation of China
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- ZYYCXTD-D-202209 National Multidisciplinary Interdisciplinary Innovation Team Project of Traditional Chinese Medicine
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 2021YFYZ0012-5 Sichuan Province's "14th Five-Year Plan" crop and livestock breeding research project
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 202304BI090020-1 Yunnan Provincial Science and Technology Department Science and Technology Program
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
- 2023NSFSC0660 Natural Science Foundation of Sichuan Province
Collapse
Affiliation(s)
- Yanni Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiyu Hao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanxun Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueying Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Xian
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Kimberlin AN, Mahmud S, Holtsclaw RE, Walker A, Conrad K, Morley SA, Welti R, Allen DK, Koo AJ. Inducible expression of DEFECTIVE IN ANTHER DEHISCENCE 1 enhances triacylglycerol accumulation and lipid droplet formation in vegetative tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70088. [PMID: 40052427 PMCID: PMC11886949 DOI: 10.1111/tpj.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Bioengineering efforts to increase oil in non-storage vegetative tissues, which constitute the majority of plant biomass, are promising sustainable sources of renewable fuels and feedstocks. While plants typically do not accumulate significant amounts of triacylglycerol (TAG) in vegetative tissues, we report here that the expression of a plastid-localized phospholipase A1 protein, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1), led to a substantial increase in leaf TAG in Arabidopsis. Using an inducible system to control DAD1 expression circumvented growth penalties associated with overexpressing DAD1 and resulted in a rapid burst of TAG within several hours. The increase of TAG was accompanied by the formation of oil bodies in the leaves, petioles, and stems, but not in the roots. Lipid analysis indicated that the increase in TAG was negatively correlated with plastidial galactolipid concentration. The fatty acid (FA) composition of TAG predominantly consisted of 18:3. Expression of DAD1 in the fad3fad7fad8 mutant, devoid of 18:3, resulted in comparable TAG accumulation with 18:2 as the major FA constituent, reflecting the flexible in vivo substrate use of DAD1. The transient expression of either Arabidopsis DAD1 or Nicotiana benthamiana DAD1 (NbDAD1) in N. benthamiana leaves stimulated the accumulation of TAG. Similarly, transgenic soybeans expressing Arabidopsis DAD1 exhibited an accumulation of TAG in the leaves, showcasing the biotechnological potential of this technology. In summary, inducible expression of a plastidial lipase resulted in enhanced oil production in vegetative tissues, extending our understanding of lipid remodeling mediated by DAD1 and offering a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Athen N. Kimberlin
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Aldevron LLCMadisonWisconsin53719USA
| | - Sakil Mahmud
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Department of Agriculture and Environmental SciencesLincoln UniversityJefferson CityMissouri65101USA
| | - Rebekah E. Holtsclaw
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
- Present address:
Rubi LaboratoriesAlamedaCalifornia94502USA
| | - Alexie Walker
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | - Kristyn Conrad
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | | | - Ruth Welti
- Division of BiologyKansas State UniversityManhattanKansas66506USA
| | - Doug K. Allen
- Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
- USDA‐ARSSt. LouisMissouri63132USA
| | - Abraham J. Koo
- Department of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| |
Collapse
|
4
|
Wei W, Wang LF, Tao JJ, Zhang WK, Chen SY, Song Q, Zhang JS. The comprehensive regulatory network in seed oil biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:649-668. [PMID: 39821491 DOI: 10.1111/jipb.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 01/19/2025]
Abstract
Plant oils play a crucial role in human nutrition, industrial applications and biofuel production. While the enzymes involved in fatty acid (FA) biosynthesis are well-studied, the regulatory networks governing these processes remain largely unexplored. This review explores the intricate regulatory networks modulating seed oil biosynthesis, focusing on key pathways and factors. Seed oil content is determined by the efficiency of de novo FA synthesis as well as influenced by sugar transport, lipid metabolism, FA synthesis inhibitors and fine-tuning mechanisms. At the center of this regulatory network is WRINKLED1 (WRI1), which plays a conserved role in promoting seed oil content across various plant species. WRI1 interacts with multiple proteins, and its expression level is regulated by upstream regulators, including members of the LAFL network. Beyond the LAFL network, we also discuss a potential nuclear factor-Y (NF-Y) regulatory network in soybean with an emphasis on NF-YA and NF-YB and their associated proteins. This NF-Y network represents a promising avenue for future efforts aimed at enhancing oil accumulation and improving stress tolerance in soybean. Additionally, the application of omics-based approaches is of great significance. Advances in omics technologies have greatly facilitated the identification of gene resources, opening new opportunities for genetic improvement. Importantly, several transcription factors involved in oil biosynthesis also participate in stress responses, highlighting a potential link between the two processes. This comprehensive review elucidates the complex mechanisms underlying the regulation of oil biosynthesis, offering insights into potential biotechnological strategies for improving oil production and stress tolerance in oil crops.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long-Fei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jian-Jun Tao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, China
| | - Jin-Song Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Murphy KM, Johnson BS, Harmon C, Gutierrez J, Sheng H, Kenney S, Gutierrez‐Ortega K, Wickramanayake J, Fischer A, Brown A, Czymmek KJ, Bates PD, Allen DK, Gehan MA. Excessive leaf oil modulates the plant abiotic stress response via reduced stomatal aperture in tobacco (Nicotiana tabacum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70067. [PMID: 40089836 PMCID: PMC11910668 DOI: 10.1111/tpj.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
High lipid producing (HLP) tobacco (Nicotiana tabacum) is a potential biofuel crop that produces an excess of 30% dry weight as lipid bodies in the form of triacylglycerol. While using HLP tobacco as a sustainable fuel source is promising, it has not yet been tested for its tolerance to warmer environments that are expected in the near future as a result of climate change. We found that HLP tobacco had reduced stomatal conductance, which results in increased leaf temperatures up to 1.5°C higher under control and high temperature (38°C day/28°C night) conditions, reduced transpiration, and reduced CO2 assimilation. We hypothesize this reduction in stomatal conductance is due to the presence of excessive, large lipid droplets in HLP guard cells imaged using confocal microscopy. High temperatures also significantly reduced total fatty acid levels by 55% in HLP plants; thus, additional engineering may be needed to maintain high titers of leaf oil under future climate conditions. High-throughput image analysis techniques using open-source image analysis platform PlantCV for thermal image analysis (plant temperature), stomata microscopy image analysis (stomatal conductance), and fluorescence image analysis (photosynthetic efficiency) were developed and applied in this study. A corresponding set of PlantCV tutorials are provided to enable similar studies focused on phenotyping future crops under adverse conditions.
Collapse
Affiliation(s)
- Katherine M. Murphy
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | | | - Courtney Harmon
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | - Jorge Gutierrez
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | - Hudanyun Sheng
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | - Samuel Kenney
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | | | | | - Annika Fischer
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | - Autumn Brown
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| | | | - Doug K. Allen
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
- USDA ARSSt. LouisMissouri63132USA
| | - Malia A. Gehan
- Donald Danforth Plant Science Center975 N. Warson RdSt. LouisMissouri63132USA
| |
Collapse
|
6
|
Liao W, Guo R, Li J, Liu N, Jiang L, Whelan J, Shou H. CRISPR/Cas9-mediated mutagenesis of SEED FATTY ACID REDUCER genes significantly increased seed oil content in soybean. PLANT & CELL PHYSIOLOGY 2025; 66:273-284. [PMID: 39707619 DOI: 10.1093/pcp/pcae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Increasing seed oil content (SOC) is an important breeding goal for soybean breeding. While significant efforts have been made to improve SOC through metabolic pathway engineering, research to increase soybean SOC by reducing lipid degradation and fatty acid (FA) decomposition during seed maturation process is limited. Seed fatty acid reducers (SFARs) are members of the GDSL enzyme family and play a crucial role in lipid metabolism. Among them, a pair of the GmSFAR4 genes is highly expressed in soybean seeds during seed desiccation and germination. In the study, GmSFAR4a/b double mutants were generated using CRISPR/Cas9-mediated gene editing technique. The seed FA content of GmSFAR4a/b double mutants was significantly increased by ∼8% compared to wild type when grown in greenhouse, and ∼17% when grown in the field, without any adverse effects on seed vitality and plant growth. Our work enriches the understanding of soybean seed oil metabolism and provides a new approach to increase soybean SOC.
Collapse
Affiliation(s)
- Wenying Liao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Runze Guo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - James Whelan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huixia Shou
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Cutolo EA, Campitiello R, Di Dato V, Orefice I, Angstenberger M, Cutolo M. Marine Phytoplankton Bioactive Lipids and Their Perspectives in Clinical Inflammation. Mar Drugs 2025; 23:86. [PMID: 39997210 PMCID: PMC11857744 DOI: 10.3390/md23020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Marine phytoplankton is an emerging source of immunomodulatory bioactive lipids (BLs). Under physiological growth conditions and upon stress challenges, several eukaryotic microalgal species accumulate lipid metabolites that resemble the precursors of animal mediators of inflammation: eicosanoids and prostaglandins. Therefore, marine phytoplankton could serve as a biotechnological platform to produce functional BLs with therapeutic applications in the management of chronic inflammatory diseases and other clinical conditions. However, to be commercially competitive, the lipidic precursor yields should be enhanced. Beside tailoring the cultivation of native producers, genetic engineering is a feasible strategy to accrue the production of lipid metabolites and to introduce heterologous biosynthetic pathways in microalgal hosts. Here, we present the state-of-the-art clinical research on immunomodulatory lipids from eukaryotic marine phytoplankton and discuss synthetic biology approaches to boost their light-driven biosynthesis.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (R.C.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (V.D.D.)
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn Napoli, Ecosustainable Marine Biotechnology Department, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (V.D.D.)
| | - Max Angstenberger
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany;
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, 16132 Genova, Italy; (R.C.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
8
|
Bates PD, Shockey J. Towards rational control of seed oil composition: dissecting cellular organization and flux control of lipid metabolism. PLANT PHYSIOLOGY 2025; 197:kiae658. [PMID: 39657632 PMCID: PMC11812464 DOI: 10.1093/plphys/kiae658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Plant lipids represent a fascinating field of scientific study, in part due to a stark dichotomy in the limited fatty acid (FA) composition of cellular membrane lipids vs the huge diversity of FAs that can accumulate in triacylglycerols (TAGs), the main component of seed storage oils. With few exceptions, the strict chemical, structural, and biophysical roles imposed on membrane lipids since the dawn of life have constrained their FA composition to predominantly lengths of 16-18 carbons and containing 0-3 methylene-interrupted carbon-carbon double bonds in cis-configuration. However, over 450 "unusual" FA structures can be found in seed oils of different plants, and we are just beginning to understand the metabolic mechanisms required to produce and maintain this dichotomy. Here we review the current state of plant lipid research, specifically addressing the knowledge gaps in membrane and storage lipid synthesis from 3 angles: pathway fluxes including newly discovered TAG remodeling, key acyltransferase substrate selectivities, and the possible roles of "metabolons."
Collapse
Affiliation(s)
- Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
9
|
Scholz P, Doner NM, Gutbrod K, Herrfurth C, Niemeyer PW, Lim MSS, Blersch KF, Schmitt K, Valerius O, Shanklin J, Feussner I, Dörmann P, Braus GH, Mullen RT, Ischebeck T. Plasticity of the Arabidopsis leaf lipidome and proteome in response to pathogen infection and heat stress. PLANT PHYSIOLOGY 2025; 197:kiae274. [PMID: 38781317 PMCID: PMC11823117 DOI: 10.1093/plphys/kiae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid TAG is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.
Collapse
Affiliation(s)
- Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Philipp W Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Magdiel S S Lim
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Katharina F Blersch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Gerhard H Braus
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| |
Collapse
|
10
|
Haslam RP, Michaelson LV, Eastmond PJ, Napier JA. Born of frustration: the emergence of Camelina sativa as a platform for lipid biotechnology. PLANT PHYSIOLOGY 2025; 197:kiaf009. [PMID: 39813144 PMCID: PMC11812462 DOI: 10.1093/plphys/kiaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognized by agronomists for its traits, including yield, oil/protein content, drought tolerance, limited input requirements, plasticity, and resilience. Its utility as a platform for metabolic engineering was then quickly recognized, and biotechnologists have benefited from its short life cycle and facile genetic transformation, producing numerous transgenic interventions to modify seed lipid content and generate novel products. The desire to work with a plant that is both a model and crop has driven the expansion of research resources for camelina, including increased availability of genome and other -omics data sets. Collectively, the expansion of these resources has established camelina as an ideal plant to study the regulation of lipid metabolism and genetic improvement. Furthermore, the unique characteristics of camelina enables the design-build-test-learn cycle to be transitioned from the controlled environment to the field. Complex metabolic engineering to synthesize and accumulate high levels of novel fatty acids and modified oils in seeds can be deployed, tested, and undergo rounds of iteration in agronomically relevant environments. Engineered camelina oils are now increasingly being developed and used to sustainably supply improved nutrition, feed, biofuels, and fossil fuel replacements for high-value chemical products. In this review, we provide a summary of seed fatty acid synthesis and oil assembly in camelina, highlighting how discovery research in camelina supports the advance of metabolic engineering toward the predictive manipulation of metabolism to produce desirable bio-based products. Further examples of innovation in camelina seed lipid engineering and crop improvement are then provided, describing how technologies (e.g. genetic modification [GM], gene editing [GE], RNAi, alongside GM and GE stacking) can be applied to produce new products and denude undesirable traits. Focusing on the production of long chain polyunsaturated omega-3 fatty acids in camelina, we describe how lipid biotechnology can transition from discovery to a commercial prototype. The prospects to produce structured triacylglycerol with fatty acids in specified stereospecific positions are also discussed, alongside the future outlook for the agronomic uptake of camelina lipid biotechnology.
Collapse
|
11
|
Yang X, Shaw RK, Li L, Jiang F, Fan X. Novel candidate genes and genetic basis analysis of kernel starch content in tropical maize. BMC PLANT BIOLOGY 2025; 25:105. [PMID: 39856590 PMCID: PMC11760711 DOI: 10.1186/s12870-025-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Starch is the most abundant carbohydrate in maize grains, serving as a primary energy source for both humans and animals, and playing a crucial role in various industrial applications. Increasing the starch content of maize grains is beneficial for improving the grain yield and quality. To gain insight into the genetic basis of starch content in maize kernels, a multiparent population (MPP) was constructed and evaluated for starch content in three different environments. RESULTS The integration of QTL mapping and genome-wide association analysis (GWAS) identified two SNPs, 8_166371888 and 8_178656036, which overlapped the QTL interval of qSC8-1, identified in the tropical maize line YML46. The phenotypic variance explained (PVE) by the QTL qSC8-1 was12.17%, while the SNPs 8_166371888 and 8_178656036 explained 10.19% and 5.72% of the phenotypic variance. Combined GWAS and QTL analyses led to the identification of two candidate genes, Zm00001d012005 and Zm00001d012687 located on chromosome 8. CONCLUSIONS The candidate gene Zm00001d012005 encodes histidine kinase, which is known to play a role in starch accumulation in rice spikes. Related histidine kinases, such as AHK1, are involved in endosperm transfer cell development in barley, which affects grain quality. Zm00001d012687 encodes triacylglycerol lipase, which reduces seed oil content. Since oil content in cereal kernels is negatively correlated with starch content, this gene is likely involved in regulating the starch content in maize kernels. These findings provide insights into the genetic mechanisms underlying kernel starch content and establish a theoretical basis for breeding maize varieties with high starch content.
Collapse
Affiliation(s)
- Xiaoping Yang
- College of Agriculture, Yunnan University, Kunming, 650500, China
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ranjan K Shaw
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Linzhuo Li
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
12
|
Cheng AY, Simmonds AJ. Peroxisome inter-organelle cooperation in Drosophila. Genome 2025; 68:1-12. [PMID: 39471439 DOI: 10.1139/gen-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Many cellular functions are compartmentalized within the optimized environments of organelles. However, processing or storage of metabolites from the same pathway can occur in multiple organelles. Thus, spatially separated organelles need to cooperate functionally. Coordination between organelles in different specialized cells is also needed, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Peroxisomes coordinate with other organelles including mitochondria, endoplasmic reticulum, lysosomes, and lipid droplets. This functional coordination requires, or is at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially cells in various organs is essential. Drosophila melanogaster (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved Drosophila genes encoding proteins with known organelle coordinating roles in other species.
Collapse
Affiliation(s)
- Andy Y Cheng
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
13
|
Sonkar K, Singh A. Metabolic and physiological functions of Patatin-like phospholipase-A in plants. Int J Biol Macromol 2025; 287:138474. [PMID: 39645102 DOI: 10.1016/j.ijbiomac.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Patatin-like phospholipase-A (pPLA) is a class of lipid acyl hydrolase enzymes found in both, the animal and plant kingdoms. Plant pPLAs are related to the potato tuber storage protein patatin in solanaceous plants. Despite extensive investigation of pPLA functions in the animal system, the mechanistic functional details and regulatory roles of pPLA are poorly understood in plants. In recent years, research pertaining to pPLAs has gain some momentum as some of the key members of pPLA family have been characterized functionally. These findings have provided key insights into the structural features, biochemical activities, and functional roles of plant pPLAs. In this review, we are presenting a holistic overview of pPLAs in plants and providing the latest updates on pPLA research. We have highlighted the genomic diversity and structural features of pPLAs in plants. Importantly, we have discussed the role of pPLAs in lipid metabolism, including sphingolipid metabolism, lignin and cellulose accumulation, lipid breakdown and seed oil content enhancement. Moreover, regulatory roles of pPLAs in physiological processes, such as plant stress response, plant-pathogen interactions and plant development have been discussed. This information will be critical in the biotechnological programs for crop improvement.
Collapse
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant genome Research, New Delhi 110067, India.
| |
Collapse
|
14
|
Zhan Y, Wang J, Zhao X, Zheng Z, Gan Y. Arachis hypogaea monoacylglycerol lipase AhMAGL3b participates in lipid metabolism. BMC PLANT BIOLOGY 2024; 24:1278. [PMID: 39736532 DOI: 10.1186/s12870-024-06017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Monoacylglycerol lipase (MAGL) belongs to the serine hydrolase family; it catalyzes MAG to produce glycerol and free fatty acids (FFAs), which is the final step in triacylglycerol (TAG) hydrolysis. The effects of MAGL on comprehensive lipid metabolism and plant growth and development have not been elucidated, especially in Arachis hypogaea, an important oil crop. RESULTS Herein, AhMAGL3b encoding a protein with both hydrolase and acyltransferase regions, a member of MAGL gene family, was cloned and overexpressed in Arabidopsis thaliana. A total of 9 homozygous T3 generation transgenic lines were obtained. Compared with wild type (WT), overexpression (OE) of AhMAGL3b had no obvious growth inhibition by investigation of agronomic traits, including growth and photosynthetic parameters. The leaf fatty acid (FA) content was increased by 12.1-27.4% in AhMAGL3b-OE lines, while seed oil content was decreased by 10.7-17.3%. Furthermore, the overexpression of AhMAGL3b resulted in higher soluble sugar and starch content, and lower total soluble protein content in both leaves and seeds. Additionally, during seed germination, AhMAGL3b-OE seeds were more dormant than that of WT and the sensitivity to abscisic acid (ABA) treatment was decreased. CONCLUSIONS Taken together, our results indicate that AhMAGL3b is involved in homeostasis among carbohydrates, lipids and protein in A. hypogaea.
Collapse
Affiliation(s)
- Yihua Zhan
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jing Wang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xuan Zhao
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Zhifu Zheng
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yi Gan
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
15
|
Marino L, Altabe S, Colono CM, Podio M, Ortiz JPA, Balaban D, Stein J, Spoto N, Acuña C, Siena LA, Gerde J, Albertini E, Pessino SC. Transcriptome-guided breeding for Paspalum notatum: producing apomictic hybrids with enhanced omega-3 content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:2. [PMID: 39645625 PMCID: PMC11625688 DOI: 10.1007/s00122-024-04788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
KEY MESSAGE Transcriptomics- and FAME-GC-MS-assisted apomixis breeding generated Paspalum notatum hybrids with clonal reproduction and increased α-linolenic acid content, offering the potential to enhance livestock product's nutritional quality and reduce methane emissions A low omega-6:omega-3 fatty acid ratio is considered an indicator of the nutritional impact of milk fat on human health. In ruminants, major long-chain fatty acids, such as linoleic acid (18:2, omega-6) and α-linolenic acid (18:3, omega-3), originate from dietary sources and reach the milk via the bloodstream. Since forages are the primary source of long-chain fatty acids for such animals, they are potential targets for improving milk lipid composition. Moreover, a high 18:3 content in their diet is associated with reduced methane emissions during grazing. This work aimed to develop genotypes of the forage grass Paspalum notatum with high leaf 18:3 content and the ability for clonal reproduction via seeds (apomixis). We assembled diploid and polyploid Paspalum notatum leaf transcriptomes and recovered sequences of two metabolism genes associated with the establishment of lipid profiles, namely SUGAR-DEPENDENT 1 (SDP1) and PEROXISOMAL ABC TRANSPORTER 1 (PXA1). Primers were designed to amplify all expressed paralogs in leaves. qPCR was used to analyse SDP1 and PXA1 expression in seven divergent genotypes. Reduced levels of SDP1 and PXA1 were found in the polyploid sexual genotype Q4188. Fatty acid methyl esters/gas chromatography/mass spectrometry (FAME/GC/MS) assays confirmed an increased percentage of 18:3 in this genotype. Crosses between Q4188 and the obligate apomictic pollen donor Q4117 resulted in two apomictic F1 hybrids (JS9 and JS71) with reduced SDP1 and PXA1 levels, increased 18:3 content, and clonal maternal reproduction. These materials could enhance milk and meat quality while reducing greenhouse gas emissions during grazing.
Collapse
Affiliation(s)
- Lara Marino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Silvia Altabe
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), 27 de Febrero 27 Bis, 2000, Rosario, Argentina
| | - Carolina Marta Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Juan Pablo Amelio Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - David Balaban
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Nicolás Spoto
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Carlos Acuña
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Sargento Cabral 2134, 3400, Corrientes, Argentina
| | - Lorena Adelina Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - José Gerde
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina
| | - Emidio Albertini
- Dipartimento Di Scienze Agrarie, Alimentari E Ambientali, Università Degli Studi Di Perugia, 06121, Perugia, Italy
| | - Silvina Claudia Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Parque Villarino S/N, Z2125ZAA Zavalla, Rosario, Santa Fe, Argentina.
| |
Collapse
|
16
|
Zong D, Xu Y, Zhang X, Gan P, Wang H, Chen X, Liang H, Zhou J, Lu Y, Li P, Ma S, Yu J, Jiang T, Liao S, Ren M, Li L, Liu H, Sahu SK, Li L, Wang S, He C. A multiomics investigation into the evolution and specialized metabolisms of three Toxicodendron cultivars. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2683-2699. [PMID: 39589867 DOI: 10.1111/tpj.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Toxicodendron species are economically and medicinally important trees because of their rich sources of natural products. We present three chromosome-level genome assemblies of Toxicodendron vernicifluum 'Dali', Toxicodendron succedaneum 'Vietnam', and T. succedaneum 'Japan', which display diverse production capacities of specialized metabolites. Genome synteny and structural variation analyses revealed large genomic differences between the two species (T. vernicifluum and T. succedaneum) but fewer differences between the two cultivars within the species. Despite no occurrence of recent whole-genome duplications, Toxicodendron showed evidence of local duplications. The genomic modules with high expression of genes encoding metabolic flux regulators and chalcone synthase-like enzymes were identified via multiomics analyses, which may be responsible for the greater urushiol accumulation in T. vernicifluum 'Dali' than in other Toxicodendron species. In addition, our analyses revealed the regulatory patterns of lipid metabolism in T. succedaneum 'Japan', which differ from those of other Toxicodendron species and may contribute to its high lipid accumulation. Furthermore, we identified the key regulatory elements of lipid metabolism at each developmental stage, which could aid in molecular breeding to improve the production of urushiol and lipids in Toxicodendron species. In summary, this study provides new insights into the genomic underpinnings of the evolution and diversity of specialized metabolic pathways in three Toxicodendron cultivars through multiomics studies.
Collapse
Affiliation(s)
- Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Yan Xu
- BGI Research, Wuhan, 430074, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peihua Gan
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | | | | | | | - Jintao Zhou
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Yu Lu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Peiling Li
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Jinde Yu
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Tao Jiang
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Shengxi Liao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650216, China
| | - Meirong Ren
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - Linzhou Li
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Huan Liu
- BGI Research, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Laigeng Li
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Sibo Wang
- BGI Research, Wuhan, 430074, China
- BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
17
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
18
|
Muhammad D, Clark NM, Tharp NE, Chatt EC, Vierstra RD, Bartel B. Global impacts of peroxisome and pexophagy dysfunction revealed through multi-omics analyses of lon2 and atg2 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2563-2583. [PMID: 39526456 DOI: 10.1111/tpj.17129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Peroxisomes house diverse metabolic pathways that are essential for plant and animal survival, including enzymes that produce or inactivate toxic byproducts. Despite the importance of peroxisomes and their collaborations with other organelles, the mechanisms that trigger or prevent peroxisome turnover and the cellular impacts of impaired peroxisomes are incompletely understood. When Arabidopsis thaliana LON2, a peroxisomal protein with chaperone and protease capacity, is disrupted, metabolic dysfunction and protein instability in peroxisomes ensue. Paradoxically, preventing autophagy in lon2 mutants appears to normalize peroxisomal metabolism and stabilize peroxisomal proteins-hinting at a role for autophagy in causing the peroxisomal defects observed in lon2 seedlings. Using a combination of transcriptomics, proteomics, and in silico investigations, we compared wild type to lon2 and autophagy null mutants and double mutants. Through this analysis, we found that impeding autophagy via an atg2 null mutation alleviated several of the global defects observed when LON2 is absent. Moreover, we revealed processes influenced by LON2 that are independent of autophagy, including impacts on lipid droplet and chloroplast protein levels. Finally, we identified and classified potential LON2 substrates, which include proteins that might provide signal(s) for pexophagy.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Natalie M Clark
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, 02142, USA
| | - Nathan E Tharp
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
19
|
Liu H, Zhang W, Zeng J, Zheng Q, Guo Z, Ruan C, Li W, Wang G, Wang X, Guo W. A Golgi vesicle-membrane-localized cytochrome B561 regulates ascorbic acid regeneration and confers Verticillium wilt resistance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39602087 DOI: 10.1111/tpj.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Ascorbic acid (AsA) serves as a key antioxidant involved in the various physiological processes and against diverse stresses in plants. Due to the insufficiency of AsA de novo biosynthesis, the AsA regeneration is essential to supplement low AsA synthesis rates. Redox reactions play a crucial role in response to biotic stress in plants; however, how AsA regeneration participates in hydrogen peroxide (H2O2) homeostasis and plant defense remains largely unknown. Here, we identified a Golgi vesicle-membrane-localized cytochrome B561 (CytB561) encoding gene, GhB561-11, involved in AsA regeneration and plant resistance to Verticillium dahliae in cotton. GhB561-11 was significantly downregulated upon V. dahliae attack. Knocking down GhB561-11 greatly enhanced cotton resistance to V. dahliae. We found that suppressing GhB561-11 inhibited the AsA regeneration, elevated the basal level of H2O2, and enhanced the plant defense against V. dahliae. Further investigation revealed that GhB561-11 interacted with the lipid droplet-associated protein GhLDAP3 to collectively regulate the AsA regeneration. Simultaneously silencing GhB561-11 and GhLDAP3 significantly elevated the H2O2 contents and dramatically improved the Verticillium wilt resistance in cotton. The study broadens our insights into the functional roles of CytB561 in regulating AsA regeneration and H2O2 homeostasis. It also provides a strategy by downregulating GhB561-11 to enhance Verticillium wilt resistance in cotton breeding programs.
Collapse
Affiliation(s)
- Hanqiao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- Institute for the Control of the Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Jianguo Zeng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qihang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaofeng Ruan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Bi S, Ao J, Jiang T, Zhu X, Zhu Y, Yang W, Zheng B, Ji M. Imaging Metabolic Flow of Water in Plants with Isotope-Traced Stimulated Raman Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407543. [PMID: 39301930 PMCID: PMC11558102 DOI: 10.1002/advs.202407543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Water plays a vital role in the life cycle of plants, participating in various critical biochemical reactions during both non-photosynthetic and photosynthetic processes. Direct visualization of the metabolic activities of water in plants with high spatiotemporal resolution is essential to reveal the functional utilization of water. Here, stimulated Raman scattering (SRS) microscopy is applied to monitor the metabolic processes of deuterated water (D2O) in model plant Arabidopsis thaliana (A. thaliana). The work shows that in plants uptaking D2O/water solution, proton-transfer from water to organic metabolites results in the formation of C-D bonds in newly synthesized biomolecules (lipid, protein, and polysaccharides, etc.) that allow high-resolution detection with SRS. Reversible metabolic pathways of oil-starch conversion between seed germination and seed development processes are verified. Spatial heterogeneity of metabolic activities along the vertical axis of plants (root, stem, and tip meristem), as well as the radial distributions of secondary growth on the horizontal cross-sections are quantified. Furthermore, metabolic flow of protons from plants to animals is visualized in aphids feeding on A. thaliana. Collectively, SRS microscopy has potential to trace a broad range of matter flows in plants, such as carbon storage and nutrition metabolism.
Collapse
Affiliation(s)
- Simin Bi
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Ting Jiang
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Xianmiao Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yimin Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Binglian Zheng
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| |
Collapse
|
21
|
Shi R, Jin G, Shen S, Xu G, Zheng F, Clements DR, Yang Y, Yang S, Wan F, Zhang F, Liu B. Allelopathic Molecular Mechanisms of the Two Main Allelochemicals in Sweet Potato. Curr Issues Mol Biol 2024; 46:11890-11905. [PMID: 39590300 PMCID: PMC11592435 DOI: 10.3390/cimb46110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Sweet potato (Ipomoea batatas L.) is one of the most important global food crops. This crop exhibits excellent allelopathic potential against various weeds, but its allelopathic mechanism at the molecular level is unclear. Therefore, metabolomic and transcriptomic analyses were performed to explore the allelopathic effects, metabolic pathway, and associated genes for two major compounds with allelopathic activity, palmitic acid and linoleic acid. The sweet potato variety Ningshu 25 was employed in the current study. The results showed that palmitic acid and linoleic acid had strong allelopathic effects on seed germination, plant growth, antioxidant enzyme activity, and chlorophyll content of two weeds Digitaria sanguinalis and Bidens pilosa. The content of the two targeted metabolites was affected by different environmental conditions and was significantly increased under low temperature (15 °C). Five metabolic pathways involved in the two targeted metabolites of fatty acids were found: fatty acid biosynthesis, fatty acid elongation, fatty acid degradation, biosynthesis of cutin, suberine, and wax, and the linoleic acid metabolism pathway. The synthesis of palmitic acid is significantly enriched in the biosynthesis pathways of fatty acids, cutin, suberine, and wax, and the synthesis of linoleic acid is significantly enriched in the linoleic acid metabolism pathway. Under different environmental conditions, there were three key genes expressed-g4988, g11881, and g19673-located in the biosynthesis pathways of cutin, suberine, and wax; four key genes expressed-g31191, g60956, g49811, and g59542-located in the biosynthesis pathway of fatty acids; and six key expressed genes-g26575, g24787, g23517, g57649, g58562, and g4314-located in biosynthesis pathway of linoleic acid, respectively. Our study advances understanding of the molecular mechanisms behind allelopathic traits in sweet potato and provides a set of candidate genes for use in improving allelopathic potential in sweet potato germplasm resources.
Collapse
Affiliation(s)
- Ruiguo Shi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
| | - Guimei Jin
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650502, China
| | - Shicai Shen
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650502, China
| | - Gaofeng Xu
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650502, China
| | - Fengping Zheng
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650502, China
| | - David Roy Clements
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada;
| | - Yunhai Yang
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650502, China
| | - Shaosong Yang
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650502, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China;
| | - Fudou Zhang
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (G.J.); (S.S.); (G.X.); (F.Z.); (Y.Y.); (S.Y.)
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Yunnan Lancang-Mekong Agricultural Bio-Security International Science and Technology Cooperation Joint Research Center, Kunming 650502, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China;
| |
Collapse
|
22
|
Okumuş EB, Böke ÖB, Turhan SŞ, Doğan A. From development to future prospects: The adipose tissue & adipose tissue organoids. Life Sci 2024; 351:122758. [PMID: 38823504 DOI: 10.1016/j.lfs.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.
Collapse
Affiliation(s)
- Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
23
|
Sapara VJ, Shankhapal AR, Reddy PS. Genome-wide screening and characterization of phospholipase A (PLA)-like genes in sorghum (Sorghum bicolor L.). PLANTA 2024; 260:35. [PMID: 38922509 DOI: 10.1007/s00425-024-04467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION The characterisation of PLA genes in the sorghum genome using in-silico methods revealed their essential roles in cellular processes, providing a foundation for further detailed studies. Sorghum bicolor (L.) Moench is the fifth most cultivated crop worldwide, and it is used in many ways, but it has always gained less popularity due to the yield, pest, and environmental constraints. Improving genetic background and developing better varieties is crucial for better sorghum production in semi-arid tropical regions. This study focuses on the phospholipase A (PLA) family within sorghum, comprehensively characterising PLA genes and their expression across different tissues. The investigation identified 32 PLA genes in the sorghum genome, offering insights into their chromosomal localization, molecular weight, isoelectric point, and subcellular distribution through bioinformatics tools. PLA-like family genes are classified into three groups, namely patatin-related phospholipase A (pPLA), phospholipase A1 (PLA1), and phospholipase A2 (PLA2). In-silico chromosome localization studies revealed that these genes are unevenly distributed in the sorghum genome. Cis-motif analysis revealed the presence of several developmental, tissue and hormone-specific elements in the promoter regions of the PLA genes. Expression studies in different tissues such as leaf, root, seedling, mature seed, immature seed, anther, and pollen showed differential expression patterns. Taken together, genome-wide analysis studies of PLA genes provide a better understanding and critical role of this gene family considering the metabolic processes involved in plant growth, defence and stress response.
Collapse
Affiliation(s)
- Vidhi J Sapara
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R Shankhapal
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
- Plant Sciences for the Bio-Economy, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Palakolanu Sudhakar Reddy
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
24
|
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133951. [PMID: 38492385 DOI: 10.1016/j.jhazmat.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, β-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.
Collapse
Affiliation(s)
- Bagyalakshmi Muthan
- Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bikash Deo
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Subhiksha Khatiwada
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sanju A Sanjaya
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
25
|
Liu J, Qiu S, Xue T, Yuan Y. Physiology and transcriptome of Sapindus mukorossi seeds at different germination stages. Genomics 2024; 116:110822. [PMID: 38471577 DOI: 10.1016/j.ygeno.2024.110822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Sapindus mukorossi has a wide distribution range, high application value, and broad developmental potential. Previous studies have mostly focused on the medicinal and economic value of soapberry; however, few studies have been conducted on its seed germination. This study measured the physiological indicators and hormone content of soapberry seeds at different germination stages and preliminarily determined that abscisic acid (ABA) and indole-3-acetic acid (IAA) are the key hormones that affect the germination of soapberry seeds. Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment) analyses detected hormone transduction pathways, further confirming the key role of plant hormones in the germination process of soapberry seeds. Through transcriptome analysis, we speculated that CYP707A and IPA are key genes in the ABA and IAA synthesis pathways, respectively. This study revealed the close relationship between plant hormones and soapberry seed germination and provided new ideas for further exploration of the germination mechanism of soapberry seeds.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui 239000, China
| | - Sumei Qiu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui 239000, China.
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
26
|
Jia X, Xu M, Tan W, Wang Z, Guo Z, Yang X, Liu C. Proteomic and Transcriptomic Analyses Provide New Insights into the Mechanism Underlying Lipid Deterioration in Pecan Kernels during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10127-10137. [PMID: 38651754 DOI: 10.1021/acs.jafc.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Pecan nuts are rich in lipids that tend to deteriorate during storage. Tandem mass-tag-based quantitative proteomics and transcriptomics were used to investigate the changes in the protein and gene profiles of stored pecan kernels for the first time. Our previous lipidomic data were jointly analyzed to elucidate the coordinated changes in lipid molecules and related proteins/genes. The mechanism underlying lipid deterioration in pecan kernels during storage was revealed by multiomics analyses. Lipid metabolism-related pathways were activated during pecan storage. Phospholipases, triacylglycerol lipases, lipoxygenases, and oil body-related proteins/genes were highly expressed during storage, revealing their involvement in lipid deterioration. These data provide rich information and will be valuable for future genetic or chemical research to alleviate lipid deterioration in pecans.
Collapse
Affiliation(s)
- Xiaodong Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Mengyang Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Wenyue Tan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ziyan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhongren Guo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, Xinjiang, China
- Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Xinyuan 835800, Xinjiang, China
| | - Xufeng Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| | - Chenghang Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Xuanwu District, Nanjing 210014, Jiangsu, China
| |
Collapse
|
27
|
Parchuri P, Bhandari S, Azeez A, Chen G, Johnson K, Shockey J, Smertenko A, Bates PD. Identification of triacylglycerol remodeling mechanism to synthesize unusual fatty acid containing oils. Nat Commun 2024; 15:3547. [PMID: 38670976 PMCID: PMC11053099 DOI: 10.1038/s41467-024-47995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible. Physaria fendleri naturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils.
Collapse
Affiliation(s)
- Prasad Parchuri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Sajina Bhandari
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Abdul Azeez
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Grace Chen
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Kumiko Johnson
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, 70124, LA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
28
|
Tao B, Ma Y, Wang L, He C, Chen J, Ge X, Zhao L, Wen J, Yi B, Tu J, Fu T, Shen J. Developmental pleiotropy of SDP1 from seedling to mature stages in B. napus. PLANT MOLECULAR BIOLOGY 2024; 114:49. [PMID: 38642182 DOI: 10.1007/s11103-024-01447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.
Collapse
Affiliation(s)
- Baolong Tao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Yina Ma
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Liqin Wang
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Chao He
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Junlin Chen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Xiaoyu Ge
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Lun Zhao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jing Wen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Bin Yi
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxing Tu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Tingdong Fu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxiong Shen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China.
| |
Collapse
|
29
|
Liu X, Yu Z, Tong X, Chang L, Huang J, Wang Y, Ying J, Li X, Ni S, Zhang J. Fine Mapping of qAL5.2 Controlling Anther Length in Oryza sativa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1130. [PMID: 38674540 PMCID: PMC11053959 DOI: 10.3390/plants13081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Anther length is the critical floral trait determining hybrid rice seed production and is controlled by many quantitative trait loci (QTL). However, the cloning of genes specifically controlling anther size has yet to be reported. Here, we report the fine mapping of qAL5.2 for anther size using backcross inbred lines (BILs) in the genetic background of Oryza sativa indica Huazhan (HZ). Gene chip analysis on the BC4F2 and BC5F1 population identified effective loci on Chr1, Chr5, and Chr8 and two genomic regions on Chr5, named qAL5.1 and qAL5.2. qAL5.2 was identified in both populations with LOD values of 17.54 and 10.19, which explained 35.73% and 25.1% of the phenotypic variances, respectively. Ultimately qAL5.2 was localized to a 73 kb region between HK139 and HK140 on chromosome 5. And we constructed two near-isogenic lines (NILs) for RNA-seq analysis, named NIL-qAL5.2HZ and NIL-qAL5.2KLY, respectively. The result of the GO enrichment analysis revealed that differential genes were significantly enriched in the carbohydrate metabolic process, extracellular region, and nucleic acid binding transcription, and KEGG enrichment analysis revealed that alpha-linolenic acid metabolism was significantly enriched. Meanwhile, candidate genes of qAL5.2 were analyzed in RNA-seq, and it was found that ORF8 is differentially expressed between NIL-qAL5.2HZ and NIL-qAL5.2KLY. The fine mapping of qAL5.2 conferring anther length will promote the breed improvement of the restorer line and understanding of the mechanisms driving crop mating patterns.
Collapse
Affiliation(s)
- Xinyong Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zixuan Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| | - Longxue Chang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| | - Jie Huang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| | - Yifeng Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| | - Jiezheng Ying
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| | - Xingwang Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shen Ni
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China; (X.L.); (Y.W.)
| |
Collapse
|
30
|
Huang Y, Mei G, Zhu K, Ruan X, Wu H, Cao D. Shading treatment during late stage of seed development promotes subsequent seed germination and seedlings establishment in sunflower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111996. [PMID: 38272070 DOI: 10.1016/j.plantsci.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
During the sunflower seed production process, the role of artificial shading treatment (ST) in seed development and subsequent seed germination remains largely unknown. In the present study, sunflower mother plants were artificially shaded during 1-34 (full period-ST, FST), 1-22 (early period-ST, EST), and 22-34 (late period-ST, LST) days after pollination (DAP), to examine the effects of parental shading on subsequent seed germination. Both FST and EST significantly reduced the photosynthetic efficiency of sunflower, manifested as decreased seed dry weight and unfavorable seed germination. On the contrary, LST remarkably increased seed dry weight and promoted subsequent seed germination and seedling establishment. LST enhanced the activities of several key enzymes involved in triglyceride anabolism and corresponding-genes expression, which in turn increased the total fatty acid contents and altered the fatty acid composition. During early germination, the key enzyme activities involved in triglyceride disintegration and corresponding-gene expressions in LST seeds were apparently higher than those in seeds without the shading treatment (WST). Consistently, LST seeds had significant higher contents of ATP and soluble sugar. Moreover, enzyme activities related to abscisic acid (ABA) biosynthesis and corresponding gene expressions decreased within LST seeds, whereas the enzyme activities and corresponding gene expressions associated with gibberellin (GA) biosynthesis were increased. These results were also evidenced by the reduced ABA content but elevated GA level within LST seeds, giving rise to higher GA/ABA ratio. Our findings suggested that LST could promote sunflower seed development and subsequent seed germination as well as seedling establishment through modulating the dynamic metabolism of triglycerides, fatty acid and GA/ABA balance.
Collapse
Affiliation(s)
- Yutao Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Gaofu Mei
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Kehua Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Xiaoli Ruan
- Zhejiang Nongke Seed Co.Ltd, 310021 Hangzhou, China
| | - Huaping Wu
- Huzhou Keao Seed Co.Ltd, 313000 Huzhou 313000, China
| | - Dongdong Cao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China.
| |
Collapse
|
31
|
Yang F, Xu X, Hu B, Zhang Z, Chen K, Yu Y, Bai H, Tan A. Lipid homeostasis is essential for oogenesis and embryogenesis in the silkworm, Bombyx mori. Cell Mol Life Sci 2024; 81:127. [PMID: 38472536 DOI: 10.1007/s00018-024-05173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024]
Abstract
Reproduction, a fundamental feature of all known life, closely correlates with energy homeostasis. The control of synthesizing and mobilizing lipids are dynamic and well-organized processes to distribute lipid resources across tissues or generations. However, how lipid homeostasis is precisely coordinated during insect reproductive development is poorly understood. Here we describe the relations between energy metabolism and reproduction in the silkworm, Bombyx mori, a lepidopteran model insect, by using CRISPR/Cas9-mediated mutation analysis and comprehensively functional investigation on two major lipid lipases of Brummer (BmBmm) and hormone-sensitive lipase (BmHsl), and the sterol regulatory element binding protein (BmSrebp). BmBmm is a crucial regulator of lipolysis to maintain female fecundity by regulating the triglyceride (TG) storage among the midgut, the fat body, and the ovary. Lipidomics analysis reveals that defective lipolysis of females influences the composition of TG and other membrane lipids in the BmBmm mutant embryos. In contrast, BmHsl mediates embryonic development by controlling sterol metabolism rather than TG metabolism. Transcriptome analysis unveils that BmBmm deficiency significantly improves the expression of lipid synthesis-related genes including BmSrebp in the fat body. Subsequently, we identify BmSrebp as a key regulator of lipid accumulation in oocytes, which promotes oogenesis and cooperates with BmBmm to support the metabolic requirements of oocyte production. In summary, lipid homeostasis plays a vital role in supporting female reproductive success in silkworms.
Collapse
Affiliation(s)
- Fangying Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoyan Xu
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Hu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Zhongjie Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Kai Chen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Ye Yu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
32
|
Lv T, Li J, Zhou L, Zhou T, Pritchard HW, Ren C, Chen J, Yan J, Pei J. Aging-Induced Reduction in Safflower Seed Germination via Impaired Energy Metabolism and Genetic Integrity Is Partially Restored by Sucrose and DA-6 Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:659. [PMID: 38475505 DOI: 10.3390/plants13050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
Seed storage underpins global agriculture and the seed trade and revealing the mechanisms of seed aging is essential for enhancing seed longevity management. Safflower is a multipurpose oil crop, rich in unsaturated fatty acids that are at high risk of peroxidation as a contributory factor to seed aging. However, the molecular mechanisms responsible for safflower seed viability loss are not yet elucidated. We used controlled deterioration (CDT) conditions of 60% relative humidity and 50 °C to reduce germination in freshly harvested safflower seeds and analyzed aged seeds using biochemical and molecular techniques. While seed malondialdehyde (MDA) and fatty acid content increased significantly during CDT, catalase activity and soluble sugar content decreased. KEGG analysis of gene function and qPCR validation indicated that aging severely impaired several key functional and biosynthetic pathways including glycolysis, fatty acid metabolism, antioxidant activity, and DNA replication and repair. Furthermore, exogenous sucrose and diethyl aminoethyl hexanoate (DA-6) treatment partially promoted germination in aged seeds, further demonstrating the vital role of impaired sugar and fatty acid metabolism during the aging and recovery processes. We concluded that energy metabolism and genetic integrity are impaired during aging, which contributes to the loss of seed vigor. Such energy metabolic pathways as glycolysis, fatty acid degradation, and the tricarboxylic acid cycle (TCA) are impaired, especially fatty acids produced by the hydrolysis of triacylglycerols during aging, as they are not efficiently converted to sucrose via the glyoxylate cycle to provide energy supply for safflower seed germination and seedling growth. At the same time, the reduced capacity for nucleotide synthesis capacity and the deterioration of DNA repair ability further aggravate the damage to DNA, reducing seed vitality.
Collapse
Affiliation(s)
- Tang Lv
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lanyu Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hugh W Pritchard
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming 650201, China
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath RH17 6TN, West Sussex, UK
| | - Chaoxiang Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiang Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
33
|
Tailor A, Bhatla SC. Polyamine depletion enhances oil body mobilization through possible regulation of oleosin degradation and aquaporin abundance on its membrane. PLANT SIGNALING & BEHAVIOR 2023; 18:2217027. [PMID: 37243675 DOI: 10.1080/15592324.2023.2217027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/29/2023]
Abstract
Oil body (OB) mobilization, a crucial event associated with early seedling growth, is delayed in response to salt stress. Previous reports suggest that careful regulation of polyamine (PA) metabolism is essential for salt stress tolerance in plants. Many aspects of PA-mediated regulation of metabolism have been uncovered. However, their role in the process of OB mobilization remains unexplored. Interestingly, the present investigations reveal a possible influence of PA homeostasis on OB mobilization, while implicating complex regulation of oleosin degradation and aquaporin abundance in OB membranes in the process. Application of PA inhibitors resulted in the accumulation of smaller OBs when compared to control (-NaCl) and the salt-stressed counterparts, suggesting a faster rate of mobilization. PA deficit also resulted in reduced retention of some larger oleosins under controlled conditions but enhanced retention of all oleosins under salt stress. Additionally, with respect to aquaporins, a higher abundance of PIP2 under PA deficit both under control and saline conditions, is correlated with a faster mobilization of OBs. Contrarily, TIP1s, and TIP2s remained almost undetectable in response to PA depletion and were differentially regulated by salt stress. The present work, thus, provides novel insights into PA homeostasis-mediated regulation of OB mobilization, oleosin degradation, and aquaporin abundance on OB membranes.
Collapse
Affiliation(s)
- Aditi Tailor
- Department of Botany, University of Delhi, Delhi, India
| | | |
Collapse
|
34
|
Hu J, Chen F, Zang J, Li Z, Wang J, Wang Z, Shi L, Xiu Y, Lin S. Native promoter-mediated transcriptional regulation of crucial oleosin protein OLE1 from Prunus sibirica for seed development and high oil accumulation. Int J Biol Macromol 2023; 253:126650. [PMID: 37666400 DOI: 10.1016/j.ijbiomac.2023.126650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Oleosin (OLE) is vital to stabilize lipid droplet for seed triacylglycerol (TAG) storage. This work aimed to determine key OLE and to unravel mechanism that governed seed oil accumulation of Prunus sibirica for developing biodiesel. An integrated assay of global identification of LD-related protein and the cross-accessions/developing stages comparisons associated with oil accumulative amount and OLE transcript level was performed on seeds of 12 plus trees of P. sibirica to identify OLE1 (15.5 kDa) as key oleosin protein crucial for high seed oil accumulation. The OLE1 gene and its promoter were cloned from P. sibirica seeds, and overexpression of PsOLE1 in Arabidopsis was conducted under the controls of native promoter and constitutive CaMV35S promoter, respectively. PsOLE1 promoter had seed-specific cis-elements and showed seed specificity, by which PsOLE1 was specifically expressed in seeds. Ectopic overexpression of PsOLE1, especially driven by its promoter, could facilitate seed development and oil accumulation with an increase in unsaturated FAs, and upregulate transcript of TAG assembly enzymes, but suppress transcript of LD/TAG-hydrolyzed lipases and transporters, revealing a role of native promoter-mediated transcription of PsOLE1 in seed development and oil accumulation. PsOLE1 and its promoter have considerable potential for engineering oil accumulation in oilseed plants.
Collapse
Affiliation(s)
- Jinhe Hu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Feng Chen
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Junxin Zang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zhi Li
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Jing Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Zirui Wang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lingling Shi
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yu Xiu
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Shanzhi Lin
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
35
|
Miklaszewska M, Zienkiewicz K, Klugier-Borowska E, Rygielski M, Feussner I, Zienkiewicz A. CALEOSIN 1 interaction with AUTOPHAGY-RELATED PROTEIN 8 facilitates lipid droplet microautophagy in seedlings. PLANT PHYSIOLOGY 2023; 193:2361-2380. [PMID: 37619984 PMCID: PMC10663143 DOI: 10.1093/plphys/kiad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Lipid droplets (LDs) of seed tissues are storage organelles for triacylglycerols (TAGs) that provide the energy and carbon for seedling establishment. In the major route of LD degradation (lipolysis), TAGs are mobilized by lipases. However, LDs may also be degraded via lipophagy, a type of selective autophagy, which mediates LD delivery to vacuoles or lysosomes. The exact mechanisms of LD degradation and the mobilization of their content in plants remain unresolved. Here, we provide evidence that LDs are degraded via a process morphologically resembling microlipophagy in Arabidopsis (Arabidopsis thaliana) seedlings. We observed the entry and presence of LDs in the central vacuole as well as their breakdown. Moreover, we show co-localization of AUTOPHAGY-RELATED PROTEIN 8b (ATG8b) and LDs during seed germination and localization of lipidated ATG8 (ATG8-PE) to the LD fraction. We further demonstrate that structural LD proteins from the caleosin family, CALEOSIN 1 (CLO1), CALEOSIN 2 (CLO2), and CALEOSIN 3 (CLO3), interact with ATG8 proteins and possess putative ATG8-interacting motifs (AIMs). Deletion of the AIM localized directly before the proline knot disrupts the interaction of CLO1 with ATG8b, suggesting a possible role of this region in the interaction between these proteins. Collectively, we provide insights into LD degradation by microlipophagy in germinating seeds with a particular focus on the role of structural LD proteins in this process.
Collapse
Affiliation(s)
- Magdalena Miklaszewska
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Krzysztof Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Ewa Klugier-Borowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Marcin Rygielski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| | - Agnieszka Zienkiewicz
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
36
|
Qin Z, Wang T, Zhao Y, Ma C, Shao Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int J Mol Sci 2023; 24:16039. [PMID: 38003229 PMCID: PMC10671748 DOI: 10.3390/ijms242216039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Lipid droplets (LDs) are important organelles conserved across eukaryotes with a fascinating biogenesis and consumption cycle. Recent intensive research has focused on uncovering the cellular biology of LDs, with emphasis on their degradation. Briefly, two major pathways for LD degradation have been recognized: (1) lipolysis, in which lipid degradation is catalyzed by lipases on the LD surface, and (2) lipophagy, in which LDs are degraded by autophagy. Both of these pathways require the collective actions of several lipolytic and proteolytic enzymes, some of which have been purified and analyzed for their in vitro activities. Furthermore, several genes encoding these proteins have been cloned and characterized. In seed plants, seed germination is initiated by the hydrolysis of stored lipids in LDs to provide energy and carbon equivalents for the germinating seedling. However, little is known about the mechanism regulating the LD mobilization. In this review, we focus on recent progress toward understanding how lipids are degraded and the specific pathways that coordinate LD mobilization in plants, aiming to provide an accurate and detailed outline of the process. This will set the stage for future studies of LD dynamics and help to utilize LDs to their full potential.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
37
|
Cao Y, Hu J, Hou J, Fu C, Zou X, Han X, Jia P, Sun C, Xu Y, Xue Y, Zou Y, Liu X, Chen X, Li G, Guo J, Xu M, Fu A. Vacuolar Sugar Transporter TMT2 Plays Crucial Roles in Germination and Seedling Development in Arabidopsis. Int J Mol Sci 2023; 24:15852. [PMID: 37958835 PMCID: PMC10647555 DOI: 10.3390/ijms242115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Vacuolar sugar transporters transport sugar across the tonoplast, are major players in maintaining sugar homeostasis, and therefore play vital roles in plant growth, development, and biomass yield. In this study, we analyzed the physiological roles of the tonoplast monosaccharide transporter 2 (TMT2) in Arabidopsis. In contrast to the wild type (WT) that produced uniform seedlings, the tmt2 mutant produced three types of offspring: un-germinated seeds (UnG), seedlings that cannot form true leaves (tmt2-S), and seedlings that develop normally (tmt2-L). Sucrose, glucose, and fructose can substantially, but not completely, rescue the abnormal phenotypes of the tmt2 mutant. Abnormal cotyledon development, arrested true leaf development, and abnormal development of shoot apical meristem (SAM) were observed in tmt2-S seedlings. Cotyledons from the WT and tmt2-L seedlings restored the growth of tmt2-S seedlings through micrografting. Moreover, exogenous sugar sustained normal growth of tmt2-S seedlings with cotyledon removed. Finally, we found that the TMT2 deficiency resulted in growth defects, most likely via changing auxin signaling, target of rapamycin (TOR) pathways, and cellular nutrients. This study unveiled the essential functions of TMT2 for seed germination and initial seedling development, ensuring cotyledon function and mobilizing sugars from cotyledons to seedlings. It also expanded the current knowledge on sugar metabolism and signaling. These findings have fundamental implications for enhancing plant biomass production or seed yield in future agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Min Xu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| | - Aigen Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| |
Collapse
|
38
|
Wrobel TJ, Brilhaus D, Stefanski A, Stühler K, Weber APM, Linka N. Mapping the castor bean endosperm proteome revealed a metabolic interaction between plastid, mitochondria, and peroxisomes to optimize seedling growth. FRONTIERS IN PLANT SCIENCE 2023; 14:1182105. [PMID: 37868318 PMCID: PMC10588648 DOI: 10.3389/fpls.2023.1182105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023]
Abstract
In this work, we studied castor-oil plant Ricinus communis as a classical system for endosperm reserve breakdown. The seeds of castor beans consist of a centrally located embryo with the two thin cotyledons surrounded by the endosperm. The endosperm functions as major storage tissue and is packed with nutritional reserves, such as oil, proteins, and starch. Upon germination, mobilization of the storage reserves requires inter-organellar interplay of plastids, mitochondria, and peroxisomes to optimize growth for the developing seedling. To understand their metabolic interactions, we performed a large-scale organellar proteomic study on castor bean endosperm. Organelles from endosperm of etiolated seedlings were isolated and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Computer-assisted deconvolution algorithms were applied to reliably assign the identified proteins to their correct subcellular localization and to determine the abundance of the different organelles in the heterogeneous protein samples. The data obtained were used to build a comprehensive metabolic model for plastids, mitochondria, and peroxisomes during storage reserve mobilization in castor bean endosperm.
Collapse
Affiliation(s)
- Thomas J. Wrobel
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum (BMFZ), Universitätsklinikum, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum (BMFZ), Universitätsklinikum, Düsseldorf, Germany
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| | - Nicole Linka
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
39
|
Barker EI, Rabbi F, Brisbourne WA, Aparato VPM, Escarrega Valenzuela V, Renzaglia KS, Suh DY. Genome-wide analysis of the GDSL esterase/lipase family genes in Physcomitrium patens and the involvement of GELP31 in spore germination. Mol Genet Genomics 2023; 298:1155-1172. [PMID: 37338594 DOI: 10.1007/s00438-023-02041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
In plants, the ability to produce hydrophobic substances that would provide protection from dehydration was required for the transition to land. This genome-wide investigation outlines the evolution of GDSL-type esterase/lipase (GELP) proteins in the moss Physcomitrium patens and suggests possible functions of some genes. GELP proteins play roles in the formation of hydrophobic polymers such as cutin and suberin that protect against dehydration and pathogen attack. GELP proteins are also implicated in processes such as pollen development and seed metabolism and germination. The P. patens GELP gene family comprises 48 genes and 14 pseudogenes. Phylogenetic analysis of all P. patens GELP sequences along with vascular plant GELP proteins with reported functions revealed that the P. patens genes clustered within previously identified A, B and C clades. A duplication model predicting the expansion of the GELP gene family within the P. patens lineage was constructed. Expression analysis combined with phylogenetic analysis suggested candidate genes for functions such as defence against pathogens, cutin metabolism, spore development and spore germination. The presence of relatively fewer GELP genes in P. patens may reduce the occurrence of functional redundancy that complicates the characterization of vascular plant GELP genes. Knockout lines of GELP31, which is highly expressed in sporophytes, were constructed. Gelp31 spores contained amorphous oil bodies and germinated late, suggesting (a) role(s) of GELP31 in lipid metabolism in spore development or germination. Future knockout studies of other candidate GELP genes will further elucidate the relationship between expansion of the family and the ability to withstand the harsh land environment.
Collapse
Affiliation(s)
- Elizabeth I Barker
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada.
| | - Fazle Rabbi
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Wyllie A Brisbourne
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Vincent P M Aparato
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Karen S Renzaglia
- Department of Plant Biology, Southern Illinois University, Carbondale, IL, USA
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada.
| |
Collapse
|
40
|
Xing X, Cao C, Li S, Wang H, Xu Z, Qi Y, Tong F, Jiang H, Wang X. α-naphthaleneacetic acid positively regulates soybean seed germination and seedling establishment by increasing antioxidant capacity, triacylglycerol mobilization and sucrose transport under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107890. [PMID: 37454467 DOI: 10.1016/j.plaphy.2023.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Drought stress is an important constraint for the germination of soybean (Glycine max [L.] Merr.) seeds and seedling establishment. A pot experiment was conducted to determine the effects of priming soybean seeds with 5 μM α-naphthaleneacetic acid (NAA) and the mechanism responsible for the induced tolerance of drought stress (soil relative water content of 55%). NAA priming inhibited drought-induced oxidative damage in seeds, and further analysis indicated that it induced an early spike in hydrogen peroxide content by the upregulation of abscisic acid-dependent GmRbohC2, resulting in an enhancement of antioxidant capacity. Moreover, NAA priming also improved the hydrolysis of triacylglycerol (TAG) to sucrose in stressed cotyledons by causing a 2- to 5-fold increase in the transcript levels of GmSDP1, GmACX2, GmMFP2, GmICL, GmMLS, GmGLI1, GmPCK1, GmFBPase1, GmSPS1 and GmSPS2. Consistently, it upregulated the expression levels of GmSUT1, GmCWINV1 and GmMST2 under drought stress, thus enhancing the transport of sucrose from cotyledons to embryonic axes, providing carbon skeletons and energy for axis growth. The seed germination percentage increased by 208.1% at 21 h after sowing, and seedling establishment percentage increased by 47.8% at 14 days after sowing. Collectively, the positive effects of NAA priming on seed germination and seedling establishment can be attributed to enhanced antioxidant ability in seeds, TAG mobilization in cotyledons and sucrose transport from cotyledons to embryonic axes under drought stress.
Collapse
Affiliation(s)
- Xinghua Xing
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Chunxin Cao
- Jinhua Academy of Agricultural Sciences, Jinhua, 321017, China
| | - Simeng Li
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Haorang Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Zejun Xu
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Yujun Qi
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Fei Tong
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Haidong Jiang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China.
| |
Collapse
|
41
|
Klińska-Bąchor S, Kędzierska S, Demski K, Banaś A. Phospholipid:diacylglycerol acyltransferase1-overexpression stimulates lipid turnover, oil production and fitness in cold-grown plants. BMC PLANT BIOLOGY 2023; 23:370. [PMID: 37491206 PMCID: PMC10369929 DOI: 10.1186/s12870-023-04379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Extensive population growth and climate change accelerate the search for alternative ways of plant-based biomass, biofuel and feed production. Here, we focus on hitherto unknow, new promising cold-stimulated function of phospholipid:diacylglycerol acyltransferase1 (PDAT1) - an enzyme catalyzing the last step of triacylglycerol (TAG) biosynthesis. RESULT Overexpression of AtPDAT1 boosted seed yield by 160% in Arabidopsis plants exposed to long-term cold compared to standard conditions. Such seeds increased both their weight and acyl-lipids content. This work also elucidates PDAT1's role in leaves, which was previously unclear. Aerial parts of AtPDAT1-overexpressing plants were characterized by accelerated growth at early and vegetative stages of development and by biomass weighing three times more than control. Overexpression of PDAT1 increased the expression of SUGAR-DEPENDENT1 (SDP1) TAG lipase and enhanced lipid remodeling, driving lipid turnover and influencing biomass increment. This effect was especially pronounced in cold conditions, where the elevated synergistic expression of PDAT1 and SDP1 resulted in double biomass increase compared to standard conditions. Elevated phospholipid remodeling also enhanced autophagy flux in AtPDAT1-overexpresing lines subjected to cold, despite the overall diminished autophagy intensity in cold conditions. CONCLUSIONS Our data suggest that PDAT1 promotes greater vitality in cold-exposed plants, stimulates their longevity and boosts oilseed oil production at low temperature.
Collapse
Affiliation(s)
- Sylwia Klińska-Bąchor
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland.
| | - Sara Kędzierska
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland
| | - Kamil Demski
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Box 190, 234 22, Sweden
| | - Antoni Banaś
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, 80-307, Poland
| |
Collapse
|
42
|
Traver MS, Bartel B. The ubiquitin-protein ligase MIEL1 localizes to peroxisomes to promote seedling oleosin degradation and lipid droplet mobilization. Proc Natl Acad Sci U S A 2023; 120:e2304870120. [PMID: 37410814 PMCID: PMC10629534 DOI: 10.1073/pnas.2304870120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid droplets are organelles conserved across eukaryotes that store and release neutral lipids to regulate energy homeostasis. In oilseed plants, fats stored in seed lipid droplets provide fixed carbon for seedling growth before photosynthesis begins. As fatty acids released from lipid droplet triacylglycerol are catabolized in peroxisomes, lipid droplet coat proteins are ubiquitinated, extracted, and degraded. In Arabidopsis seeds, the predominant lipid droplet coat protein is OLEOSIN1 (OLE1). To identify genes modulating lipid droplet dynamics, we mutagenized a line expressing mNeonGreen-tagged OLE1 expressed from the OLE1 promoter and isolated mutants with delayed oleosin degradation. From this screen, we identified four miel1 mutant alleles. MIEL1 (MYB30-interacting E3 ligase 1) targets specific MYB transcription factors for degradation during hormone and pathogen responses [D. Marino et al., Nat. Commun. 4, 1476 (2013); H. G. Lee and P. J. Seo, Nat. Commun. 7, 12525 (2016)] but had not been implicated in lipid droplet dynamics. OLE1 transcript levels were unchanged in miel1 mutants, indicating that MIEL1 modulates oleosin levels posttranscriptionally. When overexpressed, fluorescently tagged MIEL1 reduced oleosin levels, causing very large lipid droplets. Unexpectedly, fluorescently tagged MIEL1 localized to peroxisomes. Our data suggest that MIEL1 ubiquitinates peroxisome-proximal seed oleosins, targeting them for degradation during seedling lipid mobilization. The human MIEL1 homolog (PIRH2; p53-induced protein with a RING-H2 domain) targets p53 and other proteins for degradation and promotes tumorigenesis [A. Daks et al., Cells 11, 1515 (2022)]. When expressed in Arabidopsis, human PIRH2 also localized to peroxisomes, hinting at a previously unexplored role for PIRH2 in lipid catabolism and peroxisome biology in mammals.
Collapse
Affiliation(s)
- Melissa S. Traver
- Department of Biosciences, Biochemistry and Cell Biology Program, Rice University, Houston, TX77005
| | - Bonnie Bartel
- Department of Biosciences, Biochemistry and Cell Biology Program, Rice University, Houston, TX77005
| |
Collapse
|
43
|
Chen M, Zhang Y, Du Z, Kong X, Zhu X. Integrative Metabolic and Transcriptomic Profiling in Camellia oleifera and Camellia meiocarpa Uncover Potential Mechanisms That Govern Triacylglycerol Degradation during Seed Desiccation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2591. [PMID: 37514206 PMCID: PMC10385360 DOI: 10.3390/plants12142591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Camellia seed oil is a top-end quality of cooking oil in China. The oil quality and quantity are formed during seed maturation and desiccation. So far, it remains largely unresolved whether lipid degradation occurs and contributes to Camellia oil traits. In this study, three different Camellia germplasms, C. oleifera cv. Min 43 (M43), C. meiocarpa var. Qingguo (QG), and C. meiocarpa cv Hongguo (HG) were selected, their seed oil contents and compositions were quantified across different stages of seed desiccation. We found that at the late stage of desiccation, M43 and QG lost a significant portion of seed oil, while such an event was not observed in HG. To explore the molecular bases for the oil loss In M43, the transcriptomic profiling of M43 and HG was performed at the early and the late seed desiccation, respectively, and differentially expressed genes (DEGs) from the lipid metabolic pathway were identified and analyzed. Our data demonstrated that different Camellia species have diverse mechanisms to regulate seed oil accumulation and degradation, and that triacylglycerol-to-terpenoid conversion could account for the oil loss in M43 during late seed desiccation.
Collapse
Affiliation(s)
- Mingjie Chen
- International Joint Laboratory of Biology and High Value Utilization of Camellia oleifera in Henan Province, College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhenghua Du
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China
| | - Xiaofang Zhu
- Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| |
Collapse
|
44
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
45
|
Bouchnak I, Coulon D, Salis V, D’Andréa S, Bréhélin C. Lipid droplets are versatile organelles involved in plant development and plant response to environmental changes. FRONTIERS IN PLANT SCIENCE 2023; 14:1193905. [PMID: 37426978 PMCID: PMC10327486 DOI: 10.3389/fpls.2023.1193905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
Since decades plant lipid droplets (LDs) are described as storage organelles accumulated in seeds to provide energy for seedling growth after germination. Indeed, LDs are the site of accumulation for neutral lipids, predominantly triacylglycerols (TAGs), one of the most energy-dense molecules, and sterol esters. Such organelles are present in the whole plant kingdom, from microalgae to perennial trees, and can probably be found in all plant tissues. Several studies over the past decade have revealed that LDs are not merely simple energy storage compartments, but also dynamic structures involved in diverse cellular processes like membrane remodeling, regulation of energy homeostasis and stress responses. In this review, we aim to highlight the functions of LDs in plant development and response to environmental changes. In particular, we tackle the fate and roles of LDs during the plant post-stress recovery phase.
Collapse
Affiliation(s)
- Imen Bouchnak
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Denis Coulon
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| | - Vincent Salis
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sabine D’Andréa
- Université Paris-Saclay, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Claire Bréhélin
- Centre National de la Recherche Scientifique (CNRS), University of Bordeaux, Laboratoire de Biogenèse Membranaire UMR5200, Villenave d’Ornon, France
| |
Collapse
|
46
|
Zhan Y, Wu T, Zhao X, Wang J, Guo S, Chen S, Qu S, Zheng Z. Genome-wide identification and expression of monoacylglycerol lipase (MAGL) gene family in peanut (Arachis hypogaea L.) and functional analysis of AhMGATs in neutral lipid metabolism. Int J Biol Macromol 2023; 243:125300. [PMID: 37315669 DOI: 10.1016/j.ijbiomac.2023.125300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Monoacylglycerol lipase (MAGL) involved in regulating plant growth and development and stress responses, hydrolyzes monoacylglycerol (MAG) into free fatty acid and glycerol, which is the last step of triacylglycerol (TAG) breakdown. Here, a genome-wide characterization of MAGL gene family from cultivated peanut (Arachis hypogaea L.) was performed. In total, 24 MAGL genes were identified and unevenly distributed on 14 chromosomes, encoding 229-414 amino acids with molecular weights ranging from 25.91 to 47.01 kDa. Spatiotemporal and stress-induced expression was analyzed by qRT-PCR. Multiple sequence alignment revealed that AhMAGL1a/b and AhMAGL3a/b were the only four bifunctional enzymes with conserved regions of hydrolase and acyltransferase, which could also be named as AhMGATs. GUS histochemical assay showed that AhMAGL1a and -1b were strongly expressed in all tissues of the plants; whereas both AhMAGL3a and -3b were weakly expressed in plants. Subcellular localization analysis indicated that AhMGATs were localized in the endoplasmic reticulum and/or Golgi complex. Seed-specific overexpression of AhMGATs in Arabidopsis decreased the oil content of the seeds and altered the fatty acid compositions, indicating that AhMGATs were involved in TAG breakdown but not TAG biosynthesis in plant seeds. This study lays the foundation for better understanding AhMAGL genes biological function in planta.
Collapse
Affiliation(s)
- Yihua Zhan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China.
| | - Tingting Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Xuan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Jing Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Shixian Guo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Shutong Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Shengtao Qu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Zhifu Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| |
Collapse
|
47
|
Rehmani MS, Xian B, Wei S, He J, Feng Z, Huang H, Shu K. Seedling establishment: The neglected trait in the seed longevity field. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107765. [PMID: 37209453 DOI: 10.1016/j.plaphy.2023.107765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Seed longevity is a central actor in plant germplasm resource conservation, species reproduction, geographical distribution, crop yield and quality and food processing and safety. Seed longevity and vigor decrease gradually during storage, which directly influences seed germination and post-germination seedling establishment. It is noted that seedling establishment is a key shift from heterotropism to autotropism and is fueled by the energy reserved in the seeds per se. Numerous studies have demonstrated that expedited catabolism of triacylglycerols, fatty acid and sugars during seed storage is closely related to seed longevity. Storage of farm-saved seeds of elite cultivars for use in subsequent years is a common practice and it is recognized that aged seed (especially those stored under less-than-ideal conditions) can lead to poor seed germination, but the significance of poor seedling establishment as a separate factor capable of influencing crop yield has been overlooked. This review article summarizes the relationship between seed germination and seedling establishment and the effect of different seed reserves on seed longevity. Based on this, we emphasize the importance of simultaneous scoring of seedling establishment and germination percentage from aged seeds and discuss the reasons.
Collapse
Affiliation(s)
- Muhammad Saad Rehmani
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - BaoShan Xian
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shaowei Wei
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China
| | - Juan He
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhenxin Feng
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China
| | - He Huang
- School of Astronautics, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Kai Shu
- School of Environment and Ecology, Northwestern Polytechnical University, Xi'an, 710129, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
48
|
Yu L, Shen W, Fan J, Sah SK, Mavraganis I, Wang L, Gao P, Gao J, Zheng Q, Meesapyodsuk D, Yang H, Li Q, Zou J, Xu C. A chloroplast diacylglycerol lipase modulates glycerolipid pathway balance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37006186 DOI: 10.1111/tpj.16228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Two parallel pathways compartmentalized in the chloroplast and the endoplasmic reticulum contribute to thylakoid lipid synthesis in plants, but how these two pathways are coordinated during thylakoid biogenesis and remodeling remains unknown. We report here the molecular characterization of a homologous ADIPOSE TRIGLYCERIDE LIPASE-LIKE gene, previously referred to as ATGLL. The ATGLL gene is ubiquitously expressed throughout development and rapidly upregulated in response to a wide range of environmental cues. We show that ATGLL is a chloroplast non-regioselective lipase with a hydrolytic activity preferentially towards 16:0 of diacylglycerol (DAG). Comprehensive lipid profiling and radiotracer labeling studies revealed a negative correlation of ATGLL expression and the relative contribution of the chloroplast lipid pathway to thylakoid lipid biosynthesis. Additionally, we show that genetic manipulation of ATGLL expression resulted in changes in triacylglycerol levels in leaves. We propose that ATGLL, through affecting the level of prokaryotic DAG in the chloroplast, plays important roles in balancing the two glycerolipid pathways and in maintaining lipid homeostasis in plants.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shanxi, China
| | - Wenyun Shen
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Ioannis Mavraganis
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Liping Wang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Peng Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jie Gao
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qian Zheng
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Dauenpen Meesapyodsuk
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Hui Yang
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Qiang Li
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Jitao Zou
- National Research Council Canada-Aquatic and Crop Resource Development Research Centre, 110 Gymnasium Place, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
49
|
Korte P, Unzner A, Damm T, Berger S, Krischke M, Mueller MJ. High triacylglycerol turnover is required for efficient opening of stomata during heat stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36976526 DOI: 10.1111/tpj.16210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/04/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.
Collapse
Affiliation(s)
- Pamela Korte
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Amelie Unzner
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Theresa Damm
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Susanne Berger
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Martin J Mueller
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute of Biosciences, Biocenter, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
50
|
Murison V, Hérault J, Schoefs B, Marchand J, Ulmann L. Bioinformatics-Based Screening Approach for the Identification and Characterization of Lipolytic Enzymes from the Marine Diatom Phaeodactylum tricornutum. Mar Drugs 2023; 21:md21020125. [PMID: 36827166 PMCID: PMC9964374 DOI: 10.3390/md21020125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Oleaginous diatoms accumulate lipids of biotechnological interest when exposed to nutrient stress conditions such as nitrogen starvation. While accumulation mechanisms are well-known and have been engineered to improve lipid production, degradation mechanisms remain poorly investigated in diatoms. Identifying lipid-degrading enzymes is the initial step to understanding the catabolic processes. In this study, an in silico screening of the genome of Phaeodactylum tricornutum led to the identification of 57 putative triacylglycerol lipases (EC 3.1.1.3) grouped in 4 families. Further analysis revealed the presence of conserved domains and catalytic residues of lipases. Physico-chemical characteristics and subcellular localization predictions highlighted that a majority of these putative proteins are hydrophilic and cytosolic, suggesting they could be recruited to lipid droplets directly from the cytosol. Among the 57 identified putative proteins, three lipases were identified as possibly involved in lipophagy due to a potential vacuolar localization. The expression of the mRNA corresponding to the 57 proteins was then searched in 3 transcriptomic datasets obtained under nitrogen starvation. Nine genes were highly regulated and were considered as encoding enzymes with a probable important function in lipid catabolism. A tertiary structure prediction of these nine candidates yielded eight functional 3D models. Among those, two downregulated enzymes, Phatr3_J54974 and Phatr3_EG00720, were highlighted as good targets for future functional genomics and purification studies to investigate their role in lipid degradation.
Collapse
Affiliation(s)
- Victor Murison
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Josiane Hérault
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
| | - Benoît Schoefs
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Justine Marchand
- BiOSSE, Biology of Organisms: Stress, Health, Environment, UFR Sciences et Techniques, Le Mans Université, F-72085 Le Mans, France
| | - Lionel Ulmann
- BiOSSE, Biology of Organisms: Stress, Health, Environment, Département Génie Biologique, Institut Universitaire de Technologie, Le Mans Université, F-53020 Laval, France
- Correspondence:
| |
Collapse
|