1
|
Veitia RA, Cowles JD, Caburet S. Reclassifying NOBOX variants in primary ovarian insufficiency cases with a corrected gene model and a novel quantitative framework. Hum Reprod 2025:deaf058. [PMID: 40246288 DOI: 10.1093/humrep/deaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/19/2025] [Indexed: 04/19/2025] Open
Abstract
STUDY QUESTION How updated expression and genomic data combined with a disease/disorder-specific classification system can be used to correct a gene model for a better evaluation of the pathogenicity of variants found in patients? SUMMARY ANSWER By combining available genomic and transcriptomic data from several species and a quantitative classification framework with primary ovarian insufficiency (POI)-adjusted parameters, we correct the human NOBOX (newborn ovary homeobox) gene model and provide a reclassification of variants previously reported in POI cases. WHAT IS KNOWN ALREADY The NOBOX gene, encoding a gonad-specific transcription factor with a crucial role in early folliculogenesis and considered a major gene involved in POI, is currently described as being expressed as four transcripts, the longest one considered canonical. All the variants identified in POI cases have been evaluated according to this canonical transcript, and the various functional tests have been performed using the corresponding predicted protein. STUDY DESIGN, SIZE, DURATION We refined and corrected the NOBOX gene model using available genomic and RNAseq data in human and 16 other mammalian species. Expression data were selected for tissue specificity, strand specificity, and coverage. The analysis of RNAseq data from different ovarian fetal stages allows for a time-course description of NOBOX isoforms. Literature was scanned to retrieve NOBOX variants reported in POI cases, and NOBOX variants present in ClinVar and GnomAD 4 databases were also retrieved. PARTICIPANTS/MATERIALS, SETTING, METHODS Strand-specific RNAseq data from human fetal ovaries and human adult testes were analysed to infer the correct human NOBOX gene isoforms. The conservation of the gene structure was verified by combining the aligned genomic sequences from 17 mammalian species covering a wide phylogenetic range and the relevant RNAseq data. As changing a gene model implies a reclassification of variants, we set up a quantitative framework with updated variant frequencies from GnomAD4 and POI-adjusted parameters following the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. Using this framework, we reclassified 44 NOBOX variants reported in POI patients and families, 117 NOBOX variants reported in ClinVar, and 2613 NOBOX variants present in GnomAD4. MAIN RESULTS AND THE ROLE OF CHANCE The corrected NOBOX gene model proposes the invalidation of two transcripts, including the canonical one. The two correct isoforms were present in fetal ovarian samples, and only one was detected in adult testes. Only 14 variants remained as possibly causative for POI. Furthermore, this re-evaluation strongly suggests that NOBOX biallelic variants are the most likely cause of POI. LARGE SCALE DATA Large tables are provided as supplementary data sets on the Zenodo repository. LIMITATIONS, REASONS FOR CAUTION The proposed gene model is robust but relies on available transcriptomic data covering a range of time points and tissues. Our scoring system was manually adjusted and other laboratories can implement it with different parameters. WIDER IMPLICATIONS OF THE FINDINGS For the NOBOX variants that cannot be considered pathogenic or causative anymore, the genome/exome sequencing data of the corresponding patients should be reanalysed. Furthermore, the functional studies performed using the obsolete coding sequence should be reconsidered. The corrected gene model should be taken into account when evaluating novel NOBOX variants identified in POI patients. Our results highlight the importance of the careful assessment of the most updated expression data for validating a gene model, enabling a correct evaluation of the pathogenicity of variants found in patients. The proposed quantitative framework developed here can be used for the classification of variants in other genes underlying POI. Furthermore, the global approach based on quantitatively adjusting the ACMG/AMP guidelines could be extended to other inherited pathologies. STUDY FUNDING/COMPETING INTEREST(S) This project was not funded. All the authors have no conflict of interest to disclose.
Collapse
Affiliation(s)
- Reiner A Veitia
- Department of Life Sciences, Université Paris Cité, CNRS, Institut Jacques Monod, CNRS UMR7592, Paris, France
- Department of Life Sciences, Université Paris Saclay, Gif-sur-Yvette, France
- Institut de Biologie François Jacob, CEA, Fontenay aux Roses, France
| | - Jamie D Cowles
- Department of Life Sciences, Université Paris Cité, CNRS, Institut Jacques Monod, CNRS UMR7592, Paris, France
| | - Sandrine Caburet
- Department of Life Sciences, Université Paris Cité, CNRS, Institut Jacques Monod, CNRS UMR7592, Paris, France
| |
Collapse
|
2
|
Zhang P, Wang Y, Jiang G, Zhang Y, Chen Y, Peng Y, Chen Z, Bai M. c.640-814T>C mutation in deep intronic region of alpha-galactosidase A gene is associated with Fabry disease via dominant-negative effect. Gene 2025; 936:149127. [PMID: 39613053 DOI: 10.1016/j.gene.2024.149127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Fabry disease (FD) is a lysosomal storage disorder resulting from mutations in the alpha-galactosidase A (GLA) gene, characterized by pain, skin lesions, renal failure, and cardiac disease. A 60-year-old proband was hospitalized for recurrent atrial fibrillation (AF) that was unresponsive to medication, with cardiac magnetic resonance imaging (CMRI) revealing left ventricular wall hypertrophy and fat infiltration. Whole-exome sequencing (WES) did not reveal any suspicious pathogenic variants. To further assess the diagnosis, endomyocardial biopsy (EMB) and electron microscopy were performed, revealing abundant zebra bodies in cardiomyocytes, consistent with FD. The diagnosis was ultimately confirmed by GLA enzyme activity analysis (<1.00). Further genetic investigations identified a deep intronic variant (c.640-814T>C) within the GLA gene. Minigene experiments demonstrated that this variant affected the splicing of GLA, resulting in the production of a truncated protein (p.Pro214SerfsTer10). Western blotting (WB) showed that the truncated protein was retained, while immunofluorescence (IF) analysis indicated partial lysosomal localization. In vitro assays confirmed that the retained protein was non-functional and exerted a dominant-negative effect on the normal GLA protein. Molecular docking analysis further revealed that the truncated protein could bind to the wild GLA monomer, significantly reducing cellular GLA enzyme activity. These findings indicate that, beyond being non-functional, the c.640-814T>C mutation may also exerts a dominant-negative effect that impairs the function of the wild GLA protein. These results highlight the importance of recognizing deep intronic mutations in the diagnosis and treatment of FD, contributing to a deeper understanding of the molecular mechanisms, enriching mutation databases, and providing insights into genotype-phenotype correlations.
Collapse
Affiliation(s)
- Piyi Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China; Heart Center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiang Wang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Provincial Clinical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Gaxue Jiang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yiming Zhang
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China; Heart Center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin Chen
- Department of Pathology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yu Peng
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Provincial Clinical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zixian Chen
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ming Bai
- The First Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China; Heart Center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Provincial Clinical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Lee ES, Smith HW, Wang YE, Ihn SS, Scalize de Oliveira L, Kejiou NS, Liang YL, Nabeel-Shah S, Jomphe RY, Pu S, Greenblatt JF, Palazzo AF. N-6-methyladenosine (m6A) promotes the nuclear retention of mRNAs with intact 5' splice site motifs. Life Sci Alliance 2025; 8:e202403142. [PMID: 39626965 PMCID: PMC11629677 DOI: 10.26508/lsa.202403142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
In humans, misprocessed mRNAs containing intact 5' Splice Site (5'SS) motifs are nuclear retained and targeted for decay by ZFC3H1, a component of the Poly(A) Exosome Targeting complex, and U1-70K, a component of the U1 snRNP. In S. pombe, the ZFC3H1 homolog, Red1, binds to the YTH domain-containing protein Mmi1 and targets certain RNA transcripts to nuclear foci for nuclear retention and decay. Here we show that YTHDC1 and YTHDC2, two YTH domain-containing proteins that bind to N-6-methyladenosine (m6A) modified RNAs, interact with ZFC3H1 and U1-70K, and are required for the nuclear retention of mRNAs with intact 5'SS motifs. Disruption of m6A deposition inhibits both the nuclear retention of these transcripts and their accumulation in YTHDC1-enriched foci that are adjacent to nuclear speckles. Endogenous RNAs with intact 5'SS motifs, such as intronic poly-adenylated transcripts, tend to be m6A-modified at low levels. Thus, the m6A modification acts on a conserved quality control mechanism that targets misprocessed mRNAs for nuclear retention and decay.
Collapse
Affiliation(s)
- Eliza S Lee
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Harrison W Smith
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sean Sj Ihn
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | - Nevraj S Kejiou
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Yijing L Liang
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Robert Y Jomphe
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Shuye Pu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | | |
Collapse
|
4
|
Baryshev M, Maksimova I, Sasoveca I. Epigenetic Reprogramming and Inheritance of the Cellular Differentiation Status Following Transient Expression of a Nonfunctional Dominant-Negative Retinoblastoma Mutant in Murine Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:10678. [PMID: 39409007 PMCID: PMC11476944 DOI: 10.3390/ijms251910678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The retinoblastoma gene product (Rb1), a master regulator of the cell cycle, plays a prominent role in cell differentiation. Previously, by analyzing the differentiation of cells transiently overexpressing the ΔS/N DN Rb1 mutant, we demonstrated that these cells fail to differentiate into mature adipocytes and that they constitutively silence Pparγ2 through CpG methylation. Here, we demonstrate that the consequences of the transient expression of ΔS/N DN Rb1 are accompanied by the retention of Cebpa promoter methylation near the TSS under adipogenic differentiation, thereby preventing its expression. The CGIs of the promoters of the Rb1, Ezh2, Mll4, Utx, and Tet2 genes, which are essential for adipogenic differentiation, have an unmethylated status regardless of the cell differentiation state. Moreover, Dnmt3a, a de novo DNA methyltransferase, is overexpressed in undifferentiated ΔS/N cells compared with wild-type cells and, in addition to Dnmt1, Dnmt3a is significantly upregulated by adipogenic stimuli in both wild-type and ΔS/N cells. Notably, the chromatin modifier Ezh2, which is also involved in epigenetic reprogramming, is highly induced in ΔS/N cells. Overall, we demonstrate that two major genes, Pparγ2 and Cebpa, which are responsible for terminal adipocyte differentiation, are selectively epigenetically reprogrammed to constitutively silent states. We hypothesize that the activation of Dnmt3a, Rb1, and Ezh2 observed in ΔS/N cells may be a consequence of a stress response caused by the accumulation and malfunctioning of Rb1-interacting complexes for the epigenetic reprogramming of Pparγ2/Cebpa and prevention of adipogenesis in an inappropriate cellular context. The failure of ΔS/N cells to differentiate and express Pparγ2 and Cebpa in culture following the expression of the DN Rb1 mutant may indicate the creation of epigenetic memory for new reprogrammed epigenetic states of genes.
Collapse
Affiliation(s)
- Mikhail Baryshev
- Institute of Microbiology and Virology, Riga Stradins University, Ratsupites 5, LV-1067 Riga, Latvia; (I.M.); (I.S.)
| | | | | |
Collapse
|
5
|
Delisle SV, Labreche C, Lara-Márquez M, Abou-Hamad J, Garland B, Lamarche-Vane N, Sabourin LA. Expression of a kinase inactive SLK is embryonic lethal and impairs cell migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119783. [PMID: 38871226 DOI: 10.1016/j.bbamcr.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Kinases are known to have kinase activity independent functions. To gain further insights into potential kinase-independent functions of SLK/STK2, we have developed a kinase-dead allele, SLKK63R using in vivo CRISPR/Cas technology. Our studies show that blastocysts homozygote for SLKK63R do not develop into viable mice. However, heterozygotes are viable and fertile with no overt phenotypes. Analyses of mouse embryonic fibroblasts show that expression of SLKK63R results in a 50% decrease in kinase activity in heterozygotes. In contrast to previous studies, our data show that SLK does not form homodimers and that the kinase defective allele does not act in a dominant negative fashion. Expression of SLKK63R leads to altered Rac1 and RhoA activity, increased stress fiber formation and delayed focal adhesion turnover. Our data support a previously observed role for SLK in cell migration and suggest that at least 50% kinase activity is sufficient for embryonic development.
Collapse
Affiliation(s)
- Samuel V Delisle
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Cedrik Labreche
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mónica Lara-Márquez
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - John Abou-Hamad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brennan Garland
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Badonyi M, Marsh JA. Proteome-scale prediction of molecular mechanisms underlying dominant genetic diseases. PLoS One 2024; 19:e0307312. [PMID: 39172982 PMCID: PMC11341024 DOI: 10.1371/journal.pone.0307312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024] Open
Abstract
Many dominant genetic disorders result from protein-altering mutations, acting primarily through dominant-negative (DN), gain-of-function (GOF), and loss-of-function (LOF) mechanisms. Deciphering the mechanisms by which dominant diseases exert their effects is often experimentally challenging and resource intensive, but is essential for developing appropriate therapeutic approaches. Diseases that arise via a LOF mechanism are more amenable to be treated by conventional gene therapy, whereas DN and GOF mechanisms may require gene editing or targeting by small molecules. Moreover, pathogenic missense mutations that act via DN and GOF mechanisms are more difficult to identify than those that act via LOF using nearly all currently available variant effect predictors. Here, we introduce a tripartite statistical model made up of support vector machine binary classifiers trained to predict whether human protein coding genes are likely to be associated with DN, GOF, or LOF molecular disease mechanisms. We test the utility of the predictions by examining biologically and clinically meaningful properties known to be associated with the mechanisms. Our results strongly support that the models are able to generalise on unseen data and offer insight into the functional attributes of proteins associated with different mechanisms. We hope that our predictions will serve as a springboard for researchers studying novel variants and those of uncertain clinical significance, guiding variant interpretation strategies and experimental characterisation. Predictions for the human UniProt reference proteome are available at https://osf.io/z4dcp/.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Hountalas JE, Lumba S. Mixing and matching SMXL proteins to fine-tune strigolactone responses. MOLECULAR PLANT 2024; 17:1167-1169. [PMID: 38898655 DOI: 10.1016/j.molp.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Jenna E Hountalas
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
8
|
Alary B, Cintas P, Claude C, Dellis O, Thèze C, Van Goethem C, Cossée M, Krahn M, Delague V, Bartoli M. Store-operated calcium entry dysfunction in CRAC channelopathy: Insights from a novel STIM1 mutation. Clin Immunol 2024; 265:110306. [PMID: 38977117 DOI: 10.1016/j.clim.2024.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Store-operated calcium entry (SOCE) plays a crucial role in maintaining cellular calcium homeostasis. This mechanism involves proteins, such as stromal interaction molecule 1 (STIM1) and ORAI1. Mutations in the genes encoding these proteins, especially STIM1, can lead to various diseases, including CRAC channelopathies associated with severe combined immunodeficiency. Herein, we describe a novel homozygous mutation, NM_003156 c.792-3C > G, in STIM1 in a patient with a clinical profile of CRAC channelopathy, including immune system deficiencies and muscle weakness. Functional analyses revealed three distinct spliced forms in the patient cells: wild-type, exon 7 skipping, and intronic retention. Calcium influx analysis revealed impaired SOCE in the patient cells, indicating a loss of STIM1 function. We developed an antisense oligonucleotide treatment that improves STIM1 splicing and highlighted its potential as a therapeutic approach. Our findings provide insights into the complex effects of STIM1 mutations and shed light on the multifaceted clinical presentation of the patient.
Collapse
Affiliation(s)
| | - Pascal Cintas
- Centre de Référence Maladies Rares Neuromusculaire, CHU Toulouse, Toulouse, France
| | | | | | - Corinne Thèze
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France
| | | | - Mireille Cossée
- Laboratoire de Génétique Moléculaire, CHU Montpellier, Montpellier, France; PhyMedExp (Physiologie et Médecine Expérimentale du Cœur et des Muscles), Université de Montpellier, Inserm U1046, CNRS UMR9214, Montpellier, France
| | - Martin Krahn
- Aix Marseille Univ, INSERM, MMG, U1251 Marseille, France; Département de Génétique Médicale, Hôpital Timone Enfants, APHM, Marseille, France
| | | | - Marc Bartoli
- Aix Marseille Univ, INSERM, MMG, U1251 Marseille, France; CNRS, Marseille, France
| |
Collapse
|
9
|
Liu Y, Zong X, Cao W, Zhang W, Zhang N, Yang N. Gene Therapy for Retinitis Pigmentosa: Current Challenges and New Progress. Biomolecules 2024; 14:903. [PMID: 39199291 PMCID: PMC11352491 DOI: 10.3390/biom14080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Retinitis pigmentosa (RP) poses a significant threat to eye health worldwide, with prevalence rates of 1 in 5000 worldwide. This genetically diverse retinopathy is characterized by the loss of photoreceptor cells and atrophy of the retinal pigment epithelium. Despite the involvement of more than 3000 mutations across approximately 90 genes in its onset, finding an effective treatment has been challenging for a considerable time. However, advancements in scientific research, especially in gene therapy, are significantly expanding treatment options for this most prevalent inherited eye disease, with the discovery of new compounds, gene-editing techniques, and gene loci offering hope for more effective treatments. Gene therapy, a promising technology, utilizes viral or non-viral vectors to correct genetic defects by either replacing or silencing disease-causing genes, potentially leading to complete recovery. In this review, we primarily focus on the latest applications of gene editing research in RP. We delve into the most prevalent genes associated with RP and discuss advancements in genome-editing strategies currently employed to correct various disease-causing mutations.
Collapse
Affiliation(s)
| | | | | | | | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan 430060, China; (Y.L.); (X.Z.); (W.C.); (W.Z.)
| |
Collapse
|
10
|
Calderan C, Sorrentino U, Persano L, Trevisson E, Sartori G, Salviati L, Desbats MA. A yeast based assay establishes the pathogenicity of novel missense ACTA2 variants associated with aortic aneurysms. Eur J Hum Genet 2024; 32:804-812. [PMID: 38486025 PMCID: PMC11219741 DOI: 10.1038/s41431-024-01591-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 07/04/2024] Open
Abstract
The ACTA2 gene codes for alpha-smooth muscle actin, a critical component of the contractile apparatus of the vascular smooth muscle cells. Autosomal dominant variants in the ACTA2 gene have been associated to familial non-syndromic thoracic aortic aneurysm/dissection (TAAD). They are thought to act through a dominant-negative mechanism. These variants display incomplete penetrance and variable expressivity, complicating the validation of ACTA2 variants pathogenicity by family segregation studies. In this study, we developed a yeast based assay to test putative TAAD-associated ACTA2 variants. We identified five new heterozygous ACTA2 missense variants in TAAD patients through next generation sequencing. We decided to test their pathogenicity in Saccharomyces cerevisiae, since yeast actin is very similar to human alpha-smooth muscle actin, and the residues at which the TAAD-associated variants occur in ACTA2 are well conserved. A wild type yeast strain was transformed with a vector expressing the different mutant alleles, to model the heterozygous condition of patients. Then, we evaluated yeast growth by spot test and cytoskeletal and mitochondrial morphology by fluorescence microscopy. We found that mutant yeast strains displayed only mild growth defects but a significant increase in the percentage of cells with abnormal mitochondrial distribution and abnormal organization of the actin cytoskeleton compared to controls. All variants appeared to interfere with the activity of wild type actin in yeast, suggesting a dominant-negative pathogenic mechanism. Our results demonstrate the utility of using the yeast actin model system to validate the pathogenicity of TAAD-associated ACTA2 variants.
Collapse
Affiliation(s)
- Cristina Calderan
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Luca Persano
- Pediatric Oncohematology Laboratory, Department of Women's and Children's Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
- CIR-Myo Myology Center, University of Padua, Padua, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, and Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy.
| |
Collapse
|
11
|
Gariballa N, Mohamed F, Badawi S, Ali BR. The double whammy of ER-retention and dominant-negative effects in numerous autosomal dominant diseases: significance in disease mechanisms and therapy. J Biomed Sci 2024; 31:64. [PMID: 38937821 PMCID: PMC11210014 DOI: 10.1186/s12929-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The endoplasmic reticulum (ER) employs stringent quality control mechanisms to ensure the integrity of protein folding, allowing only properly folded, processed and assembled proteins to exit the ER and reach their functional destinations. Mutant proteins unable to attain their correct tertiary conformation or form complexes with their partners are retained in the ER and subsequently degraded through ER-associated protein degradation (ERAD) and associated mechanisms. ER retention contributes to a spectrum of monogenic diseases with diverse modes of inheritance and molecular mechanisms. In autosomal dominant diseases, when mutant proteins get retained in the ER, they can interact with their wild-type counterparts. This interaction may lead to the formation of mixed dimers or aberrant complexes, disrupting their normal trafficking and function in a dominant-negative manner. The combination of ER retention and dominant-negative effects has been frequently documented to cause a significant loss of functional proteins, thereby exacerbating disease severity. This review aims to examine existing literature and provide insights into the impact of dominant-negative effects exerted by mutant proteins retained in the ER in a range of autosomal dominant diseases including skeletal and connective tissue disorders, vascular disorders, neurological disorders, eye disorders and serpinopathies. Most crucially, we aim to emphasize the importance of this area of research, offering substantial potential for understanding the factors influencing phenotypic variability associated with genetic variants. Furthermore, we highlight current and prospective therapeutic approaches targeted at ameliorating the effects of mutations exhibiting dominant-negative effects. These approaches encompass experimental studies exploring treatments and their translation into clinical practice.
Collapse
Affiliation(s)
- Nesrin Gariballa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Feda Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box: 15551, Al-Ain, United Arab Emirates.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
12
|
Kuo ME, Parish M, Jonatzke KE, Antonellis A. Comprehensive assessment of recessive, pathogenic AARS1 alleles in a humanized yeast model reveals loss-of-function and dominant-negative effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599900. [PMID: 38979321 PMCID: PMC11230197 DOI: 10.1101/2024.06.20.599900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alanyl-tRNA synthetase 1 (AARS1) encodes the enzyme that ligates tRNA molecules to alanine in the cytoplasm, which is required for protein translation. Variants in AARS1 have been implicated in early-onset, multi-system recessive phenotypes and in later-onset dominant peripheral neuropathy; to date, no single variant has been associated with both dominant and recessive diseases raising questions about shared mechanisms between the two inheritance patterns. AARS1 variants associated with recessive disease are predicted to result in null or hypomorphic alleles and this has been demonstrated, in part, via yeast complementation assays. However, pathogenic alleles have not been assessed in a side-by-side manner to carefully scrutinize the strengths and limitations of this model system. To address this, we employed a humanized yeast model to evaluate the functional consequences of all AARS1 missense variants reported in recessive disease. The majority of variants showed variable loss-of-function effects, ranging from no growth to significantly reduced growth. These data deem yeast a reliable model to test the functional consequences of human AARS1 variants; however, our data indicate that this model is prone to false-negative results and is not informative for genotype-phenotype studies. We next tested missense variants associated with no growth for dominant-negative effects. Interestingly, K81T AARS1, a variant implicated in recessive disease, demonstrated loss-of-function and dominant-negative effects, indicating that certain AARS1 variants may be capable of causing both dominant and recessive disease phenotypes.
Collapse
Affiliation(s)
- Molly E. Kuo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Maclaine Parish
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kira E. Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Xu Z, Sadleir L, Goel H, Jiao X, Niu Y, Zhou Z, de Valles-Ibáñez G, Poke G, Hildebrand M, Lieffering N, Qin J, Yang Z. Genotype and phenotype correlation of PHACTR1-related neurological disorders. J Med Genet 2024; 61:536-542. [PMID: 38272663 DOI: 10.1136/jmg-2023-109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND PHACTR1 (phosphatase and actin regulators) plays a key role in cortical migration and synaptic activity by binding and regulating G-actin and PPP1CA. This study aimed to expand the genotype and phenotype of patients with de novo variants in PHACTR1 and analyse the impact of variants on protein-protein interaction. METHODS We identified seven patients with PHACTR1 variants by trio-based whole-exome sequencing. Additional two subjects were ascertained from two centres through GeneMatcher. The genotype-phenotype correlation was determined, and AlphaFold-Multimer was used to predict protein-protein interactions and interfaces. RESULTS Eight individuals carried missense variants and one had CNV in the PHACTR1. Infantile epileptic spasms syndrome (IESS) was the unifying phenotype in eight patients with missense variants of PHACTR1. They could present with other types of seizures and often exhibit drug-resistant epilepsy with a poor prognosis. One patient with CNV displayed a developmental encephalopathy phenotype. Using AlphaFold-Multimer, our findings indicate that PHACTR1 and G-actin-binding sequences overlap with PPP1CA at the RPEL3 domain, which suggests possible competition between PPP1CA and G-actin for binding to PHACTR1 through a similar polymerisation interface. In addition, patients carrying missense variants located at the PHACTR1-PPP1CA or PHACTR1-G-actin interfaces consistently exhibit the IESS phenotype. These missense variants are mostly concentrated in the overlapping sequence (RPEL3 domain). CONCLUSIONS Patients with variants in PHACTR1 can have a phenotype of developmental encephalopathy in addition to IESS. Moreover, our study confirmed that the variants affect the binding of PHACTR1 to G-actin or PPP1CA, resulting in neurological disorders in patients.
Collapse
Affiliation(s)
- Zhao Xu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Himanshu Goel
- Hunter Genetics, Waratah, New South Wales, Australia
| | - Xianru Jiao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Yue Niu
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zongpu Zhou
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Guillem de Valles-Ibáñez
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Gemma Poke
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Michael Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
- Neuroscience Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, South Brisbane, Queensland, Australia
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington, New Zealand
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
- Epilepsy Center, Peking University People's Hospital, Beijing, China
| |
Collapse
|
14
|
Raimondeau P, Ksouda S, Marande W, Fuchs AL, Gryta H, Theron A, Puyoou A, Dupin J, Cheptou PO, Vautrin S, Valière S, Manzi S, Baali-Cherif D, Chave J, Christin PA, Besnard G. A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae. Curr Biol 2024; 34:1977-1986.e8. [PMID: 38626764 DOI: 10.1016/j.cub.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France; Yale Institute of Biospheric Studies, New Haven, CT 06520, USA
| | - Sayam Ksouda
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Anne-Laure Fuchs
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Hervé Gryta
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Anthony Theron
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Aurore Puyoou
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Julia Dupin
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pierre-Olivier Cheptou
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, EPHE, IRD, 34293 Montpellier, France
| | - Sonia Vautrin
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Sophie Manzi
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Djamel Baali-Cherif
- Laboratoire de Recherche sur les Zones Arides, USTHB/ENSA, 16000 Alger, Algeria
| | - Jérôme Chave
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
15
|
Webster NB, Meyer NP. Capitella teleta gets left out: possible evolutionary shift causes loss of left tissues rather than increased neural tissue from dominant-negative BMPR1. Neural Dev 2024; 19:4. [PMID: 38698415 PMCID: PMC11067212 DOI: 10.1186/s13064-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.
Collapse
Affiliation(s)
- Nicole B Webster
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
- Biology Department, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|
16
|
Cisneros AF, Nielly-Thibault L, Mallik S, Levy ED, Landry CR. Mutational biases favor complexity increases in protein interaction networks after gene duplication. Mol Syst Biol 2024; 20:549-572. [PMID: 38499674 PMCID: PMC11066126 DOI: 10.1038/s44320-024-00030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Biological systems can gain complexity over time. While some of these transitions are likely driven by natural selection, the extent to which they occur without providing an adaptive benefit is unknown. At the molecular level, one example is heteromeric complexes replacing homomeric ones following gene duplication. Here, we build a biophysical model and simulate the evolution of homodimers and heterodimers following gene duplication using distributions of mutational effects inferred from available protein structures. We keep the specific activity of each dimer identical, so their concentrations drift neutrally without new functions. We show that for more than 60% of tested dimer structures, the relative concentration of the heteromer increases over time due to mutational biases that favor the heterodimer. However, allowing mutational effects on synthesis rates and differences in the specific activity of homo- and heterodimers can limit or reverse the observed bias toward heterodimers. Our results show that the accumulation of more complex protein quaternary structures is likely under neutral evolution, and that natural selection would be needed to reverse this tendency.
Collapse
Affiliation(s)
- Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Lou Nielly-Thibault
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| | - Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada.
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada.
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada.
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
| |
Collapse
|
17
|
Bernardini A, Tora L. Co-translational Assembly Pathways of Nuclear Multiprotein Complexes Involved in the Regulation of Gene Transcription. J Mol Biol 2024; 436:168382. [PMID: 38061625 DOI: 10.1016/j.jmb.2023.168382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Most factors that regulate gene transcription in eukaryotic cells are multimeric, often large, protein complexes. The understanding of the biogenesis pathways of such large and heterogeneous protein assemblies, as well as the dimerization partner choice among transcription factors, is crucial to interpret and control gene expression programs and consequent cell fate decisions. Co-translational assembly (Co-TA) is thought to play key roles in the biogenesis of protein complexes by directing complex formation during protein synthesis. In this review we discuss the principles of Co-TA with a special focus for the assembly of transcription regulatory complexes. We outline the expected molecular advantages of establishing co-translational interactions, pointing at the available, or missing, evidence for each of them. We hypothesize different molecular mechanisms based on Co-TA to explain the allocation "dilemma" of paralog proteins and subunits shared by different transcription complexes. By taking as a paradigm the different assembly pathways employed by three related transcription regulatory complexes (TFIID, SAGA and ATAC), we discuss alternative Co-TA strategies for nuclear multiprotein complexes and the widespread - yet specific - use of Co-TA for the formation of nuclear complexes involved in gene transcription. Ultimately, we outlined a series of open questions which demand well-defined lines of research to investigate the principles of gene regulation that rely on the coordinated assembly of protein complexes.
Collapse
Affiliation(s)
- Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
18
|
Veitia RA. Dominant negative variants and cotranslational assembly of macromolecular complexes. Bioessays 2023; 45:e2300105. [PMID: 37551714 DOI: 10.1002/bies.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Pathogenic variants occurring in protein-coding regions underlie human genetic disease through various mechanisms. They can lead to a loss of function (LOF) such as in recessive conditions or in dominant conditions due to haploinsufficiency. Dominant-negative (DN) effects, counteracting the activity of the normal gene-product, and gain of function (GOF) are also mechanisms driving dominance. Here, I discuss a few papers on these specific mechanisms. In short, there is accumulating evidence pointing to differences between LOF versus non-LOF variants (DN and GOF). The latter are thought to have milder effects on protein structure and, as expected, DN variants are enriched at protein interfaces. This tendency to cluster in 3D space can help improve the ability of computational tools to predict the pathogenicity of DN variants, which is currently a challenging issue. More recent results support the hypothesis whereby cotranslational assembly of macromolecular complexes can buffer deleterious consequences of variants that would otherwise lead to DN effects (DNEs). Indeed, subunits the variants of which are responsible for DNEs tend to elude cotranslational assembly, thus poisoning complexes involving wild-type subunits. The constraints explaining why the buffering of DNEs is not universal require further investigation.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
- Université Paris-Saclay, Saclay, France
- Institut de Biologie François Jacob, CEA, Fontenay aux Roses, France
| |
Collapse
|
19
|
Lin TY, Wu PL, Kang EYC, Chi YC, Jenny LA, Lin PH, Lee CY, Liu CH, Liu L, Yeh LK, Chen KJ, Hwang YS, Wu WC, Lai CC, Hsiao MC, Liu PK, Wang NK. Clinical Characteristics and Genetic Variants in Taiwanese Patients With PROM1-Related Inherited Retinal Disorders. Invest Ophthalmol Vis Sci 2023; 64:25. [PMID: 37975849 PMCID: PMC10664721 DOI: 10.1167/iovs.64.14.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose This study investigated the clinical characteristics of patients with PROM1-related inherited retinal diseases (IRDs). Methods Patients diagnosed with IRDs who had mutations in PROM1 were identified at Linkou Chang Gung Memorial Hospital and Kaohsiung Medical University Hospital in Taiwan. Information on clinical characteristics and best-corrected visual acuity was recorded. Color fundus (CF) images, fundus autofluorescence photography (FAF), spectral-domain optical coherence tomography (SD-OCT), and electroretinograms (ERGs) were analyzed to examine patient phenotypes. PROM1 variants were detected using whole exome sequencing and verified by Sanger sequencing. Results Fourteen patients from nine families with PROM1-related IRDs were analyzed. Most patients exhibited chorioretinal atrophy in the macular area, with or without extramacular involvement on CF. Similarly, hypo-autofluorescence confined to the macular area, with or without extramacular involvement, was present for most patients on FAF. Furthermore, SD-OCT revealed outer retinal tubulations and focal or diffuse retinal thinning. ERGs showed variable findings, including maculopathy with normal ERG, subnormal cone response, and extinguished rod and cone responses. We detected five variants of the PROM1 gene, including c.139del, c.794del, c.1238T>A, c.2110C>T, and c.1117C>T. Conclusions In this study, we evaluated 14 Taiwanese patients with five PROM1 variants. Additionally, incomplete penetrance of heterozygous PROM1 variants was observed. Furthermore, patients with autosomal dominant PROM1 variants had lesions in the macular area and the peripheral region of the retina. SD-OCT serves as a useful tool for early detection of PROM1-related IRDs, as it captures certain signs of such diseases.
Collapse
Affiliation(s)
- Tzu-Yi Lin
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Liang Wu
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
| | - Eugene Yu-Chuan Kang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Laura A. Jenny
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
- Department of Ophthalmology, National Taiwan University Yunlin Branch, Yunlin, Taiwan
| | - Chia-Ying Lee
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chun-Hsiu Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Laura Liu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Lung-Kun Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Kuan-Jen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yih-Shiou Hwang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Wei-Chi Wu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chi-Chun Lai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Meng-Chang Hsiao
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Pei-Kang Liu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Nan-Kai Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, New York, United States
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| |
Collapse
|
20
|
LaPolice TM, Huang YF. An unsupervised deep learning framework for predicting human essential genes from population and functional genomic data. BMC Bioinformatics 2023; 24:347. [PMID: 37723435 PMCID: PMC10506225 DOI: 10.1186/s12859-023-05481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The ability to accurately predict essential genes intolerant to loss-of-function (LOF) mutations can dramatically improve the identification of disease-associated genes. Recently, there have been numerous computational methods developed to predict human essential genes from population genomic data. While the existing methods are highly predictive of essential genes of long length, they have limited power in pinpointing short essential genes due to the sparsity of polymorphisms in the human genome. RESULTS Motivated by the premise that population and functional genomic data may provide complementary evidence for gene essentiality, here we present an evolution-based deep learning model, DeepLOF, to predict essential genes in an unsupervised manner. Unlike previous population genetic methods, DeepLOF utilizes a novel deep learning framework to integrate both population and functional genomic data, allowing us to pinpoint short essential genes that can hardly be predicted from population genomic data alone. Compared with previous methods, DeepLOF shows unmatched performance in predicting ClinGen haploinsufficient genes, mouse essential genes, and essential genes in human cell lines. Notably, at a false positive rate of 5%, DeepLOF detects 50% more ClinGen haploinsufficient genes than previous methods. Furthermore, DeepLOF discovers 109 novel essential genes that are too short to be identified by previous methods. CONCLUSION The predictive power of DeepLOF shows that it is a compelling computational method to aid in the discovery of essential genes.
Collapse
Affiliation(s)
- Troy M LaPolice
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
- Bioinformatics and Genomics Graduate Program, Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
21
|
Ferrero E, Di Gregorio E, Ferrero M, Ortolan E, Moon YA, Di Campli A, Pavinato L, Mancini C, Tripathy D, Manes M, Hoxha E, Costanzi C, Pozzi E, Rossi Sebastiano M, Mitro N, Tempia F, Caruso D, Borroni B, Basso M, Sallese M, Brusco A. Spinocerebellar ataxia 38: structure-function analysis shows ELOVL5 G230V is proteotoxic, conformationally altered and a mutational hotspot. Hum Genet 2023; 142:1055-1076. [PMID: 37199746 PMCID: PMC10449689 DOI: 10.1007/s00439-023-02572-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.
Collapse
Affiliation(s)
- Enza Ferrero
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Eleonora Di Gregorio
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy
| | - Marta Ferrero
- Experimental Zooprophylactic Institute of Piedmont, Liguria and Aosta Valley, Turin, Italy
| | - Erika Ortolan
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Antonella Di Campli
- Institute of Protein Biochemistry, Italian National Research Council, Naples, Italy
- Department of Innovative Technologies in Medicine and Dentistry, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, Rome, Italy
| | - Debasmita Tripathy
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Marta Manes
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | | | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano and Department of Neuroscience, University of Torino, Turin, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Sallese
- Centre for Advanced Studies and Technology, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy.
- Unit of Medical Genetics, Città della Salute e Della Scienza Hospital, Turin, Italy.
| |
Collapse
|
22
|
Badonyi M, Marsh JA. Buffering of genetic dominance by allele-specific protein complex assembly. SCIENCE ADVANCES 2023; 9:eadf9845. [PMID: 37256959 PMCID: PMC10413657 DOI: 10.1126/sciadv.adf9845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Protein complex assembly often occurs while subunits are being translated, resulting in complexes whose subunits were translated from the same mRNA in an allele-specific manner. It has thus been hypothesized that such cotranslational assembly may counter the assembly-mediated dominant-negative effect, whereby co-assembly of mutant and wild-type subunits "poisons" complex activity. Here, we show that cotranslationally assembling subunits are much less likely to be associated with autosomal dominant relative to recessive disorders, and that subunits with dominant-negative disease mutations are significantly depleted in cotranslational assembly compared to those associated with loss-of-function mutations. We also find that complexes with known dominant-negative effects tend to expose their interfaces late during translation, lessening the likelihood of cotranslational assembly. Finally, by combining complex properties with other features, we trained a computational model for predicting proteins likely to be associated with non-loss-of-function disease mechanisms, which we believe will be of considerable utility for protein variant interpretation.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
23
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
24
|
Morales-Polanco F, Lee JH, Barbosa NM, Frydman J. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes. Annu Rev Biomed Data Sci 2022; 5:67-94. [PMID: 35472290 PMCID: PMC11040709 DOI: 10.1146/annurev-biodatasci-121721-095858] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
Collapse
Affiliation(s)
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Natália M Barbosa
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA;
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
25
|
Loss-of-function, gain-of-function and dominant-negative mutations have profoundly different effects on protein structure. Nat Commun 2022; 13:3895. [PMID: 35794153 PMCID: PMC9259657 DOI: 10.1038/s41467-022-31686-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
Most known pathogenic mutations occur in protein-coding regions of DNA and change the way proteins are made. Taking protein structure into account has therefore provided great insight into the molecular mechanisms underlying human genetic disease. While there has been much focus on how mutations can disrupt protein structure and thus cause a loss of function (LOF), alternative mechanisms, specifically dominant-negative (DN) and gain-of-function (GOF) effects, are less understood. Here, we investigate the protein-level effects of pathogenic missense mutations associated with different molecular mechanisms. We observe striking differences between recessive vs dominant, and LOF vs non-LOF mutations, with dominant, non-LOF disease mutations having much milder effects on protein structure, and DN mutations being highly enriched at protein interfaces. We also find that nearly all computational variant effect predictors, even those based solely on sequence conservation, underperform on non-LOF mutations. However, we do show that non-LOF mutations could potentially be identified by their tendency to cluster in three-dimensional space. Overall, our work suggests that many pathogenic mutations that act via DN and GOF mechanisms are likely being missed by current variant prioritisation strategies, but that there is considerable scope to improve computational predictions through consideration of molecular disease mechanisms. Most known pathogenic mutations occur in protein-coding regions of DNA and change the way proteins are made. Here the authors analyse the locations of thousands of human disease mutations and their predicted effects on protein structure and show that,while loss-of-function mutations tend to be highly disruptive, non-loss-of-function mutations are in general much milder at a protein structural level.
Collapse
|
26
|
Zhou N, Qi H, Liu J, Zhang G, Liu J, Liu N, Zhu M, Zhao X, Song C, Zhou Z, Gong J, Li R, Bai X, Jin Y, Song Y, Yin Y. Deubiquitinase OTUD3 regulates metabolism homeostasis in response to nutritional stresses. Cell Metab 2022; 34:1023-1041.e8. [PMID: 35675826 DOI: 10.1016/j.cmet.2022.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
The ovarian-tumor-domain-containing deubiquitinases (OTUDs) block ubiquitin-dependent protein degradation and are involved in diverse signaling pathways. We discovered a rare OTUD3 c.863G>A mutation in a family with an early age of onset of diabetes. This mutation reduces the stability and catalytic activity of OTUD3. We next constructed an experiment with Otud3-/- mice and found that they developed worse obesity, dyslipidemia, and insulin resistance than wild-type mice when challenged with a high-fat diet (HFD). We further found that glucose and fatty acids stimulate CREB-binding-protein-dependent OTUD3 acetylation, promoting its nuclear translocation, where OTUD3 regulates various genes involved in glucose and lipid metabolism and oxidative phosphorylation by stabilizing peroxisome-proliferator-activated receptor delta (PPARδ). Moreover, targeting PPARδ using a specific agonist can partially rescue the phenotype of HFD-fed Otud3-/- mice. We propose that OTUD3 is an important regulator of energy metabolism and that the OTUD3 c.863G>A is associated with obesity and a higher risk of diabetes.
Collapse
Affiliation(s)
- Na Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hailong Qi
- Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ning Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minglu Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chang Song
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ridong Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinyu Bai
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250021, China; Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
27
|
Lee ES, Smith HW, Wolf EJ, Guvenek A, Wang YE, Emili A, Tian B, Palazzo AF. ZFC3H1 and U1-70K promote the nuclear retention of mRNAs with 5' splice site motifs within nuclear speckles. RNA (NEW YORK, N.Y.) 2022; 28:878-894. [PMID: 35351812 PMCID: PMC9074902 DOI: 10.1261/rna.079104.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/12/2022] [Indexed: 05/22/2023]
Abstract
Quality control of mRNA represents an important regulatory mechanism for gene expression in eukaryotes. One component of this quality control is the nuclear retention and decay of misprocessed RNAs. Previously, we demonstrated that mature mRNAs containing a 5' splice site (5'SS) motif, which is typically found in misprocessed RNAs such as intronic polyadenylated (IPA) transcripts, are nuclear retained and degraded. Using high-throughput sequencing of cellular fractions, we now demonstrate that IPA transcripts require the zinc finger protein ZFC3H1 for their nuclear retention and degradation. Using reporter mRNAs, we demonstrate that ZFC3H1 promotes the nuclear retention of mRNAs with intact 5'SS motifs by sequestering them into nuclear speckles. Furthermore, we find that U1-70K, a component of the spliceosomal U1 snRNP, is also required for the nuclear retention of these reporter mRNAs and likely functions in the same pathway as ZFC3H1. Finally, we show that the disassembly of nuclear speckles impairs the nuclear retention of reporter mRNAs with 5'SS motifs. Our results highlight a splicing independent role of U1 snRNP and indicate that it works in conjunction with ZFC3H1 in preventing the nuclear export of misprocessed mRNAs by sequestering them into nuclear speckles.
Collapse
Affiliation(s)
- Eliza S Lee
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Harrison W Smith
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Eric J Wolf
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Aysegul Guvenek
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Ontario M5S 1A8, Canada
| | - Andrew Emili
- Department of Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Bin Tian
- Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
28
|
Backwell L, Marsh JA. Diverse Molecular Mechanisms Underlying Pathogenic Protein Mutations: Beyond the Loss-of-Function Paradigm. Annu Rev Genomics Hum Genet 2022; 23:475-498. [PMID: 35395171 DOI: 10.1146/annurev-genom-111221-103208] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most known disease-causing mutations occur in protein-coding regions of DNA. While some of these involve a loss of protein function (e.g., through premature stop codons or missense changes that destabilize protein folding), many act via alternative molecular mechanisms and have dominant-negative or gain-of-function effects. In nearly all cases, these non-loss-of-function mutations can be understood by considering interactions of the wild-type and mutant protein with other molecules, such as proteins, nucleic acids, or small ligands and substrates. Here, we review the diverse molecular mechanisms by which pathogenic mutations can have non-loss-of-function effects, including by disrupting interactions, increasing binding affinity, changing binding specificity, causing assembly-mediated dominant-negative and dominant-positive effects, creating novel interactions, and promoting aggregation and phase separation. We believe that increased awareness of these diverse molecular disease mechanisms will lead to improved diagnosis (and ultimately treatment) of human genetic disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Backwell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
29
|
McCann AJ, Lou J, Moustaqil M, Graus MS, Blum A, Fontaine F, Liu H, Luu W, Rudolffi-Soto P, Koopman P, Sierecki E, Gambin Y, Meunier FA, Liu Z, Hinde E, Francois M. A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity. Nucleic Acids Res 2021; 49:10931-10955. [PMID: 34570228 PMCID: PMC8565327 DOI: 10.1093/nar/gkab820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.
Collapse
Affiliation(s)
- Alex J McCann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jieqiong Lou
- School of Physics, Department of Biochemistry and Molecular Biology, Bio21, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Matthew S Graus
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, The Centenary Institute, Newtown, Sydney, NSW 2006, Australia
| | - Ailisa Blum
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frank Fontaine
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hui Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Winnie Luu
- The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, The Centenary Institute, Newtown, Sydney, NSW 2006, Australia
| | - Paulina Rudolffi-Soto
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW 1466, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Elizabeth Hinde
- School of Physics, Department of Biochemistry and Molecular Biology, Bio21, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathias Francois
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,The David Richmond Laboratory for Cardio-Vascular Development: gene regulation and editing, The Centenary Institute, Newtown, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
30
|
Marks KA, Fernandes MF, Diaguarachchige De Silva KH, Tomczewski MV, Stark KD, Duncan RE. Characterization of a novel FADS2 transcript variant: implications for D6D activity regulation in cells. Biochem Cell Biol 2021; 99:725-734. [PMID: 34738827 DOI: 10.1139/bcb-2020-0538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Delta-6-desaturase (D6D) activity is deficient in MCF-7 and other cancer cell lines, but it is not explained by FADS2 gene mutations. This deficient activity was not ameliorated by induction of the FADS2 gene; therefore, we hypothesized that some of the induced FADS2 transcript variants (tv) may play a negative regulatory role. FADS2_tv1 is the reference FADS2 tv, coding for full-length D6D isoform 1 (D6D-iso1), and alternative transcriptional start sites result in FADS2_tv2 and FADS2_tv3 variants encoding D6D-iso2 and D6D-iso3 isoforms, respectively, which lack the catalytically critical N-terminal domain. In MCF-7 cells, FADS2_tv2 and FADS2_tv3 were expressed at significantly higher levels than FADS2_tv1. Overexpression of FADS2_tv2 in HEK293 cells confirmed that D6D-iso2 is non-functional, and co-transfection demonstrated a dominant-negative role for D6D-iso2 in D6D-iso1 activity regulation. FADS2_tv2 was expressed at higher levels than FADS2_tv1 in HeLa, MDA-MB-435, MCF-10 A, and HT-29 cells, but at lower levels in A549, MDA-MB-231, and LNCaP cells. Overexpression studies indicated roles for FADS2 variants in proliferation and apoptosis regulation, which were also cell-line specific. Increased FADS2_tv2 expression provides a new mechanism to help explain deficient D6D activity in MCF-7 and other cancer cell lines, but it is not a hallmark of malignant cells.
Collapse
Affiliation(s)
- Kristin A Marks
- University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Maria F Fernandes
- University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Kalsha H Diaguarachchige De Silva
- University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Michelle V Tomczewski
- University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ken D Stark
- University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Robin E Duncan
- University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.,University of Waterloo, Faculty of Applied Health Sciences, Department of Kinesiology, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
31
|
Xie C, Habif JC, Uytingco CR, Ukhanov K, Zhang L, de Celis C, Sheffield VC, Martens JR. Gene therapy rescues olfactory perception in a clinically relevant ciliopathy model of Bardet-Biedl syndrome. FASEB J 2021; 35:e21766. [PMID: 34383976 DOI: 10.1096/fj.202100627r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/11/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear. Using a clinically relevant knock-in mouse model homozygous for Bbs1M390R, we investigated the impact of the mutation on the olfactory system and tested the potential of viral-mediated, wildtype gene replacement therapy to rescue smell loss. The cilia of olfactory sensory neurons (OSNs) in Bbs1M390R/M390R mice were significantly shorter and fewer than those of wild-type mice. Also, both peripheral cellular odor detection and synaptic-dependent activity in the olfactory bulb were significantly decreased in the mutant mice. Furthermore, to gain insight into the degree to which perceptual features are impaired in the mutant mice, we used whole-body plethysmography to quantitatively measure odor-evoked sniffing. The Bbs1M390R/M390R mice showed significantly higher odor detection thresholds (reduced odor sensitivity) compared to wild-type mice; however, their odor discrimination acuity was still well maintained. Importantly, adenoviral expression of Bbs1 in OSNs restored cilia length and re-established both peripheral odorant detection and odor perception. Together, our findings further expand our understanding for the development of gene therapeutic treatment for congenital ciliopathies in the olfactory system.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Julien C Habif
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Carlos de Celis
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Val C Sheffield
- Division of Medical Genetics and Genomics, Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,Department of Ophthalmology and Vision Research, University of Iowa, Iowa City, IA, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.,Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
32
|
Shirasawa K, Sasaki K, Hirakawa H, Isobe S. Genomic region associated with pod color variation in pea (Pisum sativum). G3 (BETHESDA, MD.) 2021; 11:jkab081. [PMID: 33720317 PMCID: PMC8104947 DOI: 10.1093/g3journal/jkab081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/08/2021] [Indexed: 01/08/2023]
Abstract
Pea (Pisum sativum) was chosen as the research material by Gregor Mendel to discover the laws of inheritance. Out of seven traits studied by Mendel, genes controlling three traits including pod shape, pod color, and flower position have not been identified to date. With the aim of identifying the genomic region controlling pod color, we determined the genome sequence of a pea line with yellow pods. Genome sequence reads obtained using a Nanopore sequencing technology were assembled into 117,981 contigs (3.3 Gb), with an N50 value of 51.2 kb. A total of 531,242 potential protein-coding genes were predicted, of which 519,349 (2.8 Gb) were located within repetitive sequences (2.8 Gb). The assembled sequences were ordered using a reference as a guide to build pseudomolecules. Subsequent genetic and association analyses led to the identification of a genomic region that controls pea pod color. DNA sequences at this genomic location and transcriptome profiles of green and yellow pod lines were analyzed, and genes encoding 3' exoribonucleases were selected as potential candidates controlling pod color. The results presented in this study are expected to accelerate pan-genome studies in pea and facilitate the identification of the gene controlling one of the traits studied by Mendel.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuhiro Sasaki
- Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agricultural and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0001, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
33
|
Abstract
In life's constant battle for survival, it takes one to kill but two to conquer. Toxin-antitoxin or toxin-antidote (TA) elements are genetic dyads that cheat the laws of inheritance to guarantee their transmission to the next generation. This seemingly simple genetic arrangement—a toxin linked to its antidote—is capable of quickly spreading and persisting in natural populations. TA elements were first discovered in bacterial plasmids in the 1980s and have recently been characterized in fungi, plants, and animals, where they underlie genetic incompatibilities and sterility in crosses between wild isolates. In this review, we provide a unified view of TA elements in both prokaryotic and eukaryotic organisms and highlight their similarities and differences at the evolutionary, genetic, and molecular levels. Finally, we propose several scenarios that could explain the paradox of the evolutionary origin of TA elements and argue that these elements may be key evolutionary players and that the full scope of their roles is only beginning to be uncovered.
Collapse
Affiliation(s)
- Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Eyal Ben-David
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University School of Medicine, Jerusalem 91120, Israel
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Palazzo AF, Kang YM. GC-content biases in protein-coding genes act as an "mRNA identity" feature for nuclear export. Bioessays 2020; 43:e2000197. [PMID: 33165929 DOI: 10.1002/bies.202000197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023]
Abstract
It has long been observed that human protein-coding genes have a particular distribution of GC-content: the 5' end of these genes has high GC-content while the 3' end has low GC-content. In 2012, it was proposed that this pattern of GC-content could act as an mRNA identity feature that would lead to it being better recognized by the cellular machinery to promote its nuclear export. In contrast, junk RNA, which largely lacks this feature, would be retained in the nucleus and targeted for decay. Now two recent papers have provided evidence that GC-content does promote the nuclear export of many mRNAs in human cells.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Yoon Mo Kang
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
35
|
Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell 2020; 183:1151-1161. [PMID: 33068526 DOI: 10.1016/j.cell.2020.09.047] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Transcriptome studies reveal pervasive transcription of complex genomes, such as those of mammals. Despite popular arguments for functionality of most, if not all, of these transcripts, genome-wide analysis of selective constraints indicates that most of the produced RNA are junk. However, junk is not garbage. On the contrary, junk transcripts provide the raw material for the evolution of diverse long non-coding (lnc) RNAs by non-adaptive mechanisms, such as constructive neutral evolution. The generation of many novel functional entities, such as lncRNAs, that fuels organismal complexity does not seem to be driven by strong positive selection. Rather, the weak selection regime that dominates the evolution of most multicellular eukaryotes provides ample material for functional innovation with relatively little adaptation involved.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
36
|
Báez-Becerra CT, Valencia-Rincón E, Velásquez-Méndez K, Ramírez-Suárez NJ, Guevara C, Sandoval-Hernandez A, Arboleda-Bustos CE, Olivos-Cisneros L, Gutiérrez-Ospina G, Arboleda H, Arboleda G. Nucleolar disruption, activation of P53 and premature senescence in POLR3A-mutated Wiedemann-Rautenstrauch syndrome fibroblasts. Mech Ageing Dev 2020; 192:111360. [PMID: 32976914 DOI: 10.1016/j.mad.2020.111360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Recently, mutations in the RNA polymerase III subunit A (POLR3A) have been described as the cause of the neonatal progeria or Wiedemann-Rautenstrauch syndrome (WRS). POLR3A has important roles in transcription regulation of small RNAs, including tRNA, 5S rRNA, and 7SK rRNA. We aim to describe the cellular and molecular features of WRS fibroblasts. Cultures of primary fibroblasts from one WRS patient [monoallelic POLR3A variant c.3772_3773delCT (p.Leu1258Glyfs*12)] and one control patient were cultured in vitro. The mutation caused a decrease in the expression of wildtype POLR3A mRNA and POLR3A protein and a sharp increase in mutant protein expression. In addition, there was an increase in the nuclear localization of the mutant protein. These changes were associated with an increase in the number and area of nucleoli and to a high increase in the expression of pP53 and pH2AX. All these changes were associated with premature senescence. The present observations add to our understanding of the differences between Hutchinson-Gilford progeria syndrome and WRS and opens new alternatives to study cell senesce and human aging.
Collapse
Affiliation(s)
- Cindy Tatiana Báez-Becerra
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Estefania Valencia-Rincón
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Karen Velásquez-Méndez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nelson J Ramírez-Suárez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Claudia Guevara
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adrian Sandoval-Hernandez
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos E Arboleda-Bustos
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Leonora Olivos-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Humberto Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Pediatría, Facultad de Medicina, Universidad Nacional de Colombia Bogotá, Colombia
| | - Gonzalo Arboleda
- Grupo de Neurociencias y Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
37
|
Ding N, Qin Q, Wu X, Miller R, Zaitlin D, Li D, Yang S. Antagonistic regulation of axillary bud outgrowth by the BRANCHED genes in tobacco. PLANT MOLECULAR BIOLOGY 2020; 103:185-196. [PMID: 32124178 DOI: 10.1007/s11103-020-00983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
As a key integrator of shoot branching, BRANCHED 1 (BRC1) coordinates and is orchestrated by endogenous and environmental signals involved in the regulation of axillary bud outgrowth. In the present study, we characterized the regulatory roles of five BRC gene members in tobacco (Nicotiana tabacum L.) using CRISPR site-directed mutagenesis and overexpression assays. It was shown that lateral branching was negatively regulated by NtBRC1A-1, 1B-1, and 1B-2, but was unexpectedly promoted by NtBRC2A. Suppression of bud growth may be attained by direct binding of NtBRCs to the Tassels Replace Upper Ears 1 (TRU1) genes. It was speculated that NtBRC2A probably confers a dominant negative effect by interfering with the branching-inhibitory BRC1 genes. Our results suggested that highly homologous gene family members may function antagonistically in the same signaling pathway. However, the molecular mechanism underlying NtBRC2A-mediated outgrowth of axillary buds needs to be further addressed. KEY MESSAGE: Axillary bud outgrowth in general is negatively regulated by the BRANCHED gene. Here we show that the BRANCHED genes play opposing regulatory roles in tobacco lateral branching.
Collapse
Affiliation(s)
- Na Ding
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Qiulin Qin
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Xia Wu
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Robert Miller
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Dandan Li
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
38
|
Wang R, Lammers M, Tikunov Y, Bovy AG, Angenent GC, de Maagd RA. The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110436. [PMID: 32234221 DOI: 10.1016/j.plantsci.2020.110436] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 05/02/2023]
Abstract
Tomato fruit ripening is regulated by transcription factors (TFs), their downstream effector genes, and the ethylene biosynthesis and signalling pathway. Spontaneous non-ripening mutants ripening inhibitor (rin), non-ripening (nor) and Colorless non-ripening (Cnr) correspond with mutations in or near the TF-encoding genes MADS-RIN, NAC-NOR and SPL-CNR, respectively. Here, we produced heterozygous single and double mutants of rin, nor and Cnr and evaluated their functions and genetic interactions in the same genetic background. We showed how these mutations interact at the level of phenotype, individual effector gene expression, and sensory and quality aspects, in a dose-dependent manner. Rin and nor have broadly similar quantitative effects on all aspects, demonstrating their additivity in fruit ripening regulation. We also found that the Cnr allele is epistatic to rin and nor and that its pleiotropic effects on fruit size and volatile production, in contrast to the well-known dominant effect on ripening, are incompletely dominant, or recessive.
Collapse
Affiliation(s)
- Rufang Wang
- Laboratory of Molecular Biology, Wageningen University, the Netherlands; Bioscience, Wageningen Plant Research, the Netherlands
| | | | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Arnaud G Bovy
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University, the Netherlands; Bioscience, Wageningen Plant Research, the Netherlands
| | | |
Collapse
|
39
|
Moustaqil M, Gambin Y, Sierecki E. Biophysical Techniques for Target Validation and Drug Discovery in Transcription-Targeted Therapy. Int J Mol Sci 2020; 21:E2301. [PMID: 32225120 PMCID: PMC7178067 DOI: 10.3390/ijms21072301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
In the post-genome era, pathologies become associated with specific gene expression profiles and defined molecular lesions can be identified. The traditional therapeutic strategy is to block the identified aberrant biochemical activity. However, an attractive alternative could aim at antagonizing key transcriptional events underlying the pathogenesis, thereby blocking the consequences of a disorder, irrespective of the original biochemical nature. This approach, called transcription therapy, is now rendered possible by major advances in biophysical technologies. In the last two decades, techniques have evolved to become key components of drug discovery platforms, within pharmaceutical companies as well as academic laboratories. This review outlines the current biophysical strategies for transcription manipulation and provides examples of successful applications. It also provides insights into the future development of biophysical methods in drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| | | | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, UNSW Sydney, NSW 2052, Australia;
| |
Collapse
|
40
|
Ali N, Gowrishankar J. Cross-subunit catalysis and a new phenomenon of recessive resurrection in Escherichia coli RNase E. Nucleic Acids Res 2020; 48:847-861. [PMID: 31802130 PMCID: PMC6954427 DOI: 10.1093/nar/gkz1152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5′-sensor pocket that renders enzyme activity maximal on 5′-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself (‘recessive resurrection’). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5′-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5′-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH’s endonucleolytic action.
Collapse
Affiliation(s)
- Nida Ali
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
41
|
Wang R, Angenent GC, Seymour G, de Maagd RA. Revisiting the Role of Master Regulators in Tomato Ripening. TRENDS IN PLANT SCIENCE 2020; 25:291-301. [PMID: 31926765 DOI: 10.1016/j.tplants.2019.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 05/19/2023]
Abstract
The study of transcriptional regulation of tomato ripening has been led by spontaneous mutations in transcription factor (TF) genes that completely inhibit normal ripening, suggesting that they are 'master regulators'. Studies using CRISPR/Cas9 mutagenesis to produce knockouts of the underlying genes indicate a different picture, suggesting that the regulation is more robust than previously thought. This requires us to revisit our model of the regulation of ripening and replace it with one involving a network of partially redundant components. At the same time, the fast rise of CRISPR/Cas mutagenesis, resulting in unexpectedly weak phenotypes, compared with knockdown technology, suggests that compensatory mechanisms may obscure protein functions. This emphasises the need for assessment of these mechanisms in plants and for the careful design of mutagenesis experiments.
Collapse
Affiliation(s)
- Rufang Wang
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands; Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Graham Seymour
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Ruud A de Maagd
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
42
|
Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics 2020; 10:3118-3137. [PMID: 32194858 PMCID: PMC7053192 DOI: 10.7150/thno.43298] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR-based genome editing holds immense potential to fix disease-causing mutations, however, must also handle substantial natural genetic variations between individuals. Previous studies have shown that mismatches between the single guide RNA (sgRNA) and genomic DNA may negatively impact sgRNA efficiencies and lead to imprecise specificity prediction. Hence, the genetic variations bring about a great challenge for designing platinum sgRNAs in large human populations. However, they also provide a promising entry for designing allele-specific sgRNAs for the treatment of each individual. The CRISPR system is rather specific, with the potential ability to discriminate between similar alleles, even based on a single nucleotide difference. Genetic variants contribute to the discrimination capabilities, once they generate a novel protospacer adjacent motif (PAM) site or locate in the seed region near an available PAM. Therefore, it can be leveraged to establish allele-specific targeting in numerous dominant human disorders, by selectively ablating the deleterious alleles. So far, allele-specific CRISPR has been increasingly implemented not only in treating dominantly inherited diseases, but also in research areas such as genome imprinting, haploinsufficiency, spatiotemporal loci imaging and immunocompatible manipulations. In this review, we will describe the working principles of allele-specific genome manipulations by virtue of expanding engineering tools of CRISPR. And then we will review new advances in the versatile applications of allele-specific CRISPR targeting in treating human genetic diseases, as well as in a series of other interesting research areas. Lastly, we will discuss their potential therapeutic utilities and considerations in the era of precision medicine.
Collapse
Affiliation(s)
- Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Yu Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
43
|
Bergendahl LT, Gerasimavicius L, Miles J, Macdonald L, Wells JN, Welburn JPI, Marsh JA. The role of protein complexes in human genetic disease. Protein Sci 2019; 28:1400-1411. [PMID: 31219644 DOI: 10.1002/pro.3667] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Many human genetic disorders are caused by mutations in protein-coding regions of DNA. Taking protein structure into account has therefore provided key insight into the molecular mechanisms underlying human genetic disease. Although most studies have focused on the intramolecular effects of mutations, the critical role of the assembly of proteins into complexes is being increasingly recognized. Here, we review multiple ways in which consideration of protein complexes can help us to understand and explain the effects of pathogenic mutations. First, we discuss disorders caused by mutations that perturb intersubunit interactions in homomeric and heteromeric complexes. Second, we address how protein complex assembly can facilitate a dominant-negative mechanism, whereby mutated subunits can disrupt the activity of wild-type protein. Third, we show how mutations that change protein expression levels can lead to damaging stoichiometric imbalances. Finally, we review how mutations affecting different subunits of the same heteromeric complex often cause similar diseases, whereas mutations in different interfaces of the same subunit can cause distinct phenotypes.
Collapse
Affiliation(s)
- L Therese Bergendahl
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jamilla Miles
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lewis Macdonald
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14850
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
44
|
Bioinformatic analysis suggests potential mechanisms underlying parasitoid venom evolution and function. Genomics 2019; 112:1096-1104. [PMID: 31247332 DOI: 10.1016/j.ygeno.2019.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 11/21/2022]
Abstract
Hymenopteran parasitoid wasps are a diverse collection of species that infect arthropod hosts and use factors found in their venoms to manipulate host immune responses, physiology, and behaviour. Whole parasitoid venoms have been profiled using proteomic approaches, and here we present a bioinformatic characterization of the venom protein content from Ganaspis sp. 1, a parasitoid that infects flies of the genus Drosophila. We find evidence that diverse evolutionary processes including multifunctionalization, co-option, gene duplication, and horizontal gene transfer may be acting in concert to drive venom gene evolution in Ganaspis sp.1. One major role of parasitoid wasp venom is host immune evasion. We previously demonstrated that Ganaspis sp. 1 venom inhibits immune cell activation in infected Drosophila melanogaster hosts, and our current analysis has uncovered additional predicted virulence functions. Overall, this analysis represents an important step towards understanding the composition and activity of parasitoid wasp venoms.
Collapse
|
45
|
Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. Int J Mol Sci 2019; 20:ijms20102542. [PMID: 31126147 PMCID: PMC6567127 DOI: 10.3390/ijms20102542] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Collapse
|
46
|
Schadzek P, Stahl Y, Preller M, Ngezahayo A. Analysis of the dominant mutation N188T of human connexin46 (hCx46) using concatenation and molecular dynamics simulation. FEBS Open Bio 2019; 9:840-850. [PMID: 31034164 PMCID: PMC6487695 DOI: 10.1002/2211-5463.12624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 11/27/2022] Open
Abstract
Connexins (Cx) are proteins that form cell-to-cell gap junction channels. A mutation at position 188 in the second extracellular loop (E2) domain of hCx46 has been linked to an autosomal dominant zonular pulverulent cataract. As it is dominantly inherited, it is possible that the mutant variant affects the co-expressed wild-type Cx and/or its interaction with other cellular components. Here, we proposed to use concatenated hCx46wt-hCx46N188T and hCx46N188T-hCx46wt to analyze how hCx46N188T affected co-expressed hCx46wt to achieve a dominant inheritance. Heterodimer hCx46wt-hCx46N188T formed fewer gap junction plaques compared to homodimer hCx46wt-hCx46wt, while the hCx46N188T-hCx46N188T homodimer formed almost no gap junction plaques. Dye uptake experiments showed that hemichannels of concatenated variants were similar to hemichannels of monomers. Molecular dynamics simulations revealed that for docking, the N188 of a protomer was engaged in hydrogen bonds (HBs) with R180, N189, and D191 of the counterpart protomer of the adjacent hemichannel. T188 suppressed the formation of HBs between protomers. Molecular dynamics simulations of an equimolar hCx46wt/hCx46N188T gap junction channel revealed a reduced number of HBs between protomers, suggesting reduction of gap junction channels between lens fibers co-expressing the variants.
Collapse
Affiliation(s)
- Patrik Schadzek
- Institute of Cell Biology and BiophysicsDepartment of Cell Physiology and BiophysicsLeibniz University HannoverGermany
| | - Yannick Stahl
- Institute of Cell Biology and BiophysicsDepartment of Cell Physiology and BiophysicsLeibniz University HannoverGermany
| | - Matthias Preller
- Institute for Biophysical ChemistryHannover Medical School (MHH)Germany
- Centre for Structural Systems Biology, DESY‐CampusHamburgGermany
| | - Anaclet Ngezahayo
- Institute of Cell Biology and BiophysicsDepartment of Cell Physiology and BiophysicsLeibniz University HannoverGermany
- Center for System Neurosciences (ZSN)HannoverGermany
| |
Collapse
|
47
|
Santantonio N, Jannink JL, Sorrells M. Homeologous Epistasis in Wheat: The Search for an Immortal Hybrid. Genetics 2019; 211:1105-1122. [PMID: 30679260 PMCID: PMC6404247 DOI: 10.1534/genetics.118.301851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022] Open
Abstract
Hybridization between related species results in the formation of an allopolyploid with multiple subgenomes. These subgenomes will each contain complete, yet evolutionarily divergent, sets of genes. Like a diploid hybrid, allopolyploids will have two versions, or homeoalleles, for every gene. Partial functional redundancy between homeologous genes should result in a deviation from additivity. These epistatic interactions between homeoalleles are analogous to dominance effects, but are fixed across subgenomes through self pollination. An allopolyploid can be viewed as an immortalized hybrid, with the opportunity to select and fix favorable homeoallelic interactions within inbred varieties. We present a subfunctionalization epistasis model to estimate the degree of functional redundancy between homeoallelic loci and a statistical framework to determine their importance within a population. We provide an example using the homeologous dwarfing genes of allohexaploid wheat, Rht-1, and search for genome-wide patterns indicative of homeoallelic subfunctionalization in a breeding population. Using the IWGSC RefSeq v1.0 sequence, 23,796 homeoallelic gene sets were identified and anchored to the nearest DNA marker to form 10,172 homeologous marker sets. Interaction predictors constructed from products of marker scores were used to fit the homeologous main and interaction effects, as well as estimate whole genome genetic values. Some traits displayed a pattern indicative of homeoallelic subfunctionalization, while other traits showed a less clear pattern or were not affected. Using genomic prediction accuracy to evaluate importance of marker interactions, we show that homeologous interactions explain a portion of the nonadditive genetic signal, but are less important than other epistatic interactions.
Collapse
Affiliation(s)
- Nicholas Santantonio
- Cornell University, Plant Breeding and Genetics Section, School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Ithaca, New York 14853
| | - Jean-Luc Jannink
- Cornell University, Plant Breeding and Genetics Section, School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Ithaca, New York 14853
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Mark Sorrells
- Cornell University, Plant Breeding and Genetics Section, School of Integrated Plant Sciences, College of Agriculture and Life Sciences, Ithaca, New York 14853
| |
Collapse
|
48
|
Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci Rep 2019; 9:1696. [PMID: 30737425 PMCID: PMC6368595 DOI: 10.1038/s41598-018-38170-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022] Open
Abstract
Tomato (Solanum lycopersicum) is a model for climacteric fleshy fruit ripening studies. Tomato ripening is regulated by multiple transcription factors together with the plant hormone ethylene and their downstream effector genes. Transcription Factors APETALA2a (AP2a), NON-RIPENING (NOR) and FRUITFULL (FUL1/TDR4 and FUL2/MBP7) were reported as master regulators controlling tomato fruit ripening. Their proposed functions were derived from studies of the phenotype of spontaneous mutants or RNAi knock-down lines rather than, as it appears now, actual null mutants. To study TF function in tomato fruit ripening in more detail, we used CRISPR/Cas9-mediated mutagenesis to knock out the encoding genes, and phenotypes of these mutants are reported for the first time. While the earlier ripening, orange-ripe phenotype of ap2a mutants was confirmed, the nor null mutant exhibited a much milder phenotype than the spontaneous nor mutant. Additional analyses revealed that the severe phenotype in the spontaneous mutant is caused by a dominant-negative allele. Our approach also provides new insight into the independent and overlapping functions of FUL1 and FUL2. Single and combined null alleles of FUL1 and FUL2 illustrate that these two genes have partially redundant functions in fruit ripening, but also unveil an additional role for FUL2 in early fruit development.
Collapse
|
49
|
Härönen H, Zainul Z, Naumenko N, Sormunen R, Miinalainen I, Shakirzyanova A, Santoleri S, Kemppainen AV, Giniatullin R, Pihlajaniemi T, Heikkinen A. Correct expression and localization of collagen XIII are crucial for the normal formation and function of the neuromuscular system. Eur J Neurosci 2019; 49:1491-1511. [PMID: 30667565 DOI: 10.1111/ejn.14346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 11/28/2022]
Abstract
Transmembrane collagen XIII has been linked to maturation of the musculoskeletal system. Its absence in mice (Col13a1-/- ) results in impaired neuromuscular junction (NMJ) differentiation and function, while transgenic overexpression (Col13a1oe ) leads to abnormally high bone mass. Similarly, loss-of-function mutations in COL13A1 in humans produce muscle weakness, decreased motor synapse function and mild dysmorphic skeletal features. Here, analysis of the exogenous overexpression of collagen XIII in various muscles revealed highly increased transcript and protein levels, especially in the diaphragm. Unexpectedly, the main location of exogenous collagen XIII in the muscle was extrasynaptic, in fibroblast-like cells, while some motor synapses were devoid of collagen XIII, possibly due to a dominant negative effect. Concomitantly, phenotypical changes in the NMJs of the Col13a1oe mice partly resembled those previously observed in Col13a1-/- mice. Namely, the overall increase in collagen XIII expression in the muscle produced both pre- and postsynaptic abnormalities at the NMJ, especially in the diaphragm. We discovered delayed and compromised acetylcholine receptor (AChR) clustering, axonal neurofilament aggregation, patchy acetylcholine vesicle (AChV) accumulation, disrupted adhesion of the nerve and muscle, Schwann cell invagination and altered evoked synaptic function. Furthermore, the patterns of the nerve trunks and AChR clusters in the diaphragm were broader in the adult muscles, and already prenatally in the Col13a1oe mice, suggesting collagen XIII involvement in the development of the neuromuscular system. Overall, these results confirm the role of collagen XIII at the neuromuscular synapses and highlight the importance of its correct expression and localization for motor synapse formation and function.
Collapse
Affiliation(s)
- Heli Härönen
- Faculty of Biochemistry and Molecular Medicine, Center for Cell-Matrix Research, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Zarin Zainul
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida
| | - Nikolay Naumenko
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raija Sormunen
- Biocenter Oulu Electron Microscopy Core Facility, University of Oulu, Oulu, Finland
| | - Ilkka Miinalainen
- Biocenter Oulu Electron Microscopy Core Facility, University of Oulu, Oulu, Finland
| | - Anastasia Shakirzyanova
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Department of Physiology, Kazan Federal University, Kazan, Russia
| | - Sabrina Santoleri
- Faculty of Biology, Medicine and Health, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, UK
| | - Antti V Kemppainen
- Faculty of Biochemistry and Molecular Medicine, Center for Cell-Matrix Research, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rashid Giniatullin
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Department of Physiology, Kazan Federal University, Kazan, Russia
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, Center for Cell-Matrix Research, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- Faculty of Biochemistry and Molecular Medicine, Center for Cell-Matrix Research, Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
50
|
Modulating transcription factor activity: Interfering with protein-protein interaction networks. Semin Cell Dev Biol 2018; 99:12-19. [PMID: 30172762 DOI: 10.1016/j.semcdb.2018.07.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/16/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022]
Abstract
Biophysical parameters that govern transcription factors activity are binding locations across the genome, dwelling time at these regulatory elements and specific protein-protein interactions. Most molecular strategies used to develop small compounds that block transcription factors activity have been based on biochemistry and cell biology methods that that do not take into consideration these key biophysical features. Here, we review the advance in the field of transcription factor biology and describe how their interactome and transcriptional regulation on a genome wide scale have been deciphered. We suggest that this new knowledge has the potential to be used to implement innovative research drug discovery program.
Collapse
|