1
|
Liang K, Jin Z, Zhan X, Li Y, Xu Q, Xie Y, Yang Y, Wang S, Wu J, Yan Z. Structural insights into the chloroplast protein import in land plants. Cell 2024; 187:5651-5664.e18. [PMID: 39197452 DOI: 10.1016/j.cell.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Chloroplast proteins are imported via the translocon at the outer chloroplast membrane (TOC)-translocon at the inner chloroplast membrane (TIC) supercomplex, driven by an ATPase motor. The Ycf2-FtsHi complex has been identified as the chloroplast import motor. However, its assembly and cooperation with the TIC complex during preprotein translocation remain unclear. Here, we present the structures of the Ycf2-FtsHi and TIC complexes from Arabidopsis and an ultracomplex formed between them from Pisum. The Ycf2-FtsHi structure reveals a heterohexameric AAA+ ATPase motor module with characteristic features. Four previously uncharacterized components of Ycf2-FtsHi were identified, which aid in complex assembly and anchoring of the motor module at a tilted angle relative to the membrane. When considering the structures of the TIC complex and the TIC-Ycf2-FtsHi ultracomplex together, it becomes evident that the tilted motor module of Ycf2-FtsHi enables its close contact with the TIC complex, thereby facilitating efficient preprotein translocation. Our study provides valuable structural insights into the chloroplast protein import process in land plants.
Collapse
Affiliation(s)
- Ke Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaojie Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Yang W, Gao S, Bao M, Li X, Liu Z, Wang G. HSP70A promotes the photosynthetic activity of marine diatom Phaeodactylum tricornutum under high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2085-2093. [PMID: 38525917 DOI: 10.1111/tpj.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
With global climate change, the high-temperature environment has severely impacted the community structure and phenotype of marine diatoms. Phaeodactylum tricornutum, a model species of marine diatom, is sensitive to high temperature, which grow slowly under high temperature. However, the regulatory mechanism of P. tricornutum in response to high-temperature is still unclear. In this study, we found that the expression level of the HSP70A in the wild type (WT) increased 28 times when exposed to high temperature (26°C) for 1 h, indicating that HSP70A plays a role in high temperature in P. tricornutum. Furthermore, overexpression and interference of HSP70A have great impact on the exponential growth phase of P. tricornutum under 26°C. Moreover, the results of Co-immunoprecipitation (Co-IP) suggested that HSP70A potentially involved in the correct folding of the photosynthetic system-related proteins (D1/D2), preventing aggregation. The photosynthetic activity results demonstrated that overexpression of HSP70A improves non-photochemical quenching (NPQ) activity under high-temperature stress. These results reveal that HSP70A regulates the photosynthetic activity of P. tricornutum under high temperatures. This study not only helps us to understand the photosynthetic activity of marine diatoms to high temperature but also provides a molecular mechanism for HSP70A in P. tricornutum under high-temperature stress.
Collapse
Affiliation(s)
- Wenting Yang
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mengjiao Bao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xin Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
3
|
Che R, Liu Y, Yan S, Yang C, Sun Y, Liu C, Ma F. Elongation factor MdEF-Tu coordinates with heat shock protein MdHsp70 to enhance apple thermotolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1250-1263. [PMID: 37991990 DOI: 10.1111/tpj.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
High-temperature stress results in protein misfolding/unfolding and subsequently promotes the accumulation of cytotoxic protein aggregates that can compromise cell survival. Heat shock proteins (HSPs) function as molecular chaperones that coordinate the refolding and degradation of aggregated proteins to mitigate the detrimental effects of high temperatures. However, the relationship between HSPs and protein aggregates in apples under high temperatures remains unclear. Here, we show that an apple (Malus domestica) chloroplast-localized, heat-sensitive elongation factor Tu (MdEF-Tu), positively regulates apple thermotolerance when it is overexpressed. Transgenic apple plants exhibited higher photosynthetic capacity and better integrity of chloroplasts during heat stress. Under high temperatures, MdEF-Tu formed insoluble aggregates accompanied by ubiquitination modifications. Furthermore, we identified a chaperone heat shock protein (MdHsp70), as an interacting protein of MdEF-Tu. Moreover, we observed obviously elevated MdHsp70 levels in 35S: MdEF-Tu apple plants that prevented the accumulation of ubiquitinated MdEF-Tu aggregates, which positively contributes to the thermotolerance of the transgenic plants. Overall, our results provide new insights into the molecular chaperone function of MdHsp70, which mediates the homeostasis of thermosensitive proteins under high temperatures.
Collapse
Affiliation(s)
- Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuerong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengqi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yubo Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Chang CY, Chen LJ, Li HM. Chloroplast import motor subunits FtsHi1 and FtsHi2 are located on opposite sides of the inner envelope membrane. Proc Natl Acad Sci U S A 2023; 120:e2307747120. [PMID: 37669373 PMCID: PMC10500165 DOI: 10.1073/pnas.2307747120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Protein import into chloroplasts is powered by ATP hydrolysis in the stroma. Establishing the identity and functional mechanism of the stromal ATPase motor that drives import is critical for understanding chloroplast biogenesis. Recently, a complex consisting of Ycf2, FtsHi1, FtsHi2, FtsHi4, FtsHi5, FtsH12, and malate dehydrogenase was shown to be important for chloroplast protein import, and it has been proposed to act as the motor driving protein translocation across the chloroplast envelope into the stroma. To gain further mechanistic understanding of how the motor functions, we performed membrane association and topology analyses on two of its subunits, FtsHi1 and FtsHi2. We isolated cDNA clones encoding FtsHi1 and FtsHi2 preproteins to perform in vitro import experiments in order to determine the exact size of each mature protein. We also generated antibodies against the C-termini of the proteins, i.e., where their ATPase domains reside. Protease treatments and alkaline and high-salt extractions of chloroplasts with imported and endogenous proteins revealed that FtsHi1 is an integral membrane protein with its C-terminal portion located in the intermembrane space of the envelope, not the stroma, whereas FtsHi2 is a soluble protein in the stroma. We further complemented an FtsHi1-knockout mutant with a C-terminally tagged FtsHi1 and obtained identical results for topological analyses. Our data indicate that the model of a single membrane-anchored pulling motor at the stromal side of the inner membrane needs to be revised and suggest that the Ycf2-FtsHi complex may have additional functions.
Collapse
Affiliation(s)
- Chia-Yun Chang
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| |
Collapse
|
5
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
6
|
Kim DB, Na C, Hwang I, Lee DW. Understanding protein translocation across chloroplast membranes: Translocons and motor proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:408-416. [PMID: 36223071 DOI: 10.1111/jipb.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Subcellular organelles in eukaryotes are surrounded by lipid membranes. In an endomembrane system, vesicle trafficking is the primary mechanism for the delivery of organellar proteins to specific organelles. However, organellar proteins for chloroplasts, mitochondria, the nucleus, and peroxisomes that are translated in the cytosol are directly imported into their target organelles. Chloroplasts are a plant-specific organelle with outer and inner envelope membranes, a dual-membrane structure that is similar to mitochondria. Interior chloroplast proteins translated by cytosolic ribosomes are thus translocated through TOC and TIC complexes (translocons in the outer and inner envelope of chloroplasts, respectively), with stromal ATPase motor proteins playing a critical role in pulling pre-proteins through these import channels. Over the last three decades, the identity and function of TOC/TIC components and stromal motor proteins have been actively investigated, which has shed light on the action mechanisms at a molecular level. However, there remains some disagreement over the exact composition of TIC complexes and genuine stromal motor proteins. In this review, we discuss recent findings on the mechanisms by which proteins are translocated through TOC/TIC complexes and discuss future prospects for this field of research.
Collapse
Affiliation(s)
- Da Been Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Changhee Na
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
7
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
8
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
9
|
Rochaix J. Chloroplast protein import machinery and quality control. FEBS J 2022; 289:6908-6918. [PMID: 35472255 PMCID: PMC9790281 DOI: 10.1111/febs.16464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/20/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
Most chloroplast proteins are nucleus-encoded, translated on cytoplasmic ribosomes as precursor proteins, and imported into chloroplasts through TOC and TIC, the translocons of the outer and inner chloroplast envelope membranes. While the composition of the TOC complex is well established, there is still some controversy about the importance of a recently identified TIC complex consisting of Tic20, Tic214, Tic100, and Tic56. TOC and TIC form a supercomplex with a protein channel at the junction of the outer and inner envelope membranes through which preproteins are pulled into the stroma by the ATP-powered Ycf2 complex consisting of several FtsH-like ATPases and/or by chloroplast Hsp proteins. Several components of the TOC/TIC system are moonlighting proteins with additional roles in chloroplast gene expression and metabolism. Chaperones and co-chaperones, associated with TOC and TIC on the cytoplasmic and stromal side of the chloroplast envelope, participate in the unfolding and folding of the precursor proteins and act together with the ubiquitin-proteasome system in protein quality control. Chloroplast protein import is also intimately linked with retrograde signaling, revealing altogether an unsuspected complexity in the regulation of this process.
Collapse
Affiliation(s)
- Jean‐David Rochaix
- Departments of Molecular Biology and Plant BiologyUniversity of GenevaSwitzerland
| |
Collapse
|
10
|
Wu GZ, Bock R. GUN control in retrograde signaling: How GENOMES UNCOUPLED proteins adjust nuclear gene expression to plastid biogenesis. THE PLANT CELL 2021; 33:457-474. [PMID: 33955483 PMCID: PMC8136882 DOI: 10.1093/plcell/koaa048] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
Communication between cellular compartments is vital for development and environmental adaptation. Signals emanating from organelles, so-called retrograde signals, coordinate nuclear gene expression with the developmental stage and/or the functional status of the organelle. Plastids (best known in their green photosynthesizing differentiated form, the chloroplasts) are the primary energy-producing compartment of plant cells, and the site for the biosynthesis of many metabolites, including fatty acids, amino acids, nucleotides, isoprenoids, tetrapyrroles, vitamins, and phytohormone precursors. Signals derived from plastids regulate the accumulation of a large set of nucleus-encoded proteins, many of which localize to plastids. A set of mutants defective in retrograde signaling (genomes uncoupled, or gun) was isolated over 25 years ago. While most GUN genes act in tetrapyrrole biosynthesis, resolving the molecular function of GUN1, the proposed integrator of multiple retrograde signals, has turned out to be particularly challenging. Based on its amino acid sequence, GUN1 was initially predicted to be a plastid-localized nucleic acid-binding protein. Only recently, mechanistic information on the function of GUN1 has been obtained, pointing to a role in plastid protein homeostasis. This review article summarizes our current understanding of GUN-related retrograde signaling and provides a critical appraisal of the various proposed roles for GUNs and their respective pathways.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
11
|
Jiang T, Mu B, Zhao R. Plastid chaperone HSP90C guides precursor proteins to the SEC translocase for thylakoid transport. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7073-7087. [PMID: 32853383 PMCID: PMC7906790 DOI: 10.1093/jxb/eraa399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 05/04/2023]
Abstract
Chloroplast stromal factors involved in regulating thylakoid protein targeting are poorly understood. We previously reported that in Arabidopsis thaliana, the stromal-localized chaperone HSP90C (plastid heat shock protein 90) interacted with the nuclear-encoded thylakoid lumen protein PsbO1 (PSII subunit O isoform 1) and suggested a role for HSP90C in aiding PsbO1 thylakoid targeting. Using in organello transport assays, particularly with model substrates naturally expressed in stroma, we showed that light, exogenous ATP, and HSP90C activity were required for Sec-dependent transport of green fluorescent protein (GFP) led by the PsbO1 thylakoid targeting sequence. Using a previously identified PsbO1T200A mutant, we provided evidence that a stronger interaction between HSP90C and PsbO1 better facilitated its stroma-thylakoid trafficking. We also demonstrated that SecY1, the channel protein of the thylakoid SEC translocase, specifically interacted with HSP90C in vivo. Inhibition of the chaperone ATPase activity suppressed the association of the PsbO1GFP-HSP90C complex with SecY1. Together with analyzing the expression and accumulation of a few other thylakoid proteins that utilize the SRP, TAT, or SEC translocation pathways, we propose a model in which HSP90C forms a guiding complex that interacts with thylakoid protein precursors and assists in their specific targeting to the thylakoid SEC translocon.
Collapse
Affiliation(s)
- Tim Jiang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Ramundo S, Asakura Y, Salomé PA, Strenkert D, Boone M, Mackinder LCM, Takafuji K, Dinc E, Rahire M, Crèvecoeur M, Magneschi L, Schaad O, Hippler M, Jonikas MC, Merchant S, Nakai M, Rochaix JD, Walter P. Coexpressed subunits of dual genetic origin define a conserved supercomplex mediating essential protein import into chloroplasts. Proc Natl Acad Sci U S A 2020; 117:32739-32749. [PMID: 33273113 PMCID: PMC7768757 DOI: 10.1073/pnas.2014294117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In photosynthetic eukaryotes, thousands of proteins are translated in the cytosol and imported into the chloroplast through the concerted action of two translocons-termed TOC and TIC-located in the outer and inner membranes of the chloroplast envelope, respectively. The degree to which the molecular composition of the TOC and TIC complexes is conserved over phylogenetic distances has remained controversial. Here, we combine transcriptomic, biochemical, and genetic tools in the green alga Chlamydomonas (Chlamydomonas reinhardtii) to demonstrate that, despite a lack of evident sequence conservation for some of its components, the algal TIC complex mirrors the molecular composition of a TIC complex from Arabidopsis thaliana. The Chlamydomonas TIC complex contains three nuclear-encoded subunits, Tic20, Tic56, and Tic100, and one chloroplast-encoded subunit, Tic214, and interacts with the TOC complex, as well as with several uncharacterized proteins to form a stable supercomplex (TIC-TOC), indicating that protein import across both envelope membranes is mechanistically coupled. Expression of the nuclear and chloroplast genes encoding both known and uncharacterized TIC-TOC components is highly coordinated, suggesting that a mechanism for regulating its biogenesis across compartmental boundaries must exist. Conditional repression of Tic214, the only chloroplast-encoded subunit in the TIC-TOC complex, impairs the import of chloroplast proteins with essential roles in chloroplast ribosome biogenesis and protein folding and induces a pleiotropic stress response, including several proteins involved in the chloroplast unfolded protein response. These findings underscore the functional importance of the TIC-TOC supercomplex in maintaining chloroplast proteostasis.
Collapse
Affiliation(s)
- Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Yukari Asakura
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Morgane Boone
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Luke C M Mackinder
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Kazuaki Takafuji
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Emine Dinc
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Rahire
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Michèle Crèvecoeur
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Leonardo Magneschi
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Sabeeha Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Masato Nakai
- Laboratory of Organelle Biology, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan;
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland;
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
13
|
Klasek L, Inoue K, Theg SM. Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein. THE PLANT CELL 2020; 32:3884-3901. [PMID: 33093145 PMCID: PMC7721336 DOI: 10.1105/tpc.20.00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/11/2020] [Accepted: 10/21/2020] [Indexed: 05/08/2023]
Abstract
Posttranslational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins posttranslationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in thylakoid targeting of Plsp1. In isolated thylakoids, the integration of Plsp1 decreased when Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon that inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60's obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, whereas cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins in the stroma can interact with Cpn60 to shield themselves from the aqueous environment.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Biology, University of California Davis, Davis, California 95616
| | - Kentaro Inoue
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Steven M Theg
- Department of Plant Biology, University of California Davis, Davis, California 95616
| |
Collapse
|
14
|
Chen Z, Wang W, Pu X, Dong X, Gao B, Li P, Jia Y, Liu A, Liu L. Comprehensive analysis of the Ppatg3 mutant reveals that autophagy plays important roles in gametophore senescence in Physcomitrella patens. BMC PLANT BIOLOGY 2020; 20:440. [PMID: 32967624 PMCID: PMC7513309 DOI: 10.1186/s12870-020-02651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Autophagy is an evolutionarily conserved system for the degradation of intracellular components in eukaryotic organisms. Autophagy plays essential roles in preventing premature senescence and extending the longevity of vascular plants. However, the mechanisms and physiological roles of autophagy in preventing senescence in basal land plants are still obscure. RESULTS Here, we investigated the functional roles of the autophagy-related gene PpATG3 from Physcomitrella patens and demonstrated that its deletion prevents autophagy. In addition, Ppatg3 mutant showed premature gametophore senescence and reduced protonema formation compared to wild-type (WT) plants under normal growth conditions. The abundance of nitrogen (N) but not carbon (C) differed significantly between Ppatg3 mutant and WT plants, as did relative fatty acid levels. In vivo protein localization indicated that PpATG3 localizes to the cytoplasm, and in vitro Y2H assays confirmed that PpATG3 interacts with PpATG7 and PpATG12. Plastoglobuli (PGs) accumulated in Ppatg3, indicating that the process that degrades damaged chloroplasts in senescent gametophore cells was impaired in this mutant. RNA-Seq uncovered a detailed, comprehensive set of regulatory pathways that were affected by the autophagy mutation. CONCLUSIONS The autophagy-related gene PpATG3 is essential for autophagosome formation in P. patens. Our findings provide evidence that autophagy functions in N utilization, fatty acid metabolism and damaged chloroplast degradation under non-stress conditions. We identified differentially expressed genes in Ppatg3 involved in numerous biosynthetic and metabolic pathways, such as chlorophyll biosynthesis, lipid metabolism, reactive oxygen species removal and the recycling of unnecessary proteins that might have led to the premature senescence of this mutant due to defective autophagy. Our study provides new insights into the role of autophagy in preventing senescence to increase longevity in basal land plants.
Collapse
Affiliation(s)
- Zexi Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbo Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Pu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Xiumei Dong
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Bei Gao
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ping Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Yanxia Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650204, China
| | - Li Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
15
|
Tabassum R, Dosaka T, Ichida H, Morita R, Ding Y, Abe T, Katsube-Tanaka T. FLOURY ENDOSPERM11-2 encodes plastid HSP70-2 involved with the temperature-dependent chalkiness of rice (Oryza sativa L.) grains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:604-616. [PMID: 32215974 DOI: 10.1111/tpj.14752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/23/2023]
Abstract
The frequent occurrence of chalky rice (Oryza sativa L.) grains becomes a serious problem as a result of climate change. The molecular mechanism underlying chalkiness is largely unknown, however. In this study, the temperature-sensitive floury endosperm11-2 (flo11-2) mutant was isolated from ion beam-irradiated rice of 1116 lines. The flo11-2 mutant showed significantly higher chalkiness than the wild type grown under a mean temperature of 28°C, but similar levels of chalkiness to the wild type grown under a mean temperature of 24°C. Whole-exome sequencing of the flo11-2 mutant showed three causal gene candidates, including Os12g0244100, which encodes the plastid-localized 70-kDa heat shock protein 2 (cpHSP70-2). The cpHSP70-2 of the flo11-2 mutant has an amino acid substitution on the 259th aspartic acid with valine (D259V) in the conserved Motif 5 of the ATPase domain. Transgenic flo11-2 mutants that express the wild-type cpHSP70-2 showed significantly lower chalkiness than the flo11-2 mutant. Moreover, the accumulation level of cpHSP70-2 was negatively correlated with the chalky ratio, indicating that cpHSP70-2 is a causal gene for the chalkiness of the flo11-2 mutant. The intrinsic ATPase activity of recombinant cpHSP70-2 was lower by 23% at Vmax for the flo11-2 mutant than for the wild type. The growth of DnaK-defective Escherichia coli cells complemented with DnaK with the D201V mutation (equivalent to the D259V mutation) was severely reduced at 37°C, but not in the wild-type DnaK. The results indicate that the lowered cpHSP70-2 function is involved with the chalkiness of the flo11-2 mutant.
Collapse
Affiliation(s)
- Rehenuma Tabassum
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
- Department of Crop Botany and Tea Production Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Tokinori Dosaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Hiroyuki Ichida
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Ryouhei Morita
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | - Yifan Ding
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
16
|
Protein import into chloroplasts and its regulation by the ubiquitin-proteasome system. Biochem Soc Trans 2020; 48:71-82. [PMID: 31922184 PMCID: PMC7054747 DOI: 10.1042/bst20190274] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Chloroplasts are photosynthetic plant organelles descended from a bacterial ancestor. The vast majority of chloroplast proteins are synthesized in the cytosol and then imported into the chloroplast post-translationally. Translocation complexes exist in the organelle's outer and inner envelope membranes (termed TOC and TIC, respectively) to facilitate protein import. These systems recognize chloroplast precursor proteins and mediate their import in an energy-dependent manner. However, many unanswered questions remain regarding mechanistic details of the import process and the participation and functions of individual components; for example, the cytosolic events that mediate protein delivery to chloroplasts, the composition of the TIC apparatus, and the nature of the protein import motor all require resolution. The flux of proteins through TOC and TIC varies greatly throughout development and in response to specific environmental cues. The import process is, therefore, tightly regulated, and it has emerged that the ubiquitin-proteasome system (UPS) plays a key role in this regard, acting at several different steps in the process. The UPS is involved in: the selective degradation of transcription factors that co-ordinate the expression of chloroplast precursor proteins; the removal of unimported chloroplast precursor proteins in the cytosol; the inhibition of chloroplast biogenesis pre-germination; and the reconfiguration of the TOC apparatus in response to developmental and environmental signals in a process termed chloroplast-associated protein degradation. In this review, we highlight recent advances in our understanding of protein import into chloroplasts and how this process is regulated by the UPS.
Collapse
|
17
|
Chu CC, Swamy K, Li HM. Tissue-Specific Regulation of Plastid Protein Import via Transit-Peptide Motifs. THE PLANT CELL 2020; 32:1204-1217. [PMID: 32075863 PMCID: PMC7145487 DOI: 10.1105/tpc.19.00702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 02/17/2020] [Indexed: 05/28/2023]
Abstract
Plastids differentiate into various functional types (chloroplasts, leucoplasts, chromoplasts, etc.) that have distinct proteomes depending on the specific tissue. Most plastid proteins are encoded by the nuclear genome, synthesized as higher molecular mass preproteins with an N-terminal transit peptide, and then posttranslationally imported from the cytosol. Evidence for tissue-specific regulation of import into plastids, and subsequent modulation of plastid proteomes, has been lacking. We quantified protein import into isolated pea (Pisum sativum) leaf chloroplasts and root leucoplasts and identified two transit-peptide motifs that specifically enhance preprotein import into root leucoplasts. Using a plastid preprotein expressed in both leaves and roots of stable transgenic plants, we showed that losing one of the leucoplast motifs interfered with its function in root leucoplasts but had no effect on its function in leaf chloroplasts. We assembled a list of all Arabidopsis (Arabid opsis thaliana) plastid preproteins encoded by recently duplicated genes and show that, within a duplicated preprotein pair, the isoform bearing the leucoplast motif usually has greater root protein abundance. Our findings represent a clear demonstration of tissue-specific regulation of organelle protein import and suggest that it operates by selective evolutionary retention of transit-peptide motifs, which enhances import into specific plastid types.
Collapse
Affiliation(s)
- Chiung-Chih Chu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Krishna Swamy
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
18
|
Li HM, Schnell D, Theg SM. Protein Import Motors in Chloroplasts: On the Role of Chaperones. THE PLANT CELL 2020; 32:536-542. [PMID: 31932485 PMCID: PMC7054032 DOI: 10.1105/tpc.19.00300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Affiliation(s)
- Hsou-Min Li
- Institute of Molecular Biology Academia Sinica Taipei 11529, Taiwan
| | - Danny Schnell
- Department of Plant Biology Michigan State University East Lansing, Michigan 48824
| | - Steven M Theg
- Department of Plant Biology University of California Davis, California 95616
| |
Collapse
|
19
|
Richardson LGL, Schnell DJ. Origins, function, and regulation of the TOC-TIC general protein import machinery of plastids. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1226-1238. [PMID: 31730153 PMCID: PMC7031061 DOI: 10.1093/jxb/erz517] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/14/2019] [Indexed: 05/11/2023]
Abstract
The evolution of chloroplasts from the original endosymbiont involved the transfer of thousands of genes from the ancestral bacterial genome to the host nucleus, thereby combining the two genetic systems to facilitate coordination of gene expression and achieve integration of host and organelle functions. A key element of successful endosymbiosis was the evolution of a unique protein import system to selectively and efficiently target nuclear-encoded proteins to their site of function within the chloroplast after synthesis in the cytoplasm. The chloroplast TOC-TIC (translocon at the outer chloroplast envelope-translocon at the inner chloroplast envelope) general protein import system is conserved across the plant kingdom, and is a system of hybrid origin, with core membrane transport components adapted from bacterial protein targeting systems, and additional components adapted from host genes to confer the specificity and directionality of import. In vascular plants, the TOC-TIC system has diversified to mediate the import of specific, functionally related classes of plastid proteins. This functional diversification occurred as the plastid family expanded to fulfill cell- and tissue-specific functions in terrestrial plants. In addition, there is growing evidence that direct regulation of TOC-TIC activities plays an essential role in the dynamic remodeling of the organelle proteome that is required to coordinate plastid biogenesis with developmental and physiological events.
Collapse
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
de Luna-Valdez LA, Villaseñor-Salmerón CI, Cordoba E, Vera-Estrella R, León-Mejía P, Guevara-García AA. Functional analysis of the Chloroplast GrpE (CGE) proteins from Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:293-306. [PMID: 30927692 DOI: 10.1016/j.plaphy.2019.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
The function of proteins depends on specific partners that regulate protein folding, degradation and protein-protein interactions, such partners are the chaperones and cochaperones. In chloroplasts, proteins belonging to several families of chaperones have been identified: chaperonins (Cpn60s), Hsp90s (Hsp90-5/Hsp90C), Hsp100s (Hsp93/ClpC) and Hsp70s (cpHsc70s). Several lines of evidence have demonstrated that cpHsc70 chaperones are involved in molecular processes like protein import, protein folding and oligomer formation that impact important physiological aspects in plants such as thermotolerance and thylakoid biogenesis. Despite the vast amount of data existing around the function of cpHcp70s chaperones, very little attention has been paid to the roles of DnaJ and GrpE cochaperones in the chloroplast. In this study, we performed a phylogenetic analysis of the chloroplastic GrpE (CGE) proteins from 71 species. Based on their phylogenetic relationships and on a motif enrichment analysis, we propose a classification system for land plants' CGEs, which include two independent groups with specific primary structure traits. Furthermore, using in vivo assays we determined that the two CGEs from A. thaliana (AtCGEs) complement the mutant phenotype displayed by a knockout E. coli strain defective in the bacterial grpE gene. Moreover, we determined in planta that the two AtCGEs are bona fide chloroplastic proteins, which form the essential homodimers needed to establish direct physical interactions with the cpHsc70-1 chaperone. Finally, we found evidence suggesting that AtCGE1 is involved in specific physiological phenomena in A. thaliana, such as the chloroplastic response to heat stress, and the correct oligomerization of the photosynthesis-related LHCII complex.
Collapse
Affiliation(s)
- L A de Luna-Valdez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - C I Villaseñor-Salmerón
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - E Cordoba
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - R Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - P León-Mejía
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| | - A A Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
21
|
Wu GZ, Meyer EH, Richter AS, Schuster M, Ling Q, Schöttler MA, Walther D, Zoschke R, Grimm B, Jarvis RP, Bock R. Control of retrograde signalling by protein import and cytosolic folding stress. NATURE PLANTS 2019; 5:525-538. [PMID: 31061535 DOI: 10.1038/s41477-019-0415-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/22/2019] [Indexed: 05/03/2023]
Abstract
Communication between organelles and the nucleus is essential for fitness and survival. Retrograde signals are cues emitted from the organelles to regulate nuclear gene expression. GENOMES UNCOUPLED1 (GUN1), a protein of unknown function, has emerged as a central integrator, participating in multiple retrograde signalling pathways that collectively regulate the nuclear transcriptome. Here, we show that GUN1 regulates chloroplast protein import through interaction with the import-related chaperone cpHSC70-1. We demonstrated that overaccumulation of unimported precursor proteins (preproteins) in the cytosol causes a GUN phenotype in the wild-type background and enhances the GUN phenotype of the gun1 mutant. Furthermore, we identified the cytosolic HSP90 chaperone complex, induced by overaccumulated preproteins, as a central regulator of photosynthetic gene expression that determines the expression of the GUN phenotype. Taken together, our results suggest a model in which protein import capacity, folding stress and the cytosolic HSP90 complex control retrograde communication.
Collapse
Affiliation(s)
- Guo-Zhang Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Martin-Luther-Universität Halle-Wittenberg, Institute of Plant Physiology, Halle, Germany
| | - Andreas S Richter
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maja Schuster
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Dirk Walther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Reimo Zoschke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| |
Collapse
|
22
|
Wang Z, Shen Y, Yang X, Pan Q, Ma G, Bao M, Zheng B, Duanmu D, Lin R, Larkin RM, Ning G. Overexpression of particular MADS-box transcription factors in heat-stressed plants induces chloroplast biogenesis in petals. PLANT, CELL & ENVIRONMENT 2019; 42:1545-1560. [PMID: 30375658 DOI: 10.1111/pce.13472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts convert solar energy into biologically useful forms of energy by performing photosynthesis. Although light and particular genes are known to promote chloroplast development, little is known about the mechanisms that regulate the tissue-specificity and cell-specificity of chloroplast biogenesis. Thus, the mechanisms that determine whether non-photosynthetic plastids rather than chloroplasts develop in petals remain largely unexplored. Although heat stress is known to inhibit photosynthesis, we do not know whether heat stress affects chloroplast biogenesis. Here, we report that heat stress up-regulates the expression of chlorophyll biosynthesis-related genes and promotes chloroplasts biogenesis in petals overexpressing SOC1 (suppressor of overexpression of CO) and novel SOC1-like genes. We also found that these specific MADS-box transcription factors are present in most photosynthetic eukaryotes and that the expression of more than one homolog is observed in chloroplast-containing tissues. These findings not only provide novel insights into the tissue specificity of chloroplast biogenesis and a method for producing green petals but also are consistent with heat stress influencing chloroplast biogenesis in higher plants.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuxiao Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiao Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qi Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guangying Ma
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Flower Research and Development Center, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany Chinese Academy of Sciences, Beijing, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
23
|
Rodriguez-Concepcion M, D'Andrea L, Pulido P. Control of plastidial metabolism by the Clp protease complex. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2049-2058. [PMID: 30576524 DOI: 10.1093/jxb/ery441] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/29/2018] [Indexed: 05/23/2023]
Abstract
Plant metabolism is strongly dependent on plastids. Besides hosting the photosynthetic machinery, these endosymbiotic organelles synthesize starch, fatty acids, amino acids, nucleotides, tetrapyrroles, and isoprenoids. Virtually all enzymes involved in plastid-localized metabolic pathways are encoded by the nuclear genome and imported into plastids. Once there, protein quality control systems ensure proper folding of the mature forms and remove irreversibly damaged proteins. The Clp protease is the main machinery for protein degradation in the plastid stroma. Recent work has unveiled an increasing number of client proteins of this proteolytic complex in plants. Notably, a substantial proportion of these substrates are required for normal chloroplast metabolism, including enzymes involved in the production of essential tetrapyrroles and isoprenoids such as chlorophylls and carotenoids. The Clp protease complex acts in coordination with nuclear-encoded plastidial chaperones for the control of both enzyme levels and proper folding (i.e. activity). This communication involves a retrograde signaling pathway, similarly to the unfolded protein response previously characterized in mitochondria and endoplasmic reticulum. Coordinated Clp protease and chaperone activities appear to further influence other plastid processes, such as the differentiation of chloroplasts into carotenoid-accumulating chromoplasts during fruit ripening.
Collapse
Affiliation(s)
| | - Lucio D'Andrea
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| |
Collapse
|
24
|
Su PH, Lin HY, Lai YH. Two Arabidopsis Chloroplast GrpE Homologues Exhibit Distinct Biological Activities and Can Form Homo- and Hetero-Oligomers. FRONTIERS IN PLANT SCIENCE 2019; 10:1719. [PMID: 32038688 PMCID: PMC6987454 DOI: 10.3389/fpls.2019.01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/06/2019] [Indexed: 05/15/2023]
Abstract
Flowering plants have evolved two distinct clades of chloroplast GrpE homologues (CGEs), which are the nucleotide exchange factor for Hsp70. In Arabidopsis, they are named AtCGE1 (At5g17710) and AtCGE2 (At1g36390). Characterization of their corresponding T-DNA insertion mutants revealed that there is no visible change in phenotype except a defect in protein import in an AtCGE2-knockout mutant under normal growth conditions. However, the embryo development of an AtCGE1-knockout mutant was arrested early at the globular stage. An AtCGE1-knockdown mutant, harboring a T-DNA insertion in the 5'-UTR region, exhibited growth retardation and protein import defect, and its mutant phenotypes became more severe when AtCGE2 was further knocked out. Sub-organellar distribution implied that AtCGE2 might be important for membrane biology due to its preferential association with chloroplast membranes. Biochemical studies and complementation tests showed that only AtCGE1, but not AtCGE2, can effectively rescue the heat-sensitive phenotype of Escherichia coli grpE mutant and robustly stimulate the refolding of denatured luciferase by DnaK. Interestingly, AtCGE1 and AtCGE2 are tending to form heterocomplexes, which exhibit comparable co-chaperone activity to AtCGE1 homocomplexes. Our data indicate that AtCGE1 is the principle functional homologue of GrpE. The possibility that AtCGE2 has a subsidiary or regulatory function through homo- and/or hetero-oligomerization is discussed.
Collapse
Affiliation(s)
- Pai-Hsiang Su
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- *Correspondence: Pai-Hsiang Su,
| | - Hsuan-Yu Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yen-Hsun Lai
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
25
|
Bölter B. En route into chloroplasts: preproteins' way home. PHOTOSYNTHESIS RESEARCH 2018; 138:263-275. [PMID: 29943212 DOI: 10.1007/s11120-018-0542-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts are the characteristic endosymbiotic organelles of plant cells which during the course of evolution lost most of their genetic information to the nucleus. Thus, they critically depend on the host cell for allocation of nearly their complete protein supply. This includes gene expression, translation, protein targeting, and transport-all of which need to be tightly regulated and perfectly coordinated to accommodate the cells' needs. To this end, multiple signaling pathways have been implemented that interchange information between the different cellular compartments. One of the most complex and energy consuming processes is the translocation of chloroplast-destined proteins into their target organelle. It is a concerted effort from chaperones, receptor proteins, channels, and regulatory elements to ensure correct targeting, efficient transport, and subsequent folding. Although we have discovered and learned a lot about protein import into chloroplasts in the last decades, there are still many open questions and debates about the roles of individual proteins as well as the mechanistic details. In this review, I will summarize and discuss the published data with a focus on the translocation complex in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany.
| |
Collapse
|
26
|
Zhu X, Teng X, Wang Y, Hao Y, Jing R, Wang Y, Liu Y, Zhu J, Wu M, Zhong M, Chen X, Zhang Y, Zhang W, Wang C, Wang Y, Wan J. FLOURY ENDOSPERM11 encoding a plastid heat shock protein 70 is essential for amyloplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:89-99. [PMID: 30466604 DOI: 10.1016/j.plantsci.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/07/2018] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Abstract
Mutations of stromal Hsp70 cause chloroplast developmental abnormalities and knockout mutants of stromal Hsp70 usually exhibit protein import deficiencies. However, their effects have not been studied in amyloplast development. Here, we identified an amyloplast abnormal development mutant, floury endosperm11 (flo11) that exhibited an opaque phenotype in the inner core and the periphery of grains. Semi-thin section revealed defective amyloplast development in the flo11 endosperm. Map-based cloning and subsequent complementation test demonstrated that FLO11 encoded a plastid-localized heat shock protein 70 (OsHsp70cp-2). OsHsp70cp-2 was abundantly expressed in developing endosperm, whereas its paralogous gene OsHsp70cp-1 was mainly expressed in photosynthetic tissues. Ectopic expression of OsHsp70cp-1 under the control of OsHsp70cp-2 promoter rescued the mutant phenotype of flo11. Moreover, simultaneous knockdown of both OsHsp70cp genes resulted in white stripe leaves and opaque endosperm. BiFC and Co-IP assays revealed that OsHsp70cp-2 was associated with Tic complex. Taken together, OsHsp70cp-2 may regulate protein import into amyloplasts, which is essential for amyloplast development in rice.
Collapse
Affiliation(s)
- Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingsheng Zhong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
27
|
Park MH, Zhong R, Lamppa G. Chloroplast stromal processing peptidase activity is modulated by transit peptide determinants that include inhibitory roles for its N-terminal domain and initial Met. Biochem Biophys Res Commun 2018; 503:3149-3154. [PMID: 30149913 DOI: 10.1016/j.bbrc.2018.08.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
The stromal processing peptidase (SPP) removes transit peptides as precursor proteins enter the chloroplast and different plastid types. SPP is synthesized as a latent, inactive precursor (preSPP) with an atypically long transit peptide. Determinants in the pea (Pisum sativum) SPP transit peptide that regulate mature SPP activation were investigated. Mutational and chemical analyses with protein modifying agents (NEM and APMA) showed a conserved transit peptide Cys-X-Ser/Thr-Cys motif did not inhibit SPP via a "cysteine switch" mechanism through His-X-X-Glu-His site interactions, although cysteines in mature SPP contribute to an active conformation. Significantly, a transit peptide deletion of only the N-terminal 28 amino acids activates SPP located downstream. Short deletions within this region suggest removal of the initial Met plays a pivotal, mechanistic role. Other deletions of ∼30 amino acids along the length of the transit peptide do not individually trigger activity, but larger deletions including Met have an additive effect indicating its removal may be a critical early step during preSPP import. Interestingly, the active preSPP deletion mutants no longer possess predicted Hsp70 binding sites including initial Met, thus Hsp70 interactions may restrict SPP from attaining an active conformation.
Collapse
Affiliation(s)
- Me-Hea Park
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA; Postharvest Technology Division, National Institute of Horticultural and Herbal Science, Wanju-gun, Republic of Korea.
| | - Rong Zhong
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Gayle Lamppa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Li P, Yang H, Liu G, Ma W, Li C, Huo H, He J, Liu L. PpSARK Regulates Moss Senescence and Salt Tolerance through ABA Related Pathway. Int J Mol Sci 2018; 19:E2609. [PMID: 30177627 PMCID: PMC6163601 DOI: 10.3390/ijms19092609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 08/30/2018] [Indexed: 11/18/2022] Open
Abstract
Senescence-associated receptor-like kinase (SARK) family members in Arabidopsis, soybean, and rice are known to be positive regulators of leaf senescence. In the meantime, SARKs are extensively involved in stress response. However, their function and underlying molecular mechanism in stress responses in moss are not well known. Here, we investigated functional roles of SARK isolated from Physcomitrella patens (PpSARK) in salt stress response and senescence. PpSARK transcripts significantly accumulated under NaCl and abscisic acid (ABA) treatments, with higher expression in the moss gametophyte stage. Insertional gain-of-function mutants of PpSARK (PpSARKg) were more tolerant to salt stress and ABA than wild type (WT), whereas senescence of mutants was delayed during the protonema stage. Expression of stress-responsive genes in the ABA related pathway, such as PpABI3, PpABI5, PpPP2C, and PpLEA were significantly higher in PpSARKg and WT under salt stress conditions, suggesting that PpSARK might positively regulate salt tolerance via an ABA-related pathway. Endogenous ABA contents also increased 3-fold under salt stress conditions. These results indicate that PpSARK functions as a positive regulator in salt stress responses, while possibly functioning as a negative regulator in senescence in moss.
Collapse
Affiliation(s)
- Ping Li
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong Yang
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gaojing Liu
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| | - Wenzhang Ma
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| | - Chuanhong Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| | - Heqiang Huo
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, University of Florida, Apopka, FL 32703, USA.
| | - Jianfang He
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Liu
- Key Laboratory of Economic Plants and Biotechnology, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China.
| |
Collapse
|
29
|
Ganesan I, Shi LX, Labs M, Theg SM. Evaluating the Functional Pore Size of Chloroplast TOC and TIC Protein Translocons: Import of Folded Proteins. THE PLANT CELL 2018; 30:2161-2173. [PMID: 30104404 PMCID: PMC6181021 DOI: 10.1105/tpc.18.00427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
The degree of residual structure retained by proteins while passing through biological membranes is a fundamental mechanistic question of protein translocation. Proteins are generally thought to be unfolded while transported through canonical proteinaceous translocons, including the translocons of the outer and inner chloroplast envelope membranes (TOC and TIC). Here, we readdressed the issue and found that the TOC/TIC translocons accommodated the tightly folded dihydrofolate reductase (DHFR) protein in complex with its stabilizing ligand, methotrexate (MTX). We employed a fluorescein-conjugated methotrexate (FMTX), which has slow membrane transport rates relative to unconjugated MTX, to show that the rate of ligand accumulation inside chloroplasts is faster when bound to DHFR that is actively being imported. Stromal accumulation of FMTX is ATP dependent when DHFR is actively being imported but is otherwise ATP independent, again indicating DHFR/FMTX complex import. Furthermore, the TOC/TIC pore size was probed with fixed-diameter particles and found to be greater than 25.6 Å, large enough to support folded DHFR import and also larger than mitochondrial and bacterial protein translocons that have a requirement for protein unfolding. This unique pore size and the ability to import folded proteins have critical implications regarding the structure and mechanism of the TOC/TIC translocons.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Department of Plant Biology, University of California, Davis, California 95616
| | - Lan-Xin Shi
- Department of Plant Biology, University of California, Davis, California 95616
| | - Mathias Labs
- Department of Plant Biology, University of California, Davis, California 95616
| | - Steven M Theg
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
30
|
Richardson LGL, Small EL, Inoue H, Schnell DJ. Molecular Topology of the Transit Peptide during Chloroplast Protein Import. THE PLANT CELL 2018; 30:1789-1806. [PMID: 29991536 PMCID: PMC6139696 DOI: 10.1105/tpc.18.00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 05/04/2023]
Abstract
Chloroplast protein import is directed by the interaction of the targeting signal (transit peptide) of nucleus-encoded preproteins with translocons at the outer (TOC) and inner (TIC) chloroplast envelope membranes. Studies of the energetics and determinants of transit peptide binding have led to the hypothesis that import occurs through sequential recognition of transit peptides by components of TOC and TIC during protein import. To test this hypothesis, we employed a site-specific cross-linking approach to map transit peptide topology in relation to TOC-TIC components at specific stages of import in Arabidopsis thaliana and pea (Pisum sativum). We demonstrate that the transit peptide is in contact with Tic20 at the inner envelope in addition to TOC complex components at the earliest stages of chloroplast binding. Low levels of ATP hydrolysis catalyze the commitment of the preprotein to import by promoting further penetration across the envelope membranes and stabilizing the association of the preprotein with TOC-TIC. GTP hydrolysis at the TOC receptors serves as a checkpoint to regulate the ATP-dependent commitment of the preprotein to import and is not essential to drive preprotein import. Our results demonstrate the close cooperativity of the TOC and TIC machinery at each stage of transit peptide recognition and membrane translocation during protein import.
Collapse
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Eliana L Small
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Hitoshi Inoue
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Danny J Schnell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
31
|
Nakai M. New Perspectives on Chloroplast Protein Import. PLANT & CELL PHYSIOLOGY 2018; 59:1111-1119. [PMID: 29684214 DOI: 10.1093/pcp/pcy083] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/13/2018] [Indexed: 05/21/2023]
Abstract
Virtually all chloroplasts in extant photosynthetic eukaryotes derive from a single endosymbiotic event that probably occurred more than a billion years ago between a host eukaryotic cell and a cyanobacterium-like ancestor. Many endosymbiont genes were subsequently transferred to the host nuclear genome, concomitant with the establishment of a system for protein transport through the chloroplast double-membrane envelope. Presently, 2,000-3,000 different nucleus-encoded chloroplast proteins must be imported into the chloroplast following their synthesis in the cytosol. The TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes are protein translocation machineries at the outer and inner envelope membranes, respectively, that facilitate this chloroplast protein import with the aid of a TIC-associated ATP-driven import motor. All the essential components of this protein import system seemed to have been identified through biochemical analyses and subsequent genetic studies that initiated in the late 1990s. However, in 2013, the Nakai group reported a novel inner envelope membrane TIC complex, for which a novel ATP-driven import motor associated with this TIC complex is likely to exist. In this mini review, I will summarize these recent discoveries together with new, or reanalyzed, data presented by other groups in recent years. Whereas the precise concurrent view of chloroplast protein import is still a matter of some debate, it is anticipated that the entire TOC/TIC/ATP motor system, including any novel components, will be conclusively established in the next decade. Such findings may lead to an extensively revised view of the evolution and molecular mechanisms of chloroplast protein import.
Collapse
Affiliation(s)
- Masato Nakai
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
32
|
Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress. Genes (Basel) 2018; 9:genes9020035. [PMID: 29360757 PMCID: PMC5852552 DOI: 10.3390/genes9020035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Heat-shock proteins (HSPs) are ubiquitous proteins with important roles in response to biotic and abiotic stress. The 70-kDa heat-shock genes (Hsp70s) encode a group of conserved chaperone proteins that play central roles in cellular networks of molecular chaperones and folding catalysts across all the studied organisms including bacteria, plants and animals. Several Hsp70s involved in drought tolerance have been well characterized in various plants, whereas no research on Chenopodium quinoa HSPs has been completed. Here, we analyzed the genome of C. quinoa and identified sixteen Hsp70 members in quinoa genome. Phylogenetic analysis revealed the independent origination of those Hsp70 members, with eight paralogous pairs comprising the Hsp70 family in quinoa. While the gene structure and motif analysis showed high conservation of those paralogous pairs, the synteny analysis of those paralogous pairs provided evidence for expansion coming from the polyploidy event. With several subcellular localization signals detected in CqHSP70 protein paralogous pairs, some of the paralogous proteins lost the localization information, indicating the diversity of both subcellular localizations and potential functionalities of those HSP70s. Further gene expression analyses revealed by quantitative polymerase chain reaction (qPCR) analysis illustrated the significant variations of Cqhsp70s in response to drought stress. In conclusion, the sixteen Cqhsp70s undergo lineage-specific expansions and might play important and varied roles in response to drought stress.
Collapse
|
33
|
Lee DW, Yoo YJ, Razzak MA, Hwang I. Prolines in Transit Peptides Are Crucial for Efficient Preprotein Translocation into Chloroplasts. PLANT PHYSIOLOGY 2018; 176:663-677. [PMID: 29158328 PMCID: PMC5761803 DOI: 10.1104/pp.17.01553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/17/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts import many preproteins that can be classified based on their physicochemical properties. The cleavable N-terminal transit peptide (TP) of chloroplast preproteins contains all the information required for import into chloroplasts through Toc/Tic translocons. The question of whether and how the physicochemical properties of preproteins affect TP-mediated import into chloroplasts has not been elucidated. Here, we present evidence that Pro residues in TP mediate efficient translocation through the chloroplast envelope membranes for proteins containing transmembrane domains (TMDs) or proteins prone to aggregation. By contrast, the translocation of soluble proteins through the chloroplast envelope membranes is less dependent on TP prolines. Proless TPs failed to mediate protein translocation into chloroplasts; instead, these mutant TPs led to protein mistargeting to the chloroplast envelope membranes or nonspecific protein aggregation during import into chloroplasts. The mistargeting of TMD-containing proteins caused by Pro-less TPs in wild-type protoplasts was mimicked by wild-type TPs in hsp93-V protoplasts, in which preprotein translocation is compromised. We propose that the physicochemical properties of chloroplast proteins affect protein translocation through the chloroplast envelope, and prolines in TP have a crucial role in the efficient translocation of TMD-containing proteins.
Collapse
Affiliation(s)
- Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Joo Yoo
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, and Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
34
|
Llamas E, Pulido P, Rodriguez-Concepcion M. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS Genet 2017; 13:e1007022. [PMID: 28937985 PMCID: PMC5627961 DOI: 10.1371/journal.pgen.1007022] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/04/2017] [Accepted: 09/15/2017] [Indexed: 11/27/2022] Open
Abstract
Disruption of protein homeostasis in chloroplasts impairs the correct functioning of essential metabolic pathways, including the methylerythritol 4-phosphate (MEP) pathway for the production of plastidial isoprenoids involved in photosynthesis and growth. We previously found that misfolded and aggregated forms of the first enzyme of the MEP pathway are degraded by the Clp protease with the involvement of Hsp70 and Hsp100/ClpC1 chaperones in Arabidopsis thaliana. By contrast, the combined unfolding and disaggregating actions of Hsp70 and Hsp100/ClpB3 chaperones allow solubilization and hence reactivation of the enzyme. The repair pathway is promoted when the levels of ClpB3 proteins increase upon reduction of Clp protease activity in mutants or wild-type plants treated with the chloroplast protein synthesis inhibitor lincomycin (LIN). Here we show that LIN treatment rapidly increases the levels of aggregated proteins in the chloroplast, unleashing a specific retrograde signaling pathway that up-regulates expression of ClpB3 and other nuclear genes encoding plastidial chaperones. As a consequence, folding capacity is increased to restore protein homeostasis. This sort of chloroplast unfolded protein response (cpUPR) mechanism appears to be mediated by the heat shock transcription factor HsfA2. Expression of HsfA2 and cpUPR-related target genes is independent of GUN1, a central integrator of retrograde signaling pathways. However, double mutants defective in both GUN1 and plastome gene expression (or Clp protease activity) are seedling lethal, confirming that the GUN1 protein is essential for protein homeostasis in chloroplasts.
Collapse
Affiliation(s)
- Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
35
|
Bédard J, Trösch R, Wu F, Ling Q, Flores-Pérez Ú, Töpel M, Nawaz F, Jarvis P. Suppressors of the Chloroplast Protein Import Mutant tic40 Reveal a Genetic Link between Protein Import and Thylakoid Biogenesis. THE PLANT CELL 2017; 29:1726-1747. [PMID: 28684427 PMCID: PMC5559741 DOI: 10.1105/tpc.16.00962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/02/2017] [Accepted: 07/02/2017] [Indexed: 05/23/2023]
Abstract
To extend our understanding of chloroplast protein import and the role played by the import machinery component Tic40, we performed a genetic screen for suppressors of chlorotic tic40 knockout mutant Arabidopsis thaliana plants. As a result, two suppressor of tic40 loci, stic1 and stic2, were identified and characterized. The stic1 locus corresponds to the gene ALBINO4 (ALB4), which encodes a paralog of the well-known thylakoid protein targeting factor ALB3. The stic2 locus identified a previously unknown stromal protein that interacts physically with both ALB4 and ALB3. Genetic studies showed that ALB4 and STIC2 act together in a common pathway that also involves cpSRP54 and cpFtsY. Thus, we conclude that ALB4 and STIC2 both participate in thylakoid protein targeting, potentially for a specific subset of thylakoidal proteins, and that this targeting pathway becomes disadvantageous to the plant in the absence of Tic40. As the stic1 and stic2 mutants both suppressed tic40 specifically (other TIC-related mutants were not suppressed), we hypothesize that Tic40 is a multifunctional protein that, in addition to its originally described role in protein import, is able to influence downstream processes leading to thylakoid biogenesis.
Collapse
Affiliation(s)
- Jocelyn Bédard
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Raphael Trösch
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Feijie Wu
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Úrsula Flores-Pérez
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mats Töpel
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Fahim Nawaz
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
- Department of Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
36
|
Zagari N, Sandoval-Ibañez O, Sandal N, Su J, Rodriguez-Concepcion M, Stougaard J, Pribil M, Leister D, Pulido P. SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation in Both Lotus japonicus and Arabidopsis thaliana. MOLECULAR PLANT 2017; 10:721-734. [PMID: 28286296 DOI: 10.1016/j.molp.2017.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/17/2017] [Accepted: 02/26/2017] [Indexed: 05/20/2023]
Abstract
Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essential for chloroplast development and the transition from heterotrophic to phototrophic growth. Snowy cotyledon 2 (SCO2) is a DNAJ-like protein involved in thylakoid membrane biogenesis and interacts with the light-harvesting chlorophyll-binding protein LHCB1. In Arabidopsis thaliana, SCO2 function was previously reported to be restricted to cotyledons. Here we show that disruption of SCO2 in Lotus japonicus results not only in paler cotyledons but also in variegated true leaves. Furthermore, smaller and pale-green true leaves can also be observed in A. thaliana sco2 (atsco2) mutants under short-day conditions. In both species, SCO2 is required for proper accumulation of PSII-LHCII complexes. In contrast to other variegated mutants, inhibition of chloroplastic translation strongly affects L. japonicus sco2 mutant development and fails to suppress their variegated phenotype. Moreover, inactivation of the suppressor of variegation AtClpR1 in the atsco2 background results in an additive double-mutant phenotype with variegated true leaves. Taken together, our results indicate that SCO2 plays a distinct role in PSII assembly or repair and constitutes a novel factor involved in leaf variegation.
Collapse
Affiliation(s)
- Nicola Zagari
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark; Research and Innovation Center, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Omar Sandoval-Ibañez
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Junyi Su
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Mathias Pribil
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Dario Leister
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Pablo Pulido
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
37
|
Zufferey M, Montandon C, Douet V, Demarsy E, Agne B, Baginsky S, Kessler F. The novel chloroplast outer membrane kinase KOC1 is a required component of the plastid protein import machinery. J Biol Chem 2017; 292:6952-6964. [PMID: 28283569 DOI: 10.1074/jbc.m117.776468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis.
Collapse
Affiliation(s)
- Mónica Zufferey
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Cyrille Montandon
- the College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Véronique Douet
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Emilie Demarsy
- the Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland, and
| | - Birgit Agne
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Sacha Baginsky
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Felix Kessler
- From the Laboratory of Plant Physiology, University of Neuchâtel, 2000 Neuchâtel, Switzerland,
| |
Collapse
|
38
|
Pulido P, Llamas E, Rodriguez-Concepcion M. Both Hsp70 chaperone and Clp protease plastidial systems are required for protection against oxidative stress. PLANT SIGNALING & BEHAVIOR 2017; 12:e1290039. [PMID: 28277974 PMCID: PMC5399908 DOI: 10.1080/15592324.2017.1290039] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 05/25/2023]
Abstract
Environmental stress conditions such as high light, extreme temperatures, salinity or drought trigger oxidative stress and eventually protein misfolding in plants. In chloroplasts, chaperone systems refold proteins after stress, while proteases degrade misfolded and aggregated proteins that cannot be refolded. We observed that reduced activity of chloroplast Hsp70 chaperone or Clp protease systems both prevented growth of Arabidopsis thaliana seedlings after treatment with the oxidative agent methyl viologen. Besides showing a role for these particular protein quality control components on the protection against oxidative stress, we provide evidence supporting the existence of a yet undiscovered pathway for Clp-mediated degradation of the damaged proteins.
Collapse
Affiliation(s)
- Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
39
|
Li Z, Long R, Zhang T, Wang Z, Zhang F, Yang Q, Kang J, Sun Y. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). JOURNAL OF PLANT RESEARCH 2017; 130:387-396. [PMID: 28150171 DOI: 10.1007/s10265-017-0905-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Abstract
Heat shock proteins (HSPs) are a ubiquitously expressed class of protective proteins that play a key role in plant response to stressful conditions. This study aimed to characterize and investigate the function of an HSP gene in alfalfa (Medicago sativa). MsHSP70, which contains a 2028-bp open reading frame, was identified through homology cloning. MsHSP70 shares high sequence identity (94.47%) with HSP70 from Medicago truncatula. Expression analysis of MsHSP70 in alfalfa organs revealed a relatively higher expression level in aerial organs such as flowers, stems and leaves than in roots. MsHSP70 was induced by heat shock, abscisic acid (ABA) and hydrogen peroxide. Transgenic Arabidopsis seedlings overexpressing MsHSP70 were hyposensitive to polyethylene glycol (PEG) and ABA treatments, suggesting that exogenous expression of MsHSP70 enhanced Arabidopsis tolerance to these stresses. Examination of physiological indexes related to drought and ABA stress demonstrated that in comparison with non-transgenic plants, T3 transgenic Arabidopsis plants had an increased proline content, higher superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. Furthermore, higher relative water content (RWC) was detected in transgenic plants compared with non-transgenic plants under drought stress. These findings clearly indicate that molecular manipulation of MsHSP70 in plants can have substantial effects on stress tolerance.
Collapse
Affiliation(s)
- Zhenyi Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Tiejun Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Fan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Yan Sun
- College of Animal Science and Technology, China Agriculture University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
40
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
41
|
|
42
|
Sequence analysis of the Hsp70 family in moss and evaluation of their functions in abiotic stress responses. Sci Rep 2016; 6:33650. [PMID: 27644410 PMCID: PMC5028893 DOI: 10.1038/srep33650] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/31/2016] [Indexed: 11/30/2022] Open
Abstract
The 70-kD heat shock proteins (Hsp70s) are highly conserved molecular chaperones that play essential roles in cellular processes including abiotic stress responses. Physcomitrella patens serves as a representative of the first terrestrial plants and can recover from serious dehydration. To assess the possible relationship between P. patens Hsp70s and dehydration tolerance, we analyzed the P. patens genome and found at least 21 genes encoding Hsp70s. Gene structure and motif composition were relatively conserved in each subfamily. The intron-exon structure of PpcpHsp70-2 was different from that of other PpcpHsp70s; this gene exhibits several forms of intron retention, indicating that introns may play important roles in regulating gene expression. We observed expansion of Hsp70s in P. patens, which may reflect adaptations related to development and dehydration tolerance, and results mainly from tandem and segmental duplications. Expression profiles of rice, Arabidopsis and P. patens Hsp70 genes revealed that more than half of the Hsp70 genes were responsive to ABA, salt and drought. The presence of overrepresented cis-elements (DOFCOREZM and GCCCORE) among stress-responsive Hsp70s suggests that they share a common regulatory pathway. Moss plants overexpressing PpcpHsp70-2 showed salt and dehydration tolerance, further supporting a role in adaptation to land. This work highlights directions for future functional analyses of Hsp70s.
Collapse
|
43
|
Holbrook K, Subramanian C, Chotewutmontri P, Reddick LE, Wright S, Zhang H, Moncrief L, Bruce BD. Functional Analysis of Semi-conserved Transit Peptide Motifs and Mechanistic Implications in Precursor Targeting and Recognition. MOLECULAR PLANT 2016; 9:1286-1301. [PMID: 27378725 DOI: 10.1016/j.molp.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 05/17/2023]
Abstract
Over 95% of plastid proteins are nuclear-encoded as their precursors containing an N-terminal extension known as the transit peptide (TP). Although highly variable, TPs direct the precursors through a conserved, posttranslational mechanism involving translocons in the outer (TOC) and inner envelope (TOC). The organelle import specificity is mediated by one or more components of the Toc complex. However, the high TP diversity creates a paradox on how the sequences can be specifically recognized. An emerging model of TP design is that they contain multiple loosely conserved motifs that are recognized at different steps in the targeting and transport process. Bioinformatics has demonstrated that many TPs contain semi-conserved physicochemical motifs, termed FGLK. In order to characterize FGLK motifs in TP recognition and import, we have analyzed two well-studied TPs from the precursor of RuBisCO small subunit (SStp) and ferredoxin (Fdtp). Both SStp and Fdtp contain two FGLK motifs. Analysis of large set mutations (∼85) in these two motifs using in vitro, in organello, and in vivo approaches support a model in which the FGLK domains mediate interaction with TOC34 and possibly other TOC components. In vivo import analysis suggests that multiple FGLK motifs are functionally redundant. Furthermore, we discuss how FGLK motifs are required for efficient precursor protein import and how these elements may permit a convergent function of this highly variable class of targeting sequences.
Collapse
Affiliation(s)
- Kristen Holbrook
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chitra Subramanian
- Graduate Program in Plant Physiology and Genetics, University of Tennessee, Knoxville, TN 37996, USA
| | | | - L Evan Reddick
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sarah Wright
- Department of Botany, University of Tennessee, Knoxville, TN 37996, USA
| | - Huixia Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Lily Moncrief
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; Graduate Program in Plant Physiology and Genetics, University of Tennessee, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
44
|
Bölter B, Soll J. Once upon a Time - Chloroplast Protein Import Research from Infancy to Future Challenges. MOLECULAR PLANT 2016; 9:798-812. [PMID: 27142186 DOI: 10.1016/j.molp.2016.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 05/08/2023]
Abstract
Protein import into chloroplasts has been a focus of research for several decades. The first publications dealing with this fascinating topic appeared in the 1970s. From the initial realization that many plastid proteins are being encoded for in the nucleus and require transport into their target organelle to the identification of import components in the cytosol, chloroplast envelopes, and stroma, as well as elucidation of some mechanistic details, more fascinating aspects are still being unraveled. With this overview, we present a survey of the beginnings of chloroplast protein import research, the first steps on this winding road, and end with a glimpse into the future.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
45
|
Bionda T, Gross LE, Becker T, Papasotiriou DG, Leisegang MS, Karas M, Schleiff E. Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts. PLANTA 2016; 243:733-47. [PMID: 26669598 DOI: 10.1007/s00425-015-2440-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION Multiple eukaryotic Hsp70 typically localized in the cytoplasm are also distributed to the intermembrane space of chloroplasts and might thereby represent the missing link in energizing protein translocation. Protein translocation into organelles is a central cellular process that is tightly regulated. It depends on signals within the preprotein and on molecular machines catalyzing the process. Molecular chaperones participate in transport and translocation of preproteins into organelles to control folding and to provide energy for the individual steps. While most of the processes are explored and the components are identified, the transfer of preproteins into and across the intermembrane space of chloroplasts is not yet understood. The existence of an energy source in this compartment is discussed, because the required transit peptide length for successful translocation into chloroplasts is shorter than that found for mitochondria where energy is provided exclusively by matrix chaperones. Furthermore, a cytosolic-type Hsp70 homologue was proposed as component of the chloroplast translocon in the intermembrane space energizing the initial translocation. The molecular identity of such intermembrane space localized Hsp70 remained unknown, which led to a controversy concerning its existence. We identified multiple cytosolic Hsp70s by mass spectrometry on isolated, thermolysin-treated Medicago sativa chloroplasts. The localization of these Hsp70s of M. sativa or Arabidopsis thaliana in the intermembrane space was confirmed by a self-assembly GFP-based in vivo system. The localization of cytosolic Hsp70s in the stroma of chloroplasts or different mitochondrial compartments could not be observed. Similarly, we could not identify any cytosolic Hsp90 in the intermembrane space of chloroplast. With respect to our results we discuss the possible targeting and function of the Hsp70 found in the intermembrane space.
Collapse
Affiliation(s)
- Tihana Bionda
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Lucia E Gross
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Thomas Becker
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Biochemistry and Molecular Biology, ZBMZ, and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
| | - Dimitrios G Papasotiriou
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Matthias S Leisegang
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Michael Karas
- Pharmaceutical Chemistry, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Molecular Cell Biology of Plants, Cluster of Excellence Frankfurt, Goethe University, Max von Laue Str. 9, 60438, Frankfurt, Germany.
- Buchmann Institut for Molecular Life Sciences, Max von Laue Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
46
|
Zhang S, Zhang Y, Cao Y, Lei Y, Jiang H. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males. J Proteome Res 2016; 15:840-50. [PMID: 26842668 DOI: 10.1021/acs.jproteome.5b00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.
Collapse
Affiliation(s)
- Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China
| | - Yunxiang Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China.,University of Chinese Academy of Sciences , Beijing 100039, China
| | | | - Yanbao Lei
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China
| | - Hao Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences , Chengdu 610041, China
| |
Collapse
|
47
|
Huang PK, Chan PT, Su PH, Chen LJ, Li HM. Chloroplast Hsp93 Directly Binds to Transit Peptides at an Early Stage of the Preprotein Import Process. PLANT PHYSIOLOGY 2016; 170:857-66. [PMID: 26676256 PMCID: PMC4734592 DOI: 10.1104/pp.15.01830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 05/20/2023]
Abstract
Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope.
Collapse
Affiliation(s)
- Po-Kai Huang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Po-Ting Chan
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Pai-Hsiang Su
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
48
|
Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodríguez-Concepción M. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLoS Genet 2016; 12:e1005824. [PMID: 26815787 PMCID: PMC4729485 DOI: 10.1371/journal.pgen.1005824] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023] Open
Abstract
The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid. In this paper we report a relatively simple mechanism by which plant chloroplasts deal with inactive forms of DXS, the main rate-determining enzyme for the production of plastidial isoprenoids relevant for photosynthesis and development. We provide evidence supporting that particular members of the Hsp100 chaperone family contribute to either refold or degrade inactive DXS proteins specifically recognized by the J-protein adaptor J20 and delivered to Hsp70 chaperones. Our results also unveil a J-protein-based mechanism for substrate delivery to the Clp complex, the main protease in the chloroplast stroma. Together, this work allows a better understanding of how chloroplasts get rid of damaged DXS (and potentially other proteins), which should contribute to take more informed decisions in future approaches aimed to manipulate the levels of plastidial metabolites of interest (including vitamins, biofuels, or drugs against cancer and malaria) in crop plants.
Collapse
Affiliation(s)
- Pablo Pulido
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Ernesto Llamas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Briardo Llorente
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus UAB Bellaterra, Barcelona, Spain
| | | | - Manuel Rodríguez-Concepción
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| |
Collapse
|
49
|
Flores-Pérez Ú, Bédard J, Tanabe N, Lymperopoulos P, Clarke AK, Jarvis P. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope. PLANT PHYSIOLOGY 2016; 170:147-62. [PMID: 26586836 PMCID: PMC4704595 DOI: 10.1104/pp.15.01538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 05/20/2023]
Abstract
The Hsp100-type chaperone Hsp93/ClpC has crucial roles in chloroplast biogenesis. In addition to its role in proteolysis in the stroma, biochemical and genetic evidence led to the hypothesis that this chaperone collaborates with the inner envelope TIC complex to power preprotein import. Recently, it was suggested that Hsp93, working together with the Clp proteolytic core, can confer a protein quality control mechanism at the envelope. Thus, the role of envelope-localized Hsp93, and the mechanism by which it participates in protein import, remain unclear. To analyze the function of Hsp93 in protein import independently of its ClpP association, we created a mutant of Hsp93 affecting its ClpP-binding motif (PBM) (Hsp93[P-]), which is essential for the chaperone's interaction with the Clp proteolytic core. The Hsp93[P-] construct was ineffective at complementing the pale-yellow phenotype of hsp93 Arabidopsis (Arabidopsis thaliana) mutants, indicating that the PBM is essential for Hsp93 function. As expected, the PBM mutation negatively affected the degradation activity of the stromal Clp protease. The mutation also disrupted association of Hsp93 with the Clp proteolytic core at the envelope, without affecting the envelope localization of Hsp93 itself or its association with the TIC machinery, which we demonstrate to be mediated by a direct interaction with Tic110. Nonetheless, Hsp93[P-] expression did not detectably improve the protein import efficiency of hsp93 mutant chloroplasts. Thus, our results do not support the proposed function of Hsp93 in protein import propulsion, but are more consistent with the notion of Hsp93 performing a quality control role at the point of import.
Collapse
Affiliation(s)
- Úrsula Flores-Pérez
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Jocelyn Bédard
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Noriaki Tanabe
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Panagiotis Lymperopoulos
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Adrian K Clarke
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| | - Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (U.F.-P., J.B., P.J.) and Department of Biological and Environmental Sciences, Gothenburg University, 405 30 Gothenburg, Sweden (N.T., P.L., A.K.C.)
| |
Collapse
|
50
|
Colombo M, Tadini L, Peracchio C, Ferrari R, Pesaresi P. GUN1, a Jack-Of-All-Trades in Chloroplast Protein Homeostasis and Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:1427. [PMID: 27713755 PMCID: PMC5032792 DOI: 10.3389/fpls.2016.01427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/07/2016] [Indexed: 05/04/2023]
Abstract
The GENOMES UNCOUPLED 1 (GUN1) gene has been reported to encode a chloroplast-localized pentatricopeptide-repeat protein, which acts to integrate multiple indicators of plastid developmental stage and altered plastid function, as part of chloroplast-to-nucleus retrograde communication. However, the molecular mechanisms underlying signal integration by GUN1 have remained elusive, up until the recent identification of a set of GUN1-interacting proteins, by co-immunoprecipitation and mass-spectrometric analyses, as well as protein-protein interaction assays. Here, we review the molecular functions of the different GUN1 partners and propose a major role for GUN1 as coordinator of chloroplast translation, protein import, and protein degradation. This regulatory role is implemented through proteins that, in most cases, are part of multimeric protein complexes and whose precise functions vary depending on their association states. Within this framework, GUN1 may act as a platform to promote specific functions by bringing the interacting enzymes into close proximity with their substrates, or may inhibit processes by sequestering particular pools of specific interactors. Furthermore, the interactions of GUN1 with enzymes of the tetrapyrrole biosynthesis (TPB) pathway support the involvement of tetrapyrroles as signaling molecules in retrograde communication.
Collapse
Affiliation(s)
- Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund MachSan Michele all'Adige, Italy
| | - Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Roberto Ferrari
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di MilanoMilan, Italy
- *Correspondence: Paolo Pesaresi
| |
Collapse
|