1
|
Tseng TS, Chen CA, Lo MH. PHOTOTROPIN1 lysine 526 functions to enhance phototropism in Arabidopsis. PLANTA 2024; 259:56. [PMID: 38305934 DOI: 10.1007/s00425-024-04332-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
MAIN CONCLUSION After blue-light exposure, ubiquitination of PHOTOTROPIN1 lysine 526 enhances phototropic responses. Arabidopsis blue-light photoreceptor, PHOTOTROPIN1 (PHOT1) mediates a series of blue-light responses that function to optimize photosynthesis efficiency. Blue-light sensing through the N-terminal sensory domain activates the C-terminal kinase activity of PHOT1, resulting in autophosphorylation. In addition to phosphorylation, PHOT1 lysine residue 526 (Lys526), after blue-light exposure, was found to carry a double glycine attachment, indicative of a possible ubiquitination modification. The functionality of PHOT1 Lys526 was investigated by reverse genetic approaches. Arginine replacements of PHOT1 Lys526, together with Lys527, complemented phot1-5 phot2-1 double mutant with attenuated phototropic bending, while blue-light responses: leaf expansion and stomatal opening, were restored to wild type levels. Transgenic seedlings were not different in protein levels of phot1 Lys526 527Arg than the wild type control, suggesting the reduced phototropic responses was not caused by reduction in protein levels. Treating the transformants with proteosome inhibitor, MG132, did not restore phototropic sensitivity. Both transgenic protein and wild type PHOT1 also had similar dark recovery of kinase activity, suggesting that phot1 Lys526 527Arg replacement did not affect the protein stability to cause the phenotype. Together, our results indicate that blocking Lys526 ubiquitination by arginine substitution may have caused the reduced phototropic phenotype. Therefore, the putative ubiquitination on Lys526 functions to enhance PHOT1-mediated phototropism, rather than targeting PHOT1 for proteolysis.
Collapse
Affiliation(s)
- Tong-Seung Tseng
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan.
| | - Chih-An Chen
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| | - Ming-Hung Lo
- Department of Agricultural Biotechnology, National Chiayi University, 300 Syuefu Road, Chiayi, 600, Taiwan
| |
Collapse
|
2
|
Lv QY, Zhao QP, Zhu C, Ding M, Chu FY, Li XK, Cheng K, Zhao X. Hydrogen peroxide mediates high-intensity blue light-induced hypocotyl phototropism of cotton seedlings. STRESS BIOLOGY 2023; 3:27. [PMID: 37676397 PMCID: PMC10442013 DOI: 10.1007/s44154-023-00111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/16/2023] [Indexed: 09/08/2023]
Abstract
Phototropism is a classic adaptive growth response that helps plants to enhance light capture for photosynthesis. It was shown that hydrogen peroxide (H2O2) participates in the regulation of blue light-induced hypocotyl phototropism; however, the underlying mechanism is unclear. In this study, we demonstrate that the unilateral high-intensity blue light (HBL) could induce asymmetric distribution of H2O2 in cotton hypocotyls. Disruption of the HBL-induced asymmetric distribution of H2O2 by applying either H2O2 itself evenly on the hypocotyls or H2O2 scavengers on the lit side of hypocotyls could efficiently inhibit hypocotyl phototropic growth. Consistently, application of H2O2 on the shaded and lit sides of the hypocotyls led to reduced and enhanced hypocotyl phototropism, respectively. Further, we show that H2O2 inhibits hypocotyl elongation of cotton seedlings, thus supporting the repressive role of H2O2 in HBL-induced hypocotyl phototropism. Moreover, our results show that H2O2 interferes with HBL-induced asymmetric distribution of auxin in the cotton hypocotyls. Taken together, our study uncovers that H2O2 changes the asymmetric accumulation of auxin and inhibits hypocotyl cell elongation, thus mediating HBL-induced hypocotyl phototropism.
Collapse
Affiliation(s)
- Qian-Yi Lv
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Chen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meichen Ding
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fang-Yuan Chu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xing-Kun Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Ko KS, Yoo JY, Vu BN, Lee YE, Choi HN, Lee YN, Fanata WID, Harmoko R, Chung WS, Hong JC, Lee KO. The role of protein phosphatase 2A (PP2A) in the unfolded protein response (UPR) of plants. Biochem Biophys Res Commun 2023; 670:94-101. [PMID: 37290287 DOI: 10.1016/j.bbrc.2023.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Protein phosphatase 2A (PP2A) is a key regulator of plant growth and development, but its role in the endoplasmic reticulum (ER) stress response remains elusive. In this study, we investigated the function of PP2A under ER stress using loss-of-function mutants of ROOTS CURL of NAPHTHYLPHTHALAMIC ACID1 (RCN1), a regulatory A1 subunit isoform of Arabidopsis PP2A. RCN1 mutants (rcn1-1 and rcn1-2) exhibited reduced sensitivity to tunicamycin (TM), an inhibitor of N-linked glycosylation and inducer of unfolded protein response (UPR) gene expression, resulting in less severe effects compared to wild-type plants (Ws-2 and Col-0). TM negatively impacted PP2A activity in Col-0 plants but did not significantly affect rcn1-2 plants. Additionally, TM treatment did not influence the transcription levels of the PP2AA1(RCN1), 2, and 3 genes in Col-0 plants. Cantharidin, a PP2A inhibitor, exacerbated growth defects in rcn1 plants and alleviated TM-induced growth inhibition in Ws-2 and Col-0 plants. Furthermore, cantharidin treatment mitigated TM hypersensitivity in ire1a&b and bzip28&60 mutants. These findings suggest that PP2A activity is essential for an efficient UPR in Arabidopsis.
Collapse
Affiliation(s)
- Ki Seong Ko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jae Yong Yoo
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Bich Ngoc Vu
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Young Eun Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Ha Na Choi
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Yoo Na Lee
- Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Wahyu Indra Duwi Fanata
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Department of Agrotechnology, Faculty of Agriculture, University of Jember, Jember, 68121, Indonesia
| | - Rikno Harmoko
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Research Center for Genetic Engineering, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor, Cibinong, Bogor, 16911, Indonesia
| | - Woo Sik Chung
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Kyun Oh Lee
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea; Division of Life Science, Division of Applied Life Sciences (BK4 Program) Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
4
|
Saini LK, Bheri M, Pandey GK. Protein phosphatases and their targets: Comprehending the interactions in plant signaling pathways. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:307-370. [PMID: 36858740 DOI: 10.1016/bs.apcsb.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Protein phosphorylation is a vital reversible post-translational modification. This process is established by two classes of enzymes: protein kinases and protein phosphatases. Protein kinases phosphorylate proteins while protein phosphatases dephosphorylate phosphorylated proteins, thus, functioning as 'critical regulators' in signaling pathways. The eukaryotic protein phosphatases are classified as phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine (Ser)/threonine (Thr) specific phosphatases (STPs) that dephosphorylate Ser and Thr residues. The PTP family dephosphorylates Tyr residues while dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. The composition of these enzymes as well as their substrate specificity are important determinants of their functional significance in a number of cellular processes and stress responses. Their role in animal systems is well-understood and characterized. The functional characterization of protein phosphatases has been extensively covered in plants, although the comprehension of their mechanistic basis is an ongoing pursuit. The nature of their interactions with other key players in the signaling process is vital to our understanding. The substrates or targets determine their potential as well as magnitude of the impact they have on signaling pathways. In this article, we exclusively overview the various substrates of protein phosphatases in plant signaling pathways, which are a critical determinant of the outcome of various developmental and stress stimuli.
Collapse
Affiliation(s)
- Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
5
|
Xin GY, Li LP, Wang PT, Li XY, Han YJ, Zhao X. The action of enhancing weak light capture via phototropic growth and chloroplast movement in plants. STRESS BIOLOGY 2022; 2:50. [PMID: 37676522 PMCID: PMC10441985 DOI: 10.1007/s44154-022-00066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 09/08/2023]
Abstract
To cope with fluctuating light conditions, terrestrial plants have evolved precise regulation mechanisms to help optimize light capture and increase photosynthetic efficiency. Upon blue light-triggered autophosphorylation, activated phototropin (PHOT1 and PHOT2) photoreceptors function solely or redundantly to regulate diverse responses, including phototropism, chloroplast movement, stomatal opening, and leaf positioning and flattening in plants. These responses enhance light capture under low-light conditions and avoid photodamage under high-light conditions. NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2) are signal transducers that function in the PHOT1- and PHOT2-mediated response. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation as well as NPH3-mediated responses. NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) was recently identified as a PHOT1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation. The PHYTOCHROME KINASE SUBSTRATE (PKS) proteins (PKS1, PKS2, and PKS4) interact with PHOT1 and NPH3 and mediate hypocotyl phototropic bending. This review summarizes advances in phototropic growth and chloroplast movement induced by light. We also focus on how crosstalk in signaling between phototropism and chloroplast movement enhances weak light capture, providing a basis for future studies aiming to delineate the mechanism of light-trapping plants to improve light-use efficiency.
Collapse
Affiliation(s)
- Guang-Yuan Xin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu-Ping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Peng-Tao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xin-Yue Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan-Ji Han
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
6
|
Łabuz J, Sztatelman O, Hermanowicz P. Molecular insights into the phototropin control of chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6034-6051. [PMID: 35781490 DOI: 10.1093/jxb/erac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.
Collapse
Affiliation(s)
- Justyna Łabuz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego, Warszawa, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
7
|
Ren H, Rao J, Tang M, Li Y, Dang X, Lin D. PP2A interacts with KATANIN to promote microtubule organization and conical cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1514-1530. [PMID: 35587570 DOI: 10.1111/jipb.13281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.
Collapse
Affiliation(s)
- Huibo Ren
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinqiu Rao
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Tang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xie Dang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deshu Lin
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Sciences and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
8
|
SPEECHLESS and MUTE Mediate Feedback Regulation of Signal Transduction during Stomatal Development. PLANTS 2021; 10:plants10030432. [PMID: 33668323 PMCID: PMC7996297 DOI: 10.3390/plants10030432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/21/2021] [Indexed: 01/01/2023]
Abstract
Stomatal density, spacing, and patterning greatly influence the efficiency of gas exchange, photosynthesis, and water economy. They are regulated by a complex of extracellular and intracellular factors through the signaling pathways. After binding the extracellular epidermal patterning factor 1 (EPF1) and 2 (EPF2) as ligands, the receptor-ligand complexes activate by phosphorylation through the MAP-kinase cascades, regulating basic helix-loop-helix (bHLH) transcription factors SPEECHLESS (SPCH), MUTE, and FAMA. In this review, we summarize the molecular mechanisms and signal transduction pathways running within the transition of the protodermal cell into a pair of guard cells with a space (aperture) between them, called a stoma, comprising asymmetric and symmetric cell divisions and draw several functional models. The feedback mechanisms involving the bHLH factors SPCH and MUTE are not fully recognized yet. We show the feedback mechanisms driven by SPCH and MUTE in the regulation of EPF2 and the ERECTA family. Intersections of the molecular mechanisms for fate determination of stomatal lineage cells with the role of core cell cycle-related genes and stabilization of SPCH and MUTE are also reported.
Collapse
|
9
|
Krzeszowiec W, Novokreshchenova M, Gabryś H. Chloroplasts in C3 grasses move in response to blue-light. PLANT CELL REPORTS 2020; 39:1331-1343. [PMID: 32661816 PMCID: PMC7497455 DOI: 10.1007/s00299-020-02567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/08/2020] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Brachypodium distachyon is a good model for studying chloropla st movements in the crop plants, wheat, rye and barley. The movements are activated only by blue light, similar to Arabidopsis. Chloroplast translocations are ubiquitous in photosynthetic organisms. On the one hand, they serve to optimize energy capture under limiting light, on the other hand, they minimize potential photodamage to the photosynthetic apparatus in excess light. In higher plants chloroplast movements are mediated by phototropins (phots), blue light receptors that also control other light acclimation responses. So far, Arabidopsis thaliana has been the main model for studying the mechanism of blue light signaling to chloroplast translocations in terrestrial plants. Here, we propose Brachypodium distachyon as a model in research into chloroplast movements in C3 cereals. Brachypodium chloroplasts respond to light in a similar way to those in Arabidopsis. The amino acid sequence of Brachypodium PHOT1 is 79.3% identical, and that of PHOT2 is 73.6% identical to the sequence of the corresponding phototropin in Arabidopsis. Both phototropin1 and 2 are expressed in Brachypodium, as shown using quantitative real-time PCR. Intriguingly, the light-expression pattern of BradiPHOT1 and BradiPHOT2 is the opposite of that for Arabidopsis phototropins, suggesting potential unique light signaling in C3 grasses. To investigate if Brachypodium is a good model for studying grass chloroplast movements we analyzed these movements in the leaves of three C3 crop grasses, namely wheat, rye and barley. Similarly to Brachypodium, chloroplasts only respond to blue light in all these species.
Collapse
Affiliation(s)
- Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Novokreshchenova
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
10
|
Pang Q, Zhang T, Zhang A, Lin C, Kong W, Chen S. Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. PLANTA 2020; 252:66. [PMID: 32979085 DOI: 10.1007/s00425-020-03474-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/15/2020] [Indexed: 05/20/2023]
Abstract
Dynamic protein and phosphoprotein profiles uncovered the overall regulation of stomata movement against pathogen invasion and phosphorylation states of proteins involved in ABA, SA, calcium and ROS signaling, which may modulate the stomatal immune response. Stomatal openings represent a major route of pathogen entry into the plant, and plants have evolved mechanisms to regulate stomatal aperture as innate immune response against bacterial invasion. However, the mechanisms underlying stomatal immunity are not fully understood. Taking advantage of high-throughput liquid chromatography mass spectrometry (LC-MS), we performed label-free proteomic and phosphoproteomic analyses of enriched guard cells in response to a bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In total, 495 proteins and 1229 phosphoproteins were identified as differentially regulated. These proteins are involved in a variety of signaling pathways, including abscisic acid and salicylic acid hormone signaling, calcium and reactive oxygen species signaling. We also showed that dynamic changes of phosphoprotein WRKY transcription factors may play a crucial role in regulating stomata movement in plant immunity. The identified proteins/phosphoproteins and the pathways form interactive molecular networks to regulate stomatal immunity. This study has provided new insights into the multifaceted mechanisms of stomatal immunity. The differential proteins and phosphoproteins are potential targets for engineering or breeding of crops for enhanced pathogen defense.
Collapse
Affiliation(s)
- Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Aiqin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chuwei Lin
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Wenwen Kong
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Bian C, Guo X, Zhang Y, Wang L, Xu T, DeLong A, Dong J. Protein phosphatase 2A promotes stomatal development by stabilizing SPEECHLESS in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:13127-13137. [PMID: 32434921 PMCID: PMC7293623 DOI: 10.1073/pnas.1912075117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Stomatal guard cells control gas exchange that allows plant photosynthesis but limits water loss from plants to the environment. In Arabidopsis, stomatal development is mainly controlled by a signaling pathway comprising peptide ligands, membrane receptors, a mitogen-activated protein kinase (MAPK) cascade, and a set of transcription factors. The initiation of the stomatal lineage requires the activity of the bHLH transcription factor SPEECHLESS (SPCH) with its partners. Multiple kinases were found to regulate SPCH protein stability and function through phosphorylation, yet no antagonistic protein phosphatase activities have been identified. Here, we identify the conserved PP2A phosphatases as positive regulators of Arabidopsis stomatal development. We show that mutations in genes encoding PP2A subunits result in lowered stomatal production in Arabidopsis Genetic analyses place the PP2A function upstream of SPCH. Pharmacological treatments support a role for PP2A in promoting SPCH protein stability. We further find that SPCH directly binds to the PP2A-A subunits in vitro. In plants, nonphosphorylatable SPCH proteins are less affected by PP2A activity levels. Thus, our research suggests that PP2A may function to regulate the phosphorylation status of the master transcription factor SPCH in stomatal development.
Collapse
Affiliation(s)
- Chao Bian
- The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Xiaoyu Guo
- The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Yi Zhang
- The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Fujian Agriculture and Forestry University-Joint Centre, Horticulture and Metabolic Biology Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002 Fuzhou, People's Republic of China
| | - Lu Wang
- The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Tongda Xu
- Fujian Agriculture and Forestry University-Joint Centre, Horticulture and Metabolic Biology Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, 350002 Fuzhou, People's Republic of China
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854;
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
12
|
The lineage and diversity of putative amino acid sensor ACR proteins in plants. Amino Acids 2020; 52:649-666. [PMID: 32306102 DOI: 10.1007/s00726-020-02844-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
Amino acid metabolic enzymes often contain a regulatory ACT domain, named for aspartate kinase, chorismate mutase, and TyrA (prephenate dehydrogenase). Arabidopsis encodes 12 putative amino acid sensor ACT repeat (ACR) proteins, all containing ACT repeats but no identifiable catalytic domain. Arabidopsis ACRs comprise three groups based on domain composition and sequence: group I and II ACRs contain four ACTs each, and group III ACRs contain two ACTs. Previously, all three groups had been documented only in Arabidopsis. Here, we extended this to algae and land plants, showing that all three groups of ACRs are present in most, if not all, land plants, whereas among algal ACRs, although quite diverse, only group III is conserved. The appearance of canonical group I and II ACRs thus accompanied the evolution of plants from living in water to living on land. Alignment of ACTs from plant ACRs revealed a conserved motif, DRPGLL, at the putative ligand-binding site. Notably, the unique features of the DRPGLL motifs in each ACT domain are conserved in ACRs from algae to land plants. The conservation of plant ACRs is reminiscent of that of human cellular arginine sensor for mTORC1 (CASTOR1), a member of a small protein family highly conserved in animals. CASTOR proteins also have four ACT domains, although the sequence identities between ACRs and CASTORs are very low. Thus, plant ACRs and animal CASTORs may have adapted the regulatory ACT domains from a more ancient metabolic enzyme, and then evolved independently.
Collapse
|
13
|
Majumdar A, Kar RK. Chloroplast avoidance movement: a novel paradigm of ROS signalling. PHOTOSYNTHESIS RESEARCH 2020; 144:109-121. [PMID: 32222888 DOI: 10.1007/s11120-020-00736-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The damaging effects of supra-optimal irradiance on plants, often turning to be lethal, may be circumvented by chloroplast avoidance movement which realigns chloroplasts to the anticlinal surfaces of cells (parallel to the incident light), essentially minimizing photon absorption. In angiosperms and many other groups of plants, chloroplast avoidance movement has been identified to be a strong blue light (BL)-dependent process being mediated by actin filaments wherein phototropins are identified as the photoreceptor involved. Studies through the last few decades have identified key molecular mechanisms involving Chloroplast Unusual Positioning 1 (CHUP1) protein and specific chloroplast-actin (cp-actin) filaments. However, the signal transduction pathway from strong BL absorption down to directional re-localization of chloroplasts by actin filaments is complex and ambiguous. Being the immediate cellular products of high irradiance absorption and having properties of remodelling actin as well as phototropin, reactive oxygen species (ROS) deemed to be more able and prompt than any other signalling agent in mediating chloroplast avoidance movement. Although ROS are presently being identified as fundamental component for regulating different plant processes ranging from growth, development and immunity, its role in avoidance movement have hardly been explored in depth. However, few recent reports have demonstrated the direct stimulatory involvement of ROS, especially H2O2, in chloroplast avoidance movement with Ca2+ playing a pivotal role. With this perspective, the present review discusses the mechanisms of ROS-mediated chloroplast avoidance movement involving ROS-Ca2+-actin communication system and NADPH oxidase (NOX)-plasma membrane (PM) H+-ATPase positive feed-forward loop. A possible working model is proposed.
Collapse
Affiliation(s)
- Arkajo Majumdar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
- Department of Botany, City College, 102/1 Raja Rammohan Sarani, Kolkata, West Bengal, 700009, India
| | - Rup Kumar Kar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
14
|
Liscum E, Nittler P, Koskie K. The continuing arc toward phototropic enlightenment. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1652-1658. [PMID: 31907539 PMCID: PMC7242014 DOI: 10.1093/jxb/eraa005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/05/2020] [Indexed: 05/20/2023]
Abstract
Phototropism represents a simple physiological mechanism-differential growth across the growing organ of a plant-to respond to gradients of light and maximize photosynthetic light capture (in aerial tissues) and water/nutrient acquisition (in roots). The phototropin blue light receptors, phot1 and phot2, have been identified as the essential sensors for phototropism. Additionally, several downstream signal/response components have been identified, including the phot-interacting proteins NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and PHYTOCHROME SUBSTRATE 4 (PKS4). While the structural and photochemical properties of the phots are quite well understood, much less is known about how the phots signal through downstream regulators. Recent advances have, however, provided some intriguing clues. It appears that inactive receptor phot1 is found dispersed in a monomeric form at the plasma membrane in darkness. Upon light absorption dimerizes and clusters in sterol-rich microdomains where it is signal active. Additional studies showed that the phot-regulated phosphorylation status of both NPH3 and PKS4 is linked to phototropic responsiveness. While PKS4 can function as both a positive (in low light) and a negative (in high light) regulator of phototropism, NPH3 appears to function solely as a key positive regulator. Ultimately, it is the subcellular localization of NPH3 that appears crucial, an aspect regulated by its phosphorylation status. While phot1 activation promotes dephosphorylation of NPH3 and its movement from the plasma membrane to cytoplasmic foci, phot2 appears to modulate relocalization back to the plasma membrane. Together these findings are beginning to illuminate the complex biochemical and cellular events, involved in adaptively modifying phototropic responsiveness under a wide varying range of light conditions.
Collapse
Affiliation(s)
- Emmanuel Liscum
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Correspondence:
| | - Patrick Nittler
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Katelynn Koskie
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
15
|
Ahn CS, Lee DH, Pai HS. Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway. PLANTA 2019; 249:527-542. [PMID: 30293201 DOI: 10.1007/s00425-018-3024-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Maf1 repressor activity is critical for plant survival during environmental stresses, and is regulated by its phosphorylation/dephosphorylation through the activity of TOR and PP4/PP2A phosphatases. Maf1 is a global repressor of RNA polymerase III (Pol III), and is conserved in eukaryotes. Pol III synthesizes small RNAs, 5S rRNA, and tRNAs that are essential for protein translation and cell growth. Maf1 is a phosphoprotein and dephosphorylation of Maf1 promotes its repressor activity in yeast and mammals. Plant Maf1 was identified in citrus plants as a canker elicitor-binding protein, and citrus Maf1 represses cell growth associated with canker development. However, functions of plant Maf1 under diverse stress conditions and its regulation by the target of rapamycin (TOR) signaling components are poorly understood. In this study, the Arabidopsis maf1 mutants were more susceptible to diverse stresses and treatment with the TOR inhibitor Torin-1 than wild-type plants. The maf1 mutants expressed higher levels of Maf1 target RNAs, including 5S rRNA and pre-tRNAs in leaf cells, supporting Pol III repressor activity of Arabidopsis Maf1. Cellular stresses and Torin-1 treatment induced dephosphorylation of Maf1, suggesting Maf1 activation under diverse stress conditions. TOR silencing also stimulated Maf1 dephosphorylation, while silencing of catalytic subunit genes of PP4 and PP2A repressed it. Thus, TOR kinase and PP4/PP2A phosphatases appeared to oppositely modulate the Maf1 phosphorylation status. TOR silencing decreased the abundance of the target RNAs, while silencing of the PP4 and PP2A subunit genes increased it, supporting the positive correlation between Maf1 dephosphorylation and its repressor activity. Taken together, these results suggest that repressor activity of Maf1, regulated by the TOR signaling pathway, is critical for plant cell survival during environmental stresses.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- Future Technology Research Center, Corporate R&D, LG Chem/LG Science Park, Seoul, 07796, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
16
|
Heyduk K, Hwang M, Albert V, Silvera K, Lan T, Farr K, Chang TH, Chan MT, Winter K, Leebens-Mack J. Altered Gene Regulatory Networks Are Associated With the Transition From C 3 to Crassulacean Acid Metabolism in Erycina (Oncidiinae: Orchidaceae). FRONTIERS IN PLANT SCIENCE 2019; 9:2000. [PMID: 30745906 PMCID: PMC6360190 DOI: 10.3389/fpls.2018.02000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/24/2018] [Indexed: 05/21/2023]
Abstract
Crassulacean acid metabolism (CAM) photosynthesis is a modification of the core C3 photosynthetic pathway that improves the ability of plants to assimilate carbon in water-limited environments. CAM plants fix CO2 mostly at night, when transpiration rates are low. All of the CAM pathway genes exist in ancestral C3 species, but the timing and magnitude of expression are greatly altered between C3 and CAM species. Understanding these regulatory changes is key to elucidating the mechanism by which CAM evolved from C3. Here, we use two closely related species in the Orchidaceae, Erycina pusilla (CAM) and Erycina crista-galli (C3), to conduct comparative transcriptomic analyses across multiple time points. Clustering of genes with expression variation across the diel cycle revealed some canonical CAM pathway genes similarly expressed in both species, regardless of photosynthetic pathway. However, gene network construction indicated that 149 gene families had significant differences in network connectivity and were further explored for these functional enrichments. Genes involved in light sensing and ABA signaling were some of the most differently connected genes between the C3 and CAM Erycina species, in agreement with the contrasting diel patterns of stomatal conductance in C3 and CAM plants. Our results suggest changes to transcriptional cascades are important for the transition from C3 to CAM photosynthesis in Erycina.
Collapse
Affiliation(s)
- Karolina Heyduk
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Michelle Hwang
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Victor Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Katia Silvera
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Kimberly Farr
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Tien-Hao Chang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
17
|
Yoon JT, Ahn HK, Pai HS. The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. PLANTA 2018; 248:1551-1567. [PMID: 30191298 DOI: 10.1007/s00425-018-3000-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/30/2018] [Indexed: 05/07/2023]
Abstract
The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) regulate the cortical microtubule dynamics in Arabidopsis, through interaction with TONNEAU2 (TON2)/FASS and modulation of α-tubulin dephosphorylation. Protein phosphatase 2A is a major protein phosphatase in eukaryotes that dephosphorylates many different substrates to regulate their function. PP2A is assembled into a heterotrimeric complex of scaffolding A subunit, regulatory B subunit, and catalytic C subunit. Plant PP2A catalytic C subunit (PP2AC) isoforms are classified into two subfamilies. In this study, we investigated the cellular functions of the Arabidopsis PP2AC subfamily II genes PP2AC-3 and PP2AC-4, particularly regarding the cortical microtubule (MT) organization. PP2AC-3 and PP2AC-4 strongly interacted with the B'' regulatory subunit TON2. Simultaneous silencing of PP2AC-3 and PP2AC-4 by virus-induced gene silencing (PP2AC-3,4 VIGS) significantly altered plant morphology in Arabidopsis, increasing cell numbers in leaves and stems. The leaf epidermis of PP2AC-3,4 VIGS plants largely lost its jigsaw-puzzle shape and exhibited reduced trichome branch numbers. VIGS of PP2AC-3,4 in Arabidopsis transgenic plants that expressed GFP-fused β-tubulin 6 isoform (GFP-TUB6) for the visualization of MTs caused a reduction in the cortical MT array density in the pavement cells. VIGS of TON2 also led to similar cellular phenotypes and cortical MT patterns compared with those after VIGS of PP2AC-3,4, suggesting that PP2AC-3,4 and their interaction partner TON2 play a role in cortical MT organization in leaf epidermal cells. Furthermore, silencing of PP2AC-3,4 did not affect salt-induced phosphorylation of α-tubulin but delayed its dephosphorylation after salt removal. The reappearance of cortical MT arrays after salt removal was impaired in PP2AC-3,4 VIGS plants. These results suggest an involvement of PP2AC subfamily II in the regulation of cortical MT dynamics under normal and salt-stress conditions in Arabidopsis.
Collapse
Affiliation(s)
- Joong-Tak Yoon
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea
- The Sainsbury Laboratory (TSL), Norwich Research Park, Norwich, NR4 7UH, UK
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
18
|
Haga K, Sakai T. Involvement of PP6-type protein phosphatase in hypocotyl phototropism in Arabidopsis seedlings. PLANT SIGNALING & BEHAVIOR 2018; 13:e1536631. [PMID: 30373470 PMCID: PMC6279344 DOI: 10.1080/15592324.2018.1536631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Recently, we reported that the D6 protein kinase subfamily, which belongs to the AGCVIII kinase family, is a critical component of hypocotyl phototropism in Arabidopsis seedlings. Furthermore, we demonstrated that AGC1-12, which is also a member of the AGCVIII kinase family, is involved in both the pulse-induced first positive phototropism and gravitropism in Arabidopsis hypocotyls. Those results indicated that phosphorylation control is an important mechanism in phototropic signaling. As phosphorylation regulation is controlled by both kinases and phosphatases, we investigated the roles of phosphatases in hypocotyl phototropism. Our physiological analysis, which was performed using Arabidopsis mutants, indicated that the flower-specific, phytochrome-associated protein phosphatase family, which functions as a catalytic subunit of protein phosphatase 6 (PP6), is involved in both the pulse-induced first positive phototropism and the time-dependent second positive phototropism, although it is not necessary for the continuous-light-induced second positive phototropism. These results suggest that not only kinases, but also phosphatases play critical roles in hypocotyl phototropism to control phosphorylation status and that PP6-type protein phosphatases may act antagonistically with AGCVIII protein kinases on the same targets, such as PIN-formed proteins.
Collapse
Affiliation(s)
- Ken Haga
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, Saitama, Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| |
Collapse
|
19
|
Yuan G, Ahootapeh BH, Komaki S, Schnittger A, Lillo C, De Storme N, Geelen D. PROTEIN PHOSHATASE 2A B' α and β Maintain Centromeric Sister Chromatid Cohesion during Meiosis in Arabidopsis. PLANT PHYSIOLOGY 2018; 178:317-328. [PMID: 30061120 PMCID: PMC6130024 DOI: 10.1104/pp.18.00281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/18/2018] [Indexed: 05/04/2023]
Abstract
The correct separation of homologous chromosomes during meiosis I, and sister chromatids during meiosis II, relies on the tight control of the cohesion complex. The phosphorylation and subsequent cleavage of the meiotic recombination protein REC8 (REC8-like family protein [SYN1] in Arabidopsis [Arabidopsis thaliana]), the α-kleisin subunit of the cohesion ring, along the chromosome arms at meiosis I allows crossovers and separation of homologous chromosomes without chromatid dissociation. REC8 continues to localize and function at the centromeres up to metaphase II and, in yeast and vertebrates, is protected from cleavage by means of protein phosphatase 2A (PP2A)-mediated dephosphorylation. Here, we show that, in plants, centromeric sister chromatid cohesion until meiosis II also requires the activity of a PP2A-type phosphatase complex. The combined absence of the regulatory subunits PP2AB'α and PP2AB'β leads to the premature loss of chromosome cohesion in meiosis I. Male meiocytes of the pp2ab'αβ double mutant display premature depletion of SYN1. The PP2AA1 structural and B'α regulatory subunit localize specifically to centromeres until metaphase II, supporting a role for the PP2A complex in the SYN1-mediated maintenance of centromeric cohesion in plant meiosis.
Collapse
Affiliation(s)
- Guoliang Yuan
- Department of Plants and Crops, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Behzad Heidari Ahootapeh
- Department of Chemistry, Bioscience, and Environmental Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Shinichiro Komaki
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, D-22609 Hamburg, Germany
| | - Cathrine Lillo
- Department of Chemistry, Bioscience, and Environmental Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Nico De Storme
- Department of Plants and Crops, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
20
|
He Q, Naqvi S, McLellan H, Boevink PC, Champouret N, Hein I, Birch PRJ. Plant pathogen effector utilizes host susceptibility factor NRL1 to degrade the immune regulator SWAP70. Proc Natl Acad Sci U S A 2018; 115:E7834-E7843. [PMID: 30049706 PMCID: PMC6099861 DOI: 10.1073/pnas.1808585115] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Plant pathogens deliver effectors into plant cells to suppress immunity. Whereas many effectors inactivate positive immune regulators, other effectors associate with negative regulators of immunity: so-called susceptibility (S) factors. Little is known about how pathogens exploit S factors to suppress immunity. Phytophthora infestans RXLR effector Pi02860 interacts with host protein NRL1, which is an S factor whose activity suppresses INF1-triggered cell death (ICD) and is required for late blight disease. We show that NRL1 interacts in yeast and in planta with a guanine nucleotide exchange factor called SWAP70. SWAP70 associates with endosomes and is a positive regulator of immunity. Virus-induced gene silencing of SWAP70 in Nicotiana benthamiana enhances P. infestans colonization and compromises ICD. In contrast, transient overexpression of SWAP70 reduces P. infestans infection and accelerates ICD. Expression of Pi02860 and NRL1, singly or in combination, results in proteasome-mediated degradation of SWAP70. Degradation of SWAP70 is prevented by silencing NRL1, or by mutation of Pi02860 to abolish its interaction with NRL1. NRL1 is a BTB-domain protein predicted to form the substrate adaptor component of a CULLIN3 ubiquitin E3 ligase. A dimerization-deficient mutant, NRL1NQ, fails to interact with SWAP70 but maintains its interaction with Pi02860. NRL1NQ acts as a dominant-negative mutant, preventing SWAP70 degradation in the presence of effector Pi02860, and reducing P. infestans infection. Critically, Pi02860 enhances the association between NRL1 and SWAP70 to promote proteasome-mediated degradation of the latter and, thus, suppress immunity. Preventing degradation of SWAP70 represents a strategy to combat late blight disease.
Collapse
Affiliation(s)
- Qin He
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Shaista Naqvi
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Hazel McLellan
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA Dundee, United Kingdom
| | | | - Ingo Hein
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA Dundee, United Kingdom
| | - Paul R J Birch
- Division of Plant Science, James Hutton Institute, University of Dundee, Invergowrie, DD2 5DA Dundee, United Kingdom;
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA Dundee, United Kingdom
| |
Collapse
|
21
|
Zhao X, Zhao Q, Xu C, Wang J, Zhu J, Shang B, Zhang X. Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:562-577. [PMID: 29393576 DOI: 10.1111/jipb.12639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 05/25/2023]
Abstract
Two redundant blue-light receptors, known as phototropins (phot1 and phot2), influence a variety of physiological responses, including phototropism, chloroplast positioning, and stomatal opening in Arabidopsis thaliana. Whereas phot1 functions in both low- and high-intensity blue light (HBL), phot2 functions primarily in HBL. Here, we aimed to elucidate phot2-specific functions by screening for HBL-insensitive mutants among mutagenized Arabidopsis phot1 mutants. One of the resulting phot2 signaling associated (p2sa) double mutants, phot1 p2sa2, exhibited phototropic defects that could be restored by constitutively expressing NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3), indicating that P2SA2 was allelic to NPH3. It was observed that NPH3-GFP signal mainly localized to and clustered on the plasma membrane in darkness. This NPH3 clustering on the plasma membrane was not affected by mutations in genes encoding proteins that interact with NPH3, including PHOT1, PHOT2 and ROOT PHOTOTROPISM 2 (RPT2). However, the HBL irradiation-mediated release of NPH3 proteins into the cytoplasm was inhibited in phot1 mutants and enhanced in phot2 and rpt2-2 mutants. Furthermore, HBL-induced hypocotyl phototropism was enhanced in phot1 mutants and inhibited in the phot2 and rpt2-2 mutants. Our findings indicate that phot1 regulates the dissociation of NPH3 from the plasma membrane, whereas phot2 mediates the stabilization and relocation of NPH3 to the plasma membrane to acclimate to HBL.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qingping Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chunye Xu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jindong Zhu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Baoshuan Shang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
22
|
Wang R, Zeng Z, Guo H, Tan H, Liu A, Zhao Y, Chen L. Over-expression of the Arabidopsis formate dehydrogenase in chloroplasts enhances formaldehyde uptake and metabolism in transgenic tobacco leaves. PLANTA 2018; 247:339-354. [PMID: 28988354 DOI: 10.1007/s00425-017-2790-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
MAIN CONCLUSION Over-expression of AtFDH controlled by the promoter of Rubisco small subunit in chloroplasts increases formaldehyde uptake and metabolism in tobacco leaves. Our previous study showed that formaldehyde (HCHO) uptake and resistance in tobacco are weaker than in Arabidopsis. Formate dehydrogenase in Arabidopsis (AtFDH) is a key enzyme in HCHO metabolism by oxidation of HCOOH to CO2, which enters the Calvin cycle to be assimilated into glucose. HCHO metabolic mechanism in tobacco differs from that in Arabidopsis. In this study, AtFDH was over-expressed in the chloroplasts of transgenic tobacco using a light inducible promoter. 13C-NMR analysis showed that the carbon flux from H13CHO metabolism was not introduced into the Calvin cycle to produce glucose in transgenic tobacco leaves. However, the over-expression of AtFDH significantly enhanced the HCHO metabolism in transgenic leaves. Consequently, the productions of [4-13C]Asn, [3-13C]Gln, [U-13C]oxalate, and H13COOH were notably greater in transgenic leaves than in non-transformed leaves after treatment with H13CHO. The increased stomatal conductance and aperture in transgenic leaves might be ascribed to the increased yield of oxalate in the guard cells with over-expressed AtFDH in chloroplasts. Accordingly, the transgenic plants exhibited a stronger capacity to absorb gaseous HCHO. Furthermore, the higher proline content in transgenic leaves compared with non-transformed leaves under HCHO stress might be attributable to the excess formate accumulation and Gln production. Consequently, the HCHO-induced oxidative stress was reduced in transgenic leaves.
Collapse
Affiliation(s)
- Ru Wang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, Kunming, 650500, China
| | - Zhidong Zeng
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, Kunming, 650500, China
| | - Hongxia Guo
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, Kunming, 650500, China
| | - Hao Tan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, Kunming, 650500, China
| | - Ang Liu
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, Kunming, 650500, China
| | - Yan Zhao
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, Kunming, 650500, China
| | - Limei Chen
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Chenggong, Kunming, 650500, China.
| |
Collapse
|
23
|
Oide M, Okajima K, Nakagami H, Kato T, Sekiguchi Y, Oroguchi T, Hikima T, Yamamoto M, Nakasako M. Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis. J Biol Chem 2017; 293:963-972. [PMID: 29196607 DOI: 10.1074/jbc.ra117.000324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Indexed: 11/06/2022] Open
Abstract
Phototropin2 (phot2) is a blue-light (BL) receptor that regulates BL-dependent activities for efficient photosynthesis in plants. phot2 comprises two BL-receiving light-oxygen-voltage-sensing domains (LOV1 and LOV2) and a kinase domain. BL-excited LOV2 is thought to be primarily responsible for the BL-dependent activation of the kinase. However, the molecular mechanisms by which small BL-induced conformational changes in the LOV2 domain are transmitted to the kinase remain unclear. Here, we used full-length wild-type and mutant phot2 proteins from Arabidopsis to study their molecular properties in the dark and under BL irradiation. Phosphorylation assays and absorption measurements indicated that the LOV1 domain assists the thermal relaxation of BL-excited LOV2 and vice versa. Using small-angle X-ray scattering and electron microscopy, we observed that phot2 forms a dimer and has a rod shape with a maximum length of 188 Å and a radius of gyration of 44 Å. Under BL, phot2 displayed large conformational changes that bent the rod shape. By superimposing the crystal structures of the LOV1 dimer, LOV2, and a homology model of the kinase to the observed changes, we inferred that the BL-dependent change consisted of positional shifts of both LOV2 and the kinase relative to LOV1. Furthermore, phot2 mutants lacking the photocycle in LOV1 or LOV2 still exhibited conformational changes under BL, suggesting that LOV1 and LOV2 cooperatively contribute to the conformational changes that activate the kinase. These results suggest that BL-activated LOV1 contributes to the kinase activity of phot2. We discuss the possible intramolecular interactions and signaling mechanisms in phot2.
Collapse
Affiliation(s)
- Mao Oide
- From the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Koji Okajima
- From the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan, .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.,Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany, and
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Sekiguchi
- From the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomotaka Oroguchi
- From the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takaaki Hikima
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masayoshi Nakasako
- From the Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
24
|
Ganesan M, Lee HY, Kim JI, Song PS. Development of transgenic crops based on photo-biotechnology. PLANT, CELL & ENVIRONMENT 2017; 40:2469-2486. [PMID: 28010046 DOI: 10.1111/pce.12887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses.
Collapse
Affiliation(s)
- Markkandan Ganesan
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| |
Collapse
|
25
|
Hu R, Zhu Y, Wei J, Chen J, Shi H, Shen G, Zhang H. Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions. PLANT, CELL & ENVIRONMENT 2017; 40:150-164. [PMID: 27676158 DOI: 10.1111/pce.12837] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 09/05/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A-C5 gene that encodes the catalytic subunit 5 of PP2A was studied using both loss-of-function and gain-of-function analyses. Loss-of-function mutant pp2a-c5-1 displayed more impaired growth during root and shoot development, whereas overexpression of PP2A-C5 conferred better root and shoot growth under different salt treatments, indicating that PP2A-C5 plays an important role in plant growth under salt conditions. Double knockout mutants of pp2a-c5-1 and salt overly sensitive (sos) mutants sos1-1, sos2-2 or sos3-1 showed additive sensitivity to NaCl, indicating that PP2A-C5 functions in a pathway different from the SOS signalling pathway. Using yeast two-hybrid analysis, four vacuolar membrane chloride channel (CLC) proteins, AtCLCa, AtCLCb, AtCLCc and AtCLCg, were found to interact with PP2A-C5. Moreover, overexpression of AtCLCc leads to increased salt tolerance and Cl- accumulation in transgenic Arabidopsis plants. These data indicate that PP2A-C5-mediated better growth under salt conditions might involve up-regulation of CLC activities on vacuolar membranes and that PP2A-C5 could be used for improving salt tolerance in crops.
Collapse
Affiliation(s)
- Rongbin Hu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yinfeng Zhu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310027, China
| | - Jian Chen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310027, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
26
|
Abraham PE, Yin H, Borland AM, Weighill D, Lim SD, De Paoli HC, Engle N, Jones PC, Agh R, Weston DJ, Wullschleger SD, Tschaplinski T, Jacobson D, Cushman JC, Hettich RL, Tuskan GA, Yang X. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. NATURE PLANTS 2016; 2:16178. [PMID: 27869799 DOI: 10.1038/nplants.2016.178] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/20/2016] [Indexed: 05/19/2023]
Abstract
Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C3 and C4 photosynthesis) day/night pattern of stomatal closure/opening to shift CO2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C3 model plant Arabidopsis. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis. Moreover, we identify widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet knowledge of how this molecular timekeeping regulates CAM is unknown. Here, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets provide a resource to inform efforts to engineer more efficient CAM traits into economically valuable C3 crops.
Collapse
Affiliation(s)
- Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Hengfu Yin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Anne M Borland
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- School of Biology, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Deborah Weighill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sung Don Lim
- Department of Biochemistry and Molecular Biology, University of Nevada, MS330, Reno, Nevada 89557-0330, USA
| | | | - Nancy Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ryan Agh
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Timothy Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, MS330, Reno, Nevada 89557-0330, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
27
|
Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife 2016; 5:e13768. [PMID: 27697148 PMCID: PMC5050019 DOI: 10.7554/elife.13768] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 08/31/2016] [Indexed: 01/04/2023] Open
Abstract
Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.
Collapse
Affiliation(s)
- Tie Liu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Adam D Longhurst
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Samuel A Hokin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - M Kathryn Barton
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
28
|
Sztatelman O, Łabuz J, Hermanowicz P, Banaś AK, Bażant A, Zgłobicki P, Aggarwal C, Nadzieja M, Krzeszowiec W, Strzałka W, Gabryś H. Fine tuning chloroplast movements through physical interactions between phototropins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4963-78. [PMID: 27406783 PMCID: PMC5014152 DOI: 10.1093/jxb/erw265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phototropins are plant photoreceptors which regulate numerous responses to blue light, including chloroplast relocation. Weak blue light induces chloroplast accumulation, whereas strong light leads to an avoidance response. Two Arabidopsis phototropins are characterized by different light sensitivities. Under continuous light, both can elicit chloroplast accumulation, but the avoidance response is controlled solely by phot2. As well as continuous light, brief light pulses also induce chloroplast displacements. Pulses of 0.1s and 0.2s of fluence rate saturating the avoidance response lead to transient chloroplast accumulation. Longer pulses (up to 20s) trigger a biphasic response, namely transient avoidance followed by transient accumulation. This work presents a detailed study of transient chloroplast responses in Arabidopsis. Phototropin mutants display altered chloroplast movements as compared with the wild type: phot1 is characterized by weaker responses, while phot2 exhibits enhanced chloroplast accumulation, especially after 0.1s and 0.2s pulses. To determine the cause of these differences, the abundance and phosphorylation levels of both phototropins, as well as the interactions between phototropin molecules are examined. The formation of phototropin homo- and heterocomplexes is the most plausible explanation of the observed phenomena. The physiological consequences of this interplay are discussed, suggesting the universal character of this mechanism that fine-tunes plant reactions to blue light. Additionally, responses in mutants of different protein phosphatase 2A subunits are examined to assess the role of protein phosphorylation in signaling of chloroplast movements.
Collapse
Affiliation(s)
- Olga Sztatelman
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Marcin Nadzieja
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Weronika Krzeszowiec
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| |
Collapse
|
29
|
Balmant KM, Zhang T, Chen S. Protein Phosphorylation and Redox Modification in Stomatal Guard Cells. Front Physiol 2016; 7:26. [PMID: 26903877 PMCID: PMC4742557 DOI: 10.3389/fphys.2016.00026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/18/2016] [Indexed: 12/28/2022] Open
Abstract
Post-translational modification (PTM) is recognized as a major process accounting for protein structural variation, functional diversity, and the dynamics and complexity of the proteome. Since PTMs can change the structure and function of proteins, they are essential to coordinate signaling networks and to regulate important physiological processes in eukaryotes. Plants are constantly challenged by both biotic and abiotic stresses that reduce productivity, causing economic losses in crops. The plant responses involve complex physiological, cellular, and molecular processes, with stomatal movement as one of the earliest responses. In order to activate such a rapid response, stomatal guard cells employ cellular PTMs of key protein players in the signaling pathways to regulate the opening and closure of the stomatal pores. Here we discuss two major types of PTMs, protein phosphorylation and redox modification that play essential roles in stomatal movement under stress conditions. We present an overview of PTMs that occur in stomatal guard cells, especially the methods and technologies, and their applications in PTM identification and quantification. Our focus is on PTMs that modify molecular components in guard cell signaling at the stages of signal perception, second messenger production, as well as downstream signaling events and output. Improved understanding of guard cell signaling will enable generation of crops with enhanced stress tolerance, and increased yield and bioenergy through biotechnology and molecular breeding.
Collapse
Affiliation(s)
- Kelly M. Balmant
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| |
Collapse
|
30
|
Wilson RS, Swatek KN, Thelen JJ. Regulation of the Regulators: Post-Translational Modifications, Subcellular, and Spatiotemporal Distribution of Plant 14-3-3 Proteins. FRONTIERS IN PLANT SCIENCE 2016; 7:611. [PMID: 27242818 PMCID: PMC4860396 DOI: 10.3389/fpls.2016.00611] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/21/2016] [Indexed: 05/18/2023]
Abstract
14-3-3 proteins bind to and modulate the activity of phosphorylated proteins that regulate a variety of metabolic processes in eukaryotes. Multiple 14-3-3 isoforms are expressed in most organisms and display redundancy in both sequence and function. Plants contain the largest number of 14-3-3 isoforms. For example, Arabidopsis thaliana contains thirteen 14-3-3 genes, each of which is expressed. Interest in the plant 14-3-3 field has swelled over the past decade, largely due to the vast number of possibilities for 14-3-3 metabolic regulation. As the field progresses, it is essential to understand these proteins' activities at both the spatiotemporal and subcellular levels. This review summarizes current knowledge of 14-3-3 proteins in plants, including 14-3-3 interactions, regulatory functions, isoform specificity, and post-translational modifications. We begin with a historical overview and structural analysis of 14-3-3 proteins, which describes the basic principles of 14-3-3 function, and then discuss interactions and regulatory effects of plant 14-3-3 proteins in specific tissues and subcellular compartments. We conclude with a summary of 14-3-3 phosphorylation and current knowledge of the functional effects of this modification in plants.
Collapse
|
31
|
Waadt R, Manalansan B, Rauniyar N, Munemasa S, Booker MA, Brandt B, Waadt C, Nusinow DA, Kay SA, Kunz HH, Schumacher K, DeLong A, Yates JR, Schroeder JI. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses. PLANT PHYSIOLOGY 2015; 169:760-79. [PMID: 26175513 PMCID: PMC4577397 DOI: 10.1104/pp.15.00575] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/13/2015] [Indexed: 05/06/2023]
Abstract
The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.
Collapse
Affiliation(s)
- Rainer Waadt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Bianca Manalansan
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Navin Rauniyar
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Shintaro Munemasa
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Matthew A Booker
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Benjamin Brandt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Christian Waadt
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Dmitri A Nusinow
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Steve A Kay
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Hans-Henning Kunz
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Karin Schumacher
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Alison DeLong
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - John R Yates
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Food and Fuel for the 21st Century, University of California, San Diego, La Jolla, California 92093-0116 (R.W., B.M., S.M., B.B., H.-H.K., J.I.S.);Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany (R.W., K.S.);Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037 (N.R., J.R.Y.);Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama 7008530, Japan (S.M.);Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912 (M.A.B., A.D.);Department of Biology, Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (D.A.N.); andMolecular and Computational Biology Section, University of Southern California, Los Angeles, California 90089 (S.A.K.)
| |
Collapse
|
32
|
Abstract
Reversible protein phosphorylation is an essential posttranslational modification mechanism executed by opposing actions of protein phosphatases and protein kinases. About 1,000 predicted kinases in Arabidopsis thaliana kinome predominate the number of protein phosphatases, of which there are only ~150 members in Arabidopsis. Protein phosphatases were often referred to as "housekeeping" enzymes, which act to keep eukaryotic systems in balance by counteracting the activity of protein kinases. However, recent investigations reveal the crucial and specific regulatory functions of phosphatases in cell signaling. Phosphatases operate in a coordinated manner with the protein kinases, to execute their important function in determining the cellular response to a physiological stimulus. Closer examination has established high specificity of phosphatases in substrate recognition and important roles in plant signaling pathways, such as pathogen defense and stress regulation, light and hormonal signaling, cell cycle and differentiation, metabolism, and plant growth. In this minireview we provide a compact overview about Arabidopsis protein phosphatase families, as well as members of phosphoglucan and lipid phosphatases, and highlight the recent discoveries in phosphatase research.
Collapse
Affiliation(s)
- Alois Schweighofer
- Institute of Biotechnology, University of Vilnius, V. Graičiūno 8, 02241, Vilnius, Lithuania,
| | | |
Collapse
|
33
|
Lillo C, Kataya ARA, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. PLANT, CELL & ENVIRONMENT 2014; 37:2631-48. [PMID: 24810976 DOI: 10.1111/pce.12364] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP-domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B' subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME-1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals.
Collapse
Affiliation(s)
- Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | | | | | | | | | | | | |
Collapse
|
34
|
Segonzac C, Macho AP, Sanmartín M, Ntoukakis V, Sánchez-Serrano JJ, Zipfel C. Negative control of BAK1 by protein phosphatase 2A during plant innate immunity. EMBO J 2014; 33:2069-79. [PMID: 25085430 DOI: 10.15252/embj.201488698] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern-recognition receptors (PRRs) activates plant innate immunity, mainly through activation of numerous protein kinases. Appropriate induction of immune responses must be tightly regulated, as many of the kinases involved have an intrinsic high activity and are also regulated by other external and endogenous stimuli. Previous evidences suggest that PAMP-triggered immunity (PTI) is under constant negative regulation by protein phosphatases but the underlying molecular mechanisms remain unknown. Here, we show that protein Ser/Thr phosphatase type 2A (PP2A) controls the activation of PRR complexes by modulating the phosphostatus of the co-receptor and positive regulator BAK1. A potential PP2A holoenzyme composed of the subunits A1, C4, and B'η/ζ inhibits immune responses triggered by several PAMPs and anti-bacterial immunity. PP2A constitutively associates with BAK1 in planta. Impairment in this PP2A-based regulation leads to increased steady-state BAK1 phosphorylation, which can poise enhanced immune responses. This work identifies PP2A as an important negative regulator of plant innate immunity that controls BAK1 activation in surface-localized immune receptor complexes.
Collapse
Affiliation(s)
- Cécile Segonzac
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Alberto P Macho
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Maite Sanmartín
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | - José Juan Sánchez-Serrano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| |
Collapse
|
35
|
Aggarwal C, Banaś AK, Kasprowicz-Maluśki A, Borghetti C, Labuz J, Dobrucki J, Gabryś H. Blue-light-activated phototropin2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3263-76. [PMID: 24821953 PMCID: PMC4071840 DOI: 10.1093/jxb/eru172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Carolina Borghetti
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Labuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Jerzy Dobrucki
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
36
|
Abstract
After over a century of progress, phototropism research still presents some fascinating challenges.
Collapse
|
37
|
Zhang T, Chen S, Harmon AC. Protein phosphorylation in stomatal movement. PLANT SIGNALING & BEHAVIOR 2014; 9:e972845. [PMID: 25482764 PMCID: PMC4622631 DOI: 10.4161/15592316.2014.972845] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 05/18/2023]
Abstract
As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation.
Collapse
Key Words
- AAPK, ABA activated protein kinase
- ABA
- ABA, abscisic acid
- ABI, abscisic acid insensitive
- AHK5, Arabidopsis histidine kinases 5
- AKS, ABA-responsive kinase substrates
- BL, blue light
- BLUS1, blue light signaling1
- CBL, calcineurin-B like proteins
- CIPK, CBL-interacting protein kinase
- CPK, calcium dependent protein kinase
- EPs, epidermal peels
- GCPs, guard cell protoplasts
- GHR1, guard cell hydrogen peroxide-resistant1
- HAB1, homology to ABI1
- HRB1, hypersensitive to red and blue 1
- HXK, hexokinase
- IHC, immunohistochemistry
- KAT1, K+ channel in A. thaliana 1
- LC-MS/MS, liquid chromatography–mass spectrometry
- MAP4K, mitogen-activated protein kinase kinase kinase kinase
- MPK, mitogen-activated protein kinase
- MeJA, methyl jasmonate
- NO, nitric oxide
- OST1, open stomata 1
- PA, phosphatidic acid
- PHO1, phosphate1
- PP1, protein phosphatase
- PP7, protein phosphatase
- PRSL1, PP1 regulatory subunit2-like protein1
- PTPases, protein tyrosine phosphatases
- QUAC1, quickly-activating anion channel 1
- RBOH, respiratory burst oxidase homolog
- ROS
- ROS, reactive oxygen species
- SLAC1, slow anion channel-associated 1
- SnRK2.6, sucrose nonfermenting-1 (Snf1)-related protein kinase 2.6
- blue light
- guard cell, ion channel
- kinase
- phosphatase
- protein phosphorylation
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology and the University of Florida Genetics Institute; University of Florida; Gainesville, FL USA
| | - Sixue Chen
- Department of Biology and the University of Florida Genetics Institute; University of Florida; Gainesville, FL USA
- Interdisciplinary Center for Biotechnology Research; University of Florida; Gainesville, FL USA
- Plant Molecular and Cellular Biology Program; University of Florida; Gainesville, FL USA
| | - Alice C Harmon
- Department of Biology and the University of Florida Genetics Institute; University of Florida; Gainesville, FL USA
- Plant Molecular and Cellular Biology Program; University of Florida; Gainesville, FL USA
- Correspondence to: Alice C Harmon;
| |
Collapse
|
38
|
Verslues PE, Lasky JR, Juenger TE, Liu TW, Kumar MN. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:144-59. [PMID: 24218491 PMCID: PMC3875797 DOI: 10.1104/pp.113.224014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/10/2013] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) exhibits natural genetic variation in drought response, including varying levels of proline (Pro) accumulation under low water potential. As Pro accumulation is potentially important for stress tolerance and cellular redox control, we conducted a genome-wide association (GWAS) study of low water potential-induced Pro accumulation using a panel of natural accessions and publicly available single-nucleotide polymorphism (SNP) data sets. Candidate genomic regions were prioritized for subsequent study using metrics considering both the strength and spatial clustering of the association signal. These analyses found many candidate regions likely containing gene(s) influencing Pro accumulation. Reverse genetic analysis of several candidates identified new Pro effector genes, including thioredoxins and several genes encoding Universal Stress Protein A domain proteins. These new Pro effector genes further link Pro accumulation to cellular redox and energy status. Additional new Pro effector genes found include the mitochondrial protease LON1, ribosomal protein RPL24A, protein phosphatase 2A subunit A3, a MADS box protein, and a nucleoside triphosphate hydrolase. Several of these new Pro effector genes were from regions with multiple SNPs, each having moderate association with Pro accumulation. This pattern supports the use of summary approaches that incorporate clusters of SNP associations in addition to consideration of individual SNP probability values. Further GWAS-guided reverse genetics promises to find additional effectors of Pro accumulation. The combination of GWAS and reverse genetics to efficiently identify new effector genes may be especially applicable for traits difficult to analyze by other genetic screening methods.
Collapse
|
39
|
Uhrig RG, Labandera AM, Moorhead GB. Arabidopsis PPP family of serine/threonine protein phosphatases: many targets but few engines. TRENDS IN PLANT SCIENCE 2013; 18:505-13. [PMID: 23790269 DOI: 10.1016/j.tplants.2013.05.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 05/20/2023]
Abstract
The major plant serine/threonine protein phosphatases belong to the phosphoprotein phosphatase (PPP) family. Over the past few years the complement of Arabidopsis thaliana PPP family of catalytic subunits has been cataloged and many regulatory subunits identified. Specific roles for PPPs have been characterized, including roles in auxin and brassinosteroid signaling, in phototropism, in regulating the target of rapamycin pathway, and in cell stress responses. In this review, we provide a framework for understanding the PPP family by exploring the fundamental role of the phosphatase regulatory subunits that drive catalytic engine specificity. Although there are fewer plant protein phosphatases compared with their protein kinase partners, their function is now recognized to be as dynamic and as regulated as that of protein kinases.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biological Sciences, University of Calgary, Canada
| | | | | |
Collapse
|
40
|
Zhao X, Wang YL, Qiao XR, Wang J, Wang LD, Xu CS, Zhang X. Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. PLANT PHYSIOLOGY 2013; 162:1539-51. [PMID: 23674105 PMCID: PMC3700674 DOI: 10.1104/pp.113.216556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/10/2013] [Indexed: 05/07/2023]
Abstract
Phototropins (phot1 and phot2), the blue light receptors in plants, regulate hypocotyl phototropism in a fluence-dependent manner. Especially under high fluence rates of blue light (HBL), the redundant function mediated by both phot1 and phot2 drastically restricts the understanding of the roles of phot2. Here, systematic analysis of phototropin-related mutants and overexpression transgenic lines revealed that HBL specifically induced a transient increase in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) in Arabidopsis (Arabidopsis thaliana) hypocotyls and that the increase in [Ca(2+)]cyt was primarily attributed to phot2. Pharmacological and genetic experiments illustrated that HBL-induced Ca(2+) increases were modulated differently by phot1 and phot2. Phot2 mediated the HBL-induced increase in [Ca(2+)]cyt mainly by an inner store-dependent Ca(2+)-release pathway, not by activating plasma membrane Ca(2+) channels. Further analysis showed that the increase in [Ca(2+)]cyt was possibly responsible for HBL-induced hypocotyl phototropism. An inhibitor of auxin efflux carrier exhibited significant inhibitions of both phototropism and increases in [Ca(2+)]cyt, which indicates that polar auxin transport is possibly involved in HBL-induced responses. Moreover, PHYTOCHROME KINASE SUBSTRATE1 (PKS1), the phototropin-related signaling element identified, interacted physically with phototropins, auxin efflux carrier PIN-FORMED1 and calcium-binding protein CALMODULIN4, in vitro and in vivo, respectively, and HBL-induced phototropism was impaired in pks multiple mutants, indicating the role of the PKS family in HBL-induced phototropism. Together, these results provide new insights into the functions of phototropins and highlight a potential integration point through which Ca(2+) signaling-related HBL modulates hypocotyl phototropic responses.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Lin-Dan Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Chang-Shui Xu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
| |
Collapse
|
41
|
Zhou XF, Jin YH, Yoo CY, Lin XL, Kim WY, Yun DJ, Bressan RA, Hasegawa PM, Jin JB. CYCLIN H;1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1030-41. [PMID: 23656895 PMCID: PMC3668038 DOI: 10.1104/pp.113.215798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/04/2013] [Indexed: 05/19/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE Ds (CDKDs) phosphorylate the C-terminal domain of the largest subunit of RNA polymerase II. Arabidopsis CYCLIN H;1 (CYCH;1) interacts with and activates CDKDs; however, the physiological function of CYCH;1 has not been determined. Here, we report that CYCH;1, which is localized to the nucleus, positively regulates blue light-induced stomatal opening. Reduced-function cych;1 RNA interference (cych;1 RNAi) plants exhibited a drought tolerance phenotype. CYCH;1 is predominantly expressed in guard cells, and its expression was substantially down-regulated by dehydration. Transpiration of intact leaves was reduced in cych;1 RNAi plants compared with the wild-type control in light but not in darkness. CYCH;1 down-regulation impaired blue light-induced stomatal opening but did not affect guard cell development or abscisic acid-mediated stomatal closure. Microarray and real-time polymerase chain reaction analyses indicated that CYCH;1 did not regulate the expression of abscisic acid-responsive genes or light-induced stomatal opening signaling determinants, such as MYB60, MYB61, Hypersensitive to red and blue1, and Protein phosphatase7. CYCH;1 down-regulation induced the expression of redox homeostasis genes, such as LIPOXYGENASE3 (LOX3), LOX4, ARABIDOPSIS GLUTATHIONE PEROXIDASE 7 (ATGPX7), EARLY LIGHT-INDUCIBLE PROTEIN1 (ELIP1), and ELIP2, and increased hydrogen peroxide production in guard cells. Furthermore, loss-of-function mutations in CDKD;2 or CDKD;3 did not affect responsiveness to drought stress, suggesting that CYCH;1 regulates the drought stress response in a CDKD-independent manner. We propose that CYCH;1 regulates blue light-mediated stomatal opening by controlling reactive oxygen species homeostasis.
Collapse
|
42
|
Hohm T, Preuten T, Fankhauser C. Phototropism: translating light into directional growth. AMERICAN JOURNAL OF BOTANY 2013; 100:47-59. [PMID: 23152332 DOI: 10.3732/ajb.1200299] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
43
|
Takemiya A, Yamauchi S, Yano T, Ariyoshi C, Shimazaki KI. Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. PLANT & CELL PHYSIOLOGY 2013; 54:24-35. [PMID: 22585556 DOI: 10.1093/pcp/pcs073] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine protein phosphatase comprised of a catalytic subunit (PP1c) and a regulatory subunit that modulates catalytic activity, subcellular localization and substrate specificity. PP1c positively regulates stomatal opening through blue light signaling between phototropins and the plasma membrane H(+)-ATPase in guard cells. However, the regulatory subunit functioning in this process is unknown. We identified Arabidopsis PRSL1 (PP1 regulatory subunit2-like protein1) as a regulatory subunit of PP1c. Tautomycin, a selective inhibitor of PP1c, inhibited blue light responses of stomata in the single mutants phot1 and phot2, supporting the idea that signals from phot1 and phot2 converge on PP1c. We obtained PRSL1 based on the sequence similarity to Vicia faba PRS2, a PP1c-binding protein isolated by a yeast two-hybrid screen. PRSL1 bound to Arabidopsis PP1c through its RVxF motif, a consensus PP1c-binding sequence. Arabidopsis prsl1 mutants were impaired in blue light-dependent stomatal opening, H(+) pumping and phosphorylation of the H(+)-ATPase, but showed normal phototropin activities. PRSL1 complemented the prsl1 phenotype, but not if the protein carried a mutation in the RVxF motif, suggesting that PRSL1 functions through binding PP1c via the RVxF motif. PRSL1 did not affect the catalytic activity of Arabidopsis PP1c but it stimulated the localization of PP1c in the cytoplasm. We conclude that PRSL1 functions as a regulatory subunit of PP1 and regulates blue light signaling in stomata.
Collapse
Affiliation(s)
- Atsushi Takemiya
- Department of Biology, Faculty of Science, Kyushu University, 6-10-1 Hakozaki, Fukuoka, 812-8581 Japan
| | | | | | | | | |
Collapse
|
44
|
Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G. Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:4687-4702. [PMID: 23204408 PMCID: PMC3531860 DOI: 10.1105/tpc.112.103523] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/21/2012] [Accepted: 11/09/2012] [Indexed: 05/21/2023]
Abstract
The eyespot of Chlamydomonas reinhardtii is a light-sensitive organelle important for phototactic orientation of the alga. Here, we found that eyespot size is strain specific and downregulated in light. In a strain in which the blue light photoreceptor phototropin was deleted by homologous recombination, the light regulation of the eyespot size was affected. We restored this dysfunction in different phototropin complementation experiments. Complementation with the phototropin kinase fragment reduced the eyespot size, independent of light. Interestingly, overexpression of the N-terminal light, oxygen or voltage sensing domains (LOV1+LOV2) alone also affected eyespot size and phototaxis, suggesting that aside from activation of the kinase domain, they fulfill an independent signaling function in the cell. Moreover, phototropin is involved in adjusting the level of channelrhodopsin-1, the dominant primary receptor for phototaxis within the eyespot. Both the level of channelrhodopsin-1 at the onset of illumination and its steady state level during the light period are downregulated by phototropin, whereas the level of channelrhodopsin-2 is not significantly altered. Furthermore, a light intensity-dependent formation of a C-terminal truncated phototropin form was observed. We propose that phototropin is a light regulator of phototaxis that desensitizes the eyespot when blue light intensities increase.
Collapse
Affiliation(s)
- Jessica Trippens
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Andre Greiner
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Jana Schellwat
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Martin Neukam
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Theresa Rottmann
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Yinghong Lu
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, 110021 Delhi, India
| | - Peter Hegemann
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-University, 91058 Erlangen, Germany
- Address correspondence to
| |
Collapse
|
45
|
Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1517-34. [PMID: 22864452 PMCID: PMC3439871 DOI: 10.1093/pcp/pcs111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181 Japan.
| | | |
Collapse
|
46
|
Wen F, Wang J, Xing D. A protein phosphatase 2A catalytic subunit modulates blue light-induced chloroplast avoidance movements through regulating actin cytoskeleton in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1366-1379. [PMID: 22642987 DOI: 10.1093/pcp/pcs081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chloroplast avoidance movements mediated by phototropin 2 (phot2) are one of most important physiological events in the response to high-fluence blue light (BL), which reduces damage to the photosynthetic machinery under excess light. Protein phosphatase 2A-2 (PP2A-2) is an isoform of the catalytic subunit of PP2A, which regulates a number of developmental processes. To investigate whether PP2A-2 was involved in high-fluence BL-induced chloroplast avoidance movements, we first analyzed chloroplast migration in the leaves of the pp2a-2 mutant in response to BL. The data showed that PP2A-2 might act as a positive regulator in phot2-mediated chloroplast avoidance movements, but not in phot1-mediated chloroplast accumulation movements. Then, the effect of okadaic acid (OA) and cantharidin (selective PP2A inhibitors) on high-fluence BL response was further investigated in Arabidopsis thaliana mesophyll cells. Within a certain concentration range, exogenously applied OA or cantharidin inhibited the high-fluence BL-induced chloroplast movements in a concentration-dependent manner. Actin depolymerizing factor (ADF)/cofilin phosphorylation assays demonstrated that PP2A-2 can activate/dephosphorylate ADF/cofilin, an actin-binding protein, in Arabidopsis mesophyll cells. Consistent with this observation, the experiments showed that OA could inhibit ADF1 binding to the actin and suppress the reorganization of the actin cytoskeleton after high-fluence BL irradiation. The adf1 and adf3 mutants also exhibited reduced high-fluence BL-induced chloroplast avoidance movements. In conclusion, we identified that PP2A-2 regulated the activation of ADF/cofilin, which, in turn, regulated actin cytoskeleton remodeling and was involved in phot2-mediated chloroplast avoidance movements.
Collapse
Affiliation(s)
- Feng Wen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
47
|
Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 2012; 31:3457-67. [PMID: 22781128 DOI: 10.1038/emboj.2012.186] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/11/2012] [Indexed: 11/08/2022] Open
Abstract
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Collapse
|
48
|
Chen C, Xiao YG, Li X, Ni M. Light-regulated stomatal aperture in Arabidopsis. MOLECULAR PLANT 2012; 5:566-72. [PMID: 22516479 DOI: 10.1093/mp/sss039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The stomatal pores of plant leaves, situated in the epidermis and surrounded by a pair of guard cells, allow CO2 uptake for photosynthesis and water loss through transpiration. Blue light is one of the dominant environmental signals that control stomatal movements in leaves of plants in a natural environment. This blue light response is mediated by blue/UV A light-absorbing phototropins (phots) and cryptochromes (crys). Red/far-red light-absorbing phytochromes (phys) also play a role in the control of stomatal aperture. The signaling components that link the perception of light signals to the stomatal opening response are largely unknown. This review discusses a few newly discovered nuclear genes, their function with respect to the phot-, cry-, and phy-mediated signal transduction cascades, and possible involvement of circadian clock.
Collapse
Affiliation(s)
- Chen Chen
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
49
|
Tseng TS, Whippo C, Hangarter RP, Briggs WR. The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. THE PLANT CELL 2012; 24:1114-26. [PMID: 22408078 PMCID: PMC3336120 DOI: 10.1105/tpc.111.092130] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The 14-3-3 λ isoform is required for normal stomatal opening mediated by PHOT2 in Arabidopsis thaliana. Arabidopsis phototropin2 (PHOT2) interacts with the λ-isoform 14-3-3 protein both in yeast two-hybrid screening and in an in vitro pull-down assay. Further yeast two-hybrid analysis also showed that the PHOT2 C-terminal kinase domain was required for the interaction. Site-directed mutagenesis indicated that PHOT2 Ser-747 is essential for the yeast interaction. Phenotypic characterization of a loss-of-function 14-3-3 λ mutant in a phot1 mutant background showed that the 14-3-3 λ protein was necessary for normal PHOT2-mediated blue light-induced stomatal opening. PHOT2 Ser-747 was necessary for complementation of the blue light-activated stomatal response in a phot1 phot2 double mutant. The 14-3-3 λ mutant in the phot1 mutant background allowed normal phototropism and normal chloroplast accumulation and avoidance responses. It also showed normal stomatal opening mediated by PHOT1 in a phot2 mutant background. The 14-3-3 κ mutant had no effect on stomatal opening in response to blue light. Although the 14-3-3 λ mutant had no chloroplast movement phenotype, the 14-3-3 κ mutation caused a weaker avoidance response at an intermediate blue light intensity by altering the balance between the avoidance and accumulation responses. The results highlight the strict specificity of phototropin-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Tong-Seung Tseng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Craig Whippo
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | | | - Winslow R. Briggs
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Address correspondence to
| |
Collapse
|
50
|
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1559-74. [PMID: 22312115 DOI: 10.1093/jxb/err429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast movements are among the mechanisms allowing plants to cope with changes in their environment. Chloroplasts accumulate at illuminated cell areas under weak light while they avoid areas exposed to strong light. These directional responses may be controlled by blue and/or red light, depending on the plant group. In terrestrial angiosperms only the blue light perceived by phototropins is active. The last decade has seen a rapid development of studies on the mechanism of directional chloroplast movements, which started with an identification of the photoreceptors. A forward genetic approach has been used to identify the components which control chloroplast movements. This review summarizes the current state of research into the signalling pathways which lead to chloroplast responses. First, the molecular properties of phototropins are presented, followed by a characterization both of proteins which are active downstream of phototropins and of secondary messengers. Finally, cross-talk between light signalling involved in chloroplast movements and other signalling pathways is discussed.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|